
www.cambridge.org/9780521770347




ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS 

EDITED BY G.-c. ROTA 

Editorial Board 

R. S. Doran, M. Ismail, T.-Y. Lam, E. Lutwak, R. Spigler 

Volume 82 

The Foundations of Mathematics in The Theory of Sets 



ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS 

4 W. Miller, Jf. Symmetry and separation of variables 
6 H. Minc Permanents 

11 W. B. Jones and W. J. Thron Continued fractions 
12 N. F. G. Martin and J. W. England Mathematical theory of entropy 
18 H. O. Fattorini The Cauchy problem 
19 G. G. Lorentz, K. Jetter and S. D. Riemenschneider Birkhoff interpolation 
21 W. T. Tutte Graph theory 
22 J. R. Bastida Field extensions and Galois theory 
23 J. R. Cannon The one-dimensional heat equation 
25 A. Salomaa Computation and automata 
26 N. White (ed.) Theory of matroids 
27 N. H. Bingham, C. M. Goldie and J. L. Teugels Regular variation 
28 P. P. Petrushev and V. A. Popov Rational approximation of real functions 
29 N. White (ed.) Combinatorial geometrics 
30 M. Pohst and H. Zassenhaus Algorithmic algebraic number theory 
31 J. Aczel and J. Dhombres Functional equations containing several variables 
32 M. Kuczma, B. Chozewski and R. Ger Iterative functional equations 
33 R. V. Ambartzumian Factorization calculus and geometric probability 
34 G. Gripenberg, S.-O. Londen and O. Staffans Volterra integral and functional equations 
35 G. Gasper and M. Rahman Basic hypergeometric series 
36 E. Torgersen Comparison of statistical experiments 
37 A. Neumaier Intervals methods for systems of equations 
38 N. Korneichuk Exact constants in approximation theory 
39 R. A. Brualdi and H. J. Ryser Combinatorial matrix theory 
40 N. White (ed.) Matroid applications 
41 S. Sakai Operator algebras in dynamical systems 
42 W. Hodges Model theory 
43 H. Stahl and V. Totik General orthogonal polynomials 
44 R. Schneider Convex hodies 
45 G. Da Prato and J. Zabczyk Stochastic equations in infinite dimensions 
46 A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler Oriented matroids 
47 E. A. Edgar and L. Sucheston Stopping times and directed processes 
48 C. Sims Computation with finitely presented groups 
49 T. Palmer Banach algebras and the general theory of '-algebras 
50 F. Borceux Handbook of categorical algebra I 
51 F. Borceux Handbook of categorical algebra Il 
52 F. Borceux Handbook of categorical algebra III 
54 A. Katok and B. Hassleblatt Introduction to the modern theory of dynamical systems 
55 V. N. Sachkov Combinatorial methods in discrete mathematics 
56 V. N. Sachkov Probabilistic methods in discrete mathematics 
57 P. M. Cohn Skew Fields 
58 Richard J. Gardner Geometric tomography 
59 George A. Baker, Jf. and Peter Graves-Morris Pade approximants 
60 Jan Krajicek Bounded arithmetic, propositional logic, and complex theory 
61 H. Gromer Geometric applications of Fourier series and spherical harmonics 
62 H. O. Fattorini Infinite dimensional optimization and control theory 
63 A. C. Thompson Minkowski geometry 
64 R. B. Bapat and T. E. S. Raghavan Nonnegative matrices and applications 
65 K. Engel Sperner theory 
66 D. Cvetkovic, P. Rowlinson and S. Simic Eigenspaces of graphs 
67 F. Bergeron, G. Labelle and P. Leroux Combinatorial species and tree-like structures 
68 R. Goodman and N. Wallach Representations of the classical groups 
69 T. Beth, D. Jungnickel and H. Lenz Design Theory volume I 2 ed. 
70 A. Pietsch and J. Wenzel Orthonormal systems and Banach space geometry 
71 George E. Andrews, Richard Askey and Ranjan Roy Special Functions 
72 R. Ticciati Quantum field theory for mathematicians 
76 A. A. Ivanov Geometry of sporadic groups I 
78 T. Beth, D. Jungnickel and H. Lenz Design Theory volume II 2 ed. 
80 O. Stormark Lie's Structural Approach to PDE Systems 



ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS 

The Foundations of Mathematics 
in the Theory of Sets 

J. P. MAYBERRY 

University of Bristol 

CAMBRIDGE 
UNIVERSITY PRESS 



cambridge university press 
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, 
São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge cb2 8ru, UK 

Published in the United States of America by Cambridge University Press, New York 

www.cambridge.org
Information on this title: www.cambridge.org/9780521770347

© Cambridge University Press 2000

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements, 
no reproduction of any part may take place without the written  
permission of Cambridge University Press. 

First published 2000
First paperback edition 2010

A catalogue record for this publication is available from the British Library 

Library of Congress Cataloguing in Puhlication Data

    Mayberry, John P.
        The foundations of mathematics in the theory of sets / J.P. Mayberry.
            p. cm (Encyclopedia of mathematics and its applications; v. 82)
        Includes bibliographical references and index.
        isbn 0 521 77034 3
        1. Set theory.  I. Title.  II. Series.
        QA248.M375 2001
        511.3’22-dc21    00-45435 CIP

isbn 978-0-521-77034-7 Hardback
isbn 978-0-521-17271-4 Paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to in
this publication, and does not guarantee that any content on such websites is,
or will remain, accurate or appropriate. Information regarding prices, travel
timetables, and other factual information given in this work is correct at
the time of first printing but Cambridge University Press does not guarantee
the accuracy of such information thereafter.



To Mary Penn Mayberry and Anita Kay Bartlett Mayberry 





Contents 

Preface 

Part One: Preliminaries 

1 The Idea of Foundations for Mathematics 
1.1 Why mathematics needs foundations 
1.2 What the foundations of mathematics consist in 
1.3 What the foundations of mathematics need not 

include 
1.4 Platonism 

2 Simple Arithmetic 
2.1 The origin of the natural numbers 
2.2 The abstractness of the natural numbers 
2.3 The original conception of number 
2.4 Number words and ascriptions of number 
2.5 The existence of numbers 
2.6 Mathematical numbers and pure units 
2.7 Ascriptions of number: Frege or Aristotle? 
2.8 Simple numerical equations 
2.9 Arithmetica universalis 

Part Two: Basic Set Theory 

3 Semantics, Ontology, and Logic 
3.1 Objects and identity 
3.2 Arithmoi and their units 
3.3 Sets 
3.4 Global functions 
3.5 Species 

page x 

1 

3 
3 
8 

10 
14 

17 
17 
19 
21 
24 
29 
39 
45 
52 
59 

65 

67 
67 
70 
74 
78 
85 

Vll 



Vlll Contents 

3.6 Formalisation 94 
3.7 Truth and proof in mathematics 99 

4 The Principal Axioms and Definitions of Set Theory 111 
4.1 The Axiom of Comprehension and Russell's Theorem 111 
4.2 Singleton selection and description 114 
4.3 Pair Set, Replacement, Union, and Power Set 115 
4.4 The status of the principal axioms of set theory 118 
4.5 Ordered pairs and Cartesian products 124 
4.6 Local functions and relations 130 
4.7 Cardinality 134 
4.8 Partial orderings and equivalence relations 137 
4.9 Well-orderings and local recursion 139 
4.10 Von Neumann well-orderings and ordinals 144 
4.11 The Principle of Regularity 146 

Part Three: Cantorian Set Theory 151 

5 Cantorian Finitism 153 
5.1 Dedekind's axiomatic definition of the natural 

numbers 153 
5.2 Cantor's Axiom 161 
5.3 The Axiom of Choice 162 
5.4 The extensional analysis of sets 164 

5.5 The cumulative hierarchy of sets 170 
5.6 Cantor's Absolute 176 
5.7 Axioms of strong infinity 185 

6 The Axiomatic Method 191 
6.1 Mathematics before the advent of the axiomatic 

method 191 
6.2 Axiomatic definition 195 
6.3 Mathematical logic : formal syntax 207 
6.4 Global semantics and localisation 213 
6.5 Categoricity and the completeness of theories 221 
6.6 Mathematical objects 225 

7 Axiomatic Set Theory 237 
7.1 The Zermelo-Fraenkel axioms 237 
7.2 Axiomatic set theory and Brouwer's Principle 242 
7.3 The localisation problem for second order logic 251 



Contents IX 

Part Four: Euclidean Set Theory 259 

261 8 

9 

10 

11 

12 

Euclidean Finitism 
8.1 The serpent in Cantor's paradise 261 
8.2 The problem of non-Cantorian foundations 270 
8.3 The Axiom of Euclidean Finiteness 276 
8.4 Linear orderings and simple recursion 282 
8.5 Local cardinals and ordinals 291 
8.6 Epsilon chains and the Euclidean Axiom of Foun-

dation 

The Euclidean Theory of Cardinality 
9.1 Arithmetical functions and relations 
9.2 Limited recursion 
9.3 S-ary decompositions and numerals 

The Euclidean Theory of Simply Infinite Systems 
10.1 Simply infinite systems 
10.2 Measures, scales, and elementary arithmetical 

294 

300 
300 
310 
317 

325 
325 

operations 330 
10.3 Limited recursion 333 
10.4 Extending simply infinite systems 336 
10.5 The hierarchy of S-ary extensions 350 
10.6 Simply infinite systems that grow slowly in rank 352 
10.7 Further axioms 362 

Euclidean Set Theory from the Cantorian Standpoint 
11.1 Methodology 
11.2 Cumulation models 

Envoi 
12.1 Euclid or Cantor? 
12.2 Euclidean simply infinite systems 
12.3 Speculations and unresolved problems 

369 
369 
372 

381 
381 
382 
387 

Appendix 1 Conceptual Notation 396 
396 
398 
406 

Al.1 Setting up a conceptual notation 
Al.2 Axioms, definitions, and rules of inference 
Al.3 Global propositional connectives 

Appendix 2 The Rank of a Set 

Bibliography 

Index 

411 

415 

421 



Preface 

Dancing Master: All the troubles of mankind, all the miseries which make up 
history, all the blunders of statesmen, all the failures of great captains - all these 
come from not knowing how to dance. 
Le Bourgeois Gentilhomme, Act 1, Scene 2 

The importance of set-theoretical foundations 

The discovery of the so-called "paradoxes" of set theory at the beginning 
of the twentieth century precipitated a profound crisis in the foundations 
of mathematics. This crisis was the more serious in that the then new 
developments in the theory of sets had allowed mathematicians to solve 
earlier difficulties that had arisen in the logical foundations of geometry 
and analysis. More than that, the new, set-theoretical approach to analysis 
had completely transformed that subject, allowing mathematicians to 
make rapid progress in areas previously inaccessible (in the theory of 
measure and integration, for example). 

All of these advances seemed to be placed in jeopardy by the discovery 
of the paradoxes. Indeed, it seemed that mathematics itself was under 
threat. Clearly a retreat to the status quo ante was not an option, for 
serious difficulties once seen cannot just be ignored. But without secure 
foundations - clear concepts that can be employed without prior defini­
tion and true principles that can be asserted without prior justification -
the very notion of proof is undermined. And, of course, it is the demand 
for rigorous proof that, since the time of the Greeks, has distinguished 
mathematics from all of the other sciences. 

This crisis profoundly affected some mathematicians' attitudes to their 
subject. Von Neumann, for example, confessed in a brief autobiographical 

x 



Preface Xl 

essay that the existence of the paradoxes of set theory cast a blight on 
his entire career, and that whenever he encountered technical difficulties 
in his research he could not suppress the discouraging thought that 
the problems in the foundations of mathematics doomed the whole 
mathematical enterprise to failure, in any case. 

Mathematics, however, has passed through this crisis, and it is unlikely 
that a contemporary mathematician would suffer the doubts that von 
Neumann suffered. Indeed, mathematicians, in general, do not worry 
about foundational questions now, and many, perhaps most, of them are 
not even interested in such matters. It is surely natural to ask what is the 
cause of this complacency and whether it is justified. 

Of course, every mathematician must master some of the facts about 
the foundations of his subject, if only to acquire the basic tools and 
techniques of his trade. But these facts, which are, essentially, just the 
elements of set theory, can be, and usually are, presented in a form 
which leaves the impression that they are just definitions or even mere 
notational conventions, so that their existential content is overlooked. 
What is more, the exposition of such foundational matters typically 
begins in medias res, so to speak, with the natural numbers and real 
numbers simply regarded as given, so that the beginner is not even aware 
that these things require proper mathematical definitions, and that those 
definitions must be shown to be both logically consistent and adequate 
to characterise the concepts being defined. 

These fundamental number systems are nowadays defined using the ax­
iomatic method. But there is a surprisingly widespread misunderstanding 
among mathematicians concerning the underlying logic of the axiomatic 
method. The result is that many of them regard the foundations of 
mathematics as just a branch of mathematical logic, and this encourages 
them to believe that the foundations of their subject can be safely left 
in the hands of expert colleagues. But formal mathematical logic itself 
rests on the same assumptions as do the other branches of mathematics: 
it, too, stands in need of foundations. Indeed, mathematical logicians are 
as prone to confusion over the foundations of the axiomatic method as 
their colleagues. 

But this complacency about foundations does have a certain practical 
justification: modern mathematics does, indeed, rest on a solid and 
safe foundation, more solid and more safe than most mathematicians 
realise. Moreover, since mathematics is largely a technical, as opposed 
to philosophical, discipline, it is not unreasonable that mathematicians 
should, in the main, get on with the business of pursuing their technical 
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specialities without worrying unduly about foundational questions. But 
that does not give them licence to pronounce upon matters on which they 
have not seriously reflected and are ignorant, or to assume that expertise 
in some special branch of their subject gives them special insight into its 
foundations. 

However, even though it is not, strictly speaking, always necessary 
for mathematicians to acquire more than a basic knowledge of the 
foundations of their subject, surely it is desirable that they should do so. 
Surely the practitioners of a subject the very essence of which is proof 
and definition ought to be curious about the concepts and principles on 
which those activities rest. 

Philosophers too have an important stake in these questions. Indeed, 
it is the fundamental role accorded to questions in the philosophy of 
mathematics that is the characterising feature of western philosophy, the 
feature that sharply distinguishes it from the other great philosophical 
traditions. 

Problems relating to mathematics and its foundations are to be found 
everywhere in the writings of Plato and Aristotle, and every major mod­
ern philosopher has felt compelled to address them l . The subjects that 
traditionally constitute the central technical disciplines of philosophy -
logic, epistemology, and metaphysics - cannot be studied in any depth 
without encountering problems in the foundations of mathematics. In­
deed, the deepest and most difficult problems in those subjects often find 
their most perspicuous formulations when they are specialised to mathe­
matics and its foundations. Even theology must look to the foundations 
of mathematics for the clearest and most profound study yet made of 
the nature of the infinite. 

Unfortunately, the complacency, already alluded to, among mathemati­
cians concerning the foundations of their subject has had a deleterious 
effect on philosophy. Deferring to their mathematical colleagues' tech­
nical competence, philosophers are sometimes not sufficiently critical of 
received opinions even when those opinions are patently absurd. 

The mathematician who holds foolish philosophical opinions - about 
the nature of truth or of proof, for example - is protected from the 
consequences of his folly if he is prepared to conform to the customs and 

1 This is notoriously the case with Descartes, Leibniz, Kant, and, of course, Frege, who 
is the founder of the modern analytic school of philosophy; but it is no less true of 
Berkeley, Hume, and Schopenhauer. Among twentieth century philosophers, Husserl, 
Russell, and Wittgenstein come to mind. 
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mores of his professional tribe. But the philosopher who follows him in 
adopting those opinions does not have that advantage. 

In any case, it is one thing to flirt with anarchist views if one lives 
in a settled, just, and well-policed society, but quite another if one is 
living in a society in which the institutions of law and justice threaten to 
collapse. Twice in the last two hundred years mathematicians have been 
threatened with anarchy - during the early nineteenth century crisis in 
the foundations of analysis and the early twentieth century crisis in the 
foundations of set theory - and in both of these crises some of the best 
mathematicians of the day turned their attention to re-establishing order. 

The essential elements of the set-theoretical approach to mathematics 
were already in place by the early 1920s, and by the middle of the cen­
tury the central branches of the subject - arithmetic, algebra, geometry, 
analysis, and logic - had all been recast in the new set-theoretical style. 
The result is that set theory and its methods now permeate the whole 
of mathematics, and the idea that the foundations of all of mathemat­
ics, including mathematical logic and the axiomatic method, now lie in 
the theory of sets is not so much a theory as it is a straightforward 
observation. 

Of course that, on its own, doesn't mean that set theory is a suitable 

foundation, or that it doesn't require justification. But it does mean that 
any would-be reformer had better have something more substantial than 
a handful of new formalised axioms emblazoned on his banner. And he 
had better take it into account that even mathematical logic rests on 
set-theoretical foundations, and so is not available to him unless he is 
prepared to reform its foundations. 

The point of view embodied in this book 

My approach to set theory rests on one central idea, namely, that the 
modern notion of set is a refined and generalised version of the classical 
Greek notion of number (arithmos), the notion of number found in 
Aristotle and expounded in Book VII of Euclid's Elements. I arrived at 
this view of set theory more than twenty years ago when I first read Greek 

Mathematical Thought and the Origin of Algebra by the distinguished 
philosopher and scholar Jacob Klein. 

Klein's aim was to explain the rise of modern algebra in the sixteenth 
and seventeenth centuries, and the profound change in the traditional 
concept of number that accompanied it. But it struck me then with the 
force of revelation that the later, nineteenth century revolution in the 
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foundations of mathematics, rooted, as it was, in Cantor's new theory of 
transfinite numbers, was essentially a return to Greek arithmetic as Klein 
had described it, but in a new, non-Euclidean form. 

As Klein points out, in Greek mathematics a number was defined to be 
a finite plurality composed of units, so what the Greeks called a number 
(arithmos) is not at all like what we call a number but more like what we 
call a set. It is having a finite size (cardinality) which makes a plurality 
a "number" in this ancient sense. But what is it for a plurality to have a 
finite size? That is the crucial question. 

The Greeks had a clear answer: for them a definite quantity, whether 
continuous like a line segment, or discrete - a "number" in their sense -
must satisfy the axiom that the whole is greater than the part 2• We obtain 
the modern, Cantorian notion of set from the ancient notion of number 
by abandoning this axiom and acknowledging as finite, in the root and 
original sense of "finite"- "limited", "bounded", "determinate", "definite" 
- certain pluralities (most notably, the plurality composed of all natural 
numbers, suitably defined) which on the traditional view would have 
been deemed infinite. 

By abandoning the Euclidean axiom that the whole is greater than the 
part, Cantor arrived at a new, non-Euclidean arithmetic, just as Gauss, 
Lobachevski, and Bolyai arrived at non-Euclidean geometry by abandon­
ing Euclid's Axiom of Parallels. Cantor's innovation can thus be seen as 
part of a wider nineteenth century program of correcting and generalising 
Euclid. 

Cantor's non-Euclideanism is much more important even than that of 
the geometers, for his new version of classical arithmetic that we call set 
theory serves as the foundation for the whole of modern mathematics, 
including geometry itself. The set-theoretical approach to mathematics 
is now taken by the overwhelming majority of mathematicians: it is 
embodied in the mathematical curricula of all the major universities and 
is reflected in the standards of exposition demanded by all the major 
professional journals. 

Since the whole of mathematics rests upon the notion of set, this 
view of set theory entails that the whole of mathematics is contained 
in arithmetic, provided that we understand "arithmetic" in its original 
and historic sense, and adopt the Cantorian version of finiteness. In set 
theory, and the mathematics which it supports and sustains, we have 

2 This is Common Notion 5 in Book I of the Elements. 
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made real the seventeenth century dream of a mathesis universalis, in 
which it is possible to express the exact part of our thought3. 

But what are the practical consequences of this way of looking at set 
theory for mathematics and its foundations? They are, I am convinced, 
profound and far-reaching, both for orthodox set-theoretical foundations, 
and for the several dissenting and heterodox schools that go under various 
names - "constructivism", "intuitionism", "finitism", "ultra-intuitionism", 
etc. - but whose common theme is the rejection of the great revolution 
in mathematical practice that was effected by Cantor and his followers. 

For orthodox foundations the principal benefit of looking at things in 
this way is that it enables us to see that the central principles - axioms 
- of set theory are really finiteness principles which, in effect, assert that 
certain multitudes (pluralities, classes, species) are finite in extent and for 

that reason form sets. 
Taking finitude (in Cantor's new sense) to be the defining characteristic 

of sets, as the Greeks took it (in their sense) to be the defining charac­
teristic of numbers (arithmoi), allows us to see why the conventionally 
accepted axioms for set theory - the Zerme1o-Fraenkel axioms - are both 
natural and obvious, and why the unrestricted comprehension principle, 
which is often claimed as natural and obvious (though, unfortunately, 
self-contradictory), is neither. 

This is a matter of considerable significance, for there is a widespread 
view that all existing axiomatisations of set theory are more or less ad hoc 

attempts to salvage as much of the "natural" unrestricted comprehension 
principle - the principle that the extension of any well-defined property 
is a set - as is consistent with avoiding outright self-contradiction4. On 
this view set theory is an unhappy compromise, a botched job at best. 

Hence the widespread idea that set theory must be presented as an 
axiomatic theory, indeed, as an axiomatic theory formalised in first order 
mathematical logic. It is felt that the very formalisation itself somehow 
confers mathematical respectability on the theory formalised. But this is 
a serious confusion, based on a profound misunderstanding of the logi­
cal and, indeed, ontological presuppositions that underlie the axiomatic 
method, formal or informal. 

The mathematician's "set" is the mathematical logician's "domain of 
discourse", so conventional ("classical") mathematical logic is, like every 

3 Perhaps we might more appropriately describe the theory as an arithmetica universalis, 
a universal arithmetic which encompasses the whole of mathematics. 

4 See Quine's Set Theory and its Logic, for example. 
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other branch of mathematics, based on set theory5. This means, among 
other things, that we cannot use the standard axiomatic method to 
establish the theory of sets, on pain of a circularity in our reasoning. 

Moreover, on the arithmetical conception of set the totality of all sets, 
since it is easily seen not to be a set, is not a conventional domain of 
discourse either. Hence quantification over that non-conventional domain 
(which is absolutely irifinite in Cantor's terminology) cannot simply be 
assumed to conform to the conventional, "classical" laws. 

As Brouwer repeatedly emphasised, since classical logic is the logic of 
the finite, the logic of infinite domains must employ different laws. And, 
of course, in the present context "finite domain" simply means "set". The 
consequences of this view for the global logic of set theory are discussed 
at length in Section 3.5 and Section 7.2. 

But what are the consequences of this arithmetical conception of set 
for those who reject Cantor's innovations - the intuitionists, finitists, 
constructivists, etc., of the various schools? 

Klein's profound scholarship is very much to the point here. For the 
one thing on which all these schools agree is the central importance 
of the system of natural numbers as the basic datum of mathematics. 
But Klein shows us that, on the contrary, the natural numbers are a 
recent invention: the oldest mathematical concept we have is that of 
finite plurality - the Greek notion of arithmos. This is so important a 
matter that I have devoted an entire chapter (Chapter 2) to its dicussion. 

When the natural number system is taken as a primary datum, some­
thing simply "given", it is natural to see the principles of proof by 
mathematical induction and definition by recursion along that system 
as "given" as well. We gain our knowledge of these numbers when we 
learn to count them out and to calculate with them, so we are led to see 
these processes of counting out and calculating as constitutive of the very 
notion of natural number. The natural numbers are thus seen as what 
we arrive at in the process of counting out: 0, 1,2, ... , where the dots 
of ellipsis, " ... ", are seen as somehow self-explanatory - after all, we all 
know how to continue the count no matter how we have taken it. But 
those dots of ellipsis contain the whole mystery of the notion of natural 
number! 

If, however, we see the notion of natural number as a secondary 

5 Thus set theory stands the "logicist" view of Frege and Russell on its head: arithmetic 
isn't a branch of logic, logic is a branch of arithmetic, the non-Euclidean arithmetic of 
Cantor that we call set theory. 



Preface XVll 

growth on the more fundamental notion of arithmos - finite plurality, 
in the original Greek sense of "finite" - then the principles of proof 
by induction and definition by recursion are no longer just "given" as 
part of the raw data, so to speak, but must be established from more 
fundamental, set-theoretical principles. 

Nor are the operations of counting out or calculating to be taken as 
primary data: they too must be analysed in terms of more fundamental 
notions. We are thus led to reject the operationalism that all the anti­
Cantorian schools share. 

For us moderns numbers take their being from what we can do with 
them, namely count and calculate; but Greek "numbers" (arithmoi) were 
objects in their own right with simple, intelligible natures. Our natural 
numbers are things that we can (in principle) construct (by counting out 
to them); Greek numbers were simply "there", so to speak, and it would 
not have occurred to them that their numbers had to be "constructed" 
one unit at a time6 . 

I am convinced that this operationalist conception of natural number is 
the central fallacy that underlies all our thinking about the foundations 
of mathematics. It is not confined to heretics, but is shared by the 
orthodox Cantorian majority. This operationalist fallacy consists in the 
assumption that the mere description of the natural number system as 
"what we obtain from zero by successive additions of one" suffices on 

its own to define the natural number system as a unique mathematical 
structure - the assumption that the operationalist description of the 
natural numbers is itself what provides us with a guarantee that the 
system of natural numbers has a unique, fixed structure. 

Let me not be mistaken here: the existence of a unique (up to iso­
morphism) natural number system is a theorem of orthodox, Cantorian 
mathematics. The fallacy referred to thus does not consist in supposing 
that there is a unique system of natural numbers, but rather in suppos­
ing that the existence of this system, and its uniqueness, are immediately 
given and do not need to be proved. And if we abandon Cantorian 
orthodoxy we thereby abandon the means with which to prove these 
things. 

6 Oswald Spengler, who thought that the mathematics of a civilization held a clue to its 
innermost nature, contrasted the Apollonian culture of classical Greece, which was static 
and contemplative, with the Faustian culture of modern Europe, which is dynamic and 
active. Whatever the virtues of his general thesis, he seems to have got it right about the 
mathematics. The "operationalism" to which I refer here seems to be quintessentially 
Faustian in his sense, which perhaps explains its grip on our imaginations. 
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But if we acknowledge that the natural numbers are not given to us, 
the alternative, if we decide to reject Cantor's radical new version of 
finitude, is to return to arithmetic as practiced by the mathematicians of 
classical Greece, but equipped now with the more powerful and more 
subtle techniques of modern set theory. If we should decide to do this 
we should be going back to the very roots of our mathematical culture, 
back before Euclid and Eudoxus to its earliest Pythagorean origins. We 
should have to rethink our approach to geometry and the Calculus. It is 
a daunting prospect, though an exciting one. 

The resulting theory, which I call Euclidean set theory by way of 
contrast with Cantorian set theory, the modern orthodoxy, is very like its 
Cantorian counterpart, except that Cantor's assumption that the species 
of natural numbers forms a set is replaced by the traditional Euclidean 
assumption that every set is strictly larger than any of its proper subsets. 

This theory, not surprisingly, constitutes a radical departure from 
Cantorian orthodoxy. But it stands in even sharper contrast to the various 
operationalist theories which have been put forward as alternatives to that 
orthodoxy. So far from taking the natural numbers as given, Euclidean 
set theory forces us to take seriously the possibility that there is no unique 
natural number system, and that the various ways of attempting to form 
such a system lead to "natural number systems" of differing lengths. 

But should we abandon Cantorian orthodoxy? There is obviously a 
prima facie case against the Cantorian account of finiteness, and, indeed, 
that case was made by some of his contemporaries. But against that there 
is the experience of more than one hundred years during which Cantor's 
ideas have been the engine driving a quite astonishing increase in the 
subtlety, power, and scope of mathematics. 

Perhaps I should come clean with the reader and admit that I am 
attracted to the anti-Cantorian position. I put it no stronger than that 
because the issue is by no means clear-cut, and we do not yet know 
enough to be sure that the Cantorian conception of finiteness should be 
rejected. 

Indeed, it seems to me that the common failing of all the advocates 
of the various alternatives to Cantorian orthodoxy is that they fail to 
appreciate how simple, coherent, and plausible are the foundational ideas 
that underlie it. These enthusiasts rush forward with their proposed cures 
without having first carried out a proper diagnosis to determine the 
nature of the disease, or even whether there is a disease that requires 
their ministrations. 

Accordingly, I shall devote much of my attention to a careful, sym-
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pathetic, and detailed treatment of the Cantorian version of the theory. 
This is of interest in its own right, for this is the theory on which all 
of current mathematics rests. But it is also essential for those who are 
dissatisfied (or who fancy themselves dissatisfied) with the current ortho­
doxy, to discover what principles that orthodoxy really rests on, and to 
determine exactly where its strengths and weaknesses lie. 

I have divided my exposition into four parts. Part One deals with the 
criteria which any attempt to provide foundations for mathematics must 
meet, and with the significance of the Greek approach to arithmetic for 
modern foundations. 

Part Two is an exposition of the elements of set theory: the basic 
concepts of set theory, which neither require, nor admit of, definition, 
but in terms of which all other mathematical concepts are defined; and 
the basic truths of set theory, which neither require, nor admit of, proof, 
but which serve as the ultimate assumptions on which all mathematical 
proofs ultimately rest. The theory presented in Part Two is common to 
both the Cantorian and the Euclidean versions of set theory. 

Part Three is an exposition of the Cantorian version of the theory 
and Part Four of the Euclidean. I have also included an appendix which 
deals with logical technicalities. 

This, then, is the point of view embodied in this book: all of mathe­
matics is rooted in arithmetic, for the central concept in mathematics is 
the concept of a plurality limited, or bounded, or determinate, or definite 
- in short, finite - in size, the ancient concept of number (arithmos). 

From this it follows that there are really only two central tasks for the 
foundations of mathematics: 

1. To determine what it is to be finite, that is to say, to discover what 
basic principles apply to finite pluralities by virtue of their being 
finite. 

2. To determine what logical principles should govern our reasoning 
about infinite and indefinite pluralities, pluralities that are not 
finite in size. 

On this analysis, all disputes about the proper foundations for mathe­
matics arise out of differing solutions to these two central problems. 

Such a way of looking at things is not easily to assimilate to any of the 
well-known "isms" that have served to describe the various approaches 
to the study of mathematical foundations in the twentieth century. But 
to my mind it has a certain attractive simplicity. Moreover, it is rooted 
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in the history of mathematics and, indeed, takes as its starting point the 
oldest mathematical concept that we possess. 
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Part One 

Preliminaries 

It is the mark of an educated man to look for precision in each 
kind of enquiry just to the extent that the nature of the subject 
allows. 

Aristotle 
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The Idea of Foundations for Mathematics 

1.1 Why mathematics needs foundations 

Mathematics differs from all the other sciences in requiring that its 
propositions be proved. Certainly no one will deny that proof is the goal 
of mathematics, even though there may be disagreement over whether, or 
to what extent, that goal is achieved. But you cannot prove a proposition 
unless the concepts employed in formulating it are clear and unambigu­
ous, and this means that the concepts used in a proof either must be 
basic concepts that can be grasped directly and can be seen immediately 
to be clear and unambiguous, or must be rigorously defined in terms of 
such basic concepts. Mathematics, therefore, since it is about proof is 
also about definition. 

Now definition and proof are both species of the genus explanation: to 
define something is to explain what it is; to prove something is to explain 
why it is true. All scholars and scientists, of course, deal in explanation. 
But mathematicians are unique in that they intend their explanations to 
be complete and final: that must be their aim and ideal, even if they 
fail to realise it in full measure. From these simple observations many 
consequences flow. 

Perhaps the most important of them concerns the mathematician's 
claims to truth. Because he deals in proof, those claims must be abso­
lute and unqualified. Whether they are justified, either in general, or in 
particular cases, is, of course, quite another matter: but that they are, in 
fact, made cannot be denied without stripping the word "proof" of all 
meaning. To claim to have proved something is to claim, among other 
things, that it is true, that its truth is an objective fact, and that its being 
so is independent of all authority and of our wishes, customs, habits, 
and interests. Where there are no truth and falsehood, objectively deter-

3 
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mined, there can be no proof; and where there is no proof there can be 
no mathematics. 

No doubt all of this is at odds with the Zeitgeist): it would seem that 
we must come to terms with the fact that when there is disagreement 
about a genuine mathematical proposition, someone must be right and 
someone must be wrong. But the requirement that we must lay unqualified 
claims to truth in mathematics is quite compatible with our maintaining 
a prudent and healthy scepticism about such claims: what it rules out is 
dogmatic or theoretical scepticism. 

You may, as a mathematician, reasonably doubt that such and such 
a theorem is true, or that such and such a proof is valid: indeed, there 
are many occasions on which it is your professional duty to do this, 
even to the point of struggling to maintain doubt that is crumbling 
under the pressure of argument: for it is precisely when you begin to 
settle into a conviction that you are most liable to be taken in by a 
specious but plausible line of reasoning. When your business is judging 
proofs you must become a kind of professional sceptic. But scepticism, 
properly understood, is an attitude of mind, not a theory, and you cannot 
systematically maintain that there is no such thing as a true proposition 
or a valid argument and remain a mathematician. 

A proof, to be genuine, must still all reasonable doubts as to the truth 
of the proposition proved. But the doubts to be stilled are those that 
pertain to that proposition: a proof need not, indeed cannot, address 
general sceptical doubts. Anyone who proposes to pass judgement on 
the validity of an intended proof must address his attention to the 
propositions and inferences contained in the argument actually presented. 
It won't do to object to a particular argument on the ground that all 
argument is suspect. The fact, for example, that people often make 
mistakes in calculating sums does not provide grounds for concluding 
that any particular calculation is incorrect, or even uncertain: each must 
be judged separately, on its own merits. 

In the final analysis, there are only two grounds upon which you may 
reasonably call the efficacy of a purported proof into question: you may 
dispute the presuppositions upon which the argument rests, or you may 
dispute the validity of one or more of the inferences by means of which 
the argument advances to its conclusion. If, after careful, and perhaps 
prolonged, reflection, you cannot raise an objection to an argument on 

1 Cantor complained of the "Pyrrhonic and Academic scepticism" that prevailed in his 
day. Plus ,a change ... 
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either of these two grounds, then you should accept it as valid and its 
conclusion as true. 

Here we must include among the presuppositions of a proof not only 
the truth of the propositions that are taken as unproved starting points 
of the argument, but also the clarity, unambiguity, and unequivocality 
of the concepts in which the propositions employed in the argument are 
couched. 

Of course in practice, actual proofs start from previously established 
theorems and employ previously defined concepts. But if we persist in 
our analysis of a proof, always insisting that, where possible, assertions 
should be justified and concepts defined, we shall eventually reach the 
ultimate presuppositions of the proof: the propositions that must be 
accepted as true without further argument and the concepts that must be 
understood without further definition. Of course when I say that these 
things must be accepted without proof or understood without definition 
I mean that they must be so accepted and so understood if the given 
proof is to be judged valid and its conclusion true. 

If we were to carry out such a complete analysis on all mathematical 
proofs, the totality of ultimate presuppositions we should then arrive 
at would obviously constitute the foundations upon which mathematics 
rests. Naturally, I'm not planning to embark on the enterprise of analysing 
actual proofs to discover those foundations. My point here is rather 
that solely in virtue of the fact that mathematics is about proof and 
definition it must of necessity have foundations, ultimate presuppositions 
- unproved assertions and undefined concepts - upon which its proofs 
and definitions rest. 

Of course that observation is compatible with there being a motley 
of disparate principles and concepts underlying the various branches 
of the subject, with no overarching ideas that impose unity on the 
whole. The question thus arises whether it is possible to discover a small 
number of clear basic concepts and true first principles from which the 
whole of mathematics can be systematically developed: that is, I suspect, 
what most mathematicians have in mind when they speak of providing 
foundations for mathematics. 

From the very beginnings of the subject, that is to say, from the time 
when proof became central in mathematics, mathematicians and philoso­
phers have been aware of the need to provide for foundations in the ideal 
and general sense just described. But there are particular, and pressing, 
practical reasons why present day mathematics needs foundations in this 
sense. Mathematics today is, for mathematicians, radically different from 
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what it was in the relatively recent past, say one hundred and fifty years 
ago, and, indeed, come to that, from what it is now for professional users 
of mathematics, such as physicists, engineers, and economists. The differ­
ence lies in the greatly enhanced role that definition now plays. Present 
day mathematics deals with rigorously defined mathematical structures: 
groups, rings, topological spaces, manifolds, categories, etc. Traditional 
mathematics, on the other hand, was based on geometrical and kine­
matical intuition. Its objects were idealised shapes and motions. They 
could be imagined - pictured in the mind's eye - but they could not be 
rigorously defined. 

Now it is precisely in our possession of powerful and general methods 
of rigorous definition that we are unquestionably superior to our mathe­
matical predecessors. However, this superiority does not consist primarily 
in our basic definitions being more certain or more secure - although, 
indeed, they are more certain and secure, as are the proofs that employ 
them - but rather in the fact that they can be generalised and modified 
to apply in circumstances widely remote from those in which they were 
originally conceived. 

There is a certain irony here. For although the earliest pioneers of 
modern rigour - Weierstrass for example - set out in search of safer, 
more certain methods of definition and argument by cutting mathematics 
free of its former logical dependence on geometrical and kinematical 
intuitions, they have, paradoxically, enormously enlarged the domain in 
which those intuitions can be applied. 

When we give a rigorous "analytic" (i.e. non-geometrical, non-kinema­
tical) definition of "limit" or "derivative" we do, undoubtedly, attain 
a greater certainty in our proofs. But, what is just as important, we 
can generalise a rigorous, analytic definition, while a definition based on 
geo-metrical or kinematical intuition remains tied to what we can actu­
ally visualise. By purging our definitions of their logical dependence on 
geometrical and kinematical intuition, we clear the way for transferring 
our insights based on that intuition to "spaces", for example, infinite 
dimensional ones, in which intuition, in the Kantian sense of sensual 
intuition - images in the mind's eye - is impossible. The mathematicians 
of the nineteenth century noticed that by a novel use of definition they 
could convert problems in geometry into problems in algebra and set the­
ory, which are more amenable to rigorous treatment2 • What they didn't 

2 Descartes saw that problems in geometry could be converted into problems in algebra. 
But his algebra, the algebra of real numbers, rested logically on geometrical conceptions. 
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foresee - how could they have foreseen it? - was the enormous increase 
in the scope of mathematics that these new methods made possible. By 
banishing "intuitive" (" anschaulich") geometry from the logical founda­
tions of mathematics, they inadvertently, and quite unintentionally, gave 
that geometry a new lease of life. 

But it was the technique of axiomatic definition that made the tran­
sition from traditional to modern mathematics possible. Naively, an 
axiomatic definition defines a kind or species of mathematical struc­
ture (e.g. groups, rings, topological spaces, categories, etc.) by laying down 
conditions or axioms that a structure must satisfy in order to be of that 
kind. Axiomatic definition is the principal tool employed in purging the 
foundations of mathematics of all logical dependence on geometrical 
and kinematical intuition. It follows that if we wish to understand how 
geometry has disappeared from the logical foundations of mathematics, 
we must understand the logical underpinnings of axiomatic definition. To 
understand those underpinnings is to understand how set theory provides 
the foundations for all mathematics. 

Here we come to the central reason why modern mathematics especially 
stands in need of a careful examination and exposition of its foundations. 
For there is widespread confusion concerning the very nature of the 
modern axiomatic method and, in particular, concerning the essential 
and ineliminable role set theory plays in that method3. I shall discuss 
this critical issue later in some detail4 . But for now, suffice it to say that 
the logical dependence of ax ioma tics on the set-theoretical concept of 
mathematical structure requires that set theory already be in place before 
an account of the axiomatic method, understood in the modern sense of 
axiomatic definition, can be given. It follows necessarily, therefore, that 
we cannot use the modern axiomatic method to establish the theory of sets. 
We cannot, in particular, simply employ the machinery of modern logic, 
modern mathematical logic, in establishing the theory of sets. 

There is, to be sure, such a thing as "axiomatic set theory"; but 
although this theory is of central importance for the study of the foun­
dations of mathematics, it is a matter of logic that it cannot itself, as an 
axiomatic theory in the modern sense, serve as a foundation for math­
ematics. Set theory, as a foundational theory, is, indeed, an axiomatic 

The novelty introduced by later mathematicians was to base the algebra of real numbers 
on set theory, using the technique of axiomatic definition. 

3 I have discussed this matter at some length in my article "What is required of a 
foundation for mathematics'!" to which I refer the interested reader. 

4 Chapter 6, especially Sections 6.2, 6.3 and 6.4. 
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theory, but in the original sense of "axiomatic" that applies to traditional 
Euclidean geometry as traditionally understood. The axioms of set theory 
are not conditions that single out a class of interpretations, as are, for 
example, Hilbert's axioms for geometry. On the contrary, they are fun­
damental truths expressed in a language whose fundamental vocabulary 
must be understood prior to the laying down of the axioms. That, in any 
case, must be the view taken of those axioms by anyone who embarks 
on the enterprise of expounding the set-theoretical foundations of math­
ematics. Whether, or to what extent, any such enterprise is successful, 
whether, or to what extent, the axioms can legitimately be regarded in 
this manner, is, of course, a matter for judgement. But it will be a central 
part of my task to show that they can be so regarded. 

1.2 What the foundations of mathematics consist in 

As I have just explained, the foundations of mathematics comprise those 
ideas, principles, and techniques that make rigorous proof and rigorous 
definition possible. To expound those foundations systematically, one 
must provide three things: an account of the elements of mathematics, 
an account of its principles, and an account of its methods. 

The elements of mathematics are its basic notions: the fundamental 
concepts of mathematics, the objects that fall under those concepts, and 
the fundamental relations and operations that apply to them. These basic 
notions are those that neither require, nor admit of, proper mathematical 
definition, but in terms of which all other mathematical notions are 
ultimately defined. Insofar as these basic notions of mathematics are 
clear and unambiguous, the basic propositions of mathematics, which 
employ them, will also be clear and unambiguous. In particular, those 
propositions will have objectively determined truth values: the truth or 
falsity of such a proposition will be a question of objective fact, not a 
mere matter of convention or of agreement among experts. 

The principles of mathematics are its axioms, properly so called. They 
are fundamental propositions that, although true, neither require, nor ad­
mit of, proof; and they constitute the ultimate and primary assumptions 
upon which all mathematical argument finally rests. There is no sense in 
which the axioms can be construed as giving or determining the mean­
ing of the vocabulary in which they are couched. On the contrary, the 
meanings of the various items of vocabulary must be given, in advance 
of the laying down of the axioms, in terms of the elements of the theory, 
antecedently understood. 
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The methods of mathematics are to be given by laying down the canons 
of definition and of argument that govern the introduction of new con­
cepts and the construction of proofs. This amounts to specifying the logic 

of mathematics, which we must take care to distinguish from mathematical 

logic: mathematical logic is a particular branch of mathematics, whereas 
the logic of mathematics governs all mathematical reasoning, including 
reasoning about the formal languages of mathematical logic and their 
interpretations. The logic of mathematics cannot be purely formal, since 
the propositions to which it applies have fixed meanings and the proofs 
it sanctions are meaningful arguments, not just formal assemblages of 
signs. 

Here it must be said that the need to include an explicit account of log­
ical method is a peculiarity of modern mathematics. Under the Euclidean 
dispensation, before the advent of set theory as a foundational theory, 
and when definition played a much more modest role in mathematics, 
one could, or, in any event, one did, take one's logic more for granted. 
But with the rise of modern mathematics, in which definition has moved 
to the centre of the stage, and where mathematicians have gone beyond 
even Euclid in their quest for accuracy and rigour, it has become nec­
essary to include logical methods among the foundations of the subject. 
In fact, the central problem here is to explain the logical principles that 
underlie the modern axiomatic method. This will raise questions of the 
logic of generality, of the global logic of mathematics, that are especially 
important, and especially delicate, as we shall sees. 

A systematic presentation of the foundations of mathematics thus 
consists in a presentation of its elements, its principles, and its logical 
methods. In presenting these things we must strive for simplicity. clarity. 
brevity, and unity. These are not mere empty slogans. The requirements 
for simplicity and clarity mean, for example, that we cannot take so­
phisticated mathematical concepts, such as the concept of a category or 
the concept of a topos, as foundational concepts, and that we cannot 
incorporate "deep" and controversial philosophical theories in our math­
ematical foundations. Otherwise no one will understand our definitions 
and no one will be convinced by our proofs. 

The ideal of brevity, surely, speaks for itself. Unity has always been 
a central goal: unity in principles, unity in logical technique, unity in 
standards of rigour. With the stupendous expansion that has taken 
place in mathematics since the middle of the nineteenth century the 

5 I shall discuss this point in Sections 3.4 and 3.5. 
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need to strive for unity in foundations is even more pressing than ever: 
mathematics must not be allowed to degenerate into a motley of mutually 
incomprehensible subdisciplines. 

This, then, is what an exposition of the foundations of mathematics 
must contain, and these are the ideals that must inform such an expo­
sition. But the task of expounding the foundations of mathematics must 
be kept separate from the task of justifying them: this is required by 
the logical role that those foundations are called upon to play. A little 
reflection will disclose, indeed it is obvious, that there can be no question 
of a rigorous justification of proposed foundations: if such a justification 
were given, then the elements, principles, and logical methods presup­
posed by that justification would themselves become the foundations of 
mathematics, properly so called. 

Thus the clarity of basic concepts (if they really are basic) and the truth 
of first principles (if they really are first principles) cannot be established 
by rigorous argument of the sort that mathematicians are accustomed 
to. Insofar as these things are evident they must be self -evident. But 
that is not to say they are beyond justification; it is only to say that the 
justification must proceed by persuasion rather than by demonstration: 
it must be dialectical rather than apodeictic. 

In any case, self-evidence, unlike truth, admits of degrees, and, as we 
shall see, the set-theoretical axioms that sustain modern mathematics are 
self-evident in differing degrees. One of them - indeed, the most important 
of them, namely Cantor's Axiom, the so-called Axiom of Infinity - has 
scarcely any claim to self-evidence at all, and it is one of my principal 
aims to investigate the possibility, and the consequences, of rejecting it. 
But what is essential here is this: when we lay down a proposition as 
an axiom what we are thereby claiming directly is that it is true; the 
claim that it is self-evident is, at most, only implicit, and, in any case, is 
logically irrelevant. 

1.3 What the foundations of mathematics need not include 

It is obvious to anyone who teaches mathematics that means must be 
devised for presenting its foundations simply, yet rigorously and thor­
oughly, to apprentice mathematicians: they must be told about sets, 
about ordered pairs and Cartesian products, about functions and rela­
tions; they must be made to grasp the idea of mathematical structure, 
and of a morphology-preserving map between such structures; more gen­
erally, they must be taught the techniques of rigorous proof and rigorous 
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definition, and, especially, must be led to understand the ideas and strate­
gies that inform the method of axiomatic definition - the central technical 
idea underlying modern mathematics. Much of this is confusing, none 
of it is easy, and all of it is necessary: those who do not master these 
foundations will find the road to modern mathematics barred to them. 

These practical necessities remind us that in laying down the foun­
dations of mathematics we are actually engaged in mathematics proper. 
Those foundations are an integral and essential part of mathematics 
itself. Of course, when we reflect deeply on such fundamental matters, 
we are bound to encounter profound questions of a general philosophi­
cal character. Sometimes we may be forced to face up to them. But we 
should make every effort to avoid incorporating purely speculative philo­

sophical ideas into mathematical foundations, properly so called. That this 
is necessary from the standpoint of mathematics should be obvious. 
Mathematicians, like infantrymen, must march off to battle carrying only 
such equipment as is absolutely essential to their task. But philosophers, 
too, will benefit if the foundations of mathematics are kept free of philo­
sophical controversy insofar as that is possible. For it is useful to them 
to know what are the minimal philosophical presuppositions upon which 
mathematics can rest. 

Put in these general terms, all this may seem rather obvious and unex­
ceptionable. But the matter may take on an entirely different colour when 
I draw what I see as the necessary consequences of these observations. In 
particular, I take the view that the foundations of mathematics do not 
require, and therefore should not include, a general theory of the mean­
ing of mathematical propositions, or a general theory of mathematical 
truth, or a general theory of how mathematical knowledge is acquired. 
In mathematics it is sufficient if our propositions have clear meanings; 
it is not our business, as mathematicians, to account for what having a 
clear meaning consists in. Our theorems must be true and our proofs 
valid; but we are not required to say what a proposition's being true 
or an argument's being valid amounts to. Mathematicians must strive to 
acquire mathematical knowledge; but they do not need a theory of what 
the acquisition of such knowledge consists in merely in order to acquire 
it. Such a theory would belong to psychology, not to mathematics. 

The mathematician studies mathematical structures, such as groups 
or topological spaces, just as the entomologist studies insects or the 
palaeontologist fossils. It would be an absurd impertinence to demand 
of an entomologist that he supplement his descriptions of the behaviour 
and physiology of insects with an account of how it is that human 
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beings can acquire knowledge of this sort, or communicate it to one 
another once they have acquired it. I say that the same should apply 
to the mathematician: we may insist that his definitions be precise, his 
theorems be true, and his proofs be valid. But that is all we can sensibly 
require, or have any reason to expect. 

Of course some may argue that, unlike insects or fossils, mathematical 
structures are "abstract" or "ideal" entities, that they exist, if at all, only 
in the minds of mathematicians, and that, in consequence of having these 
gossamer and insubstantial things for its subject matter, mathematics 
gives rise to ontological and epistemological difficulties unprecedented in 
the other sciences, difficulties which must be addressed when the founda­
tions of mathematical science are laid down. I am convinced, however, 
that this is a mistake. It is perfectly true that in the past mathematics 
was thought to have certain characteristic abstract or ideal "mathemat­
ical objects" for its subject matter. But such views are outmoded, for 
mathematicians can now use the modern axiomatic method to replace 
reference to those peculiar "objects" with discourse about mathematical 
structures. Mathematical structures, however, are not the "abstract" and 
"ideal" entities that the mathematical objects of tradition were thought to 
be, and do not give rise to the ontological and epistemological difficulties 
inherent in that tradition6. 

The great philosophical questions of meaning, truth and knowledge are 
no doubt of considerable interest in themselves; but it is not necessary 
to solve them before getting on with the business of proving, say, that 
a continuous function on a closed interval assumes a maximum, or that 
every integer is uniquely factorable into a product of primes. This is 
indeed fortunate, since definitive answers to these philosophical questions 
are nowhere in sight. Certainly there is not the remotest prospect of 
universal agreement on such answers. But there must be universal, or 
near universal agreement on what constitutes a valid proof or definition 
in mathematics - and, indeed, there is. If there were not, the subject 
would be in chaos. 

We must also keep separate from foundations those general questions 
that, though not really philosophical, are what mathematicians themselves 

6 This is an important, difficult, and, I must confess, on the face of it, controversial point. 
What is essential to the claim I am making is the distinction between the "abstract" 
or "ideal" character of traditional mathematical objects and the arithmetical (set­
theoretical) character of modern mathematical structures. Here I have simply stated, 
without argument, what I take to be the case. The argument is given, and at some 
considerable length, in what follows, principally in Chapters 2 and 6. 
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might call "philosophical": questions of the significance (or otherwise) of 
theories, of the suitability of mathematical definitions, strategic questions 
about the importance of problems, or about the most useful ways to 
tackle them, questions about the overall organisation of mathematics, 
questions about the relative importance of its various branches, .... 
These are questions about which all mathematicians, even those with no 
real philosophical interests, are called upon to think from time to time. We 
must not underestimate their importance, for it is often decisive, though 
usually only the very best mathematicians make significant contributions 
here. But these questions, which call for sound judgement and large 
experience, cannot be taken to be part of the foundations of mathematics, 
properly so called, although they are inextricably bound up with its 
practice. What belongs to mathematics proper - and that includes its 
foundations - cannot be speculative, or evaluative, or controversial. 
Indeed, the very word "mathematics" comes from the Greek "mathema" 

which means simply "what can be taught and learnt", in other words 
"what is cut-and-dried". 

In mathematics our aim is to start from what is simple and obvious, 
our basic concepts and axioms, and to proceed by obvious steps, our 
definitions and our inferences, to obtain what is often complex and 
difficult, our general concepts and our theorems. If this sort of thing is to 
work, we must strive to make both the starting points and the individual 
steps as transparent and as obvious as we can make them. 

Accordingly, it is no reproach to an account of the foundations of 
mathematics that its basic concepts and its axioms are remote from the 
actual practice, and the immediate concerns, of most mathematicians. 
On the contrary, that very remoteness is rather a measure of the logical 
depth of our definitions and theorems, and, as such, is probably the 
best indication we have that our basic concepts and axioms are, in fact, 
suitable. Such a reproach has frequently been levelled at modern set­
theoretical foundations. But that is to misconceive the purpose they are 
called upon to serve. Whatever the shortcomings of those foundations, 
remoteness from practice is not among them. 

To be sure, the basic concepts and axioms of set theory are, indeed, 
remote from practice. One cannot gain insight into group theory or 
functional analysis or algebraic geometry by contemplating them. But 
that fact, though incontrovertible, is utterly irrelevant. The only question 
relevant here is whether those concepts and axioms do, in fact, logically 
sustain such disciplines. And that they unquestionably do. 
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1.4 Platonism 

On the face of it mathematics is full of references to special mathematical 
objects, "abstract" or "ideal" things that we cannot touch or see. The 
mathematician's triangles, for example, are not to be identified with 
those he draws on the blackboard, or with the architect's or the land 
surveyor's. But even mathematical triangles seem relatively "concrete" 
when compared to other things that mathematicians regularly talk about: 
natural numbers, real numbers, functions, "spaces" and "structures" of 
various kinds .... What are these things? Do they really exist? And if 
so, how, and in what sense? These questions are as old as mathematics 
itself. Moreover, they have been a central preoccupation of philosophers 
in the European tradition since before the time of Plato. 

Indeed, Plato himself has been invoked in the present day debate on 
these matters, for it is now the fashion to describe as "Platonism" the 
naive idea that the peculiar objects mathematicians talk about exist in 
their own special way - that they are what they are, so to speak - and 
that they really have the properties and relations that mathematicians 
say they have. "Platonism", understood in this sense, is often used as a 
term of abuse or, alternatively, adopted as a badge of defiance. 

But the relation of modern "Platonism" to the opinions on mathe­
matics actually held by Plato and his disciples is not at all what it is 
commonly supposed to be. It is true that Plato posited a special category 
of eternal and unchanging objects, the "Mathematicals" or "Intermedi­
ates", occupying a place in the realm of being midway between ordinary 
objects of sense and the Platonic Ideas or Forms. But it is clear that 
Plato did not regard what we should call "sets" and he called "numbers" 
(arithmoi) as necessarily belonging to the class of Intermediates. On the 
contrary, only sets of a certain special kind were classed as mathematical 
objects in his special sense. This is a matter of some significance, as I 
shall make clear when I come to discuss the question of set existence in 
the next chapter. 

In its modern usage the term "Platonism" does less than justice to the 
historical facts. Moreover, that usage rests upon a classification of objects 
into the "abstract" and the "concrete" that is so crude, so simple-minded, 
and so undiscriminating as to be useless. It is best abandoned. In any 
case, as I shall show in the next chapter, modern set theory, which in 
the present day estimation is the very quintessence of "Platonism", is 
fundamentally Aristotelian, not Platonic, in spirit. 

Nevertheless, one of Plato's principal doctrines in the philosophy of 
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mathematics is an essential component of modern set-theoretical foun­
dations. I mean his anti-operationalism: 

... no one who has even a slight acquaintance with geometry will deny that 
the nature of this science is in fiat contradiction with the absurd language 
used by mathematicians, for want of better terms. They constantly talk of 
"operations" like "squaring", "applying", "adding", and so on, as if the object 
were to do something, whereas the true purpose of the whole subject is knowledge 
- knowledge, moreover, of what eternally exists, not of anything that comes to 
be this or that at some time and ceases to be7 • 

Plato seems to be invoking his doctrine of Intermediates here, but we 
should ask whether his doing so is really necessary to his central point. 
Given that the truths of mathematics are timeless truths, does it then 
follow that they must, of necessity, be truths about timeless entities like 
Plato's Intermediates? Such a supposition is natural enough, I suppose, 
but is it really essential? The question is a deep and difficult one, and 
deserves a more than merely cursory examination. But that question 
aside, Plato is surely right in holding that mathematics is not primarily 
a matter of doing, but rather of knowing. 

I take operationalism in mathematics to be the doctrine that the 
foundations of mathematics are to be discovered in the activities (actual 
or idealised) of mathematicians when they count, calculate, write down 
proofs, invent symbols, draw diagrams, and so on. No doubt we ought 
to be chary of following Plato in positing "mathematical objects", and, 
indeed, modern mathematics provides us with the conceptual tools which 
make this possible; but we ought all to account ourselves "Platonists" 
in this sense: considerations of human activities and capacities, actual or 
idealised, have no place in the foundations of mathematics, and we must 
therefore make every effort to exclude them from the elements, principles, 
and methods, upon which we intend to base our mathematics. 

This is no easy matter, for the art of mathematics consists, in large part, 
in finding suitable symbolic expression for our concepts and propositions 
with a view to replacing complicated conceptual thought with mere 
symbolic manipulation - letting our notation do our thinking for us, so 
to speaks. 

7 Republic 527a. 
8 No clearer illustration of this can be given than by contrasting the ancient theory of ratio 

and proportion given in Book V of the Elements with the modern, symbolic handling 
of cognate material in the algebra of real numbers. Euclid's treatment is complicated 
and cumbrous, and is carried out purely conceptually, so that the exposition is almost 
entirely verbal. The modern theory, by contrast, is entirely algebraic, that is to say, 
is largely a matter of manipulating symbols, so that complicated arguments in Euclid 
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When we are engaged in mathematics our attention is constantly 
shifting between the notation we employ and the subject matter. Our 
concern is now with the symbols themselves as syntactico-combinatorial 
objects, now with the things for which they are the signs; now those 
symbols are the objects of investigation, now the medium of expression. 
Often it proves necessary to find suitable objective correlatives for our 
symbols, that is to say, non-linguistic, non-symbolic objects corresponding 
to certain symbols or symbol combinations, or to processes of algebraic 
or numerical calculation. In this way we render our discourse objective 
by purging it of its "human, all too human" elements; and it is the 
great strength of modern mathematics that it provides us with powerful 
techniques for accomplishing this necessary purge. 

The need to exclude operationalism, in all of its guises, from the 
foundations of mathematics is not something that can be established 
in a few paragraphs of argument: it is the central lesson of the whole 
modern movement in mathematics, a lesson which mathematicians absorb 
almost unconsciously in learning their trade, and practise without even 
reflecting on it. It is built into the conventions of expository style that 
every mathematician must master. But many of the most widely used and 
fundamental concepts in mathematics have an operationalist air about 
them in consequence of their origins in the contingencies of mathematical 
practice as that practice has developed historically: the concepts of 
"natural number", "ordered pair", "function", and "relation" are all of 
this character. To objectify these concepts, so to speak, is, inevitably, 
to introduce some appearance of arbitrariness and artificiality into our 
mathematical discourse: we must face up to this as we cannot avoid 
it. But the bedrock, the concepts in terms of which these concepts are 
defined, must be free of any operationalist taint. 

correspond in the modern theory to simple syntactic operations. Of course there is a 
price to pay for such facility, and whereas it is clear ab initio just what Euclid is talking 
about, mathematicians had to wait until the end of the nineteenth century before an 
adequate account of the facts that justify the symbolic manipulations of real algebra 
was given. 



2 

Simple Arithmetic 

2.1 The origin of the natural numbers 

The natural numbers 0, 1,2, ... , as we now understand them, are not 
simply given to us as part of the "raw data" of mathematics. On the 
contrary, these numbers were invented, indeed invented fairly recently, 
along with rational, irrational and negative numbers. There is, in fact, 
something distinctly unnatural about our "natural" numbers. 

This is so important a matter that I want to make doubly sure that no 
one misunderstands me: when I say that these numbers were invented 
I am making a particular, historical point, not a general, philosophical 
one. It is not my intention to resurrect the philosophical claim that 
mathematics is invention not discovery (surely it is both), nor the more 
particular claim that the natural numbers are "mental constructions" or 
anything of that sort. On the contrary, what I am talking about is an 
actual, historical process of invention that began sometime in the late 
middle ages and culminated in the late seventeenth century, by which time 
mathematicians had arrived at what is essentially our modern conception 
of real number. In the course of this process, the concept of number was 
drastically altered - no, that is not strong enough: in the course of this 
process the word "number" was stripped of its customary and traditional 
meaning to be assigned an entirely new meaning, one which had scarcely 
anything in common with the original'. 

Not only the fact, but also something of the actual nature of the 
change in the meaning of "number", can be deduced from the definition 
given by Isaac Newton in his Universal Arithmetic: 

By a Number we understand not so much a Multitude of Unities, as the abstracted 

1 Naturally I do not mean to suggest that this change of meaning was a phenomenon 
confined to English alone. A similar change occurred in other European languages. 

17 
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Ratio of any Quantity to another Quantity of the same kind, which we take for 
Unity. 

From this brief passage we can glean several important facts. It is 
clear that Newton recognised "quantities" of various kinds, and these 
quantities were not "numbers" in Newton's sense; for the latter are said 
to be abstracted ratios2 of two quantities of the same kind. Moreover, the 
notion of "number" that he mentions only to reject ("By a Number we 
mean not so much" - that is to say, not at all - "a Multitude of Unities 
but ... ") must, by the logic of the sentence, have been the notion of 
number that some of his readers might have expected or, at least, have 
been aware of. In fact, it recalls the definition given by Euclid in Book 
VII of the Elements: 

A number (arithmos) is a multitude composed of units. 

So Newton actually tells us that he doesn't mean by "number" what 
Euclid meant3. What Newton means by "number" is what we should 
mean by "real number", or, at least, very like what we should mean: for 
we must not lose sight of the fact that it was important for Newton, 
as it would not be for a modern mathematician, to ground his theory 
in the ancient science of quantity, the theory of ratio and proportion 
expounded in Books V and VI of the Elements. Newton's "Quantity" is 
Euclid's "megethos"; such a quantity is, for example, a line, or a surface, 
or a solid, or a time. 

These things may have been regarded as idealisations of physical lines, 
surfaces, solids, and durations, but are clearly not abstractions in the 
sense that Newton's "numbers", or indeed ours, are abstractions. It was, 
of course, this ancient science of quantity that the new science of (real) 
number replaced. 

How crucially important it is in mathematics to choose the right ter­
minology! The use of "number" for this new concept was especially 
unfortunate; and there were perfectly good alternatives ready to hand: 
"(abstract) ratio" and "(abstract) quantity" immediately suggest them-

2 That is to say, relationships in respect of size. (See Euclid's Elements, Book V, Definition 
3.) 

3 In fact there may already have been a shift in meaning from Euclid's "multitude 
composed of units", which can only mean what we should call a set of units, to Newton's 
"Multitude of Unities" which may refer, not to a set of units, but to its (abstract) 
cardinality. (See Klein's Greek Mathematical Thought and the Origin of Algebra, Chapter 
12, especially pp. 201-202). The question of how and why the new notion of number 
arose is a fascinating one, but for our purposes here the fact, and the nature, of the 
change in the meaning of "number" are all that are directly relevant. 
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selves. By choosing this oldest of mathematical words to name what was 
then the newest of mathematical concepts, the mathematicians of the 
seventeenth century virtually ensured that their successors would even­
tually lose sight of the very concept of number as it was understood in 
antiquity. 

In Frege: Philosophy of Mathematics, for example, Michael Dummett 
writes 

That the number of objects of a given kind is the set of those objects is sufficiently 
absurd to need no refuting. (p. 82) 

No doubt this view is absurd as an account of our notion of number. 
But this "absurd" view was held by Plato, Aristotle, Euclid, Aquinas, 
and Ockham, and was, as we have seen, acknowledged by Newton, who, 
however, failed to remark upon its "absurdity", even while he was in the 
course of explicitly rejecting it. 

In fact the ancient concept of number provides, as I intend to show, 
a simpler, more straightforward, and more natural account of the facts 
that underlie simple arithmetic than does the modern notion of "natural" 
number; and if one adopts it one is not burdened like Frege, and, 
indeed, Dummett, with the task of explaining what things those "natural" 
numbers are. 

The original notion of number is so important and so fundamental 
that it could not remain suppressed. It had eventually to reappear, even 
if only under another name: what our ancestors knew as "numbers" we 
now call "sets". 

2.2 The abstractness of the natural numbers 

I think it unlikely that any modern mathematician would be drawn 
to Newton's account of number. Of course that account could not be 
taken as a definition of "number", since it does not meet the modern 
requirements of rigour. But that apart, it is not so much its vagueness 
as its particularity that seems unsatisfactory. When Newton speaks of 
"abstracted ratios of quantities" he has something too definite in mind, 
something quite alien to the modern mathematical sensibility. His ab­
stractions are somehow too concrete for our taste, if I may put it in that 
somewhat paradoxical way. 

This comes of Newton's desire, which I alluded to earlier, to base the 
new science of number on the old science of concrete quantities. We 
moderns are, in any case, chary of mixing our natural numbers quite so 
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thoroughly with our reals; and we want all our numbers kept logically 
independent of geometry. 

It seems, then, that Newton's account of the abstractness of numbers 
won't do. And yet we all agree, do we not, that the modern notion 
of number, in general, and of natural number, in particular, is highly 
abstract? The question I want to address now is: "abstract" in what 
sense? 

The "abstractness" of our modern natural numbers is something much 
simpler, much more insubstantial, than the abstractness of Newton's 
numbers. Indeed, the abstractness of our numbers is a fact about the 
way we view them, not a theory about their natures. It manifests itself in 
the naive idea that number words and numerals are names, or signs, for 
particular objects. This idea imposes itself on us, inter alia, by our use of 
certain familiar expressions (e.g. "the number five") and by the way that 
we understand simple numerical equations (e.g. 128 + 279 = 407). 

The interpretation of "128 + 279 = 407" that perhaps most naturally 
suggests itself is this: if we perform the operation of addition on the 
natural numbers 128 and 279 (in that order) then we obtain the natural 
number 407. This way of understanding such equations is, I submit, sug­
gested to us both by the syntactic form of the equations themselves, and 
by our rules and methods for calculating sums. For the abstract opera­
tion of addition here corresponds to the actual procedure of calculation 
(hence "operation", with its suggestion that something is to be done), and 
the abstract numbers to which that operation applies correspond to the 
numerals employed in such calculations. 

Natural numbers thus present themselves to us as those things, what­
ever they are, that correspond to the numerals and letters we use in 
symbolic calculation. They are generated by our notation, and by the 
syntactic and algorithmic rules that govern its employment. This, no 
doubt, accounts for their peculiarly thin and insubstantial character, 
even as "abstract objects". 

Abstractions of this symbol generated sort, though unknown to the 
Greeks, are quite common in modern mathematics. Some of them play 
indispensable technical roles: ordered pairs are an obvious example4. 

But wherever such symbol generated abstractions occur, they are a 
potential source of perplexity and confusion. For it is never obvious that 

4 Functions and relations are also symbol generated abstractions of this sort. I shall 
discuss the logical status of these key notions in Chapter 4. 
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there really is anything to which they naturally correspond, outside our 
symbols themselves that is. They are epiphenomena of our notation. 

The naive idea of the natural numbers that I have described here 
- the idea that they are the particular abstract things named by our 
number words and numerals - this idea scarcely constitutes a theory, 
although it is sometimes rhetorically inflated into one. It is really rather 
a starting point for theories, philosophical or mathematical: it is what 
those theories have to explain or to explain away. It poses the following 
dilemma: if there are, in fact, objects of which our number words and 
numerals are the names, what are those objects? If there are no such 
objects, what is arithmetic about? 

2.3 The original conception of number 

Let us consider the idea of number that our modern idea of "natural" 
number has supplanted, the classical Greek concept of arithmos5. On 
that conception, a number (arithmos) is a finite plurality (multitude, 
multiplicity) composed of units, where a unit is whatever counts(!) as 
one thing in the number under consideration. Thus Trigger, Champion, 
and Red Rum constitute a number of horses, and each unit in this 
number is a horse; red, yellow, blue, and green constitute a number of 
colours, and each unit is a colour. This original meaning of "number" 
still survives in English, as when we say, "Lieutenant Lightoller was 
included among the number of survivors in the wreck of the Titanic". 

In the two examples I have given the units are homogeneous: all of 
them are horses or all of them are colours. Such numbers provide the most 
straightforward and unproblematic examples of numbers understood in 
this ancient and original sense. When the units are all of the same kind, 
then what it is to be a particular kind of number, for example, a triple 
or a quadruple, of the kind of thing they are, is determined by what it is 
to be one thing of that kind, and by what it is to be, say, three things of 
any kind whatsoever. If you know what a horse is, and you know what 
a triple is, then you know what a triple of horses is; and if you know 
which particular horses Trigger, Champion, and Red Rum are, then you 
know which particular number of horses they compose. 

Of course, no one has to know this particular number of horses, or 
even the horses that make it up, in order for it to be a number of horses. 

5 See Jacob Klein's Greek Mathematical Thought and the Origin 0/ Algebra, especially 
Chapter 6, Paul Pritchard's Plato's Philosophy o/Mathematics, Chapters 1-3, and Myles 
Burnyeat's "Plato on why mathematics is good for the soul". 
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Simply by being, severally and individually, the particular horses that 
they are, and by being, collectively, finite (in fact, three) in multitude, 
Trigger, Champion, and Red Rum make up the particular number of 
horses that they do. They do not have to be collected together, either 
in reality or in conception, in order to compose that number: there is 
nothing that anyone has to think or to do in order to bring it into being. 
Indeed, this is obvious, on reflection, for a herd of twenty-five horses 
contains two thousand three hundred such horse triples, most of which, 
of course, no one would ever separate out, or even think of, not even 
someone well acquainted with the horses, both individually and as a 
herd. A number of horses is no more a creature of the mind than are 
the individual horses that compose it. Since we can count such numbers, 
it is natural that we "count" them as things. 

Getting this point right is important for everything that follows. In 
the example just considered, one might be tempted to say that what are 
being counted are not numbers - arithmoi - of horses, but, for example, 
the possible ways of selecting three horses from a herd of twenty-five. 
That is, indeed, a common way of speaking about such matters, and, 
moreover, it has a reassuringly "concrete" air about it: one can easily 
imagine cowboys cutting horses out of herds. But such imaginings are 
irrelevant, and such confidence in the "concrete", understood in this 
sense, is misplaced. For it is the existence of the arithmoi - the triples 
- that grounds the possibilities of selection, and not the possibilities of 
selection that ground the existence of the arithmoi. It is impossible to 
think those triples away: they are simply "there" to be counted as units 
in the arithmos of 2, 300 horse triples that they compose. 

But to what extent must the units of a number be homogeneous? 
Are we allowed to count disparate, even incongruous things as together 
constituting a number? Indeed, are we not forced to acknowledge num­
bers composed of heterogeneous units? Are they not simply "there" by 
virtue of their units being "there" in finite multitude? Frege notes, with 
approval, that 

Leibniz rejects the view of the schoolmen that number is not applicable to 
immaterial things, and calls number a sort of immaterial figure, which results 
from the union of things of any sorts whatsoever, for example, of God, an angel, 
a man, and motion, which together are four6• 

If we were to follow Leibniz and Frege and allow the widest possible 
latitude in the choice of units, then we should have to acknowledge 

6 Die Grundlagen der Arithmetik, p.3l. 
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that finitely many things (e.g. two hundred and ninety-seven) of any 
kinds whatsoever, however various and heterogeneous, simply by being, 
individually and severally, the particular and definite things that they are 
- horses, or men, or ideas, or characters in fiction, or numbers (in the 
sense discussed here) - and by being, collectively, finitely many things (in 
the circumstances posited, two hundred and ninety-seven), are the units 
of a unique number that together they all constitute. 

But what kinds of things are suitable to serve as units in a number? 
Surely, some kinds of thing are too vague, or too indistinct, or too 
poorly differentiated to count as units. Clouds, ripples on the surface 
of a liquid, psychological states - such things are usually too indefinite 
to count. How many psychological states did you experience yesterday? 
How many clouds are there now overhead in the sky? It's not that these 
questions have answers that we don't know; it's rather that, in general, 
they don't have answers - objectively determined answers - at all. 

But sometimes we can, in fact, count such things. There are occasions 
on which we can, for example, say that there are three clouds overhead. 
And, after all, do we not speak of four Noble Truths, seven types 
of ambiguity, three theological virtues, thirteen ways of looking at a 
blackbird, ... ? What are the numbers that these sorts of things compose? 
Do Faith, Hope, and Charity form a triple in the way that Trigger, 
Champion, and Red Rum do? That is rather like the question whether 
Faith is a thing in the way that Trigger or Champion is. 

The bafflement and uncertainty we experience when we confront such 
questions remind us that the ancient conception of number under consid­
eration was not an exact and artificial scientific concept but a concept in 
common use. Natural concepts in ordinary use characteristically exhibit 
a fluidity and suppleness that makes them unsuitable for exact, scientific 
discourse in their raw state, so to speak. The domain of applicability of 
such a concept typically is sharply and clearly delineated at its centre, 
but fades into vagueness at its periphery. In the case we are considering, 
the vagueness that infects the notion of number at its boundary is the 
same vagueness that infects the notion of thing. 

It is a characteristic of language that it allows us to form substantives 
by combining expressions in complex ways, and to use them as if they 
were ordinary nouns in forming sentences. When we form a sentence in 
this way it seems as though we were predicating something of a thing. 
In this way we pepper our discourse with references to "possibilities", 
"ways", "likelihoods", "facts", "circumstances", and so on. Thus arises 
the illusion (if illusion it be) that there are "things" corresponding to, 


