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NOISE-INDUCED PHENOMENA IN THE
ENVIRONMENTAL SCIENCES

Randomness is ubiquitous in nature. Random drivers are generally considered a
source of disorder in environmental systems. However, the interaction between noise
and nonlinear dynamics may lead to the emergence of a number of ordered behaviors
(in time and space) that would not exist in the absence of noise. This counterintuitive
effect of randomness may play a crucial role in environmental processes. For exam-
ple, seemingly “random” background events in the atmosphere can grow into larger
instabilities that have great effects on weather patterns. This book presents the basics
of the theory of stochastic calculus and its application to the study of noise-induced
phenomena in environmental systems. It will be an invaluable reference text for ecol-
ogists, geoscientists, and environmental engineers interested in the study of stochastic
environmental dynamics.
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Preface

Noise-induced phenomena are characterized by the ability of noise to induce order
(either in space or in time) in dynamical systems. These phenomena are caused by the
randomness of external drivers, and they would not exist in the absence of noise. The
ability of noise to create order is counterintuitive. In fact, until recently, noise was
generally associated with disordered random fluctuations around the steady states of
the underlying deterministic dynamics. However, in the past few years the scientific
community has become aware that noise can also have a more fundamental effect, in
that it can determine new states and new dynamical patterns.

The speculative “beauty” of these dynamical behaviors, as well as the ubiquitous
occurrence of random drivers in a number of natural and engineered systems, explains
the great attention that has been recently paid to the study of noise-induced phenomena.
A number of recent contributions have shown that the emergence of order and patterns
in nature may result as an effect of the noise inherent in environmental variability. A
typical example is climate fluctuations and their ability to induce dynamical behaviors
that would not exist in the absence of random climate variability.

The main reason for writing this book is that there is a rich body of literature on
noise-induced phenomena in the environmental sciences, and it has become difficult
to keep track of the main theories, methods, and findings that have been presented in a
number of research articles spread throughout the physics, mathematics, geoscience,
and ecology journals. After working for a few years in this research field, we have
become aware of the need for a book that (1) describes the main mechanisms of noise-
induced order in space and in time; (2) presents rigorous mathematical tools addressing
a relatively broad readership of environmental scientists, who are not necessarily
familiar with the theory of stochastic processes; (3) focuses on applications to the
environmental sciences; and (4) reviews a number of recent studies on noise-induced
phenomena in environmental dynamics.

The goal of this book is to provide a synthesis of theories and methods for the
study of noise-induced phenomena in the environment and to draw the attention of the

xi



xii Preface

earth and environmental science communities toward this fascinating and challenging
research area. Through a number of examples of noise-induced phenomena we stress
how in the natural environment random fluctuations are the rule and interesting
behaviors may emerge from the interactions between the deterministic and stochastic
components of environmental dynamics.

This book is not intended to be a comprehensive treatise on noise-induced phe-
nomena. This relatively vast and fast-moving research field is enriched every day
with new studies appearing in the literature. It would not be possible to contain in
this volume an exhaustive review of all the existing theories of noise-induced order
and their application to the environmental sciences. This book tries to provide an
organized synthesis of the main contributions to this subject, drawing from material
that is currently spread through a number of journals and other publications.

The completion of this book would have not been possible without the help, motiva-
tion, and support of a few collaborators and colleagues. We thank Stefania Scarsoglio
and Fabio Borgogno (Politecnico di Torino) for providing invaluable help in per-
forming the numerical simulations and contributing to the analysis of the results
on noise-induced pattern formation (Chapters 5 and 6). We are grateful to Igna-
cio Rodriguez-Iturbe (Princeton University), Amilcare Porporato (Duke University),
and Andrea Rinaldo (Ecóle Polytechnique Federale de Lausanne) for their unfailing
encouragement and support through years of continued collaboration and compan-
ionship. We also acknowledge René Lefever (Université Libre de Bruxelles), whose
work has inspired our research on noise-induced phenomena. We are also indebted
to our institutions, the Polytechnic of Turin (Dipartimento di Idraulica, Trasporti e
Infrastrutture Civili) and the University of Virginia (Department of Environmental
Sciences) for providing high-quality academic environments that constantly stimulate
our work.

Luca Ridolfi Paolo D’Odorico Francesco Laio



1

Introduction

1.1 Noise-induced phenomena

Most environmental dynamics are affected by a number of random drivers. This
randomness typically results from the uncertainty inherent to the temporal or spa-
tial variability of the driving processes. For example, if we consider the temperature
record measured at a certain meteorological station, we can easily notice some obvi-
ous deterministic components of climate variability associated with the daily rotation
of the Earth or with the annual seasonal cycle. At longer time scales we might rec-
ognize some patterns of interannual climate variability (e.g., the El Niño Southern
Oscillation or the North Atlantic Oscillation) associated with temporally and spatially
coherent anomalies in the atmospheric and oceanic circulations. These anomalies
exhibit a certain degree of regularity in addition to unpredictable random fluctua-
tions. However, besides these daily, annual, and interannual oscillations (and other
deterministic signals), the temperature record will also exhibit some disorganized
fluctuations that are typically ascribed to environmental randomness. In stochastic
models of environmental dynamics this randomness is commonly expressed as noise.

Random environmental drivers are ubiquitous in nature. The occurrence of rain-
fall, sea storms, droughts, fires, or insect outbreaks are typical examples of random
environmental processes. The noise underlying these processes is an important cause
of environmental variability. What is the effect of this noise on the dynamics of
environmental systems? Systems forced by random drivers are commonly expected
to exhibit random fluctuations in their state variables. Thus the effect of noise is
typically associated with the emergence of disorganized random fluctuations in the
state of the system about its stable state(s). However, this trivial effect of noise is
not the only possible way in which random drivers can affect a dynamical system.
In the physics literature it was reported that noise can have a more fundamental role
(e.g., Horsthemke and Lefever, 1984; Cross and Hohenberg, 1993; Garcia-Ojalvo and
Sancho, 1999; Sagues et al., 2007). In fact it can induce new ordered states and new
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Figure 1.1. Schematic representation of noise-induced phenomena in (a) time and
(b) space. Nonlinear systems forced by random drivers (left-hand panels) may lead
to the emergence of ordered states in both time and space (right-hand panels).

bifurcations that would not exist in the deterministic counterpart of these systems.
Noise can also modify the stability and resilience of deterministic states and induce
coherence in the spatial and temporal variabilities of the state variables, including the
emergence of periodic oscillations or the formation of spatial patterns. The ability of
noise to induce order and organization (the so-called constructive effect of noise) is
a quite counterintuitive effect that has seldom been investigated in the environmental
science literature (e.g., May, 1972; Benzi et al., 1982a; Rodriguez-Iturbe et al., 1991;
Katul et al., 2007). This book concentrates on this constructive effect of noise and on
its ability to induce dynamical behaviors [i.e., states, bifurcations, spatial or temporal
coherence (or both)] that do not exist in the underlying deterministic dynamics. We
generically refer to these behaviors as noise-induced phenomena.

Figure 1.1 shows a schematic representation of some of these noise-induced behav-
iors: A nonlinear dynamical system forced by disordered random fluctuations either
in space or in time may lead to the emergence of different forms of coherence, includ-
ing for example noise-induced bistable dynamics [e.g., Fig. 1.1(a)] or morphogenesis
[e.g., Fig. 1.1(b)]. In all of these cases, noise-induced behaviors appear when the noise
intensity exceeds a critical level, whereas they disappear when it tends to zero.
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The purpose of this book is to provide conceptual and mathematical tools that
allow environmental scientists to familiarize themselves with the notion of noise-
induced phenomena and with the idea that environmental noise (e.g., random climate
fluctuations) is not necessarily a mere source of disturbance in environmental systems.
The existence of a more fundamental role of noise should also be recognized in that it
could have a crucial role in the way these systems respond to changes in environmental
variability.

An example of the relevance of these constructive effects of noise can be found
in the study of ecosystems’ response to climate variability. Research in the field of
ecosystem and population ecology has been investigating the effect of climate and
land-use changes on ecosystem structure and function. In most cases the focus has
been on how ecosystems respond to changes in the mean values of environmental
parameters (e.g., mean annual precipitation or temperature) whereas the impact of
changes in the variance has seldom been studied. However, recent climate-change
studies indicate that, in addition to trends in the mean values of climate variables,
interannual variability is also increasing (Katz and Brown, 1992; Easterling et al.,
2000a, 2000b). It becomes therefore important to understand how this increase in the
variance of environmental parameters will affect the dynamics of natural systems.

1.2 Time scales and noise models

The dynamics investigated in this book include four major components, namely,
(i) a dynamical system, (ii) the external environment, (iii) a stochastic forcing, and
(iv) some possible feedbacks between the state of the system and its environment or
stochastic drivers. The first element is the deterministic dynamical system of interest.
This system is a conceptually separate “entity” from a much more complex dynamical
system, called the environment. The dynamical system generally involves a limited
number of physical variables. We model it with a minimalist approach, which captures
only the fundamental features of the dynamics. The physical variables representing
the state of the system (e.g., plant biomass, soil moisture, soil thickness) are usually
referred to as state variables. In this book we focus on systems that we can investigate
by considering only one state variable, though we also consider the case of noise-
induced phenomena that can emerge only in multivariate systems. The focus on
univariate dynamics is motivated by their conceptual simplicity, the possibility of
investigating them with analytical mathematical models, and the fact that their study
allows us to show how noise-induced behaviors may emerge even without invoking
complex interactions among a number of environmental variables. We express these
univariate dynamics by using a first-order differential model,

dφ

dt
= f (φ) , (1.1)
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where φ(t) is the state variable characterizing the state of the system, t is time, and
f (φ) is a deterministic algebraic function of the state variable. A spatially extended
version of Eq. (1.1) would include also a term representing the effects on the dynamics
of the values of φ in the neighboring sites; spatially extended systems are considered
in the second half of this book, but the spatial coupling is neglected here to speculate
more easily on the role of noise in the dynamics of φ.

The environment from which dynamical system (1.1) is extracted is generally
much bigger than the dynamical system itself and is also called external environment
to stress the fact that it is external to the dynamical system. Because the external
environment is often too “large,” complex, and also partially unknown to be modeled
deterministically, its action on the dynamical system is represented as a stochastic pro-
cess. Therefore we account for the randomness of environmental conditions through
a stochastic forcing, which is modeled as noise ξ (t). Thus the dynamics of the state
variable read

dφ

dt
= f (φ) + g(φ)ξ (t), (1.2)

where the (linear or nonlinear) algebraic function g(φ) accounts for the possibility
that the effect of the random forcing on the system is modulated by the state of the
system itself. The noise is additive when g(φ) = const, whereas it is multiplicative
otherwise.

Because the dynamical system is much smaller than the external environment, it is
generally unable to affect its environmental drivers. However, in some dynamics the
impact of the system on its environment can be important. In these cases a feedback
exists between the state of the system and environmental conditions. This book dis-
cusses some examples of feedbacks relevant to the biogeosciences. Feedbacks with
random environmental drivers are typically expressed either through the multiplicative
function g(φ) or through a state dependency in the stochastic forcing [i.e., ξ (t, φ)].

One of the most crucial issues in the representation of these stochastic dynamics
arises from the modeling of the random forcing. To address this point, we need to
consider two time scales underlying the dynamics, namely, the time scale τs of the
deterministic dynamical system and the time scale τn of the random forcing. The
former describes the response time of the deterministic system after a displacement
from its steady state(s) φs . In other words, τs expresses how slowly or quickly the
system will converge to its stable state(s). For example, τs can be expressed as inversely
proportional to the first-order derivative of f (φ) calculated in φs , τs � 1/| f ′(φs)|.

The time scale τn of the random forcing is a function of its autocorrelation, which
expresses the interrelations existing within the noise signal, i.e., how the values of
random forcing at different times depend on their temporal separation (a formal
definition is provided in Chapter 2). The time scale τn can be expressed as the integral
of the autocorrelation function, which represents the (linear) temporal memory of
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the noise. In other words, values of ξ (t) calculated at two different times, t1 and t2,
are significantly interrelated if the temporal separation, |t2 − t1|, is less than τn . The
stochastic forcing is modeled in different ways, depending on the ratio, τs/τn .

� Case with τs/τn � 1: In this case the dynamical system is very slow with respect to
the temporal variability of its random drivers. Thus, because the overall dynamics are
not able to “perceive” the autocorrelation of the random forcing, this autocorrelation can
be reasonably neglected. The random forcing can be therefore modeled as white noise
(i.e., uncorrelated noise). Despite its being an idealization and a mathematical singularity,
white noise is a cornerstone of the theory of stochastic processes in that it lends itself
to analytical mathematical solutions. Therefore, even though it suffers from physically
unrealistic behaviors (e.g., noncontinuous-noise realizations), white noise is very often used
to simulate stochastic forcing in environmental systems. In this case the dynamics of the state
variable φ(t), driven by a white noise, do not need to be analyzed at the τn scale – at which
the nonphysical behaviors of the noise would emerge [e.g., nondifferentiable realizations
of φ(t)] – but should be investigated at the time scale τs of the deterministic system. At
this scale the predictions of theories based on the use of white noise are indistinguishable –
for all practical purposes – from the behavior of the system forced by autocorrelated
noise with τn � τs . The combination of analytical tractability and success in providing a
realistic description of stochastic dynamics explains the widespread usage of the white-noise
approximation, when τs/τn � 1.

It is worth noticing that our ability to obtain analytical results for the dynamics of φ(t)
depends also on the Markovian character of the φ(t) process forced by the white noise. We
recall that a stochastic process is called Markovian when its future evolution depends on
only the present state of the process. Most of the exact analytical results in the theory of
stochastic processes were obtained in the case of Markovian processes.

In the modeling of the stochastic forcing, the high dimension of the phase space of the
external environment and the absence of significant correlations are very often invoked
in order to apply the central-limit theorem and assume that the noise is Gaussian. Thus
Gaussian white noise is commonly adopted. However, it is important to understand that
whiteness and Gaussianity are two distinct noise properties, and white non-Gaussian noises
are often important drivers of dynamical systems. For example, in the following chapters
we show how in the biogeosciences a number of non-Gaussian, intermittent stochastic
processes can be conveniently modeled as white shot noise.

� Case with τs/τn � 1: In this case the dynamics are slow enough to be sensitive to the
autocorrelation of the random forcing. Thus the white-noise approximation would not
provide an appropriate representation of the stochastic driver, and therefore autocorrelated
(or colored) noises should be used.

It should be stressed that the process φ(t) driven by a colored noise is not Markovian. In
fact, at any time the noise component depends on the past through the autocorrelation of the
noise term. This non-Markovianity introduces great complications that limit our ability to
obtain exact analytical results. To make the representation of the dynamics mathematically
more tractable, we can assume that at least the colored noise is Markovian, i.e., it is generated
by a Markovian process as in the case of dichotomous Markov noise and Gaussian colored
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noise (i.e., the so-called Ornstein–Uhlenbeck process) presented in the next chapter. With
this assumption the bivariate system composed of the state variable φ and the noise ξ

becomes Markovian, and some analytical representations of the stochastic dynamics can be
obtained.

� Case with τs/τn � 1: In this case the system responds very quickly to the noise forcing,
thereby adjusting (almost) instantaneously to the random forcing. In other words, the state
variable φ is always in equilibrium with the noise term [i.e., dφ/dt � 0]. In these conditions
we can use the so-called adiabatic elimination of the φ variable, whereby the dynamics of
φ are described as f (φ) + g(φ)ξ = 0 and the probabilistic properties of φ are derived from
those of the noise.

In the following chapters we consider different types of noise, including the case
of both white and colored noise as well as continuous and intermittent noises. We
review the major properties of each type of noise as well as their possible use in the
development of stochastic models of environmental systems. To this end, we use a
number of examples and case studies to show the possible impact of both additive
and multiplicative noise on environmental dynamics.



2

Noise-driven dynamical systems

2.1 Introduction

We consider dynamical systems that can be represented through a stochastic differ-
ential equation in the form

dφ

dt
= f (φ) + g(φ)ξ (t), (2.1)

where φ is the state variable, f (φ) and g(φ) are deterministic functions of φ, and ξ (t)
is a noise term accounting for the random external fluctuations forcing the dynamics
of φ.

The solution of Eq. (2.1) requires that the noise term ξ (t) be suitably specified.
The scope of this chapter is to describe the main features of the noise term and of
the resulting dynamics of φ in four cases, which are particularly interesting in the
environmental sciences: We model ξ (t) as (i) dichotomous Markov noise (DMN),
(ii) white shot noise (WSN), (iii) white Gaussian noise, and (iv) Markovian colored
Gaussian noise. These representations of ξ (t) are very well suited for investigating the
role of the random drivers typically found in the biogeosciences, and they are simple
enough to allow for the analytical (probabilistic) solution of Eq. (2.1).

We first consider (in Section 2.2) the case of dichotomous noise because it is more
general in that both WSN and white Gaussian noise can be obtained as limit cases of
the dichotomous noise. For this reason, these two white noises are described in detail
right after the case of DMN noise (i.e., in Sections 2.3 and 2.4); colored Gaussian
noise is presented in Section 2.5.

2.2 Dichotomous noise

2.2.1 Definition and properties

The dichotomous Markov process is a stochastic process described by a state variable
ξdn(t) that can take only two values, namely ξdn = �1 and ξdn = �2, with transition

7
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1

2

ξdn (t)

t

k2

k1

Figure 2.1. Parameters of the dichotomous noise and representation of a typical
realization.

rate k1 for the transition �1 → �2 and k2 for �2 → �1. A realization of the process
is shown in Fig. 2.1. The path of the noise is a step function with instantaneous jumps
between �1 and �2 and random permanence times, t1 and t2, in these two states. The
mean permanence times in the two states are 〈t1〉 = τ1 = 1/k1 and 〈t2〉 = τ2 = 1/k2.
Moreover, when the transition rates k1 and k2 are constant in time, the permanence
times are exponentially distributed random variables (e.g., Bena, 2006). If �1 = |�2|,
the noise is called symmetric DMN; otherwise it is called asymmetric DMN. This
type of noise was first introduced in information theory under the name of random
telegraph noise or Poisson square wave (e.g., McFadden, 1959; Pawula, 1967); this
process, studied in detail by physicists (Hongler, 1979; Kitahara et al., 1980), is called
a two-state Markov process or DMN.

The probability P1(t) that the process is in the state �1 at time t obeys the kinetic
equation

dP1(t)

dt
= k2 P2(t) − k1 P1(t), (2.2)

which includes a gain term k2 P2(t) accounting for the probability of being in ξdn = �2

and jumping to ξdn = �1 and a loss term −k1 P1(t) that accounts for the probability
of escaping from the state ξdn = �1. Analogously, for the probability P2(t) that the
process is in the state ξdn = �2 at time t , we have

dP2(t)

dt
= k1 P1(t) − k2 P2(t). (2.3)

We obtain the steady solutions by neglecting the temporal derivatives on the left-
hand side of Eqs. (2.2) and (2.3):

P1 = k2

k1 + k2
, P2 = k1

k1 + k2
. (2.4)
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The steady-state probability distribution of the state variable ξdn is then a discrete-
valued distribution that can assume only two values, �1 and �2, with probability P1

and P2, respectively. The steady-state moment-generating function (see, for example,
van Kampen, 1992, for a definition) is then

Mdn(v) =
2∑

i=1

ev�i Pi = k2ev�1 + k1ev�2

k1 + k2
, (2.5)

and the corresponding cumulant-generating function (see van Kampen, 1992, for a
definition) is

Kdn(v) = log[Mdn(v)] = log[k2ev�1 + k1ev�2 ] − log[k1 + k2]. (2.6)

By definition of the cumulant-generating function, the steady-state cumulant of the
order of m is obtained as the mth derivative of Kdn(v) with respect to v, calculated in
v = 0. Therefore the mean of the process, κ1dn, is

〈ξdn〉 = κ1dn = dKdn(v)

dv

∣∣∣∣
v=0

= k2�1 + k1�2

k1 + k2
. (2.7)

Because the DMN is used as a noise term in Eq. (2.1), it can be useful to consider
a zero-average process. If this is the case, using Eq. (2.7) we have

�1k2 + �2k1 = �1

τ2
+ �2

τ1
= 0. (2.8)

In this case the (stationary) dichotomous Markov process is characterized by three
independent parameters. For example, we can choose (i) the two transition rates k1

and k2 (or the mean durations τ1 and τ2) and (ii) assign the value of one of the states of
ξdn, say �1, and obtain the other value (i.e., �2) by using Eq. (2.8). Unless explicitly
stated otherwise, in what follows we refer to the case of zero-mean [Eq. (2.8)] DMN.

The variance of the dichotomous process is

〈(ξdn − κ1dn)2〉 = κ2dn = d2Kdn(v)

dv2

∣∣∣∣
v=0

= k1k2 (�2 − �1)2

(k1 + k2)2 = −�1�2, (2.9)

and the autocovariance function is

〈ξdn(t)ξdn(t ′)〉 = k1k2(�2 − �1)2

(k1 + k2)2
e−|t−t ′|(k1+k2) = −�1�2e−|t−t ′|(k1+k2), (2.10)

as demonstrated in Box 2.1, Eq. (B2.1-5). The structure of the autocovariance function
shows that the dichotomous noise is a colored noise, i.e., it is autocorrelated. This
is an important characteristic that explains why this type of noise is commonly used
to mimic natural processes in the biogeosciences (see Subsection 2.2.2). A typical
temporal scale of a correlated process is the integral scale I, defined as the ratio
between the area subtended by the autocovariace function (i.e., the integral of the
autocovariance function with respect to the lag) and the variance of the process. The
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Box 2.1: Transient dynamics of the dichotomous Markov process

Some considerations of the transient dynamics of the dichotomous Markov process can
be of interest. Equations (2.2) and (2.3) can be solved to give

P1(t) = τck2
(
1 − e−t/τc

)+ P1(0)e−t/τc , (B2.1-1)

P2(t) = τck1
(
1 − e−t/τc

)+ P2(0)e−t/τc , (B2.1-2)

where P1(0) and P2(0) = 1 − P1(0) are the initial conditions and

τc = 1

k1 + k2
= τ1τ2

τ1 + τ2
(B2.1-3)

is the characteristic relaxation time of the process.
It can be argued from Eqs. (B2.1-1) and (B2.1-2) that the joint probability for ξdn at

time t and t ′ is

pi, j = prob
[
ξdn(t) = �i , ξdn(t ′) = � j

]
= (1 − kiτc)(1 − k jτc)τ 2

c

(
1 − e− |t−t ′ |

τc

)
+ δi, j (1 − kiτc)e− |t−t ′ |

τc , (B2.1-4)

where δi, j is the Kronecker delta function and i, j = 1, 2.
The steady-state autocorrelation function is then

〈ξdn(t)ξdn(t ′)〉 =
2∑

i, j=1

pi, j�i� j = τc(�2
1k2 + �2

2k1)e− |t−t ′ |
τc

= −�1�2e− |t−t ′ |
τc = sdn

τc
e− |t−t ′ |

τc , (B2.1-5)

where Eq. (2.8) has been repeatedly used. The term

sdn = k1k2τ
3
c (�2 − �1)2 = −�1�2τc (B2.1-6)

in Eq. (B2.1-5) represents the noise amplitude or intensity.

integral scale is generally interpreted as a measure of the memory of the process, and
in the case of dichotomous noise it is

I = 1

k1 + k2
= τc. (2.11)

Some generalization of dichotomous noise were proposed in the literature. Notable
examples include the so-called trichotomous noise (Mankin et al., 1999), characterized
by a three-valued state space and its further generalization, multivalued noise (Weiss
et al., 1987); compound dichotomous noise (van den Broeck, 1983), in which the value
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assumed in one of the two states is a random variable; complicated DMN (Li, 2007)
in which both states are (Gaussian) random variables; the gamma and McFadden
dichotomous noise (Pawula et al., 1993), in which the distribution of the permanence
times in the two states follows a gamma or a McFadden probability distribution rather
than an exponential distribution, as in the classical DMN.

2.2.2 Dichotomous noise in the environmental sciences

Dichotomous noise can be encountered in a wide variety of physical and mathematical
models for two main reasons. First, dichotomous noise is a simple and analytically
tractable form of colored noise; in fact, it is possible to obtain exact analytical solu-
tions for a stochastic differential equation driven by DMN in steady-state conditions.
Thus DMN can be used to investigate the effect of an autocorrelated random driver
on a dynamical system. We define this approach as the functional usage of the DMN
because of its function as a tool to conveniently represent a correlated (i.e., colored)
random forcing. In this case (functional usage) the starting point is a given determin-
istic system, say dφ/dt = f (φ), and DMN is typically used to investigate the effect
of a zero-mean correlated random driver in this system. There are several examples of
processes in which the autocorrelation is one of the key characteristics of the external
forcing. For example, consider the variety of biogeochemical processes that are af-
fected by (random) daily temperature or the case of fluvial processes forced by river
flow. In these processes the autocorrelation of the random forcing is relevant, and it
cannot be neglected. Dichotomous noise is one of the two main mathematical tools
available for the study of the effects of colored noise on dynamical systems. Colored
Gaussian noise, described in Section 2.5, is another type of autocorrelated noise,
which is often used in dynamical models with analytical solutions. The functional
usage of DMN can be also motivated by the fact that both white Poisson noise and
white Gaussian noise can be recovered from the dichotomous noise by taking suitable
limits, as shown in Subsections 2.3.2 and 2.4.2.

Dichotomous noise is commonly used also for its ability to model a broad class of
systems that randomly switch between two dynamical states. This approach is called
the mechanistic usage of DMN, in which DMN is used to represent a dynamical
behavior, i.e., the mechanism of random switching between two states.

The distinction between the functional and the mechanistic use of DMN is crucial
in the stochastic modeling of a process. The mechanistic approach is frequently used
for a class of processes characterized by the following three components: (i) the
dynamical system, whose state is expressed by one state variable, φ(t); (ii) a random
driver q(t); (iii) a threshold value θ of q(t), marking the transition between conditions
favorable to growth or to decay of φ. For example, the variable φ could represent
vegetation biomass in semiarid environments (D’Odorico et al., 2005) or riparian
vegetation along a river (Camporeale and Ridolfi, 2006); correspondingly, q could
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represent random rainfall fluctuations that determine the occurrence of water-limited
conditions or of flooded or unflooded states, respectively. Thus the stochastic driver
determines the random alternation between stressed and unstressed conditions for the
ecosystem.

The two alternating dynamics of φ involve growth and decay and can be modeled
by two functions, f1(φ) and f2(φ), respectively,

dφ

dt
=
{

f1(φ) if q(t) ≥ θ (2.12a)
,

f2(φ) if q(t) < θ (2.12b)

whre f1(φ) > 0 and f2(φ) < 0. Equations (2.12a) and (2.12b) are written assuming
that q is a resource, in that values of q exceeding the threshold are associated with
unstressed conditions (in the sense that φ grows). However, the general results do not
change when the random driver is a stressor. In this case the conditions in (2.12a)
and (2.12b) are reversed, i.e., growth or decay occurs when q is below or above the
threshold, respectively.

The class of processes defined by (2.12a) and (2.12b) can be conveniently repre-
sented through a suitable dichotomous Markov process, thereby leading to a mech-
anistic usage of DMN. Thus the process is random and switches between two pos-
sible states: “success” (or “no stress”) when q is above the threshold or “failure”
(or “stress”) when q is below the threshold [see Fig. 2.2(a)]. This is by definition
a dichotomous process. If we further suppose that q is uncorrelated, the driving
noise is the outcome of a Bernoulli trial with probability of success k2 = 1 − PQ(θ ),
where PQ(θ ) is the cumulative probability distribution of q, evaluated in q = θ .
The residence time in the “above-threshold” state is then an integer number n1

with a geometric probability distribution of pN1 (n1) = kn1−1
2 (1 − k2), n1 = 1, . . . , ∞,

with average 〈n1〉 = 1/(1 − k2). Analogously, the residence time n2 in the “below-
threshold” state is distributed as pN2 (n2) = (1 − k2)n1−1k2, n1 = 1, . . . , ∞, with av-
erage 〈n1〉 = 1/k2. The DMN (in its mechanistic interpretation) is obtained as the
continuous-time approximation of this driving process [see Fig. 2.2(b)]. In fact, in
continuous time the residence time in each state becomes exponentially distributed
(the exponential distribution is the continuous counterpart of the geometric distribu-
tion: e.g. Kendall and Stuart, 1977), which is a basic property of DMN (see Sub-
section 2.2.1).

The overall dynamics of the variable φ can then be expressed by a stochastic
differential equation forced by DMN ξdn(t), assuming (constant) values �1 and �2

(see Fig. 2.1):

dφ

dt
= f (φ) + g(φ)ξdn(t), (2.13)
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Figure 2.2. (a) The behavior of an uncorrelated random variable q(t) around a thresh-
old value θ (continuous horizontal line), (b) the path of the dichotomous noise that
mimics the threshold effect on the dynamics of q(t).

with

f (φ) = −�2 f1(φ) − �1 f2(φ)

�1 − �2
, g(φ) = f1(φ) − f2(φ)

�1 − �2
. (2.14)

The transition rates are defined by k1 = PQ(θ ) and k2 = 1 − k1 = 1 − PQ(θ ). As
for the values of �1 and �2, in the mechanistic approach, DMN is used as a tool
to randomly switch between f1(φ) and f2(φ). The only mechanistically relevant
characteristics of DMN are in this case the switching rates k1 and k2, whereas the
other noise characteristics, including its mean �1k2 + �2k1 and variance −�1�2, are
not relevant to the representation of the dynamics of φ. In fact, in this case φ switches
between two dynamics [ f1(φ) and f2(φ)] that are independent of �1 and �2. As a
consequence, �1 and �2 may assume arbitrary values, and it is important to assign
values of the switching rates k1 and k2 that are consistent with the fluctuations of q(t)
across the threshold.

The functional interpretation of the DMN, in contrast, is commonly used to simply
investigate how an autocorrelated random forcing would affect the dynamics of a
system. Thus the dynamical model has two components, namely (i) the deterministic
dynamics dφ/dt = f (φ) and (ii) an autocorrelated random forcing ξ (t). The effect
of ξ (t) on the dynamics can be in general modulated by a function g(φ) of the state
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variable. The temporal dynamics are therefore modeled by the stochastic differential
equation dφ/dt = f (φ) + g(φ)ξ (t). The functional usage of the DMN consists in
approximating the colored noise, ξ (t), as a DMN, i.e., ξ (t) = ξdn(t). In this case none
of the parameters k1, k2, �1, and �2 has an arbitrary value. In fact, these parameters
need to be determined by adapting the DMN to the characteristics of the driving noise
(i.e., for example, by matching the mean, variance, skewness, and correlation scale).
Moreover, the functions f (φ) and g(φ) are in this case assigned a priori, whereas
f1(φ) and f2(φ) are obtained from (2.14) and depend on the noise characteristics

f1(φ) = f (φ) + g(φ)�1, f2(φ) = f (φ) + g(φ)�2. (2.15)

To summarize, the functional or mechanistic usage of the dichotomous noise cor-
responds to two distinct approaches to the stochastic modeling of processes driven
by DMN. The differences may be relevant, in particular when dealing with noise-
induced transitions (see Chapter 3). Once the approach that is suitable for the study
of a specific problem is selected, the dichotomous noise provides a useful modeling
framework with a number of applications to the environmental sciences, as shown in
Chapter 4. Thus in the following subsection we present some probabilistic methods
to solve stochastic equations driven by dichotomous noise.

2.2.3 Stochastic processes driven by dichotomous noise

2.2.3.1 General framework

Consider the stochastic process φ(t) driven by multiplicative dichotomous noise,

dφ

dt
= f (φ) + g(φ)ξdn(t), (2.16)

where f (φ) and g(φ) are two deterministic functions of the state variable φ. We
assume that both f (φ) and g(φ) are continuous for any value of φ. Depending on
the approach or interpretation used for the DMN, the functions f (φ) and g(φ) are
assigned with a direct physical meaning (functional approach) or are obtainable from
functions f1,2(φ) by use of Eqs. (2.14) (mechanistic approach).

Some examples can help us understand the role of the driving force in the dynamics
of φ(t). We consider four simple cases. The first three examples refer to the mechanistic
usage of DMN, and the fourth case considers the functional usage:

� Example 2.1: φ(t) exponentially increases (decreases) when the noise is in the �1 (�2)
state:

f1(φ) = 1 − φ, f2(φ) = −φ. (2.17)

An example is shown in Fig. 2.3(a).
� Example 2.2: φ(t) linearly increases (decreases) when the noise is in the �1 (�2) state:

f1(φ) = 1, f2(φ) = −1. (2.18)

An example of the resulting dynamics of φ(t) is shown in Fig. 2.3(b).



2.2 Dichotomous noise 15

c

5 10 15 20 25 30
t

0.2

0.4

0.6

0.8

1
φ t

t

0.5
0.25

0.25
0.5

0.75
1
ξdn t

d

5 10 15 20 25 30 35
t

0.6

0.8

1.2

1.4

φ t

t

0.4

0.2

0.2

0.4

ξdn t

a

5 10 15 20 25 30 35
t

0.2

0.4

0.6

0.8

t

1

0.5

0.5

1
ξdn t

b

10 20 30
t

2
4
6
8

10
12

t

1

0.5

0.5

1
dn tξ

φ tφ t

Figure 2.3. The four panels (a)–(d) show the noise path and the corresponding
evolution of the φ(t) variable from Eq. (2.16): (a) Example 2.1, Example 2.2,
(c) Example 2.3, (d) Example 2.4.

� Example 2.3: φ(t) increases following a (shifted) logistic law (see Subsection 3.2.1.1) when
the noise is in the �1 state, whereas it decreases exponentially in the �2 state:

f1(φ) = (φ − a)(1 − φ), f2(φ) = −φ, (2.19)

where a is a constant. An example for a = −0.5 is shown in Fig. 2.3(c).
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� Example 2.4: φ(t) follows logistic-type deterministic dynamics f (φ), perturbed by a di-
chotomous noise modulated by a linear g(φ):

f (φ) = φ(β − φ), g(φ) = φ, (2.20)

where β > 0 is a parameter. An example, calculated with β = 1, is shown in Fig. 2.3(d).

2.2.3.2 Derivation of the steady-state probability density function

This subsection is devoted to obtaining the steady-state probability density function
(pdf ) for the process described by Langevin equation (2.16). The standard procedure
typically followed to address this task involves (i) deriving the master equations for
the process, i.e., the forward differential equations that relate the state probabilities
at different points in time; (ii) taking the limit as t → ∞ in the master equation
to attain statistically steady-state conditions; and (iii), solving the resulting forward
differential equation to find the steady-state pdf. The detailed derivation of the steady-
state probability distribution of φ following this approach is described in Box 2.2. In
this subsection, we describe a simpler approach in a way that the nonexpert reader
can more easily follow how the solution of Langevin equation (2.16) is determined.

Consider the probability that, at time t + �t , the state variable takes a value con-
tained within the interval [φ, φ + dφ] and the noise is in state ξdn = �1. These
conditions may be attained either when ξdn = �1 at time t , no jumps of ξdn occur in
[t, t + �t], and the value of φ at time t is φ − f1(φ)�t , or when at time t we have
ξdn = �2, the random variable ξdn shifts from �2 to �1 in the interval [t, t + �t], and
the state variable at time t is φ − f ∗(φ)�t , where f ∗(φ) is a suitable combination of
f1(φ) and f2(φ) to account for the fact that in the interval [t, t + �t] both functions
contribute to determine the trajectory of φ. Thus the joint probability that ξdn = �1

and φ is comprised within [φ, φ + �φ] can be expressed as

P[φ, �1; t + �t]dφ = (1 − k1�t)P[φ − f1(φ)�t, �1; t]d[φ − f1(φ)�t]

+ k2�tP[φ − f ∗(φ)�t, �2; t]d[φ − f ∗(φ)�t]. (2.21)

The first term on the right-hand-side of Eq. (2.21) is the product of three factors:
(i) the probability that the noise ξdn remains in the state ξdn = �1 in the interval
(t, t + �t). This probability is 1 minus the probability k1�t that a jump occurs from
�1 to �2 in the same interval; (ii) the joint probability P that at time t noise is equal
to �1 and the state variable is at φ − �φ, where �φ = f1(φ)�t from Eqs. (2.15); and
(iii) the infinitesimal amplitude of the interval d[φ − f1(φ)�t]. Similarly, the second
term represents the probability that ξdn = �2, the state variable is equal to φ − �φ at
time t , and a jump from �2 to �1 occurs during the interval (t, t + �t). This jump
in ξdn occurs with probability k2�t . Note that, because the jump may occur at any
time during (t, t + �t), in this case �φ is expressed as �φ = f ∗(φ)�t , where f ∗(φ)
is a combination of f1(φ) and f2(φ) (see Horsthemke and Lefever, 1984, Eq. 9.22).
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The probability of occurrence of two or more jumps can be neglected in Eq. (2.21)
because it is supposed that �t is small.

Using a Taylor’s expansion truncated to the first order we have1

P[φ, �1; t + �t]dφ

= k2�tP[φ, �2; t]dφ

+ (1 − k1�t)

(
P[φ, �1; t] − ∂P[φ, �1; t]

∂φ
f1(φ)�t

)(
1 − ∂ f1(φ)

∂φ
�t

)
dφ.

(2.22)

Notice how Eq. (2.22) is independent of the form of the function f ∗(φ) describing
the trajectory of φ in correspondence to jump occurrences. Rearranging the terms,
dividing by dφ and �t , and taking the limit for �t → 0, we finally obtain the forward
Kolmogorov equation:

∂P(φ, �1, t)

∂t
= − ∂

∂φ
[P(φ, �1, t) f1(φ)] − P(φ, �1, t)k1 + P(φ, �2, t)k2. (2.23)

Analogously, we can write for the probability that at time t + �t the state variable
is within (φ, φ + dφ) and ξdn = �2,

P[φ, �2; t + �t]dφ = k1�tP[φ − f ∗∗(φ)�t, �1; t]d[φ − f ∗∗(φ)�t]

+ (1 − k2�t)P[φ − f2(φ)�t, �2; t]d[φ − f2(φ)�t], (2.24)

where f ∗∗(φ) describes the trajectory of φ in the interval (t, t + �t) in the case in
which ξdn switches from �1 to �2 in that interval. After a Taylor expansion for
�t → 0 we obtain the second forward Kolmogorov equation:

∂P(φ, �2, t)

∂t
= − ∂

∂φ
[P(φ, �2, t) f2(φ)] − P(φ, �2, t)k2 + P(φ, �1, t)k1. (2.25)

We refer the interested reader to Box 2.2 for the derivation of the full master
equation in the time-dependent case. Here we concentrate on steady-state solutions
of (2.16).

1 P[φ − f1(x)�t,�1; t] can be expanded in a Taylor’s series around �t = 0:

P[φ − f1(φ)�t, �1; t] = P[φ,�1; t] + ∂P[φ − f1(φ)�t, �1; t]

∂�t

∣∣∣∣
�t=0

�t

= P[φ,�1; t] + ∂P[z,�1; t]

∂z

∣∣∣∣
z=φ

∂z

∂�t

∣∣∣∣
�t=0

�t

= P[φ,�1; t] − ∂P[φ,�1; t]

∂φ
f1(φ)�t,

where the series has been truncated to the first order and z = φ − f1(φ)�t .
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Box 2.2: Master equation of a stochastic process driven by
dichotomous Markov noise

In this box, we show the key steps to determine the nonsteady-state master equation of
the stochastic process described by (2.16); further details can be found in Horsthemke
and Lefever (1984).

We introduce the two quantities

P(φ, t) = P(φ,�1, t) + P(φ,�2, t), (B2.2-1)

q(φ, t) = k2P(φ,�2, t) − k1P(φ,�1, t), (B2.2-2)

where q(φ, t) is an auxiliary function, and P(φ, t) expresses the time-dependent
probability distribution of φ independently of the state of noise.

Adding Eq. (2.23) to Eq. (2.25) and using zero-average condition (2.8), we obtain

∂P
∂t

= − ∂

∂φ
[P f (φ)] − �2 − �1

k1 + k2

∂

∂φ
[qg(φ)], (B2.2-3)

and, if Eqs. (2.23) and (2.25) are multiplied by k1 and k2, respectively, and then (2.23) is
subtracted from (2.25), we obtain

∂q

∂t
= ∂

∂φ

{[
f (φ) + k2�2 − k1�1

k1 + k2
+ (k1 + k2)

]
q

}

− (�2 − �1)k1k2

k1 + k2

∂

∂x
[g(φ)P]. (B2.2-4)

Using the independent variable

η =
∫

dφ

f (φ) + k2�2−k1�1
k1+k2

g(φ)
, (B2.2-5)

we can reduce differential equation (B2.2-4) to a form that can be analytically integrated
(Polyanin et al., 2002), leading to

q(φ, t) =
∫ t

−∞
e
−
{

∂
∂x

[
f (φ)+ k2�2−k1�1

k1+k2
g(φ)

]
+k1+k2

}
(t−t ′)

× (�2 − �1)k1k2

k1 + k2

∂

∂φ
[g(φ)P(φ, t ′)]dt ′, (B2.2-6)

where the statistical independence between the noise ξdn and the process φ(t) at
t → −∞ has been assumed as the initial condition.

Equation (B2.2-6) can be substituted into (B2.2-3) to obtain the master equation:

∂P(φ, t)

∂t
= − ∂

∂φ

[
f (φ) + k2�2 − k1�1

k1 + k2
g(φ)

]
P(φ, t)

+ k1k2(�2 − �1)2

(k1 + k2)2

∂g(φ)

∂φ

×
∫ t

−∞
e
−
{

∂
∂φ

[
f (x)+ k2�2−k1�1

k1+k2
g(φ)

]
+k1+k2

}
(t−t ′)

× (�2 − �1)k1k2

k1 + k2

∂

∂φ
[g(φ)P(φ, t ′)]dt ′. (B2.2-7)
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This rather intricate integrodifferential equation shows that, in general, φ(t) is not a
Markovian process. In fact, the probability distribution of φ at time t depends on the
integral between −∞ and t of a function of φ. Equation (B2.2-7) can be analytically
solved in only very simple cases (Bena, 2006). An important case is the so-called
persistent diffusion on a line ( f (φ) = 0 and g(φ) = 1) that has interesting applications
in chemistry and physics (van den Broeck, 1990; Bena, 2006).

In steady-state conditions the temporal derivatives in Eqs. (2.23) and (2.25) are
equal to zero and the forward Kolmogorov equations become

∂

∂φ
[P(φ, �1) f1(φ)] + P(φ, �1)k1 − P(φ, �2)k2 = 0,

∂

∂φ
[P(φ, �2) f2(φ)] + P(φ, �2)k2 − P(φ, �1)k1 = 0. (2.26)

By summing up Eqs. (2.26) and integrating with respect to φ, we obtain

P(φ, �2) = −P(φ, �1)
f1(φ)

f2(φ)
, (2.27)

where the integration constant is set to zero. Equation (2.27) inserted into the first of
Eqs. (2.26) leads to

∂

∂φ
[P(φ, �1) f1(φ)] + P(φ, �1)k1 + P(φ, �1)

f1(φ)

f2(φ)
k2 = 0. (2.28)

The integration of (2.28) provides the probability distribution

P(φ, �1) = C

f1(φ)
exp

{
−
∫

φ

[
k1

f1(φ′)
+ k2

f2(φ′)

]
dφ′
}

, (2.29)

where C is an integration constant. Equation (2.29) can be set in (2.27) to obtain

P(φ, �2) = − C

f2(x)
exp

{
−
∫

φ

[
k1

f1(φ′)
+ k2

f2(φ′)

]
dφ′
}

. (2.30)

We now use these two joint distributions to determine the marginal steady-state
pdf p�(φ) for the state variable φ, as p�(φ) = P(φ, �1) + P(φ, �2) (Pawula, 1977;
Kitahara et al., 1980; van den Broeck, 1983):

p�(φ) = C

[
1

f1(φ)
− 1

f2(φ)

]
exp

{
−
∫

φ

[
k1

f1(φ′)
+ k2

f2(φ′)

]
dφ′
}

. (2.31)


