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Stochastic Control and Mathematical Modeling

Applications in Economics

This is a concise and elementary introduction to stochastic control and mathematical
modeling. This book is designed for researchers in stochastic control theory studying
its application in mathematical economics and those in economics who are interested
in mathematical theory in control. It is also a good guide for graduate students studying
applied mathematics, mathematical economics, and nonlinear PDE theory.

Contents include the basics of analysis and probability, the theory of stochastic
differential equations, variational problems, problems in optimal consumption and in
optimal stopping, optimal pollution control, and solving the Hamilton–Jacobi–Bellman
equations with boundary conditions. Major mathematical requisitions are contained
in the preliminary chapters or in the appendix so that readers can proceed without
referring to other materials.

Hiroaki Morimoto is a Professor in Mathematics at the Graduate School of Science
and Engineering at Ehime University. His research interests include stochastic control,
mathematical economics and finance and insurance applications, and the viscosity
solution theory.
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Preface

The purpose of this book is to provide a fundamental description of stochastic
control theory and its applications to dynamic optimization in economics. Its
content is suitable particularly for graduate students and scientists in applied
mathematics, economics, and engineering fields.

A stochastic control problem poses the question: what is the optimal magnitude
of a choice variable at each time in a dynamical system under uncertainty? In
stochastic control theory, the state variables and control variables, respectively,
describe the random phenomena of dynamics and inputs. The state variable in
the problem evolves according to stochastic differential equations (SDE) with
control variables. By steering of such control variables, we aim to optimize some
performance criteria as expressed by the objective functional. Stochastic control
can be viewed as a problem of decision making in maximization or minimization.
This subject has created a great deal of mathematics as well as a large variety of
applications in economics, mathematical finance, and engineering.

This book provides the basic elements of stochastic differential equations and
stochastic control theory in a simple and self-contained way. In particular, a key
to the stochastic control problem is the dynamic programming principle (DPP),
which leads to the notion of viscosity solutions of Hamilton–Jacobi–Bellman
(HJB) equations. The study of viscosity solutions, originated by M. Crandall
and P. L. Lions in the 1980s, provides a useful tool for dealing with the lack of
smoothness of the value functions in stochastic control. The main idea used to
solve this maximization problem is summarized as follows:

(a) We formulate the problem and define the supremum of the objective func-
tional over the class of all control variables, which is called the value function.

(b) We verify that the DPP holds for the value function.
(c) By the DPP, the value function can be viewed as a unique viscosity solution

of the HJB equation associated with this problem.
(d) The uniform ellipticity and the uniqueness of viscosity solutions show the

existence of a unique classical solution to the boundary value problem of

xi
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xii Preface

the HJB equation. This gives the smoothness of the viscosity solution of the
HJB equation.

(e) We seek a candidate of optimal control by using the HJB equation. By using
Itô’s formula, we show the optimality.

This book is divided into three parts: Part I − Stochastic Calculus and Optimal
Control Theory; Part II − Applications to Mathematical Models in Economics;
and Part III − a collection of appendices providing background materials.

Part I consists of Chapters 1–5. In Chapter 1, we present the elements of stochas-
tic calculus and SDEs, and in Chapter 2, we present the formulation of the weak
solutions of SDEs, the concept of regular conditional probability, the Yamada–
Watanabe theorem on weak and strong solutions, and the Markov property of a
solution of SDE.

In Chapter 3, we introduce the DPP to issue (b). The verification of the DPP
is rather difficult compared to the deterministic case. The Yamada–Watanabe
theorem in Chapter 2 makes its proof exact. The supremum of (a) is taken over all
systems in the weak sense.

Chapter 4 provides the theory of viscosity solutions of the HJB equations for (c).
Using Ishii’s lemma, we show the uniqueness results on viscosity solutions.

Chapter 5 is devoted to the boundary value problem of the HJB equations for
(d) in the classical sense. Section 5.4 explains how to apply (a)–(e) in stochastic
control.

Part II consists of Chapters 6–12. Here we present diverse applications of
stochastic control theory to the mathematical models in economics. In Chapters 6–
10, we take the state variables in these models as the remaining stock of a resource,
the labor supply, and the price of the stock. The criteria in the maximization
procedure are often given by the utility function of consumption rates as the
control variables. Along (a)–(e), an optimal control is shown to exist.

Chapters 11 and 12 deal with the linear and nonlinear variational inequalities,
instead of the HJB equations, which are associated with the stopping time problem.
The variational inequality is analyzed by the viscosity solutions approach for
optimality.

Part III consists of Appendices A–H. These provide some background material
for understanding stochastic control theory as quickly as possible.

The prerequisites for this book are basic probability theory and functional
analysis (see e.g., R. B. Ash [2], H. L. Royden [139], and A. Friedman [69]). See
M. I. Kamien and N. L. Schwartz [80], A. C. Chiang [33], A. K. Dixit and R. S.
Pindyck [46], L. Ljungqvist and T. J. Sargent [107], and R. S. Merton [114], for
economics references.
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Part I

Stochastic Calculus and Optimal
Control Theory
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1

Foundations of Stochastic Calculus

We are concerned here with a stochastic differential equation,

d X (t) = b(X (t))dt + σ (X (t))d B(t), t ≥ 0,

X (0) = x ∈ RN ,

in N -dimensional Euclidean space RN . Here b, σ are Lipschitz functions, called
the drift term and the diffusion term, respectively, and {B(t)} is a standard Brow-
nian motion equation defined on a probability space (�,F , P). This equation
describes the evolution of a finite-dimensional dynamical system perturbed
by noise, which is formally given by d B(t)/dt . In economic applications, the
stochastic process {X (t)} is interpreted as the labor supply, the price of stocks, or
the price of capital at time t ≥ 0. We present a reasonable definition of the second
term with uncertainty and basic elements of calculus on the stochastic differential
equation, called stochastic calculus.

A. Bensoussan [16], I. Karatzas and S. E. Shreve [87], N. Ikeda and S. Watanabe
[75], I. Gihman and A. Skorohod [72], A. Friedman [68], B. Øksendal [132],
D. Revuz and M. Yor [134], R. S. Liptzser and A. N. Shiryayev [106] are basic
references for this chapter.

1.1 Review of Probability

1.1.1 Random Variables

Definition 1.1.1. A triple (�,F , P) is a probability space if the following asser-
tions hold:

(a) � is a set.
(b) F is a σ -algebra, that is, F is a collection of subsets of � such that

(i) �, φ ∈ F ,
(ii) if A ∈ F , then Ac := � \ A ∈ F ,

(iii) if An ∈ F , n = 1, 2, . . . , then
∞∪

n=1
An ∈ F .

3
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4 1 Foundations of Stochastic Calculus

(c) P is a probability measure, that is, a map P : F → [0, 1], such that
(i) P(�) = 1,

(ii) if An ∈ F , n = 1, 2, . . . , disjoint, then P(
∞∪

n=1
An) = ∑∞

n=1 P(An).

Definition 1.1.2. A probability space (�,F , P) is complete if A ∈ F has P(A) =
0 and B ⊂ A, then B ∈ F (and, of course, P(B) = 0), that is, F contains all P-
null sets.

Remark 1.1.3. Any probability space (�,F , P) can be made complete by the
completion of measures due to Carathéodory. We also refer to the proof of the
Daniell Theorem, Theorem 2.1 in Chapter 2.

Definition 1.1.4. For any collection G of subsets of �, we define a smallest σ -
algebra σ (G) containing G by

σ (G) = ∩{F : G ⊂ F , F σ -algebra of �},
which is the σ -algebra generated by G.

Example 1.1.5. On the set of real numbers R, we take G = {open intervals} and
denote by B(R) the σ -algebra σ (G) generated by G, which is the Borel σ -algebra
on R.

Definition 1.1.6. Let (�,F , P) be a complete probability space.

(a) A map X : � → R is a random variable if

X−1(B) := {ω : X (ω) ∈ B} ∈ F , for any B ∈ B(R).

(b) For any random variable X, we define the σ -algebra σ (X ) generated by X
as follows:

σ (X ) = σ (G) = G, G := {X−1(B) : B ∈ B(R)} ⊂ F .

Proposition 1.1.7. Let X, Y be two random variables. Then Y is σ (X ) measurable
if and only if there exists a Borel measurable function g : R → R such that

Y (ω) = g(X (ω)), for all ω ∈ �.

Proof. Since Y = Y + − Y −, we will show the “only if” part when Y ≥ 0.

(1) Suppose that Y is a simple random variable. Then Y is of the form:

Y (ω) =
n∑

i=1

yi 1Fi (ω),

where yi ≥ 0, Fi ∈ σ (X ) and the Fi are pairwise disjoint. By definition,
there exists Di ∈ B(R), for each i , such that Fi = X−1(Di ). Clearly, the Di

are pairwise disjoint. Define

g(y) =
{

yi , y ∈ Di ,

0, y /∈ n∪
i=1

Di .
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1.1 Review of Probability 5

Then

Y (ω) =
n∑

i=1

yi 1{X−1(Di )}(ω) =
n∑

i=1

yi 1Di (X (ω)) = g(X (ω)).

(2) In the general case, there exists a sequence of simple random variables
Yn converging to Y . Let gn be the corresponding sequence of measurable
functions such that Yn = gn(X ). Define

g(y) = lim inf
n→∞ gn(y).

Then g is B(R) measurable and

Y (ω) = lim inf
n

Yn(ω) = lim inf
n

gn(X (ω)) = g(X (ω)), ω ∈ �.

1.1.2 Expectation, Conditional Expectation

Definition 1.1.8. Let X be a random variable. The quantity

E[X ] =
∫

�

X (ω)d P(ω)

is the expectation of X, where E[X+] or E[X−] is finite.

Definition 1.1.9. Let X, Y be two random variables on a complete probability
space (�,F , P).

(a) The expression X = Y will indicate that X = Y a.s., that is, P(X �= Y ) =
0.

(b) For 1 ≤ p < ∞, the norm ‖X‖p of X is defined by

‖X‖p = (E[|X |p])1/p.

(c) If p = ∞, then

‖X‖∞ = ess sup|X | = inf{sup
ω/∈N

|X (ω)| : N ∈ F , P(N ) = 0}.

(d) The L p spaces are defined by

L p = L p(�) = {X : random variable, ‖X‖p < ∞}.
Proposition 1.1.10.

(i) L p(�) is a Banach space, that is, a complete normed linear space, for
1 ≤ p ≤ ∞.

(ii) L2(�) is a Hilbert space, that is, a complete inner product space, with
inner product (X, Y ) = E[X · Y ], X, Y ∈ L2(�).

For the proof, see A. Friedman [69, chapter 3].

Definition 1.1.11. Let Xn, n = 1, 2, . . . , and X be random variables.

(a) Xn → X a.s. if P(Xn → X as n → ∞) = 1.
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(b) Xn → X in probability if P(|Xn − X | ≥ ε) → 0 as n → ∞, for any
ε > 0.

(c) Xn → X in L p if ‖Xn − X‖p → 0 as n → ∞.

Proposition 1.1.12. Let Xn, n = 1, 2, . . . , and X be random variables.

(i) If Xn → X a.s., then Xn → X in probability.
(ii) If Xn → X in L p (p ≥ 1), then Xn → X in probability.

(iii) Xn → X in probability if and only if E[ |Xn−X |
1+|Xn−X | ] → 0.

(iv) Let εn ≥ 0 and
∑∞

n=1 εn < ∞. If
∑∞

n=1 P(|Xn+1 − Xn| ≥ εn) < ∞, then
Xn converges a.s.

(v) If Xn → X in probability, then it contains a subsequence {Xnk } such that
Xnk → X a.s.

For the proof, see A. Friedman [69, chapter 2].

Definition 1.1.13. A family {Xn : n ∈ N} of random variables Xn on (�,F , P)
is uniformly integrable if

lim
a→∞ sup

n

∫
{|Xn |≥a}

|Xn|d P = 0.

Proposition 1.1.14. Assume that one of the following assertions is satisfied:

(i) E[supn |Xn|] < ∞,

(ii) supn E[|Xn|p] < ∞, for some p > 1.

Then {Xn} is uniformly integrable.

Proof.

(1) We set Y = supn |Xn|. Then, by (i),

P(Y ≥ c) ≤ 1

c
E[Y ] → 0 as c → ∞.

Thus

sup
n

∫
{|Xn |≥c}

|Xn|d P ≤
∫

{Y≥c}
Y d P → 0 as c → ∞.

(2) By Chebyshev’s inequality,

sup
n

P(|Xn| ≥ c) ≤ 1

cp
sup

n
E[|Xn|p].

Thus, by (ii) and Hölder’s inequality,

sup
n

∫
{|Xn |≥c}

|Xn|d P ≤ sup
n

(E[|Xn|p])1/p(E[1{|Xn |≥c}])1/q

≤ sup
n

E[|Xn|p](
1

c
)p/q → 0 as c → ∞,

where 1/p + 1/q = 1.
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Proposition 1.1.15. Let {Xn} be a sequence of integrable random variables such
that Xn → X a.s. Then {Xn} is uniformly integrable if and only if

lim
n→∞ E[|Xn − X |] = 0.

Proof. Let Yn = Xn − X .

(1) Suppose that {Xn} is uniformly integrable. Since

E[|Xn|] = E[|Xn|1{|Xn |≥a}] + E[|Xn|1{|Xn |<a}]

≤ sup
n

E[|Xn|1{|Xn |≥a}] + a P(|Xn| < a), for any a > 0,

we have supn E[|Xn|] < ∞, taking sufficiently large a > 0. By Fatou’s
lemma

E[|X |] ≤ lim inf
n→∞ E[|Xn|] < ∞.

Also, by Chebyshev’s inequality,

E[|Yn|] ≤ E[|Xn|1{|Yn |≥a} + |X |1{|Yn |≥a} + |Yn|1{|Yn |<a}]

≤ E[|Xn|1{|Xn |≥c}] + 2cP(|Yn| ≥ a) + E[|X |1{|X |≥c}]

+ E[|Yn|1{|Yn |<a}]

≤ sup
n

E[|Xn|1{|Xn |≥c}] + 2c

a
sup

n
E[|Xn| + |X |] + E[|X |1{|X |≥c}]

+ (1 + a)E[
|Yn|

1 + |Yn| ].

Letting n → ∞, a → ∞, and then c → ∞, we get lim sup
n→∞

E[|Yn|] = 0.

(2) Conversely, it is easy to see that

P(|Yn| ≥ a) ≤ 1

a
E[|Yn|] → 0 as a → ∞

and

E[|Yn|1{|Yn |≥a}] = E[(|Yn| − |Yn| ∧ m)1{|Yn |≥a}] + E[(|Yn| ∧ m)1{|Yn |≥a}]

≤ E[|Yn| − |Yn| ∧ m] + m P(|Yn| ≥ a).

Hence, letting a → ∞ and then m → ∞, we get

lim sup
a→∞

E[|Yn|1{|Yn |≥a}] = 0, for each n.

Next, for any k ∈ N,

sup
n

E[|Yn|1{|Yn |≥a}] ≤ sup
n≤k

E[|Yn|1{|Yn |≥a}] + sup
n>k

E[|Yn|1{|Yn |≥a}]

≤
k∑

n=1

E[|Yn|1{|Yn |≥a}] + sup
n>k

E[|Yn|].
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8 1 Foundations of Stochastic Calculus

Letting a → ∞ and then k → ∞, we have lim sup
a→∞

sup
n

E[|Yn|1{|Yn |≥a}] = 0.

By the same calculation as shown in (1), we have

sup
n

E[|Xn|1{|Xn |≥c}] ≤ sup
n

E[|Yn|1{|Xn |≥c} + |X |1{|Xn |≥c}]

≤ sup
n

E[|Yn|1{|Yn |≥a}] + 2a

c
sup

n
E[|Xn|]

+ E[|X |1{|X |≥a}].

Letting c → ∞ and then a → ∞, we obtain uniform integrability.

Definition 1.1.16. Let X ∈ L1(�,F , P) and let G be a sub-σ -algebra of F , that
is, G ⊂ F is a σ -algebra. A random variable Y ∈ L1(�,G, P) is the conditional
expectation of X given G if∫

A
Y d P =

∫
A

Xd P, for all A ∈ G.

We write Y = E[X |G].

Proposition 1.1.17. Let X ∈ L1(�,F , P) and G a sub-σ -algebra of F . Then the
conditional expectation Y ∈ L1(�,G, P) of X given G exists uniquely.

Proof. Without loss of generality, we may assume X ≥ 0. Define

µ(A) =
∫

A
Xd P, for A ∈ G.

Then µ is a finite measure, absolutely continuous with respect to P . By the
Radon–Nikodým Theorem (cf. A. Friedman [69]), there exists, uniquely, Y ∈
L1(�,G, P), Y ≥ 0, such that µ(A) = ∫

A Y d P , for A ∈ G.

Remark 1.1.18. We recall that L2(�,G, P) is a closed subspace of the Hilbert
space L2(�,F , P). If X ∈ L2(�,F , P), then E[X |G] coincides with the orthog-
onal projection X̂ of X to L2(�,G, P), that is,

E[|X − E[X |G]|2] = min{E[|X − Y |2] : Y ∈ L2(�,G, P)}.
Proposition 1.1.19. Let Xn, X ∈ L1(�,F , P), n = 1, 2, . . . , and H,G be two
sub-σ -algebras of F . Then, the following assertions hold:

(i) E[E[X |G]] = E[X ].
(ii) E[X |G] = X a.s. if X is G-measurable.

(iii) E[aX1 + bX2|G] = aE[X1|G] + bE[X2|G] a.s., a, b ∈ R.

(iv) E[X |G] ≥ 0 a.s. if X ≥ 0.

(v) E[Xn|G] ↗ E[X |G] a.s. if Xn ↗ X.

(vi) E[lim infn→∞ Xn|G] ≤ lim infn→∞ E[Xn|G] a.s. if Xn ≥ 0.

(vii) E[Xn|G] → E[X |G] a.s. if Xn → X a.s. and supn |Xn| ∈ L1.

(viii) f (E[X |G]) ≤ E[ f (X )|G] a.s. if f : R → R is convex, and f (X ) ∈
L1(�).

(ix) E[E[X |G]|H] = E[X |H] a.s. if H ⊂ G.
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(x) E[Z X |G] = Z E[X |G] a.s. if X ∈ L p(�,F , P), Z ∈ Lq (�,G, P),
for p = 1, q = ∞ or p > 1, 1

p + 1
q = 1.

(xi) E[X |G] = E[X ] a.s. if X and 1A are independent for any A ∈ G.

Proof. The proof is obtained by integrating over arbitrary sets A ∈ G and by
using several properties of the integrals. In particular, (v) is immediately from the
monotone convergence theorem. For (vi), we apply (v) to Yn = inf

m≥n
Xm , and (vii)

follows from (vi).

1.2 Stochastic Processes

1.2.1 General Notations

Definition 1.2.1. A quadruple (�,F , P, {Ft }t≥0) is a stochastic basis if the fol-
lowing assertions hold:

(a) (�,F , P) is a complete probability space.
(b) {Ft }t≥0 is a filtration, that is, a nondecreasing family of sub-σ -algebra

of F :

Fs ⊂ Ft ⊂ F for 0 ≤ s < t < ∞.

(c) The filtration {Ft }t≥0 satisfies the following (“usual”) conditions:
(i) {Ft }t≥0 is right-continuous: Ft = Ft+ := ∩ε>0Ft+ε, for all t ≥ 0.

(ii) F0 contains all P-null sets in F .

Definition 1.2.2. An N-dimensional stochastic process X = {Xt }t≥0 on a com-
plete probability space (�,F , P) is a collection of RN -valued random variables
X (t, ω), ω ∈ �. For fixed ω ∈ �, the set {X (t, ω) : t ≥ 0} is a path of X.

Definition 1.2.3. Let (�,F , P, {Ft }t≥0) be a stochastic basis, and let B(R),
B(RN ), B([0, t]) be Borel σ -algebra on R, RN , [0, t].

(a) A stochastic process {Xt }t≥0 is {Ft }t≥0-adapted (with respect to the filtra-
tion {Ft }t≥0) if Xt is Ft -measurable for all t ≥ 0.
Such a stochastic process will be denoted by {(Xt ,Ft )}t≥0 or (Xt ,Ft ),
{(X (t),Ft )} .

(b) A stochastic process {Xt }t≥0 is measurable if, for all A ∈ B(RN ),

{(t, ω) : Xt (ω) ∈ A} ∈ B([0,∞)) ⊗ F .

(c) A measurable adapted stochastic process {Xt }t≥0 is progressively measur-
able if, for each t ≥ 0 and A ∈ B(RN ),

{(s, ω) : 0 ≤ s ≤ t, Xs(ω) ∈ A} ∈ B([0, t]) ⊗ Ft .

(d) A stochastic process {Xt }t≥0 is continuous (right-continuous) if there
is �0 ∈ F with P(�0) = 1 such that t → Xt (ω) is continuous (right-
continuous) for every ω ∈ �0.
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(e) Two stochastic processes X and Y are indistinguishable if there is �0 ∈ F
with P(�0) = 1 such that Xt (ω) = Yt (ω) for all t ≥ 0 and ω ∈ �0.

The expression X = Y will indicate that X and Y are indistinguishable.
(f) Y is a modification of X if P(Xt = Yt ) = 1 for all t ≥ 0.

Proposition 1.2.4. Let {(Xt ,Ft )}t≥0 be a stochastic process on a stochastic basis
(�,F , P, {Ft }).

(i) If X = {Xt } is a right-continuous modification of 0, then X = 0.
(ii) If X = {Xt } is right-continuous, then X is progressively measurable.

Proof. Let �0 = {ω : t → Xt (ω) right-continuous} and P(�0) = 1.

(1) Since {Xt } is a modification of 0, P(Xr �= 0) = 0 for each r ∈ Q+, and

P( ∪
r∈Q+

{ω : Xr (ω) �= 0}) = 0.

Define �′ = (∩r∈Q+{ω : Xr (ω) = 0}) ∩ �0. It is obvious that P(�′) = 1
and Xt (ω) = 0, for all t ≥ 0 and ω ∈ �′.

(2) Taking into account the indistinguishable process of {Xt }, we may consider
that X (t, ω) = 0 if ω /∈ �0. Fix t ≥ 0, and let δ = {t0 = 0 < t1 < t2 < · · · <

tn = t} be a partition of [0, t], with tk = kt/2n, k = 0, 1, . . . , 2n . Define

X δ(s, ω) =




X (0, ω)1{0}(s) +
2n∑

k=1

X (tk, ω)1(tk−1,tk ](s) if ω ∈ �0,

0 otherwise.

Clearly, the map (s, ω) → X δ(s, ω) is B([0, t]) ⊗ Ft -measurable. Letting
n → ∞, by right continuity, we see that X δ(s, ω) → X (s, ω) for all s ∈ [0, t]
and ω ∈ �. Thus the map (s, ω) → X (s, ω) is measurable for this σ -algebra,
so {Xt } is progressively measurable.

Remark 1.2.5.

(a) Let {Ft }t≥0 be a filtration such that F0 contains all P−null sets.
If X = Y and X is adapted to {Ft }t≥0, then Y is adapted to {Ft }t≥0.

(b) For any filtration {Gt }t≥0 we can obtain the right-continuous filtration
{Ft }t≥0 defined by Ft = Gt+ := ∩

ε>0
Gt+ε.

(c) The filtration in connection with the stochastic process {Xt }t≥0 is the
σ -algebra

σ (Xs, s ≤ t) generated by {Xs, s ≤ t}, where

σ (Xs, s ≤ t) := σ (Gt ), Gt = {X−1
s (A) : A ∈ B(RN ), s ≤ t}.

(d) Furthermore, a stochastic basis (�,F , P, {F X
t }) is obtained by setting

F X
t = Ht+, Ht = σ (Xs, s ≤ t) ∨ N := σ (σ (Xs, s ≤ t) ∪ N ),

where N is the collection of P null sets.
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1.2.2 Brownian Motion

Definition 1.2.6.

(a) The real-valued stochastic process {Bt }t≥0 is a (one-dimensional standard)
Brownian motion if

(i) {Bt }t≥0 is continuous, B0 = 0 a.s.,
(ii) Bt − Bs is independent of F B

s ,

(iii) P(Bt − Bs ∈ A) = ∫
A

1√
2π(t−s)

exp{− x2

2(t−s) }dx, for t > s,

A ∈ B(R).
(b) The N-dimemsional stochastic process B(t) = (B1(t), B2(t), . . . , BN (t)) is

a (standard) N-dimensional Brownian motion if the N-components Bi (t)
are independent one-dimensional standard Brownian motions.

Proposition 1.2.7. A continuous stochastic process {Bt }t≥0 with B0 = 0 is an
N-dimensional Brownian motion if and only if

E[ei(ξ,Bt −Bs )|F B
s ] = e− |ξ |2

2 (t−s), t > s, ξ ∈ RN ,

where i = √−1, ( , ) denotes the inner product of RN , and |ξ | = (ξ, ξ )1/2.

Proof. For t > s, the random variable Y : = Bt − Bs is normally distributed with
mean 0 and covariance (t − s)I (I : identity), that is to say, the characteristic
function of Y is given by

E[ei(ξ,Y )] = e− |ξ |2
2 (t−s).

Let Y be independent of F B
s . Then it is easy to see that

E[ei(ξ,Y )|F B
s ] = E[ei(ξ,Y )].

Conversely,

E[ei(ξ,Y )ei(η,Z )] = E[E[ei(ξ,Y )|F B
s ]ei(η,Z )] = E[ei(ξ,Y )]E[ei(η,Z )],

for any η ∈ RN and F B
s -measurable random variable Z . Thus we conclude that Y

and Z are independent.

Remark 1.2.8. The existence of a Brownian motion can be shown by introducing
the probability measure P, called a Wiener measure, on the space C([0,∞) : RN )
of RN -valued contiunuous functions on [0,∞). See I. Karatzas and S. E. Shreve
[87] and K. Ito and H. P. Mackean [75] for details. The remarkable properties of
the Brownian motion are as follows:

(a) The Brownian motion {Bt } is not differentiable a.s.,
(b) The total variation of {Bt } on [0, T ] is infinite a.s.
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1.3 Stopping Times

Definition 1.3.1. Let (�,F , P, {Ft }t≥0) be a stochastic basis. A map τ : � →
[0,∞] is a stopping time if

{ω : τ (ω) ≤ t} ∈ Ft , for all t ≥ 0.

For any stopping time τ , the σ -algebra Fτ is defined by

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft , for all t ≥ 0}.
Proposition 1.3.2. Let (�,F , P, {Ft }t≥0) be a stochastic basis. Let {Xt }t≥0 be a
continuous, {Ft }t≥0-adapted, RN -valued process and A an open or closed subset
of RN . Then

τ (ω) = inf{t ≥ 0 : Xt (ω) ∈ A}, with understanding inf{φ} = ∞,

is a stopping time.

Proof. Let �0 = {t → Xt (ω) continuous} and P(�0) = 1.

(1) Let A be open. If τ (ω) < t and ω ∈ �0, then there is s < t such that
Xs(ω) ∈ A. Taking rn ∈ Q+ such that rn ↘ s, we have Xrn (ω) ∈ A, for
some rn < t . Hence,

{τ < t} ∩ �0 = ∪
r<t, r∈Q+

({Xr ∈ A} ∩ �0) ∈ Ft .

Thus, by the completeness of Ft ,

{τ ≤ t} = ∩
n∈N

{τ < t + 1/n} ∈ Ft+ = Ft , for all t ≥ 0.

(2) Let A be closed. For each n ∈ N, the set An := {x : d(x, A) < 1/n} is
open, where d(x, A) = inf{|x − y| : y ∈ A}. Let Xrm (ω) ∈ An, ω ∈ �0,
and rm → s ≤ t . Then

d(Xrm (ω), A) ≤ d(Xrm (ω), An) + 1

n
.

Passing to the limit, we get d(Xs(ω), A) = 0. This implies Xs(ω) ∈ A, and
then τ (ω) ≤ s. Hence

{τ ≤ t} ∩ �0 = ∩
n∈N

∪
r∈([0,t)∩Q)∪{t}

({Xr ∈ An} ∩ �0) ∈ Ft .

By the same argument as above, we have {τ ≤ t} ∈ Ft , for all t ≥ 0.

Proposition 1.3.3. Let τ, σ , and τn, n = 1, 2, . . . , be stopping times. Then the
following assertions hold:

(i) τ ∧ σ, τ ∨ σ, and τ + a (a ∈ R+) are stopping times.
(ii) τ is Fτ -measurable.

(iii) If τ ≤ σ, then Fτ ⊂ Fσ .
(iv) If A ∈ Fτ , then A ∩ {τ ≤ σ } ∈ Fσ .
(v) Fτ ∩ Fσ = Fτ∧σ .
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(vi) {τ < σ }, {τ = σ }, {τ > σ } ∈ Fτ∧σ .

(vii) supn τn and infn τn are stopping times.

For the proof, see I. Karatzas and S. E. Shreve [87, section 1.1.2, pp. 6–11].

Definition 1.3.4. Let X = {Xt }t≥0 be a measurable process on a stochastic basis
(�,F , P, {Ft }t≥0), and let τ be a stopping time. We define the random variable Xτ

by Xτ (ω) = X (τ (ω), ω) on {τ < ∞}, and Xτ (ω) = X∞(ω) on {τ = ∞} if X∞(ω)
is defined for all ω ∈ �.

Proposition 1.3.5. Let X = {Xt }t≥0 be an adapted process on a stochastic basis
(�,F , P, {Ft }t≥0), and let τ be a stopping time. If X is progressively measur-
able, then Xτ is Fτ -measurable and the stopped process X τ = {Xt∧τ }t≥0 at τ is
progressively measurable.

Proof.

(1) For fixed t ≥ 0, it is easy to see that τ ∧ t is an Ft -measurable ran-
dom variable. Hence the map (s, ω) ∈ [0, t] × � → H (s, ω) := (τ (ω) ∧
s, ω) ∈ [0, t] × � is B([0, t]) ⊗ Ft measurable. Thus the map (s, ω) →
X (τ (ω) ∧ s, ω) = X ◦ H (s, ω) is B([0, t]) ⊗ Ft measurable, so {Xτ∧t } is
progressively measurable.

(2) Let B ∈ B(RN ). Taking s = t in (1), the map ω ∈ � → X ◦ H (t, ω) is
Ft -measurable. Hence

{Xτ ∈ B} ∩ {τ ≤ t} = {Xτ∧t ∈ B} ∩ {τ ≤ t} ∈ Ft , for all t ≥ 0.

This implies that {Xτ ∈ B} ∈ Fτ , that is, Xτ is Fτ measurable.

1.4 Martingales

Let (�,F , P, {Ft }t≥0) be a stochastic basis.

Definition 1.4.1. A stochastic process X = {(Xt ,Ft )}t≥0 is a martingale (super-
martingale submartingale) if E[|Xt |] < ∞, for all t ≥ 0, and

E[Xt |Fs] = Xs, P-a.s., for any s ≤ t,

(if E[Xt |Fs] ≤ Xs or E[Xt |Fs] ≥ Xs).

Proposition 1.4.2. Let {Bt } is a one-dimensional Brownian motion. Then

(i) (Bt ,F B
t ) is a martingale,

(ii) (B2
t − t,F B

t ) is a martingale.

Proof. Let t ≥ s.

(1) E[Bt − Bs |F B
s ] = E[Bt − Bs] = 0, a.s.
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(2) By Proposition 1.1.19 (x), we have

E[B2
t − B2

s |F B
s ] = E[{(Bt − Bs) + Bs}2 − B2

s |Fs]

= E[(Bt − Bs)2 + 2(Bt − Bs)Bs |F B
s ]

= E[(Bt − Bs)2] = t − s, a.s.

Theorem 1.4.3 (Doob’s maximal inequality). Let {(Xt ,Ft )}t≥0 be a right-
continuous stochastic process and 0 < T < ∞, λ > 0. Then we have

(i) If {Xt } is a nonnegative submartingale, then

P( sup
0≤t≤T

Xt ≥ λ) ≤ 1

λ
E[XT ].

(ii) If {Xt } is a nonnegative submartingale or a martingale, then

E[ sup
0≤t≤T

|Xt |p] ≤ (
p

p − 1
)p E[|XT |p], for 1 < p < ∞.

Proof. Let D be a countable dense subset of [0, T ] defined by [0, T ) ∩ Q, and let
Dn = {ti ∈ D : t0 = 0 ≤ t1 ≤ · · · ≤ tn, i = 0, 1, . . . , n} be a sequence of subsets
of D such that Dn ↗ ∪

n
Dn = D as n → ∞. By right continuity, we observe that

sup
0≤t≤T

Xt = sup
t∈D

Xt = lim
n→∞ max

t∈Dn

Xt , a.s.,

and it is FT -measurable. Furthermore,

P(sup
t∈D

Xt ≥ λ) = lim
m→∞ P(sup

t∈D
Xt > λ − 1

m
)

= lim
m→∞ lim

n→∞ P(max
t∈Dn

Xs > λ − 1

m
).

(1) We claim that

P(max
t∈Dn

Xt > λ) ≤ 1

λ
E[XT ].

Put Yi = Xti and Gi = Fti , for i = 0, 1, . . . , n. Let us define

τ = min{i ≤ n : Yi > λ}, = n if { } = φ.

Then τ is a Gi -stopping time such that τ ≤ n a.s. Since {Yi } is a Gi -
submartingale,

E[Yτ ] =
n∑

i=0

E[Yi 1{τ=i}] ≤
n∑

i=0

E[E[Yn|Gi ]1{τ=i}]

=
n∑

i=0

E[Yn1{τ=i}] = E[Yn] ≤ E[XT ].



P1: KNP Trim: 6.125in × 9.25in

CUUS850-01 cuus850-morimoto 978 0 521 19503 4 December 4, 2009 7:44

1.4 Martingales 15

We set Y ∗
n = maxi≤n Yi = maxt∈Dn Xt and note that Yτ > λ on {Y ∗

n > λ}
and {τ = n} on {Y ∗

n ≤ λ}. Therefore,

E[Yτ ] = E[Yτ 1{Y ∗
n >λ}] + E[Yτ 1{Y ∗

n ≤λ}]

≥ λP(Y ∗
n > λ) + E[Yn1{Y ∗

n ≤λ}],

which implies

λP(max
t∈Dn

Xt > λ) ≤ E[Yn] − E[Yn1{Y ∗
n ≤λ}] = E[Yn1{Y ∗

n >λ}] ≤ E[XT ].

(2) Let E[|XT |p] < ∞. For any k > 0,

E[(Y ∗
n ∧ k)p] =

∫ ∞

0
x pd P(Y ∗

n ∧ k ≤ x) = p

∫ ∞

0
x p−1 P(Y ∗

n ∧ k > x)dx .

Letting k → ∞, by (1), Fubini’s theorem and Hölder’s inequality, we have

E[(Y ∗
n )p] = p

∫ ∞

0
x p−1 P(Y ∗

n > x)dx ≤ p

∫ ∞

0
x p−2 E[Yn1{Y ∗

n >x}]dx

= pE[Yn

∫ Y ∗
n

0
x p−2dx] = p

p − 1
E[Yn(Y ∗

n )p−1]

= q E[Yn(Y ∗
n )p−1] ≤ q E[Y p

n ]1/p E[(Y ∗
n )(p−1)q ]1/q

= q E[Y p
n ]1/p E[(Y ∗

n )p]1/q ,

where 1/p + 1/q = 1. Put y = E[(Y ∗
n )p]. Then y satisfies yq ≤ ay with

q > 1, for some a > 0, and thus y is finite. Therefore,

E[(Y ∗
n )p]1/p ≤ q E[Y p

n ]1/p.

By Fatou’s lemma and Proposition 1.1.19 (viii), we deduce

E[sup
t∈D

(Xt )
p]1/p ≤ lim inf

n→∞ E[(Y ∗
n )p]1/p ≤ lim inf

n→∞ q E[Y p
n ]1/p ≤ q E[X p

T ]1/p.

When {Xt } is a martingale, we apply this inequality to a nonnegative
submartingale {|Xt |} to obtain the result.

Theorem 1.4.4 (Optional sampling theorem). Let (Xt ,Ft ) be a right-continuous
martingale (or submartingale) and let τ, σ be two bounded stopping times. Then

E[Xτ |Fσ ] = Xτ∧σ , P-a.s. (or E[Xτ |Fσ ] ≥ Xτ∧σ , P-a.s.)

Proof. We will show only the case when {Xt } is a submartingale.

(1) Suppose that σ ≤ τ ≤ T a.s. and σ, τ take values in a finite subset δn := {ti :
t0 = 0 < t1 < · · · < tn, i = 0, 1, . . . , n} of [0, T ]. Put Yi = Xti for each
i . Let A ∈ Fσ and Ai = A ∩ {σ = ti }. For j ≥ i , Ai ∩ {τ ≥ t j+1} ∈ Ft j .
Hence, by the submartingale property,

E[Y j 1Ai ∩{τ≥t j }] = E[Y j 1Ai ∩{τ=t j }] + E[Y j 1Ai ∩{τ≥t j+1}]

≤ E[Xτ 1Ai ∩{τ=t j }] + E[Y j+11Ai ∩{τ≥t j+1}].
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16 1 Foundations of Stochastic Calculus

Taking the summation over j with tn+1 > T , we have

E[Yi 1Ai ∩{τ≥ti }] ≤
n∑

j=i

E[Xτ 1Ai ∩{τ=t j }] = E[Xτ 1Ai ∩{τ≥ti }],

and then

E[Xσ 1Ai ] = E[Xσ 1Ai ∩{τ≥σ }] ≤ E[Xτ 1Ai ∩{τ≥σ }] = E[Xτ 1Ai ].

Taking the summation over i , we deduce E[Xσ 1A] ≤ E[Xτ 1A], that is,
Xσ ≤ E[Xτ |Fσ ] a.s.

(2) Suppose σ ≤ τ ≤ T a.s. We take a finite set δn for each n such that ti =
iT/2n, i = 0, 1, . . . , 2n . Define

ρn =
2n∑

i=1

ti 1{ti−1≤ρ<ti } + T 1{ρ=T } for ρ = τ or σ.

Then ρn is a stopping time taking values in δn , ρn ↘ ρ, and τn ≥ σn . By
right continuity, lim

n→∞ Xτn = Xτ and lim
n→∞ Xσn = Xσ hold a.s. We apply (1)

to obtain

E[Xτn |Fσn ] ≥ Xσn , a.s.,

and

E[Xτn 1A] ≥ E[Xσn 1A] for A ∈ Fσ .

By (3) below, Proposition 1.1.15 is applicable and so limn→∞ Xρn = Xρ ∈
L1(�). Passing to the limit, we deduce E[Xτ 1A] ≥ E[Xσ 1A].

(3) We claim that {Xρn } is uniformly integrable. By Proposition 1.1.19 (viii),
{|Xt |} is a nonnegative submartingale. By Doob’s maximal inequality,

P(sup
n

|Xρn | ≥ c) ≤ P( sup
0≤t≤T

|Xt | ≥ c) ≤ 1

c
E[|XT |] → 0 as c → ∞.

Thus, by (1)

sup
n

E[|Xρn |1{|Xρn |≥c}] ≤ sup
n

E[|XT |1{|Xρn |≥c}]

≤ E[|XT |1{supn |Xρn |≥c}] → 0 as c → ∞.

(4) In the general case, by (2) and Proposition 1.3.3 (vi), we have

E[Xτ |Fσ ]1{τ≥σ } = E[Xτ∨σ 1{τ≥σ }|Fσ ] = E[Xτ∨σ |Fσ ]1{τ≥σ }
≥ Xσ 1{τ≥σ } = Xτ∧σ 1{τ≥σ }.

Furthermore,

E[Xτ |Fσ ]1{τ<σ } = E[Xτ∧σ 1{τ<σ }|Fσ ] = Xτ∧σ 1{τ<σ }.

By addition, we obtain the desired inequality.
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Remark 1.4.5. Let {Xt } be a right-continuous submartingale such that
E[sup

t≥0
|Xt |] < ∞. Then the optional sampling theorem holds by the uniform in-

tegrability of {Xρ∧t } for ρ = τ or σ if τ, σ are two stopping times such that
P(τ, σ < ∞) = 1. See I. Karatzas and S. E. Shreve [87] for weaker conditions
and the submartingale convergence theorem.

1.5 Stochastic Integrals

1.5.1 Definition of the Stochastic Integral

Let B = {(Bt ,Ft )}t≥0 be a one-dimensional Brownian motion on a stochastic
basis (�,F , P, {Ft }t≥0), that is to say, {(Bt ,Ft )}t≥0 is a continuous martingale
with B0 = 0 such that

{(B2
t − t,Ft )}t≥0 is a martingale.

We note by Theorem 1.6.2 below, due to Lévy, that {Bt }t≥0 is a Brownian mo-
tion. We will construct the stochastic integral, denoted by I ( f ) = ∫ T

0 ft d Bt , for
appropriate stochastic processes {( ft ,Ft )}t≥0 and T > 0.

Definition 1.5.1.

(a) For p ≥ 1, let Mp(0, T ) be the space of progressively measurable pro-
cesses f = {( ft ,Ft )} such that

E[
∫ T

0
| ft |pdt] < ∞, for fixed T > 0.

(b) Let M0(0, T ) be the space of step processes φ ∈ M2(0, T ), that is, there
is a partition {t0 = 0 < t1 < t2 < · · · < tn = T } such that

φt = φ(0)1{0}(t) +
n∑

i=1

φ(i)1(ti−1,ti ](t), for some φ(i) ∈ L∞(�,Fti−1 , P).

(c) We define the stochastic integral I (φ) for φ ∈ M0(0, T ) by

I (φ) = IT (φ) =
n∑

i=1

φ(i)(Bti − Bti−1 ).

Lemma 1.5.2. The space M0(0, T ) is dense in M2(0, T ).

Proof. Let f = { ft } ∈ M2(0, T ), and we will show that there exists a sequence
φ(n) ∈ M0(0, T ) such that

E[
∫ T

0
| ft − φ

(n)
t |2dt] → 0 as n → ∞.
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(1) Suppose that { ft } is continuous and bounded. Define

φ
(n)
t = ft0 1{t=0} +

n∑
k=1

ftk−1 1(tk−1,tk ](t), for tk = kT/n, k = 0, 1, . . . , n.

Then {φ(n)} ∈ M0(0, T ) and φ
(n)
t → ft for each t a.s. By the dominated

convergence theorem, we have limn→∞ E[
∫ T

0 | ft − φ
(n)
t |2dt] = 0.

(2) Let { ft } be progressively measurable and bounded. Put h(t, ω) =∫ t
0 f (s, ω)ds. By progressive measurability, {ht } is a measurable process,

and the random variable h(t, ω) isFt -measurable for each t ∈ [0, T ]. Define

hε(t, ω) = 1

ε

∫ t

(t−ε)+
f (s, ω)ds = h(t, ω) − h((t − ε)+, ω)

ε
, for ε > 0.

By Lebesgue’s Theorem, there exists a derivative h′(t, ω) for almost all
t ∈ [0, T ] a.s., and

lim
ε→0

|h′(t, ω) − hε(t, ω)| = lim
ε→0

| f (t, ω) − hε(t, ω)| = 0, a.s.

Hence

lim
ε→0

∫ T

0
|hε(t, ω) − f (t, ω)|2dt = 0, a.s.,

and

lim
ε→0

E[
∫ T

0
|hε(t, ω) − f (t, ω)|2dt] = 0.

(3) In the general case, we define the bounded progressively measurable process
f (m) ∈ M2(0, T ) by

f (m)
t = ft 1{| ft |≤m}, for each m ∈ N.

By the dominated convergence theorem, we have

E[
∫ T

0
| ft − f (m)

t |2dt] → 0 as m → ∞.

Applying (2) to obtain a sequence of continuous bounded processes h(m,ε)

approximating f (m), and then (1) to h(m,ε), we obtain the assertion.

Remark 1.5.3. Lebesgue’s Theorem states that if f ∈ L1[a, b], then

lim
h→0

1

h

∫ x+h

x
f (t)dt = f (x) for almost all x ∈ [a, b].

For the proof, see H. L. Royden [139, chapter 5, Theorems 2 and 9].

Theorem 1.5.4. Let f ∈ M2(0, T ) and let φ(m) ∈ M0(0, T ), m = 1, 2, . . . , be
such that

E[
∫ T

0
| ft − φ

(m)
t |2dt] → 0 as m → ∞.
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Then I (φ(m)) converges to some I ( f ) in L2(�,FT , P), independent of a choice
of φ(m).

Proof.

(1) We claim that for φ ∈ M0(0, T ),

E[|I (φ)|2] = E[
∫ T

0
|φt |2dt].

For brevity, we set 
i B = Bti − Bti−1 and 
i t = ti − ti−1. Then

|I (φ)|2 =
n∑

i=0

φ2
(i)(
i B)2 + 2

∑
i< j

φ(i)φ( j)(
i B)(
 j B).

In view of Proposition 1.4.2

E[φ2
(i)(
i B)2|Fti−1 ] = φ2

(i) E[(
i B)2|Fti−1 ] = φ2
(i) 
i t, a.s.,

and

E[φ(i)φ( j)(
i B)(
 j B)|Ft j−1 ] = φ(i)φ( j)(
i B)E[
 j B|Ft j−1 ] = 0, a.s.,

i < j.

Therefore,

E[|I (φ)|2] =
n∑

i=1

E[φ2
(i)] 
 j t.

On the other hand,

|φt |2 = φ2
(0)1{0}(t) +

n∑
i=1

φ2
(i)1(ti−1,ti ](t).

This implies that

E[
∫ T

0
|φt |2dt] = E[

n∑
i=1

φ2
(i) 
i t] = E[|I (φ)|2],

as required.
(2) Let f ∈ M2(0, T ). It is clear that

E[
∫ T

0
|φ(m)

t − φ
(n)
t |2dt]1/2 ≤ E[

∫ T

0
|φ(m)

t − ft |2dt]1/2

+ E[
∫ T

0
| ft − φ

(n)
t |2dt]1/2 → 0 as n, m → ∞.

Hence, by (1)

E[|I (φ(m)) − I (φ(n))|2] = E[
∫ T

0
|φ(m)

t − φ
(n)
t |2dt] → 0 as n, m → ∞.


