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Preface

A brief journey through “Green Radio Communication Networks”

Currently, the information and communications technology (ICT) industry sector
accounts for about 2–6% of the energy consumption worldwide, and a significant por-
tion of this is contributed by the wireless and mobile communications industry. With
the proliferation of wireless data applications, wireless technology continues to increase
worldwide at an unprecedented growth rate. This has resulted in an increased number
of installed base stations and higher demand on power grids and device power usage,
causing an increased carbon footprint worldwide. Current wireless industry therefore
needs to embrace eco-friendly green communication technologies at different levels –
from components, circuits, and devices to protocols, systems, and networks. Since the
rate of improvement in power efficiency of hardware devices lags data traffic growth
in both the radio access and core networks, network scaling will be increasingly tied to
energy consumption in future wireless protocols, systems, and networks. Hence, it is cru-
cial to develop green technologies for wireless systems and networks to improve energy
efficiency and reduce CO2 emissions. Again, from the perspective of network operators,
energy is a significant portion of their OPEX (Operational Expenses). Therefore, green
radio technologies will help to reduce the operating costs of wireless networks.

Green ICT has become a critical agenda item around the world. In this context,
many organizations and standard bodies throughout the world including the European
Commission (EC), US Environmental Protection Agency, US Department of Energy,
ISO, IEC, ITU-T, ETSI, ATIS, and the IEEE are working towards the vision of green
communication networks. In particular, the EC is developing a comprehensive code of
conduct on the energy consumption of broadband equipment. The IEEE is developing
energy-efficient protocols for Ethernet (i.e. IEEE P802.3az protocol). There are many
ongoing projects on green communication networks. For example, EU FP7 projects
EARTH (Energy-Aware Radio and Network Technologies) and C2POWER (Cognitive
Radio and Cooperative Strategies for Power Saving) focus on developing energy-
efficient mobile communications systems. The Mobile VCE Green Radio project aims
at developing new green radio architectures and radio techniques to reduce the overall
energy consumption. GreenTouch, which is a consortium of ICT industry, academia,
and non-governmental research experts, has an ambitious goal of improving the energy
efficiency of the ICT industry by three orders of magnitude by 2015 compared to that
in 2010. Japan’s Green-IT project aims to develop energy consumption metrics and
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energy efficiency standards for networking equipments. Some mobile network operators
have already set targets to reduce their carbon emissions significantly within the next
ten years.

This book provides a comprehensive treatment of the state of the art of existing and
on-going research on energy efficient wireless/mobile communications and networking
techniques with an emphasis on cellular wireless networks. It consists of articles cov-
ering different aspects of green cellular radio communications and networking issues
that include the following: architecture issues and performance models for green radio
networks including energy-harvesting wireless networks; physical communication tech-
niques for green radio, including novel modulation and coding techniques and joint
physical (PHY) and medium access control (MAC) optimized techniques; dynamic
power-management/energy-conservation techniques for base stations in cellular wire-
less networks; relaying and user cooperation techniques and energy-cognizant wireless
protocols (e.g. for scheduling, dynamic power management) for green radio commu-
nications; standardization initiatives, test-beds, prototypes, practical systems and case
studies.

This book contains 17 chapters which are organized into 5 parts. A brief account of
each chapter in each of these parts is given below.

Part I: Communication architectures and models for green radio networks

From the perspective of green wireless networks, it is necessary to develop a clear under-
standing of energy consumption in current networks and the network elements, base sites,
and mobiles, and to determine the best backhaul strategy for a given architecture. Dif-
ferent trade-offs involved in the design of green cellular systems need to be understood
considering practical system aspects. It is important to determine what is the optimum
deployment scenario for a wide-area network given a clearly defined energy-efficiency
metric. An emerging paradigm for green wireless networks is the concept of energy
harvesting. Analysis and modeling of green wireless networks based on energy
harvesting is therefore becoming increasingly important.

In Chapter 1, Chen, Zhang, and Xu focus on a fundamental framework for green
radio research and propose four fundamental trade-offs to construct this framework.
These trade-offs are: (i) spectrum efficiency–energy efficiency (SE–EE) trade-off,
(ii) bandwidth–power (BW–PW) trade-off, (iii) delay–power (DL–PW) trade-off, and
(iv) deployment efficiency–energy efficiency (DE–EE) trade-off. The authors illustrate
these trade-offs for point-to-point communications predicted by the Shannons capacity
formula, which gives a set of monotonically decreasing curves for each of the funda-
mental trade-offs. In practical systems, network deployment and operation cost as well
as the non-linear efficiency of the power amplifier and the processing power and circuit
power need to be considered. With considerations of these issues, the trade-off relations
usually deviate from the simple monotonic curves derived from Shannon’s formula,
which bring a new design philosophy for green radio networks. The authors review the
current state of the investigation on these trade-offs and also outline a number of open
research issues.
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In Chapter 2, Sharma, Mukherji, and Joseph focus on modeling and analysis of an
energy-harvesting green wireless network. First, the authors consider a point-to-point
channel in an energy-harvesting communication system. The harvested energy is stored
in a battery (energy queue) and the data to be transmitted is stored in a data buffer.
The necessary condition for the stability of the data queue is obtained and a throughput
optimal transmission policy is proposed when the energy is spent only in transmis-
sion. Also, a delay-optimal transmission policy is proposed that minimizes the average
delay. Next, a more realistic case is considered with channel fading when the energy
is also spent in processing and other activities and there may be leakage in the battery
storing the energy. Also, the transmission policies are modeled considering the sleep
and wake-up mode of an energy-harvesting node. Subsequently, the Shannon capac-
ity of a point-to-point additive white Gaussian channel (AWGN) is obtained for an
energy-harvesting transmitter. Second, the authors develop the transmission policies for
a multiple access scenario. Third, the authors model and analyze the problem of jointly
optimizing power control, routing, and scheduling policies for a multi-hop network with
energy-harvesting nodes.

In Chapter 3, Mehta and Murthy study the implications of energy harvesting on the
design and optimization of the physical (PHY) and medium access control (MAC) layers.
In particular, the authors focus on the transmission power control at the physical layer
for a single-hop communication scenario, and the interactions among multiple energy-
harvesting relay nodes in a two-hop communications scenario. The primary design focus
of PHY and MAC layers is to judiciously utilize all the harvested energy and ensure
that energy is available for consumption when required. Other design objectives are
energy-conservation and spectral-efficiency maximization. The authors investigate the
effects of several important factors such as the energy-harvesting profile, availability or
unavailability of channel state information, and energy-storage capability on the design
of both single-hop, and relay-based two-hop cooperative communications.

In Chapter 4, Kolios, Friderikos, and Papadaki describe the concept of mechanical
relaying and outline its benefits in cellular wireless networks. In mechanical relaying
(MR) mobile terminals are entitled to store and carry the information messages while in
transit and forward the data to the base station only when at favorable locations within
the cell coverage area. Due to this store-carry-and-forward operation, significant gains
in energy consumption can be attained by utilizing the elasticity of a plethora of differ-
ent Internet applications (such as adaptive progressive video download, file transfers,
software/firmware updates over the air (OTA), and RSS feeds). While intrinsically a
delay-tolerant networking scheme, mechanical relaying can in fact boost the cellular
system performance at no expense to the perceived user experience. The authors out-
line the deployment challenges of mechanical relaying in current and emerging mobile
networks, open-ended research problems, and future avenues of research in this area.

Part II: Physical communications techniques for green radio networks

Future green radio networks will need to support multimedia data services at two or three
orders of magnitude lower transmission power than currently used. This will of course
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require energy-efficient transmission and modulation techniques. More importantly, a
holistic and system-wide design of the system that exploits the cross-layer interactions
will be required.

In Chapter 5, Abouei, Plataniotis, and Pasupathy study the energy efficiency of
some popular modulation schemes for energy-constrained wireless networks in fading
channels. The authors demonstrate that the non-coherent M-ary frequency-shift keying
(NC-MFSK) provides superior energy-efficiency performance in short-range wireless
networks when compared with other sinusoidal carrier-based modulations such as
M-ary quadrature amplitude modulation (MQAM), differential offset quadrature phase-
shift keying (OQPSK), and coherent MFSK. Also, the authors analyze the energy
efficiency of Luby transform (LT)-coded MFSK modulation when compared to clas-
sical BCH and convolutional-coded modulation as well as uncoded modulation. The
LT-coded MFSK scheme provides higher energy efficiency over other uncoded and
coded schemes due to the flexibility to adjust its rate according to the channel condition.
The authors conclude that LT-coded MFSK modulation is a candidate green modulation
and coding scheme for energy-constrained wireless networks.

In Chapter 6, Amin, Bavarian, and Lampe focus on the cooperative communications
techniques for energy efficiency in cellular wireless networks. The authors first intro-
duce the instantaneous and average energy-efficiency metrics that consider both the
transmission energy and the transceiver system (consisting of analog and digital cir-
cuits) energy along with the data rate of transmission. The average energy efficiency
of a single-relay cooperative communication system is evaluated considering selec-
tive decode-and-forward, incremental decode-and-forward, amplify-and-forward, and
incremental amplify-and-forward-based relaying strategies. The authors also demon-
strate how the gain in energy saving in a single-relay network can be improved through
optimizing the modulation constellation size and the power allocation at the source and
the relay under an average error rate constraint. For a multi-relay system, the authors
also investigate the effect of relay selection and also the number of hops (in a multi-hop
cooperative network) on the energy-efficiency performance. To this end, the authors dis-
cuss the base station cooperation technique, namely, the coordinated multipoint (CoMP)
technique to improve the system-wide energy efficiency in cellular wireless systems.

In Chapter 7, Abuzainab and Ephremides focus on the energy efficiency of different
physical and network layer cooperative techniques for two wireless transmission models
in fading channels. The first model considers that a relay is used to assist the source node
to deliver its data to the destination node. The second model considers multicast trans-
missions from the source node to two destination nodes and in this case user cooperation
is utilized. That is, the destination node that first receives the data successfully can assist
the source in transmitting the data to the other destination. Alamouti coding is used in
the physical layer, while random network coding is used in the network layer. For both
the transmission models, the energy cost is defined as the expected energy spent per
successfully delivered packet. Simulation results show that with proper selection of the
coding parameter, random network coding-based cooperative transmission technique
achieves better performance than automatic-repeat request (ARQ)-based cooperative
technique even when it is enhanced with Alamouti coding. Also, further improvements
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in the performance are achieved when random network coding is used combined with
Alamouti coding. The results also show that the performance of user cooperation depends
on the channel quality between the different nodes in the network.

Part III: Base station power-management techniques for green radio networks

For green radio communication networks, it is essential to develop techniques to achieve
significant improvements in the overall efficiency for base stations, which is measured
as radio frequency (RF) power out to total input power, and techniques that will reduce
the required RF output power required from the base station while still maintaining the
required quality-of-service (QoS). When a base station’s energy supply is derived from
renewable energy sources in a smart power grid, it is important to determine how this
would be best used for communications. It will be necessary to develop sleep mecha-
nisms that deliver substantial reductions in power consumption for base stations with
no loads and techniques that allow power consumption to scale with load. Also, multi-
cell processing techniques based on the cooperation among base stations can reduce the
energy consumption at the base stations.

In Chapter 8, Holland et al. investigate the concepts of opportunistic spectrum and
load management across multiple frequency bands (owned by an operator or a group
of operators) to reduce the power consumption of base stations while satisfying the
QoS requirements in the network. In particular, the authors focus on concepts such as
powering down radio network equipments (i.e. base stations) using particular frequency
bands by reallocating traffic loads to other bands at times of low load, and opportunistic
spectrum usage to exploit the propagation characteristics of spectrum bands and reduce
necessary transmission power. Using simulations of GSM, HSDPA, and LTE networks,
the authors demonstrate the power savings achievable through these concepts. However,
there is a tradeoff between the power saving and network capacity improvement.

In Chapter 9, Lu, Niyato, and Wang consider the problem of power management
for base stations with renewable power sources in a smart grid environment. With the
demand-response (DR) and demand-side management (DSM) features in smart grids,
base stations powered by the smart grids can reduce the cost of power consumption
by using an adaptive power-management method. The authors provide an overview
of the existing approaches of power management for wireless base stations, which
include base station power control through beamforming, base station assignment based
on the dynamic connectivity patterns between mobile units and base stations, smart
mode switching, and cooperative relaying. The authors propose an adaptive power-
management method, which dynamically controls the power consumption from the
electrical grid and from renewable power sources given the varied price and the amount
of renewable power generation. A stochastic optimization problem is formulated and
solved to obtain the best decision on power consumption in an uncertain environment,
so that the power cost for the base stations can be minimized while satisfying the traffic
demand in the network.

In Chapter 10, Chen et al. propose an energy-saving technique for the base stations in
3rd Generation Partnership Project (3GPP) Long-Term Evolution (LTE) systems where
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femtocells are overlaid with macrocells. The authors also provide an overview of the
different energy-saving techniques, divided into time, space, and frequency domains, for
the LTE base stations. The main idea here is to off-load the downlink traffic of macrocells
to femtocells. Simulation results for a scenario with one base station (i.e. eNodeB) and
multiple femtocells (i.e. HeNodeBs) show that, with the proposed method, the total RF
power in the system can be reduced when the number of HeNodeBs is relatively small.

In Chapter 11, Nakhai et al. develop cluster-based multicell processing strategies to
improve energy efficiency in cellular wireless communications. In two of the proposed
strategies, user signals are globally shared by the coordinating base stations, using both
instantaneous and second-order statistics of channel state information. The third one is
an iterative solution using statistical channel state information. These three schemes are
referred to as the multicell beamforming (MBF) strategies where the base stations share
users’ data via backhaul links and possess full global channel state information. The
objective of the MBF strategies is to find a set of beamforming vectors for a number
of simultaneously active users such that the overall transmit power in a virtual cell
(i.e. a cluster of three base stations) is minimized, while a prescribed signal-to-
interference-plus-noise ratio (SINR) target is maintained for each user. The last one
is a coordinated beamforming (CBF) strategy based on a standard semidefinite pro-
gramming formulation, where user signals are not shared among the coordinating base
stations. In this case, the user terminals are served by their local base stations only and
a number of base stations coordinate at the beamforming level to minimize their mutual
intercell interferences. With CBF, the backhaul overhead is lighter when compared to
MBF. The performance evaluation results show that MBF is more power efficient than
CBF even when the backhaul signaling is considered.

Part IV: Wireless access techniques for green radio networks

In addition to using the power-saving protocols at the base stations, energy-efficient
radio resource (e.g. transmission power, time-slot, frequency band) management and
channel access techniques will need to be used to reduce the power consumption in
green wireless networks. In this context, cross-layer design and optimization of wireless
access techniques would be crucial to improve the energy efficiency at the system level.

In Chapter 12, Karmokar, Anpalagan, and Hossain present a cross-layer (physical
and MAC) optimization technique for energy-efficient packet scheduling in wireless
networks while maintaining the QoS metrics, such as bit error rate, packet delay, and
loss rate within the required limit. The cross-layer technique considers the channel gains
as well as the buffer occupancy and the traffic characteristics. The authors first consider
the case when the channel is fully observable, and then they discuss the cases when
it is either partially observable or delayed, as often occurs in real networks. Results
are presented to show the advantage of cross-layer optimization to conserve energy in
wireless data communication networks.

In Chapter 13, Wei, Song, and Yu focus on the energy-saving performance of cel-
lular wireless networks with cooperative relaying among the users. The objective is
to minimize energy consumption while satisfying certain QoS performance criteria for
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the users. The authors present an energy-efficient distributed relaying method based on
the selection of a single relay. The relay selection problem is modeled as a stochastic
restless multi-armed bandit problem and the solution is obtained by linear programming
relaxation and primal-dual index heuristic algorithm. The problem formulation considers
finite-state Markov channels, adaptive modulation and coding, and residual energy at the
wireless nodes. The method can be implemented based on an RTS/CTS-based handshak-
ing mechanism. Performance of the proposed method is compared with a memoryless
relay selection method and a random relay selection method in terms of system reward,
which is calculated as a function of the bit error rate of source-to-relay link, spectral
efficiency of relay-to-destination link, energy consumption of delivering the data packets
from source to destination, as well as residual energy.

In Chapter 14, Phuyal, Jha, and Bhargava focus on the energy-efficient resource allo-
cation strategies in a cellular system using a relay-based dual-hop transmission approach.
The benefits and implementation challenges of this approach are discussed. For down-
link transmission under this approach, the authors propose a green power allocation
(GPA) scheme between the base station and the relay station (where the total transmit
power is constrained), which minimizes the required transmit power per unit achiev-
able throughput (i.e. [J/bit]) and at the same time it guarantees a minimum end-to-end
data rate required by a user. Performance of this scheme is compared with three other
power allocation schemes, namely, throughput maximization power allocation (TMPA)
scheme, uniform power allocation (UPA) scheme, and GPA with no QoS provisioning
(GPANQ) scheme. It is observed that the minimization of J/bit generally degrades the
achievable capacity of the network. To this end, the authors extend the optimization
model for GPA to a multi-objective optimization model where the objective function
accounts for both power consumption and network capacity.

In Chapter 15, Long, Li, and Chong investigate four different time slot allocation
schemes for energy-efficient communication in cellular single-hop and two-hop TDD-
CDMA systems. These are fixed time slot allocation (FTSA) and dynamic time slot
allocation (DTSA) schemes for single-hop systems, and multi-link fixed time slot allo-
cation (ML-FTSA) and multi-link dynamic time slot allocation (ML-DTSA) for two-hop
relay-based cellular systems. The authors consider four cases of relay station architec-
tures: one fixed and three random relay station structures. With fixed relay station (FRS)
structures, the locations of the RSs are determined in advance based on a certain algo-
rithm, while with random relay station structures (RRS) the RSs can be randomly placed
around the BS. The total energy consumption is considered to be the summation of
transmission energy and hardware energy. Simulation results show that with two-hop
transmission in the optimal FRS structure, the blocking and dropping probabilities as
well as the total energy consumption can be decreased significantly.

Part V: Green radio test-bed, experimental results, and standardization activities

The research on green communication technologies has started to take shape within and
between industry and academia. Internationally there are many ongoing green projects
that aim to reduce the carbon footprint through energy savings.



xxviii Preface

In Chapter 16, Auer et al. focus on the assessment of the overall energy efficiency
of a 3GPP LTE network over an average European country based on the EARTH E3F
framework. For this assessment the authors consider realistic power consumption at the
base stations and traffic models in 3GPP networks. Two energy-consumption metrics are
considered: power per unit area, measured in [W/m2], and energy per bit, measured in
[J/bit]. Based on the simulation results, the authors conclude that there is a huge potential
for energy savings at the base stations when the network is not fully loaded.

In Chapter 17, Conte, Helmers, and Sehier describe the energy efficiency-related activ-
ities conducted in important standardization bodies and fora, as well as by the relevant
industrial and academic joint projects and consortiums. In particular, the authors focus on
the activities conducted by ETSI (European Telecommunication Standard Institute) and
its partners, 3GPP (Third Generation Partnership Project), IETF (Internet Engineering
Task Force), and the China Communication Standard Association (CCSA). In order to
assist and influence these standardization fora, several other groups/projects/consortiums
have been created, including the NGMN (Next Generation Mobile Networks) alliance,
the GreenTouch consortium, and the EARTH (Energy-Aware Radio and neTwork tecH-
nologies) project within the European Commission (EC) 7th Framework Programme for
Research and Technological Development (FP7). The EARTH project proposes techni-
cal solutions to improve the power efficiency of wireless mobile networks at component
level, link level, and network level. It proposes a tool called the energy-efficiency evalua-
tion framework (E3F ) to analyze the energy efficiency of network solutions. GreenTouch
is a non-profit research consortium founded by experts from industry, academia, govern-
ment, and research institutions around the world which aims to define new, clean-slate
technologies that will be at the heart of sustainable communication networks.
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1 Fundamental trade-offs on the design
of green radio networks
Yan Chen, Shunqing Zhang, and Shugong Xu

1.1 Introduction

There is currently a global concern about the rise in the emission of pollutants and energy
consumption. The carbon dioxide (CO2) footprint of the information and communica-
tions technologies (ICT) industry, as pointed out by [1], is 25% of the 2007 carbon
footprint for cars worldwide, which is similar to that of the whole aviation industry.
Within the ICT industry, the mobile network is recognized as being among the biggest
energy users. The exponentially growing data traffic in mobile networks has made the
issue an even grander challenge in the future. In a data forecast report provided by
Cisco [2], it has been pointed out that the global mobile data traffic will increase 26-fold
between 2010 and 2015. In particular, unexpectedly strong growth in 2010 has been
observed mainly due to the accelerated adoption of smartphones. For instance, China
Unicom’s 3G traffic increased 62% in a single quarter from Q1 to Q2 of 2010, while
AT&T reported a 30-fold traffic growth from Q3 2009 to Q3 2010. The unprecedented
expansion of wireless networks will result in a tremendous increase in energy consump-
tion, which will further leave a significant environmental footprint. Therefore, it is now
a practical issue and demanding challenge for mobile operators to maintain sustainable
capacity growth and, at the same time, to limit the electricity bill. For instance, Vodafone
Group has announced the goal of reducing its CO2 emissions by 50% against its 2007
baseline of 1.23 million tonnes, by the year of 2020 [3]. Figure 1.1 gives examples of
the green demand from mobile operators worldwide.

As has been pointed out in [4], the radio access part of the wireless network accounts for
up to more than 70% of the total energy bill for a number of mobile operators. Therefore,
developing energy-efficient wireless architectures and technologies is crucial to meet this
challenge. Research actions have been taken worldwide. It is now an important trend for
the wireless designers to take energy consumption and energy efficiency into their design
frameworks. Vodafone, for example, has predicted that energy-efficiency improvement
will be one of the most important areas that demand innovation for wireless standards
beyond LTE [5].

Green radio research is a large and comprehensive area that covers all layers in the
design of efficient wireless access networks. There have been efforts devoted to tradi-
tional energy-saving ways, such as designing ultra-efficient power amplifiers, reducing
feeder losses, and introducing passive cooling. However, these efforts are isolated and
thus cannot make a global vision of what we can achieve in five or ten years for energy
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Figure 1.1 Global operators’ demand on green communications.

saving as a whole. Innovative solutions based on top-down architecture and joint design
across all system levels and protocol stacks are needed, which cannot be achieved via
isolated efforts.

Green research projects with holistic approaches and joint efforts from the industry
and the academia have sprung up all over the world during recent years. For instance,
the EARTH (Energy Aware Radio and neTwork tecHnologies) project [6]–[7] under the
European Framework Program 7, started to develop green technologies at the beginning
of 2010. In the UK, GreenRadio [8] is one of the Core 5 Programs in Mobile VCE that
has been set up since 2009. Most recently, the GreenTouch Consortium sets its 5-year
research goal to deliver the architecture, specification, and roadmap needed to reduce the
end-to-end energy-consumption per bit by a factor of 1000 from the current level by the
year 2020. In addition, there are also active discussions in standardization organizations,
such as ETSI, ATIS, and 3GPP, on energy-efficiency metrics and measurement, as well
as studies for base station level or network level savings.

Instead of a survey that reaches every aspect of the matter, or a report elaborating one
specific green research point, this chapter focuses on the fundamental framework for
green radio research and strings together the currently scattered research points using a
logical “rope.” In this chapter we propose four fundamental trade-offs to construct such
a framework. These were first introduced in [9]. As depicted in Figure 1.2, they are

• Spectrum efficiency–energy efficiency (SE–EE) trade-off: given the bandwidth avail-
able, to balance the achievable rate and the energy cost;

• Bandwidth–power (BW–PW) trade-off: given the target transmission rate, to balance
the bandwidth utilized and the power needed;
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Figure 1.2 Four fundamental trade-offs form the core of green research.

• Delay–power (DL–PW) trade-off: to balance the average end-to-end service delay and
the average power consumed in the transmission;

• Deployment efficiency–energy efficiency (DE–EE) trade-off: given the network traffic
requirement, to balance the deployment cost, throughput, and energy consumption, in
the network as a whole.

By means of the four trade-offs, key network performance/cost indicators are all
strung together. In the rest of the chapter, we will elaborate in detail the definitions,
justifications, practical concerns, as well as research directions for each of the trade-off
studies. In particular, we shall show that in practical systems, the trade-off relations
usually deviate from the simple monotonic curves derived from Shannon’s formula,
which brings a new design philosophy.

1.2 Insight from Shannon’s capacity formula

Shannon’s capacity formula [10] establishes a bridge between the maximum achievable
transmission rate R and the received power P (r) for the point-to-point additive white
Gaussian noise (AWGN) channel, i.e.

R =W log2

(
1 + P (r)

WN0

)
, (1.1)

where N0 is the noise power density at the receiver and W is the system bandwidth.
Though Shannon’s ground-breaking formula has been known for more than half a cen-
tury, people mainly look at it from the channel capacity point of view. However, as we
will show later in this section, the formula actually gives us a fundamental insight into the
energy-related trade-offs in the wireless point-to-point link transmission. In this section,
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we shall formally introduce the definitions of the trade-offs and sketch their behavior
predicted by Shannon’s capacity formula.

The following are the equivalent transformations of the above formula, which will be
used in the characterization of the different trade-offs.

R

W
= log2

(
1 + R

W

E
(r)
b

N0

)
. (1.2)

1

Tb
=W log2

(
1 + 1

Tb

E
(r)
b

WN0

)
. (1.3)

In the equations above,E(r)b stands for the average energy per bit and Tb denotes the aver-

age transmission time per bit. They are introduced through the relations E(r)b = P (r)/R
and Tb = 1/R. Further, considering a constant attenuation on the transmitted signal,
denoted as a simple function of the transmit power P (t), namely f (P (t))= κ0P

(t)/dα ,
where κ0 and α are the attenuation coefficient and exponent, respectively, we have

R

W
= log2

(
1 + R

W

E
(t)
b

N0

κ0

dα

)
. (1.4)

1.2.1 SE–EE trade-off

Spectrum efficiency (SE), defined as the system throughput for unit bandwidth, i.e.
bits/sec/Hz, is a widely accepted criterion for wireless network optimization. The peak
value of SE is always among the key performance indicators of standardization evolution
such as 3GPP. For instance, the target downlink SE of 3GPP increases from 0.05 bps/Hz
to 5 bps/Hz as the system evolves from GSM to LTE. On the contrary, energy efficiency
(EE), defined as the data rate achievable per unit of transmitted power, i.e. bits/sec/Watt,
namely bits/Joule, was previously ignored by most of the research efforts and has not
been considered by 3GPP as an important performance indicator until very recently.

Shannon’s groundbreaking work on reliable communication over noisy channels
showed that there is a fundamental trade-off between SE and received/transmitted EE.
Informally speaking, a lower transmission rate leads to a lower transmitted power,
for the same system bandwidth. Given the definitions above, SE can be expressed as
ηSE =R/W and the received EE as η(r)EE = 1/E(r)b . From (1.2), the SE–EE trade-off can
be characterized by

η
(r)
EE = ηSE

(2ηSE − 1)N0
, (1.5)

which is depicted on the left-hand side (LHS) of Figure 1.3, where N0 = −174 dBm.
Seen from both the mathematical relation and the figure, ηEE converges to a constant,
1/(N0 ln 2), when ηSE approaches zero. On the contrary, ηEE approaches zero when ηSE
tends to infinity. Similarly, considering the relation in (1.4), the transmit EE-SE trade-off
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Figure 1.3 Illustration of the SE–EE trade-off. On the LHS, the figure shows the trade-off relation between
SE and received EE from Shannon formula, while on the RHS, the figure depicts the transmit EE
as function of the path-loss exponent α at different distance d.

can be expressed as

ηtEE = ηSE

(2ηSE − 1)N0
· κ0

dα
, (1.6)

as shown on the right-hand side (RHS) of Figure 1.3. The gaps between the received
EE and the transmit EE depend heavily on the transmission channel degradation, i.e. the
path-loss exponent α and the transmission distance d.

1.2.2 BW–PW trade-off

Bandwidth (BW) and power (PW) are both fundamental but limited resources in wireless
communications. From the Shannon’s capacity formula in (1.1) and (1.4), the rela-
tion between the transmit power, P t , and the transmission bandwidth, W , for a given
transmission rate, R, can be expressed as

P t =WN0(2
R
W − 1) · κ0

dα
. (1.7)

The expression above exhibits a monotonic relation between PW and BW, as sketched
in the LHS of Figure 1.4. The fundamental BW–PW trade-off shows that, to transmit
at a given data rate, the expansion of the transmission bandwidth is preferred in order
to reduce transmit power and thus achieve better energy efficiency. From (1.7), in the
extreme case, the minimum power consumption is as small as N0R ln 2 if there is no
bandwidth limit.
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Figure 1.4 depicts the BW–PW trade-off from three different angles. Firstly, the left-
most figure shows the relation between the required transmit power and the system
bandwidth, the trend of which behaves exactly as equation (1.7) predicts. The middle
figure shows the PW reduction as function of the BW expansion. From (1.4), the reduction
in the transmit power is the same as that in the received power. It can be observed from the
figure that increasing the BW by ten (10 dB) brings considerable gain in PW reduction,
no matter what the initial SE of the system is. Larger than 10 dB BW expansion, however,
only adds marginal gain. Moreover, the higher the initial SE, the larger the PW reduction
gain. It can be found from the right-most figure that expanding the BW 10 times brings
less than 3 dB PW reduction gain to a system with the initial SE at 2 bps/Hz, but offers
a larger than 10 dB gain to the system with the initial SE larger than 8 bps/Hz.

1.2.3 DL–PW trade-off

The metrics such as EE, SE, and BW, as described in the two trade-offs above, are
important system performance criteria but cannot be directly observed by end users.
Delay (DL) is different to these metrics and is usually taken as a measure of quality
of service (QoS) and user experience. According to the scope of the definition, there
are different types of delay. Two major ones are the physical (PHY) delay, defined as
the time spent during the physical layer transmission, and the medium-access-control
(MAC) delay, defined as the sum of both waiting time in the MAC layer data queue and
transmission time in the PHY layer.
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Let us start with the simpler one, the PHY delay, for which the Shannon’s capacity
formula reveals most of the characteristics. For point-to-point transmission over AWGN
channels, formulas (1.3) and (1.4) tell us the average energy per bit required to transmit
a data bit in time Tb can be calculated as

Etb =N0TbW

(
2

1
TbW − 1

)
· κ0

dα
. (1.8)

The above expression shows a monotonically decreasing relation between received
energy per bit and PHY delay, as sketched on the left of Figure 1.5. The middle figure
of Figure 1.5 shows that the higher the initial SE, the more energy reduction gain can be
obtained from enlarging the PHY delay. For instance, doubling the PHY delay reduces
the average transmit energy per bit by less than 2 dB for the initial SE of 2 bps/Hz
but more than 6 dB for that of 6 bps/Hz. This is true for single symbol transmission or
continuous symbol transmission (full buffer). However, the relation may change when
we consider bursty data blocks, as will be shown later in Section 1.3.

The MAC delay, on the other hand, is closely related to the upper layer traffic arrivals
and statistics. By Little’s law [11], the average delay has a direct relation with the average
queue length in the data queue. As a result, the design of transmission schemes shall cope
with both channel uncertainties, traffic variations, and queue dynamics, which makes
the characterization of DL–PW trade-off more complicated. Shannon theory alone is
not enough to characterize the DL–PW in these scenarios. Other theoretical analysis
tools are needed, such as queueing theory [11] and control theory [12]. Moreover, as
technologies evolve, the types of future wireless services become diverse enough to
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have heterogeneous delay requirements. Therefore, in order to build a green radio, it is
important to know when and how to trade tolerable delay for low power.

1.2.4 DE–EE trade-off

Deployment efficiency (DE), a measure of network throughput per unit of deployment
cost, namely bits/$ or Mbits/$, is an important network performance indicator for mobile
operators. The deployment cost consists of both capital expenditure (CapEx) and oper-
ational expenditure (OpEx). For radio access networks, the CapEx mainly includes
infrastructure costs, such as base station equipment, backhaul transmission equipment,
site installation, etc., while the key drivers for the OpEx are electricity bill, site and
backhaul lease, and operation and maintenance costs. The scope of the EE definition in
the previous trade-offs can either be for a single base station or for a network; the EE
concept involved in the DE–EE trade-off is a metric for the whole network, namely a
measure of network throughput per unit of network energy consumption, i.e. bits/Joule.

The two different metrics often lead to opposite design criteria for network plan-
ning. For example, to save the expenditure on site rental, base station equipment, and
maintenance, network planning engineers tend to “stretch” the cell coverage as much as
possible. However, the path loss between the base station and mobile users will degrade
by 12 dB whenever the cell radius doubles if the path-loss exponent is four, which
induces a 12 dB increase in the transmit power to guarantee the same signal strength for
those users at the cell edges. Some simple calculations give the result that to provide
cellular coverage for a given area, increasing the number of base stations will save the
total network transmit power by the same factor.

Table 1.1 helps to understand the inner logic. Assume the reference cell radius is
d0, β and γ are two coefficients associated with the cell size shrinking scenario where
0 ≤β,γ ≤ 1, inter-cell interference is not considered, and the transmit power for all users
is kept the same, derived from the SE requirement ηSE of the cell-edge user. Figure 1.6
further depicts the DE and EE performance at different β. The DE and EE values in the
figure are normalized by that of the reference scenario. An implicit assumption is that
the total traffic served by different scenarios on the given area A is the same. The left-
most figure shows that the improvement in EE via cell size shrinking depends heavily
on the wireless channel environment, e.g. the path-loss exponent α. The larger the α is
(faster degradation of the transmitted energy), the more benefit small cells could bring.
As shown in the middle figure, the value of γ impacts the DE performance. Here, 1−γ
can be interpreted as the average cost reduction ratio per base station. Note that the
increase in the number of cells adds extra cost in the backhaul and site maintenance.
The constant offset in γ is added to account for that. Finally, the right-most figure shows
how the network EE trades off DE. Note that when transmitting in free space (α = 2),
the trade-off relation no longer holds.

1.2.5 Summary

In the previous four subsections, we have elaborated the definitions of the four funda-
mental trade-offs as well as their behavior predicted by the Shannon’s capacity formula.
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Table 1.1. Simple calculations with the cell size shrinking ratio β. The constants k1 and k2 are k1 = A/π ,
k2 = (2ηSE − 1)/(κ0ηSE), where A is the total area considered and ηSE is the target SE for cell-edge users.
γ is the ratio of cost per base station against the initial value c0.
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Figure 1.6 Illustration of the DE–EE trade-off derived from Shannon’s formula. The left one shows the EE
trend at different path-loss exponent α, while the middle one shows the DE behavior under
different assumptions of γ , and the right one shows the trade-off relation between the two. The
DE and EE values are normalized by that of the reference scenario. γ in the right-most figure is
chosen as min{1,0.1 +β}.

In this subsection, we would like to summarize what we have learnt so far. Figure 1.7
gives the sketch of the trend curve for each of the trade-offs, which are monotonically
decreasing as predicted by Shannon’s formula.

Along each curve, we can identify the operation region with high power and that with
low power, respectively, as shown by the shaded ellipses in the figures. The two large
arrows in each sub-figure suggest two potential directions to improve EE or to reduce
power. Having identified the operating regions with different power requirement, one
possible direction for energy-oriented system optimization is to shift the operating point
of the system along the trade-off curve, from the high-power region to the low-power
region. This can, in general, be achieved by optimizing the key system parameters and
adapting them to the dynamics of the system traffic requirement. For instance, when
there is extra bandwidth available, aggregating them and then transmitting on the wider
band also results in lower transmit power requirement (shifting the operating point along
the curve from right to left as in Figure 1.7 (b)). Similarly, for a delay tolerant service,
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Figure 1.7 Summary of the sketch of the four fundamental trade-offs derived from Shannon’s formula.
Along the curves, high-power regions and low-power regions are identified and marked using
shaded ellipses. The bold arrows suggest the potential direction of energy performance
improvement.

lowering the modulation level to transmit more slowly can help to reduce the transmit
power needed (shifting the operating point along the curve from left to right, as in
Figure 1.7 (c), for PHY delay).

On the other hand, it is possible to improve the two ends of the trade-off simultane-
ously, i.e. pushing the trade-off curve outwards as for the SE–EE and DE–EE relations
and pushing the curve inwards for the other two trade-offs. Multiple-input-multiple-
output (MIMO) techniques, which can provide higher SE without increasing power for
transmission, are potential candidates in this case. However, as we will see from the next
section, it is not always good to have MIMO for energy-oriented design, because the
power expenditure in other parts of the system (e.g. the electronic circuits) to support
MIMO may degrade the gain obtained for the transmit power only.

1.3 Impact of practical constraints

In the results derived from Shannon’s capacity formula, only the transmit power (radiated
energy) is considered. In this case, we obtain a set of monotonically decreasing curves for
each of the fundamental trade-offs. In fact, however, for any base station available today,
the power radiated to the environment for signal transmission is only a portion of its total
power consumption [13]. The ratio of the base station’s total power consumption over its
radiated power is called base station efficiency, which is far from the ideal value of 1. For
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Figure 1.8 The SE–EE curves under practical constraints. The LHS figure show the EE at difference
transmission distance with either transmit power or total power considered. The RHS figure
compares the system EE (d = 500 m) with total power considered in both the full buffer case
(continuous transmission) and the bursty traffic case (L bits before T sec.), given different
numbers of beam-forming antennasM .

instance, if the base station efficiency is 10%, then to transmit 100 Watt for delivering
information, about 900 Watt extra power is needed to keep the system working properly.
As technologies evolve, the power efficiency has been improved greatly but is still far
from the ideal (close to 1). Therefore, for an energy-efficient design of wireless networks,
it is important to consider not only the radiated power, but also the overall system input
power. Moreover, for the DE–EE trade-off from the whole network’s aspect, it is also
essential to have a correct model of the network deployment and operation cost.

In the following, we just give some examples of how the trade-off curves derived in
Section 1.2 are impacted by the practical constraints elaborated above. We shall see that
when the non-linear efficiency of the PA and the processing power and circuit power
are considered, the trade-off relation usually deviates from the simple, monotonically
decreasing curve.

As a comparison to Figure 1.3, we show in the LHS of Figure 1.8 the relation between
the transmit EE and the modulation level of the uncoded M-QAM signals, which can
be seen as the SE of the uncoded transmission. Similar issues were also investigated in
[15, 16]. We further study the impact of multiple antennas and bursty transmission with
sleep mode in the RHS of Figure 1.8. Transmit beamforming is assumed at the transmitter,
which has been proved to reduce the transmit power byM times if the antenna array is
equipped withM antennas [17]. However, when considering the total system power, we
have the inverse observation, namely the beamforming gain may become negative and
get worse with more antennas. This is because the transmit energy reduction becomes
smaller than the circuit power increase brought by the increase of extra beamforming
antennas. Also, it is easy to see that sleep mode helps to boost the energy efficiency of
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Figure 1.9 The DE–EE curves under practical concerns. The LHS figure considers only the transmit power
of the network, while the RHS figure take the total input power into consideration. α is the
path-loss exponent, whose value implies the service areas.

the system, since it directly reduces the circuit power and part of the processing powers
in the system.

Another example is shown in Figure 1.9 for the DE–EE trade-off, based on the pre-
liminary study in [18]. From the right-most plot, there might not always be a trade-off
between DE and EE and the shape of a DE–EE curve depends on the specific deployment
scenarios. For the suburb scenario, where the path-loss exponent is small (about 3.5),
the network EE even increases with its DE. For the dense urban scenario, where the
path-loss exponent is large (about 4.5), two different EE values may result in the same
DE value, corresponding to very small and very large cell radii, respectively. The former
is because of the huge increase in CapEx by increasing the number of sites; the latter is
due to the sharply increased electricity bill in OpEx.

1.4 Latest research and future directions

1.4.1 SE–EE trade-off

The previous illustrations show that the SE–EE trade-off curves are highly relevant to
the static circuit power consumptions. However, this is not the only factor that causes the
different behavior of the SE–EE trade-off curves. Current literature also shows that the
transmission technologies and the network architectures will affect the trade-off curve as
well. In the current literature, the SE–EE trade-off relations has been extensively studied
in the OFDMA and MIMO systems.

• OFDMA systems: The concept of EE in OFDM systems first appeared in [15] with
the consideration of the circuit power consumption. In contrast to the traditional


