

 MATLAB
 for Behavioral Scientists

 Second Edition

 Written specifically for those with no prior programming experience and minimal quantita-
tive training, this accessible text walks behavioral science students and researchers through
the process of programming using MATLAB. The book explores examples, terms, and
programming needs relevant to those in the behavioral sciences, and helps readers per-
form virtually any computational function in solving their research problems. Principles
are illustrated with usable code. Each chapter opens with a list of objectives followed by
new commands required to accomplish those goals. The objectives also serve as a reference
to help readers easily relocate a section of interest. Sample code and output and chapter
problems demonstrate how to write a program and explore a model so readers can see the
results using different equations and values. A website provides solutions to selected prob-
lems as well as the bookÊs program code output and examples so readers can modify them
as needed. The outputs on the website have color, motion, and sound.

 Highlights of the new edition follow:

 Ć Updated to reflect changes in the most recent version of MATLAB, including special
tricks and new functions.

 Ć More information on debugging and common errors as well as more basic problems
in the rudiments of MATLAB to help novices get up and running more quickly.

 Ć A new chapter on Psychtoolbox , a suite of programs specifically geared to behavioral
science research.

 Ć A new chapter on Graphical User Interfaces (GUIs) for user-friendly communication.

 Ć Increased emphasis on pre-allocation of memory, recursion, handles, and matrix alge-
bra operators.

 Intended as a primary text for MATLAB courses for advanced undergraduate and/or
graduate students in experimental and cognitive psychology and/or neuroscience, as
well as a supplementary text for labs in data (statistical) analysis, research methods, and

computational modeling (programming), the book also appeals to individual researchers in
these disciplines who wish to get up and running in MATLAB.

 David A. Rosenbaum is a Distinguished Professor of Psychology at Pennsylvania State
University.

 Jonathan Vaughan is the James L. Ferguson Professor of Psychology and Neuroscience
at Hamilton College.

 Brad Wyble is Assistant Professor of Psychology at Pennsylvania State University.

 MATLAB
 for Behavioral Scientists

 Second Edition

 David A. Rosenbaum,
 Jonathan Vaughan, and Brad Wyble

 First published 2015
 by Routledge
 711 Third Avenue, New York, NY 10017

 Simultaneously published in the UK
 by Routledge
 27 Church Road, Hove, East Sussex BN3 2FA

 Routledge is an imprint of the Taylor & Francis Group, an informa business

 © 2015 Taylor & Francis

 The right of David A. Rosenbaum, Jonathan Vaughan, and Brad Wyble to be
identified as authors of this work has been asserted by them in accordance
with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

 All rights reserved. No part of this book may be reprinted or reproduced or
utilised in any form or by any electronic, mechanical, or other means, now
known or hereafter invented, including photocopying and recording, or in
any information storage or retrieval system, without permission in writing
from the publishers.

 Trademark notice : Product or corporate names may be trademarks or
registered trademarks, and are used only for identification and explanation
without intent to infringe.

 Library of Congress Cataloging-in-Publication Data

Rosenbaum, David A.
 MATLAB for behavioral scientists / authored by David A. Rosenbaum, Jonathan
 Vaughan, and Brad Wyble. · Second edition
 pages cm
 1. Psychology·Data processing. 2. MATLAB. I. Vaughan, Jonathan
(Professor) II. Wyble, Brad.
 BF39.5.R67 2014
 150.285'536·dc23 2014003997

ISBN 978-0-415-53591-5 (hbk)
ISBN 978-0-415-53594-6 (pbk)
ISBN 978-0-203-11210-6 (ebk)

 Typeset in Times and Courier New
 by Apex CoVantage, LLC

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission.
The MathWorks does not warrant the accuracy of the text or exercises in this
book. This bookÊs use or discussion of MATLAB® software or related products
does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software.

 Dedication Code

 % Dedication.m
 clc
 for author = {'Brad' 'Jon' 'David'}
 authorstring = char(author);
 switch authorstring
 case 'Brad'
 Dedication.to = 'Elizabeth Spillman-Wyble';
 Dedication.features = ...
 {'inspiration','storytelling',...
 'mastery of folklore',...
 'extraordinary cooking'};
 case 'Jon'
 Dedication.to = 'Virginia Vaughan';
 Dedication.features = ...
 {'intelligence','strength of character',...
 'unfailing support','generosity'};
 case 'David'
 Dedication.to = 'Judith Kroll';
 Dedication.features = ...
 {'brilliance', 'bravery', 'beauty'};
 end
 fprintf('%s dedicates this work to %s',...
 authorstring,Dedication.to);
 fprintf(' in grateful recognition of her ');
 for featurecount = 1:length(Dedication.features)-1
 fprintf('%s, ',...
 Dedication.features{featurecount});
 end
 fprintf('and %s.\n\n',Dedication.features{end})
 end
 commandwindow

 Dedication Output

 Brad dedicates this work to Elizabeth Spillman-Wyble in
grateful recognition of her inspiration, storytelling,
mastery of folklore, and extraordinary cooking.

 Jon dedicates this work to Virginia Vaughan in grateful
recognition of her intelligence, strength of character,
unfailing support, and generosity.

 David dedicates this work to Judith Kroll in grateful
recognition of her brilliance, bravery, and beauty.

This page intentionally left blank

vii

 Preface ix

 Acknowledgements xii

 About the Authors xiii

 1 Introduction 1

 2 Interacting With MATLAB 22

 3 Matrices 38

 4 Calculations 62

 5 Contingencies 99

 6 Input-Output 128

 7 Data Types 156

 8 Modules and Functions 182

 9 Plots 208

 10 Lines, Shapes, and Images 248

 11 Animation and Sound 287

 12 Enhanced User Interaction 304

 13 Psychtoolbox 323

 14 Debugging 355

 15 Going On 370

 Contents

viii Contents

 References 375

 Commands Index 377

 Name Index 381

 Subject Index 382

ix

 Preface

 The first edition of MATLAB for Behavioral Scientists (published in 2007) was the result
of a rebellious thought. The prevailing view before then was that most behavioral scientists
shouldnÊt or couldnÊt write their own computer programs. This irked the first author, who
decided to pursue the notion that all behavioral scientists, including students in the relevant
fields (psychology, cognitive and affective neuroscience, economics, and so on), could and
should learn to program for themselves.

 Behavioral scientists need to be able to program as much as scientists in other fields. They
need to be able to program to do whatever they want, computationally speaking, without
having to rely on the kindness of strangers or the largesse of granting agencies to pay others
to program for them.

 To give some examples, a behavioral scientist·a behavioral economist, say·wishing
to model decision making should be able to roll up her sleeves and graph data showing
observed and expected data in the way she prefers. A personality psychologist interested
in designing a new questionnaire requiring a special computer interface should be able to
pursue that aim. A psychotherapist wanting to model changing relations between mem-
bers of a family should be able to characterize that process with custom-made animations
that show network links with dynamically changing thicknesses and colors, growing and
shrinking over time, if thatÊs what she wants. A cognitive psychologist interested in setting
up and conducting behavioral experiments should be able to create any kind of stimuli and
response recording capabilities he or she cares to, not being limited by whatÊs possible with
off-the-shelf commercial products.

 This book is meant to help behavioral scientists (and especially students entering this field)
to do these things. The authors of this book assume you have no prior familiarity with com-
puter programming, and we assume you have no knowledge of mathematics beyond what
is generally learned in high school. The text is meant to be as friendly and encouraging as
possible. Our aim is to draw you in and help you feel comfortable within a domain that may
at first seem foreign and maybe even scary.

 Programming can be humbling. If you set out to learn to program, you should prepare your-
self emotionally as well as intellectually for what will happen because you will be dealing
with an unfeeling machine. It takes a tough hide to believe you have a program that does
what you want, only to discover that the program doesnÊt run, generates unexpected results,
or produces outputs that seem reasonable at first but then turn out to be wrong. Everyone
who has programmed has gone through this, including the authors of this book, so donÊt
feel like you need to be able to program perfectly. No one does!

 Programming neednÊt be unpleasant, however. The attitude to have is to keep an open
mind about the value of mistakes. If you treat errors as windows for improvement, you will
learn a lot. Availing yourself of that learning, when you see a program work and especially

x Preface

when it does something that, to your knowledge, has not been done before, can let you feel
rightly proud of your achievement.

 There are many computer programming languages. Why is this book about MATLAB?
MATLAB (short for Matrix Laboratory), is a commercial product of a company called The
MathWorks (Natick, Massachusetts), for which we authors do not work and have no com-
mercial connection. The following, therefore, can be taken as our honest opinion of their
product: MATLAB is a simple yet powerful language for computer programming. It has
an active community of users, engaged in many branches of science and engineering. One
of MATLABÊs most attractive features is that it offers high-level commands for perform-
ing calculations with large as well as small data sets and for generating publication-quality
graphics. Another attraction of MATLAB is that it allows for the presentation of stimuli
and the collection of responses with precise timing. Yet another attraction is that MATLAB
is platform-independent. It runs on PCs, Macs, and Linux machines. For these and other
reasons, MATLAB is a very good language for behavioral scientists. A growing number
of behavioral scientists, along with neuroscientists, engineers, and investigators in other
disciplines, have therefore chosen to learn MATLAB. Owing to the health and vitality of
the MATLAB programming community, it is likely that more and more people will want
to learn MATLAB in the future. You will be part of that active community if you choose to
dive into the material provided here.

 How did it come to pass that there is a second edition of this book? As is always true of a
second edition, its predecessor was successful enough to keep the work alive, but changes
in the field suggested a face-lift was needed. Among the needed changes was the appear-
ance of other MATLAB books for psychologists and neuroscientists (Fine & Boynton,
2013; Madan, 2014; Wallisch et al., 2009), which are welcome additions, though they are
different in style, tone, level of coverage, and organization from the first edition of this
book (but not so perfect, in our view, that they obviate this second edition).

 As the author of the first edition (Rosenbaum, 2007) contemplated the second edition, he
realized that the process of revising and updating the book would benefit from the involve-
ment of his long-time friend and collaborator, Jonathan Vaughan, the James L. Ferguson
Professor of Psychology and Neuroscience at Hamilton College. Jon has decades of experi-
ence with computer programming. He has served as the editor of Behavior Research Meth-
ods, Instruments, & Computers , a peer-reviewed publication of the Psychonomic Society.
The first author basically learned MATLAB from Jon. He continued to learn from Jon in
preparing this second edition.

 When Jon agreed to join in, he and David began to map out the ways the second edi-
tion would differ from the first. Among the things they agreed to were the following:
(1) All known errors in the first edition would be corrected; (2) more would be said about
debugging; (3) more problems would be given, including problems that would help stu-
dents confront very basic issues in the rudiments of MATLAB; (4) solutions to selected
problems would appear with downloadable code on the bookÊs new website (www.rout
ledge.com/9780415535946) rather than in the back of the book to allow for more extensive
code, updating of the programs if necessary, and addition of new programs as needs and
curiosities arose; (5) there would be a tutorial on designing Graphical User Interfaces, or
GUIs, which enable a user to interact with a program using graphics to run experiments
within MATLAB; (6) there would be a tutorial in designing experiments using Psychtool-
box, a freely available MATLAB toolbox that is specifically geared to behavioral science

http://www.routledge.com/9780415535946
http://www.routledge.com/9780415535946

xiPreface

research; and (7) special tricks and new functions, developed or discovered since 2007,
would be featured, including several developed by the authors to solve sometimes thorny
problems that arise in data collection and data presentation.

 In preparing the second edition, Jon and David made these changes while retaining the
main organization of the bookÊs first edition. As before, readers are ushered to the mate-
rial slowly and in as a welcoming a way as possible, with more specialized topics coming
as the chapters continue. Also as in the first edition, there is continued use of a style that
worked well before·introducing a new problem or challenge, presenting associated code,
and then presenting the output. In addition, as in the first edition, each chapter starts with a
list of things to be done followed by commands that get them done. These start-of-chapter
lists let you use the book as a reference once you understand the basics of MATLAB. Thus,
after you have worked your way through the book, you will be able to turn to a section and
quickly get the detailed information you need to complete the programming task you are
undertaking. All the commands are listed as well in a single Command Index near the back
of the book, another innovation of the second edition relative to the first.

 Another way we have made the text as user-friendly as possible is to update the website for
this book. On this site, you will be able to find and copy the programs and program outputs
in this volume. The outputs on the website have color, motion, and sound, whereas those
modalities are absent from the printed edition.

 As shown in the list of new features, the second edition has a chapter on Psychtoolbox. This
is a free, popular, MATLAB-based toolbox for running behavioral experiments. Neither
Jon nor David had used Psychtoolbox before, simply because it wasnÊt essential for their
work. It happened, however, that Brad Wyble, a newly hired faculty member in the Penn
State Psychology Department (the department where David works), had extensive experi-
ence with Psychtoolbox. Jon and David invited Brad to prepare a chapter for the book on
Psychtoolbox, and, to their great satisfaction, he agreed.

 BradÊs area of expertise is vision, the domain of behavioral science in which, it happens,
Psychtoolbox is used the most. With his extensive background in computer science·Brad
was a computer science major as an undergrad and did research in computer science labs
after completing his PhD at Harvard·he proved to be a wonderful addition to the team.
His involvement in the book was limited to the one chapter he prepared, plus his review
of this Preface, as per the agreement he made with Jon and David. Any errors in the book,
then, outside of the Psychtoolbox chapter and the Preface are not due to Brad. By the same
token, any errors in the Psychtoolbox chapter and in the Preface are as much JonÊs and
DavidÊs fault as they are, or might be, BradÊs. In general, any mistakes rest squarely with
Jon and David, or most especially David, who, after having had several years to mull over
the transition from the first edition to the second, should have gotten things right by now!

 The last thing we want to say in this preface echoes what we say in the main text about
responsiveness to feedback. It is fine to be open to feedback from a computer , as we urge
you to be, but it is also good to be open to feedback from people . If you spot something that
you think could be better, please let us know. If you have suggestions for things to include
in a future edition, give us those suggestions. If you want help with your programming, we
cannot serve as consultants to you. We appreciate understanding on that last point. To get in
touch with us, you can use one or more of our e-mail addresses: dar12@psu.edu, jaughan@
hamilton.edu, or bpw10@psu.edu. We hope you will find this book useful.

xii

 Acknowledgements

 There are others who deserve praise and thanks for their contributions, direct and indirect.
First, we express our appreciation to the students who took the MATLAB courses offered
by David at Penn State and by Jon at Hamilton, and who also were exposed to MATLAB
by Brad. Teaching these students helped us see which programming concepts are transpar-
ent and which are less so.

 Several students in our classes and in our labs played especially important roles in helping
us hone our MATLAB instruction. We thank Penn State students Max Bay, Katie Chap-
man, Chase Coelho, Rajal Cohen, Samantha Debes, Jeff Eder, Jason Gullifer, Lanyun
Gong, Derek Henig, Joe Santamaria, Garrett Swan, Matt Walsh, and Robrecht van der Wel.
We thank Hamilton College students Deborah Barany, Julia Brandt, Hallie Brown, Drew
Linsley, Ramya Ramnath, and Anthony Sali. Others who provided valuable feedback are
Debra Boutin, Gillian Dale, Mike Frederick, Michael Romano, and Doug Weldon. Mario
Kleiner provided helpful information about Psychtoolbox.

 We also wish to thank the reviewers who provided feedback on the revision plan: Simon
Farrell, University of Bristol, UK; Alen Hajnal, University of Southern Mississippi, USA;
and an anonymous reviewer.

 This book was completed while the first author was on sabbatical in Los Angeles, at UCLA
and USC, where he was supported in part by a fellowship from the John Simon Guggenheim
Memorial Foundation. Brad WybleÊs research was supported at the time of this writing by
NSF grant BCS #1331073. JonÊs research has been supported by grants from the National
Science Foundation and the National Institutes of Health, as has DavidÊs. We all appreciate
this support, not to mention the support of the institutions that have paid our salaries.

 We also wish to express our thanks to Paul Dukes at Psychology Press/Taylor & Francis,
who was instrumental in opening the door for the second edition of the book. Paul called
on his colleague, Debra Riegert, to work with us to bring the work to completion. Debra
was responsive and helpful at every stage. We appreciate her help as well as the further
assistance of Angela Halliday at Routledge/Taylor & Francis, who helped with the bookÊs
and websiteÊs production.

xiii

 About the Authors

 David A. Rosenbaum is a cognitive psychologist whose main interests are human per-
ception and performance. His main research contribution has been joining cognitive psy-
chology and motor control. Rosenbaum attended public schools in Philadelphia and then
attended Swarthmore College (B.A., 1970ă1973) and Stanford University (Ph.D., 1973ă
1977). He worked at Bell Laboratories (1977ă1981), Hampshire College (1981ă1987),
and the University of Massachusetts, Amherst (1987ă1994). He has been at Pennsylvania
State University since 1994, where he was named Distinguished Professor of Psychology
in 2000. Rosenbaum was a recipient of a National Science Foundation Graduate Fellow-
ship (1973ă1976), a National Institutes of Health Research Career Development Award
(1985ă1990), and a National Institutes of Health Research Scientist Development Award
(1992ă1997). His work been supported by grants from the National Science Foundation
(NSF) and the National Institutes of Health, as well as grants from the Dutch, French, and
German equivalents of NSF. Rosenbaum is a Fellow of the American Association for the
Advancement of Science, the American Psychological Association, the American Psycho-
logical Society, and the Society of Experimental Psychologists. He served as Editor of
Journal of Experimental Psychology: Human Perception and Performance (a publication
of the American Psychological Association) from 2000 to 2005. He was awarded a Gug-
genheim Foundation Fellowship in 2012 for the 2013ă2014 academic year. Besides being
the author of the first edition of this book, David is the author of a textbook on motor
control [Rosenbaum, 2010] and the author of a book applying DarwinÊs theory of natural
selection to cognitive psychology [Rosenbaum, 2013].

 Jonathan Vaughan is a broadly trained experimental psychologist (B.A., Swarthmore
College, 1962ă1966; Ph.D., Brown University, 1966ă1970) whose research interests focus
on the planning and execution of motor actions, eye movements and attentional processes,
human and animal learning, and cognitive neuropsychology. He has taught at Hamilton
College since 1971. His work with David Rosenbaum and Ruud G. J. Meulenbroek, initi-
ated under an AREA grant from the NINDS, has produced computational models of reach-
ing, grasping, tapping, and manual circumvention of obstacles. Other research support has
come from the NSF and NIMH. Vaughan has published more than 60 journal articles and
book chapters, and given more than 100 research presentations, many in collaboration with
Hamilton undergraduates. He has contributed in many ways to computer applications in
psychological research, including tutorial materials for the use of PsyScope and SPSS.
He edited the Psychonomic SocietyÊs international quarterly, Behavior Research Methods,
Instruments, and Computers [1994ă2004] and founded the Psychonomic SocietyÊs Archive
of Norms, Stimuli, and Data, an online repository of computer programs, data, and stimu-
lus norms that has served as an important resource for researchers in the field.

xiv About the Authors

 Brad Wyble studies attention, perception, and memory. He attended public schools in Lan-
caster, Pennsylvania, after which he obtained a B.A. in computer science from Brandeis
University (1991ă1995) and a Ph.D. in psychology from Harvard University (1996ă2003).
He was a postdoctoral fellow at the University of Kent in Canterbury, England (2003ă
2007), University College, London (2007), and MIT (2007ă2009). He was subsequently an
assistant professor at Syracuse University (2009ă2012) and is now an assistant professor at
Pennsylvania State University in the Department of Psychology. Wyble was a recipient of a
National Science Foundation Graduate Fellowship (1997ă2000), he was a Sackler Fellow
(2001ă2002), and he has been supported by grants from the National Science Foundation,
the Office of Naval Research, and the National Institutes of Health. He serves as a consult-
ing editor for the Journal of Experimental Psychology: Human Perception and Perfor-
mance , and as an associate editor for the journal Frontiers in Cognition.

1

 1. Introduction

 This chapter covers the following topics:

 1.1 Getting oriented
 1.2 Getting an overview of this book
 1.3 Understanding computer architecture
 1.4 Programming principles
 1.5 Deciding if a program is needed and whether you should write it
 1.6 Being as clear as possible about what your program should do
 1.7 Working incrementally
 1.8 Being open to negative feedback
 1.9 Programming with a friend
 1.10 Writing concise programs
 1.11 Writing clear programs
 1.12 Writing correct programs
 1.13 Understanding how the chapters of this book are organized
 1.14 Using the website associated with this book
 1.15 Obtaining and installing MATLAB
 1.16 Acknowledging limits

 1.1 Getting Oriented

 Computers are vital in every branch of science today, and behavioral science is no excep-
tion. When behavioral scientists use computers to obtain responses in questionnaires, pres-
ent visual stimuli, display brain images, generate data graphs, or write manuscripts, their
ability to make efficient progress in their research depends largely on their ability to use
computers effectively.

 Many specialized computer packages let behavioral scientists do their work, and each one
takes some time to learn. It is useful to know how to use these specialized packages, but it is
also tantalizing to consider the possibility of learning how to program for yourself. The reason
is that all specialized computer packages rely on underlying code, and knowing how to gener-
ate such code yourself can allow you to be self-sufficient or nearly so in your own research.

 Suppose, for example, that you want to develop a mathematical model of some cognitive
process. It is convenient to be able to write a program that lets you explore the mathemati-
cal model freely, seeing the results obtained with different equations, different parameter
values, and so on. Similarly, to analyze data in ways that would be cumbersome with exist-
ing spreadsheet applications, it is refreshing to be able to write the analysis program to
your own specifications. For example, to view graphs of obtained or theoretical data in a
variety of forms, it is useful to be able to generate the graphs quickly and easily, however
you please, not just as stipulated by an existing graphics package.

 The computer language introduced here, MATLAB, provides you with these capabilities.
MATLAB is available from The MathWorks (www.mathworks.com), a company with which

http://www.mathworks.com

2 Introduction

we authors have no affiliation. MATLAB has become popular in several branches of engi-
neering and science, including behavioral science. Nonetheless, to the best of our knowl-
edge, no book has appeared about MATLAB that is written specifically with behavioral
scientists in mind. Nor for that matter has a book come out for behavioral scientists about any
other general-purpose programming language. The need for such a volume motivated the
first edition of this book. Its positive reception encouraged us to revise the text and expand
the coverage in this second edition.

 Will it be worth your time to read this book? Once you have gone through the text and
generated your own MATLAB programs based on the material presented here, you should
have enough programming skill to do most of what you need to for your own behav-
ioral research needs. Most importantly, a working knowledge of MATLAB will allow
you to perform some analyses that would be tedious, difficult, or impossible otherwise. In
addition, you will be able to understand and build upon the work of colleagues who use
 MATLAB in their work.

 You will probably find this book most useful if you use it in two stages. In the first, you will
want to go through it, or the parts of it most relevant to your needs, in considerable detail,
working problems and developing the hands-on skills that will make you a MATLAB user ,
not just a MATLAB appreciator . In the second stage, you will be able to rely on the book
as a reference, turning quickly to those sections that provide examples you can adapt for
your own programming needs.

 To make the book as useful as possible as a reference source, we have designed it so you
can get the examples you need quickly and easily. You can do so by turning to the opening
page of any chapter and finding there a list of things you may want to do. Beneath that list
is a compendium of associated commands. The text itself provides examples you can adapt
for your own purposes. You can copy those examples by hand into your own programs,
or, to avoid typographical errors, you can copy and paste them from the website associ-
ated with this book (www.routledge.com/9780415535946), where the programs and their
outputs are available, along with the solution to selected problems. Finally, the list of com-
mands introduced in each chapter is listed as well in the Commands Index.

 1.2 Getting an Overview of This Book

 Acquiring a new skill such as computer programming can be daunting, so it helps to have
an overview of what you can expect as you proceed. Here, then, is a roadmap of the con-
tents of this book. Besides signposts, we also provide brief explanations of the goals of
each chapter.

 1. Introduction . By reading the present chapter, you will learn more than you may
already know about how computers work and what computer programming lan-
guages do. You will also learn about the ways you should approach computer pro-
gramming. Finally, by reading this chapter, you will understand how this book is
organized. That information can help you use the book efficiently.

 2. Interacting With MATLAB. By delving into the second chapter, you will learn
how to activate MATLABÊs windows in order to open, edit, save, and run MATLAB
programs.

http://www.routledge.com/9780415535946

3Introduction

 3. Matrices. By studying the third chapter, you will learn how MATLAB enables you
to store and access data. Briefly, MATLAB lets you store data in matrices consist-
ing of one or more rows and one or more columns. Matrices are so fundamental to
MATLAB that the name of the language is actually short for „Matrix Laboratory.‰
You can think of a two-dimensional matrix (one having both rows and columns) as
analogous to the rows and columns in a spreadsheet.

 4. Calculations. Computers are good at calculating. Chapter 4 shows how to get your
computer to carry out calculations with MATLAB.

 5. Contingencies. One of the main purposes of a computer program is to perform dif-
ferent actions depending on existing conditions. The logic of a program involves not
only calculations but also decision making, such as evaluating variables differently
(or not evaluating them at all), depending on their values.

 6. Input-Output. Chapter 6 shows you how to control your computerÊs interactions
with the external world. By studying Chapter 6, you will be able to design programs
that let you create dialogs with users, including participants in behavioral studies,
and to read and write data to and from external files.

 7. Data Types . One of the biggest challenges in using computers in research is deter-
mining how best to represent the data you are working with. It is important to under-
stand what data types are available in MATLAB so you can choose and manipulate
your data types accordingly.

 8. Modules and Functions . Simple programs are usually easy to understand, but when
they become more complex it often helps to deal with them in chunks. Some higher
level structure is often helpful. Chapter 8 shows you how to write programs that
have this property. Those programs often have stand-alone modules and functions.
Such modules and functions can be called by a variety of programs. Using modules
and functions can help you approach programming from a top-down rather than a
 bottom-up perspective. Modules and functions can also facilitate the reuse of pro-
grams in the future.

 9. Plots . The ability to generate and manipulate complex graphics for the exploration
and presentation of data is widely regarded as one of the special strengths of MAT-
LAB. Chapter 9 exposes you to those strengths by showing you how to make line
graphs, bar graphs, and other types of graphs that are suitable for professional pre-
sentations and publications.

 10. Lines, Shapes, and Images . Here you will learn how to create, import, or reshape
lines, shapes, and other images that can either stand alone or be included in graphs.
Chapter 10 will also show you how to generate three-dimensional graphs.

 11. Animation and Sound. Chapter 11 builds on the static graphics of the tenth chapter
to manipulate figures using simple animation techniques, generate movies, and gen-
erate auditory stimuli.

 12. Enhanced User Interaction. When you think of a typical computer application,
what comes to mind is how the program interacts with the user, typically through
graphics, the keyboard, the mouse, or touchscreen. Chapter 12 introduces you to
some of the tools available in MATLAB for user interactions.

4 Introduction

 13. Psychtoolbox . For real-time work, there are some features that MATLAB ordi-
narily lacks that are needed for precise and flexible stimulus presentation and data
acquisition. Chapter 13 describes a sophisticated extension to MATLAB, Psychtool-
box , which adds features to facilitate research using MATLAB, especially in vision
research. This chapter also touches on related packages of interest to behavioral sci-
entists in related areas.

 14. Debugging. Programs often have bugs because, for better or worse, programming is
often a trial-and-error process. While it is hard to know in advance how to address
every possible bug, it is possible, based on the authorsÊ many goofs of their own, to
convey advice about debugging techniques which you may find useful. These are
offered in Chapter 13 . . . oops, Chapter 14 ().

 15. Going On. Chapter 15, the last chapter of the book, provides pointers for going fur-
ther with MATLAB. This chapter also directs you to other resources you may want
to draw on.

 A lot of material will be covered in this book. Do you need to go through all of it? If you
have no need to play sounds, show animations, or generate three-dimensional graphics,
you may safely ignore large parts of Chapters 9 through 13, though leafing through these
chapters may help you overcome any prejudices or fears you might have regarding these
topics. At the same time, there are chapters you cannot avoid, at least if you donÊt want to
emerge from this book the way Woody Allen emerged from his speed-reading of TolstoyÊs
epic novel, War and Peace . „It was about Russia‰ was all he could recall.

 The truly essential chapters of this book are Chapters 2 through 5. You cannot go on to the
later chapters and expect to have control of your programs if you donÊt have command of
the material in Chapters 2 through 5, and the only way to gain that command is to work
your way through the examples and exercises slowly and carefully. We promise that even if
you think you understand how things work, the only way to be sure is to try them out and
expose yourself to the feedback you will receive.

 As you gain expertise, Chapters 6 through 8 will allow you to write more sophisticated
code. Chapters 9 through 13 will provide you with specialized tools for your work and
enjoyment. And Chapter 14, as already mentioned, will suggest ways to help you debug
efficiently.

 A word of advice: DonÊt hesitate to revisit earlier sections of the book as you move through
it. No one remembers perfectly, and no one understands material quite as fully the first time
as in revisits. Your understanding of what may seem very obscure the first time through
will be enhanced by the top-down knowledge and context you will acquire touring later
material.

 1.3 Understanding Computer Architecture

 As a first step toward learning to program, it can be helpful to know a bit about computer
architecture. Knowing about the main components of a computer can help you understand
what features of the environment your program must deal with.

5Introduction

 All working computers have five basic elements. As shown in Figure 1.3.1 , these are
(1) input devices (not only the conventional keyboards and mice, but also the microphones,
response buttons, and video and voltage recorders that are useful in the laboratory); (2) out-
put devices (screens, printers, loudspeakers, etc.); (3) storage devices (hard disks, thumb
drives, DVDs, the „Cloud,‰ etc.); (4) primary memory; and (5) the central processing unit.
The first three components should need no further explanation. The last two components
merit more discussion.

 Figure 1.3.1

 Primary memory (item 4 on the list) is like human or animal working memory. Its contents
are currently active information. The amount of information that can be kept in this active
state is limited, both in biological agents (humans and animals) and in computers. The
amount of information a computer can maintain in primary memory is hardware dependent.

 Because the capacity of primary memory is limited, it is important to be mindful of the
amount of information a computer can keep active at once. The amount of information
made active by a program, such as one written in MATLAB, depends on the number of
variables that are declared and the number of bits (the number of 1s and 0s) required to
represent each variable.

 Essentially, there are three ways of using primary memory efficiently: (1) defining just
the variables that are needed; (2) clearing variables once they are no longer needed; and
(3) defining the types of the variables so the amount of memory initially reserved for them
is large enough but not substantially larger than needed. We will return to these topics in
Chapter 7 („Data Types‰).

 Returning to the components of computer architecture, the fifth component is the central
processing unit. This is the part of the computer that executes instructions. For present
purposes, the central processing unit, or CPU, can be likened to consciousness, for which,
it is said, only one thought can exist at a time (James, 1890). The same can be said of a
computerÊs CPU. It can handle only one instruction at a time, at least in a conventional digi-
tal computer. Handling just one instruction at a time is called serial processing. Handling
more than one instruction at a time is called parallel processing.

 Serial processing can occur at high rates in modern computers. For example, the computer
on which this text was prepared (a Dell laptop) runs at 2 gigahertz (2 billion cycles per
second).

6 Introduction

 Regardless of the speed at which a CPU runs, serial processing imposes constraints on the
kinds of programs you can run, and therefore write, in MATLAB. Suppose, for example,
that you want to find the largest value among a set of numbers. Parallel processing is a
natural way to solve this problem. If the values are plotted as in Figure 1.3.2 , for example,
a brief glance at the bars lets you pick the biggest one. The tallest bar seems to jump out
at you. Once it does, you can look down to find the associated element (element 3 in this
case), or you can look to the left to find the largest value (39 in this case).

 Figure 1.3.2

 You might object that parallel evaluation of the heights of all the bars in this case is not
actually possible, and even it were for this particular figure, it wouldnÊt be for all other
sets of numbers, such as those whose largest values are similar. You might also say that the
method outlined above is not a truly parallel process because distinct stages are associated
with looking down the tallest bar or looking sidewise from the top of the tallest bar. These
objections are well taken, especially considering that serial processing is inescapable in
MATLAB, at least in a program that uses MATLAB in its usual configuration. To sort val-
ues or do anything else in MATLAB, everything must be done one step at a time (serially).
Knowing this can help you approach the task of programming. (Many recent computers
have multiple processors, or cores , that make parallel computing possible. Advanced users
can take advantage of these to speed complex computations by having two or more cores
compute different things at once, using additional tools available from The MathWorks.
If you are beginning your programming skills with this book, you can safely save parallel
programming for another time.)

 1.4 Programming Principles

 How should you approach the task of programming? We have come to believe in the fol-
lowing principles:

 Ć Decide if a program is actually needed and, if so, whether you should write it.

 Ć Be as clear as possible about what your program should do.

7Introduction

 Ć Work incrementally.

 Ć Be open to negative feedback.

 Ć Program with a friend.

 Ć Write concise programs.

 Ć Write clear programs.

 Ć Write correct programs.

 Consider each of these principles in turn.

 1.5 Deciding If a Program Is Needed and Whether You Should Write It

 The first principle is less obvious than you might suppose. Consider the problem discussed
above (finding the largest of a set of values). The numbers corresponding to the bars in
 Figure 1.3.2 are as follows:

 7 33 39 26 8 18 15 4 0

 Do you need a computer program to find the largest of these values? Obviously not. You
know that the largest of these numbers is 39 and that this largest number occupies the third
slot in the series. If you only had to find the largest value in this particular array, you would
be foolish to write a program for this task, except as an exercise. On the other hand, if you
were quite sure you would often need to find the largest number in each of a large number
of arrays of unpredictable sizes, writing a program would make more sense. A program
is useful, then, for performing a well-defined task that would be too taxing to perform by
hand.

 The second part of the first principle, whether you should write the program yourself, also
deserves comment. If you decide you need a program, it may or may not make sense for
you to write the program yourself. Why should you write a program for a task if someone
else has done so before?

 Our answer to this question is analogous to the answer a math teacher might give to a
rebellious student: „Why should I prove this theorem if itÊs been proved before?‰ „Prac-
tice makes perfect,‰ the teacher may reply. He or she may go on: „Even if true perfection
is beyond your reach, practice will increase the chance of your proving something new
yourself.‰

 Our view of programming is the same. You might be able to locate programs that already
do things you need to, and it may make sense for you to use those programs, especially
for problems that seem very complicated or that are beyond your technical ability. But the
more practice you get programming, the more likely it will be that you will be able to gen-
erate programs that either solve new problems or solve old problems in new ways. DonÊt be
discouraged if it takes an hour or more to get your first „real‰ program up and running, even
if you might have done the same computation by hand in a minute or less. As you develop

8 Introduction

programming expertise, you will become more efficient and productive, and youÊll be able
to apply your new skills to other problems.

 1.6 Being as Clear as Possible About What Your Program Should Do

 If you decide that you need a program and that you should write it yourself, you will need
to be as clear as possible about what your program should do. This is easier said than done.
Thinking through the workings of a program can be one of the hardest aspects of program-
ming, even harder in some cases than getting the syntax right.

 Return to the problem of finding the largest value in an array. It turns out that MATLAB
provides a program (or more precisely, a function), called max , that lets you find the
maximum of a set of values (see Chapter 4). You can use this function to get the larg-
est value in a matrix without having to reinvent the function yourself. Nevertheless, it is
worth thinking through the way you would identify the largest value in an array. Work-
ing through this example·however simple it may seem·will help you begin to „think
programmatically.‰

 To think through what a program must do to find the largest value in an array of numbers,
imagine that you have a row of numbers like the one above, but you can only see one of
the numbers at a time·say, by sliding the hole in a card across the row. Under this circum-
stance, you can determine the largest value by finding the largest value so far . If you were
actually doing this, youÊd first place the hole in the card over the first number, which is 7.
Then, youÊd remember that 7 is the largest value youÊve seen, and move the card to reveal
the 33. Thirty-three is larger than 7, so now youÊd note that 33 is the largest number youÊve
seen, and youÊd move the card again. After seeing 39, you would revise the largest number
seen to that value. Continuing and not encountering any number larger than 39 for the rest
of the series, that would be the number youÊd report.

 Now translate this algorithm into a program. Assign some very small value to a variable
called, for instance, Largest_Value_So_Far . Then, proceeding from left to right,
every time you encounter a value larger than Largest_Value_So_Far, reassign that
new value to Largest_Value_So_Far . After you have evaluated the last item on the
list, Largest_Value_So_Far will be the largest of all the values.

 Here is a flow chart for the procedure, along with some other items youÊd need to get the
job done. One of these other items is telling the program how many values there are in the
list. We give the list the name V . There are n = 9 values in V .

 Another thing that needs to be done is initializing Largest_Value_So_Far to an
extremely small value, namely, minus infinity (which can be expressed in MATLAB as
 –inf). We do this because whenever a new number is tested, it must be compared to some
prior value. Starting with –inf ensures that the first value will be called the largest pro-
vided it is larger than –inf . It may stay that way if no larger value comes along.

 The third thing that needs to be done is providing an index, i , for each successively
encountered value in V . An index for a value is the position of the value in the matrix.
For the first item, i = 1 , for the second item, i = 2 , and so forth. Initially, i is set to
 0 . Each time a new number is compared to Largest_Value_So_Far, the variable
 i is incremented by 1, until i is greater than n . The i -th value of V , denoted V(i) ,
is assigned to Largest_Value_So_Far if V(i) is larger than the current value of

9Introduction

 Largest_Value_So_Far. When i is larger than n , the program stops and the value
of Largest_Value_So_Far is printed out.

 Figure 1.6.1

 A flowchart like this can serve as the conceptual foundation for the code needed to get a
computer to find the largest value in an array. You donÊt have to draw a flowchart before
you write MATLAB code, however. Some people only imagine flowcharts or the steps
corresponding to them. Drawing flowcharts in your head obviously gets easier as you get
more practice with programming. Early in practice, however, it is advisable to sketch the
steps your programs will follow.

 How do you come up with a flowchart or its corresponding steps in the first place? The
honest answer is that no one knows. Anyone who could give the answer would, in effect,
know how thoughts originate, and no one at this time has a clue about that. If you solve this
problem, a Nobel Prize awaits you.

 You can, however, consider some practical advice about how to come up with the proce-
dures for computer programs. One suggestion is to talk out loud as you imagine yourself
doing the task you wish to program, step by step, much as we did with the imaginary card
above. Talking out loud may enable you to make explicit whatever implicit knowledge you
bring to bear as you do the task, as if you were explaining the task to a friend. Hearing
your own words will also help you identify those things youÊre not clear about. If you hear
yourself say, „OK, next IÊll somehow figure out which of the values might be OK based
on some criterion I canÊt quite articulate but I have a vague feeling about,‰ then youÊre not
quite ready to write all the code you need. Ultimately, youÊll need to be completely explicit
about the instructions your programs contain. Relying on a miracle just wonÊt work, and
the reason, just to be explicit, is that computers, for all their speed, are ignorant and inflex-
ible. They do exactly and only what theyÊre told to do.

10 Introduction

 This is one way in which programming is very different from other forms of communica-
tion. When you speak to other people, you assume·usually correctly·that they have
some knowledge that lets them fill in missing information. Not so with computers, or at
least conventional computers given stand-alone programs. Writing successful computer
programs requires a degree of explicitness that is unparalleled in other aspects of human
experience. This is one reason why learning to write computer programs can be challeng-
ing. On the other hand, being explicit to the point that a computer can carry out instructions
may sometimes carry over well to other things you do, like writing papers or reaching
agreements with others about who will do what in connection with some project.

 1.7 Working Incrementally

 Another challenge of programming is translating your procedural ideas into language the
computer can understand. Here it is useful to work incrementally. By this we mean you
should build your program a little at a time, making sure each part works before you go on
to another part that depends on what youÊve just written. You should build your program the
way a reliable contractor builds a house, by making sure the foundation is solid before the
basement is added, by making sure the basement is solid before the first floor is added, and
so on. During program development, you will often find it useful to generate intermediate
output to verify that each step works as expected. You may later inhibit that output when
the program is completed and is no longer needed. Think of this incremental programming
process as the digital equivalent of the ancient woodworking adage (attributed to John
Florio, 1591), Alwaies measure manie, before you cut anie („Measure twice, cut once.‰).

 When youÊre reasonably sure your program works, and before you add another component
or make other significant changes, save the program with a file name unique to the last
working version. The moment you prepare to make changes to the program, save the file
with a new name or version number before putting in any changes. Follow the American
folk adage, „If it ainÊt broke, donÊt fix it.‰ Too often, attempts to further develop a program
 will , in fact, break it, or otherwise reveal some weakness in it, and you might want to go
back to an earlier version. YouÊll be glad you have one!

 Remember, too, that computer storage is cheap. There is no harm in having a folder full of
documents called Max_Program_01.m , Max_Program_02.m , Max_Program_03.m ,
and so on. It may be that the version youÊll use for actual work is Max_Program_101.m .
There is nothing wrong with such a high number. You can tuck away the earlier versions in
a sub-folder until youÊre sure youÊll never need to look back. Having sequential versions of
a program in development makes it easy to compare the changes. In this connection, it is
useful to note that MATLAB has a comparison tool that highlights all differences between
two versions of a program, similar to „track changes‰ in Microsoft Word.

 1.8 Being Open to Negative Feedback

 How can you tell if your program works? As you consider this question, one attitude should
rule over all others: Be open to negative feedback . If you treat negative feedback as a help
rather than a hindrance, you will become a better, and certainly happier, programmer than
if you treat negative feedback in a negative way.

 The research of psychologists Carol Dweck and Janine Bempechat (1980) is relevant in this
regard. Dweck and Bempechat distinguished between people who take negative feedback

11Introduction

as signs of their lack of talent (entity learners) and people who treat negative feedback as
cues for ways to improve their performance (incremental learners). It is important while
programming to have the attitude of an incremental learner rather than an entity learner.
You will learn more if you take negative feedback constructively than if you read such
feedback as a sign that you werenÊt „cut out‰ for programming. MATLAB will not give
you an error message that says

 ??? You don't deserve oxygen!

 A more likely message is something prosaic like

 ??? Subscript indices must either be real positive integers
or logicals.

 You might get an error message like the latter one in response to code such as

 Reaction_Time_For_Trial(0) = 680;

 All you have to do here is appreciate that it makes no sense to have the zero-th element of
an array. An array can have a first element, a second element, a third element, and so on,
but it canÊt have an element numbered zero. Whether the 0 was entered in the code based
on a misunderstanding or simply as a typo, you can correct the error without indicting your
genes. If when you typed 0, you were referring to the first trial, you can replace the 0 with
a 1 and all will be fine:

 Reaction_Time_For_Trial(1) = 680;

 One reason for saying these things is that it bears remembering that the error messages
you receive while programming come from a machine, not from a person who knows
what you are trying to say. When you receive an error message, it will help you to take
the message as a piece of advice. Over time, you will get fewer error messages concern-
ing low-level aspects of coding (e.g., when you have an unequal number of opening and
closing parentheses in a line of code), and you will learn what the error messages mean.
More about error messages and debugging (correcting your programs) will come later in
the text.

 Over time you will also learn to guard against disaster when you program. We encourage
you to do so by writing programs that are resilient rather than brittle. If you write a pro-
gram that crashes or yields crazy results when it gets input of a different sort than what you
anticipated, your program wonÊt be of much good. For example, if you write a program
that is used to collect questionnaire data, and a participant types in an age of -83, that
could wreak havoc with subsequent data analyses. It doesnÊt matter why the participant
put a minus sign in front of his or her age (if he or she is actually 83). Perhaps the partici-
pant thought this might help you see the number more clearly, perhaps it was just a typo,
or perhaps the participant thought he or she was being cute. The point is that you must
anticipate such eventualities. All sorts of things can go wrong when a program is being
run. A good programmer guards against as such eventualities. In this sense, being open to
negative feedback means more than not letting your feelings be hurt when the computer
beeps because you left out a punctuation mark or because you mistyped the name of a func-
tion. Responding constructively to negative feedback also means being open to all sorts of

12 Introduction

unwanted events and building safeguards into your programs so youÊre not confronted with
bogus results later on.

 The final sense in which it is important to be open to negative results is that you should not
be complacent when your program runs and gives you results, especially beautiful ones,
that cause you to blush with quixotic pride. Here is an example.

 The numbers 1 through 8 are assigned to a matrix called x . These numbers are session
numbers, which comprise the independent variable of a fictional behavioral science study.
The dependent variable is y , a set of fictional scores. After x and y have been defined,
a command is used to plot the data. This command ends with a special instruction, in
quotes, to plot the data in black (k), using circles (o), with connecting lines (−). Within the
plot command, you accidentally (or on purpose for this example) tell MATLAB to plot x
along the horizontal axis and to plot x along the vertical axis, rather than telling MATLAB
to plot x along the horizontal axis and y along the vertical axis. Three more lines of code
follow. One sets the limits of the x axis to ensure that the first point is plotted (a need that
arises for this particular graph). The second specifies the label for the x axis, using the
 xlabel command. The third specifies the label for the y axis, using the ylabel com-
mand. (More details about these commands will be given in Chapter 9. You can just skim
over them here.)

 Code 1.8.1:

 x = [1 2 3 4 5 6 7 8];
 y = [0.39 0.47 0.60 0.21 0.57 0.36 0.64 0.32];
 plot(x,x,'ko−')
 xlim([0 9])
 xlabel('Session')
 ylabel('Score on Test')

 When you look at the output, you are impressed by the beauty of the results.

 Output 1.8.1:

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

Session

S
co

re
 o

n
T

es
t

13Introduction

 Before calling a press conference, however, it would be advisable for you to check your
work. In this case, the results look too good to be true, and in fact, they are. An error was
made. Once the error has been found and fixed (with a comment inserted in the program
accordingly), the results look quite different.

 Code 1.8.2:

 x = [1 2 3 4 5 6 7 8];
 y = [0.39 0.47 0.60 0.21 0.57 0.36 0.64 0.32];
 plot(x,y,'ko-') % Correction made here!
 xlim([0 9])
 xlabel('Session')
 ylabel('Score on Test')

 Output 1.8.2:

 The point of this example is that you should avoid being too self-congratulatory, at least
until you know you have something to be very proud of. We hope you will reach that point!
Be open to negative feedback. In that connection, we authors welcome corrections and
suggestions about ways to improve this book. Feel free to contact us. We will welcome
constructive comments.

 1.9 Programming With a Friend

 No matter how open you may be to negative feedback, it is hard to catch all the mistakes
you may make. And no matter how useful it may be to talk aloud in forming your plan for a
computer program, you may feel uncomfortable speaking to no one in particular, especially
when others are in earshot.

 A good way to avoid these problems is to have a friend by your side while you program.
This is one of the best ways to program, in our opinion. Apart from the fact that the inter-
actions can be fun, having two pairs of eyes and ears on a problem can spur creativity.

14 Introduction

We encourage you to program with someone else. The co-authors of this text often share
questions and suggest solutions with each other, even though we usually collaborate at a
distance. If you are using this book in a course, we encourage your instructor to find ways
of grading your work so cooperation with others counts for you, not against you.

 1.10 Writing Concise Programs

 It is fairly easy to write a program that has many unnecessary variables and superfluous lines.
It is harder, at least early in training, to write a program that does the same job with few
variables and lines. It becomes a source of pride to programmers when they write concise
programs. Such programs do more than appeal to programmersÊ aesthetic sense. Concise pro-
grams also tend to finish in less time than programs that are verbose, go on and on, are redun-
dant, and have far too many words in them, as in this needlessly long sentence that should
have ended long ago had we not wanted to make the point that excess verbiage isnÊt helpful.

 Sometimes, but not always, a concise program can reduce the time to run a program by
seconds, minutes, hours, or even days. If the program must solve a problem on which
peopleÊs lives depend, finding a quick solution can literally mean the difference between
life and death. In more mundane terms, when a program is used to acquire behavioral data,
if it runs too slowly, not all potential data can be captured. That said, it is of course possible
to write too concisely, so the code is obscure to other readers and maybe even to yourself
once youÊve set it aside for a while. Our advice, then, is to be concise, but only to the extent
necessary. DonÊt obsess about writing code thatÊs ultra-brief if it makes it harder for you or
others to understand it.

 1.11 Writing Clear Programs

 As just said, program conciseness can enhance clarity, but thatÊs not always the case. Just
as you should be as lucid as possible about what your program must do (the second prin-
ciple in the list above), you should write programs that are as easy as possible to read and
understand. Program clarity becomes especially important when you have written many
programs. If you return to a program that you wrote days or weeks ago and find yourself
unable to understand it, you will be very frustrated.

 There are several things you can do to make your programs clear. One is to use extra lines
of code or extra variables to make the structure of the program transparent. For example, if
you need to divide one term by another and the numerator and denominator both contain
complex expressions, it usually helps to have one variable for the terms in the numerator
and another variable for the terms in the denominator. The quotient can then be expressed
as the ratio of the two variables. The program might have a few more variables than are
strictly required, but it will be easier for you and others to understand the code later.

 A second practice to make your code clear is to give your variables meaningful names. For
example, in the program presented earlier (Codes 1.8.1 and 1.8.2), it would have helped
to call the independent variable session rather than x and to call the dependent vari-
able test_score rather than y . Using those meaningful variable names might have pre-
vented the „accidental‰ plotting of x against x rather than the more appropriate plotting of
 y against x .

15Introduction

 A third practice to improve program clarity is to add comments. Comments are nonexecutable
statements that provide information for the programmer (or reader) instead of for the com-
puter. In MATLAB, comments are preceded by a percent sign (%), as shown in Code 1.8.2.

 Programmers comment in different ways. Some interleave comments and executable lines
of code. Others tend to provide comments above the executable code (at the start of the
program), putting relatively few comments in the body of the program. The first author of
this book prefers the latter method because it allows him to provide a conceptual plan for
the program to follow, along with introductions of the variables he will be using. He prefers
not to have too many comments interspersed with code within his programs because he
finds them distracting to read and, frankly, a pain to write.

 Providing comments at the start of a program can help you start your programming session by
combining the need for commenting with the need for „speaking aloud.‰ Developing a plan for
a program is often aided by putting the plan into words, as stated earlier (Section 1.5). Being
able to say what your program should do will help you write the code you need. The first
author often sits down and starts typing the description of what his program will do, editing the
emerging comment until he reaches the point where he thinks the procedure heÊs describing
is as clear and mechanically doable as he can make it. Then he begins coding, testing one part
of the code at a time, saving successive edits in files with higher and higher version numbers.

 Here is an example of one such program. The comments in the opening section (before any
executable statements) are typical of what the first author writes. In a short program like
this, no further comments are usually needed, because once you gain familiarity with MAT-
LAB, the meanings of the executable statements can usually be understood if the context
is clear. All the commands used below will be explained in more detail later in this book.

 Code 1.11.1:

 % Largest_So_Far_01

 % Find the largest value in the one-row matrix V.
 % Initialize largest_so_far to minus infi nity.
 % Then go through the matrix by fi rst setting i to 1
 % and then letting i increase to the value equal
 % to the number of elements of V, given by length(V).
 % If the i-th value of V is greater than largest_so_far,
 % reassign largest_so_far as the i-th value of V.
 % After going through the whole array, print out
 % largest_so_far.

 V = [7 33 39 26 8 18 15 4 0];
 largest_so_far = -inf;
 for i = 1:length(V)
 if V(i) > largest_so_far
 largest_so_far = V(i);
 end
 end
 largest_so_far

16 Introduction

 Output 1.11.1:

 largest_so_far =
 39

 The foregoing program can be adapted to find the largest value of other arrays, including
much larger ones. We include the program here to give you a taste for what MATLAB pro-
grams look like. We also want to convey the idea that itÊs advisable to test programs on small
scales. In general, itÊs advisable to work on „toy‰ problems before scaling up to larger ones.
This program was tested with an array of length 9. Nine numbers is a more tractable length
to use at first than 9,000,000. Just to be sure there are no problems, the program should also
be tested with sample data sets in which the largest value is in the first or last position of the
matrix because many program errors only reveal themselves at such boundaries.

 One last point about program clarity follows. Like all writing, a program is composed for
several audiences. Apart from yourself (the person writing and using the code), there are
three audiences to keep in mind.

 First, there is the computer. The computer, the machine, must be able to deal with the pro-
gram in the way you wish. At the very least, the program supplied to the computer must be
syntactically and logically correct.

 The second audience is a colleague, who may wish to evaluate or adapt your program for a
related purpose. The colleague may need to understand your program and its logic, with or
without your direct advice, and without any particular insights into how you addressed the
problem beyond the comments you provided.

 The third audience is your future self who, another day, may look back at the prior work.
At that later time, you may be faced with understanding what you did without a detailed
memory of how you addressed the problem. In the urgency of writing your program to
solve an immediate problem, you may take shortcuts, such as using very brief mnemonics
for variable names, the meaning of which may be forgotten in the future. To ensure against
this unhappy outcome, you may find that once the program is completed, it will serve you
to spend a little time clarifying the variable names and adding a few judicious comments.
Once you have made these changes, be sure to test the program again, lest your clarification
inadvertently produced a new error.

 In that spirit, here is the program from Code 1.11.1, with the variable name V replaced by
 theDataArray . A couple of other variables and comments have been added as well. Is it
clearer to read? Is the result different? Try to make your own programs „self-documenting‰
by selecting variable names and comments that are as self-explanatory as possible.

 Code 1.11.2:

 % Largest_So_Far_02

 % Find the largest value in the one-row matrix theDataArray.
 % Initialize largest_so_far to minus infi nity.
 % Then go through the matrix, by fi rst setting i to 1
 % and then letting i increase to the value equal

17Introduction

 % to the number of elements of theDataArray, given by
 % length(theDataArray).
 % If the i-th value of theDataArray is greater than
 % largest_so_far,reassign largest_so_far with the i-th
 % value of theDataArray.
 % After having gone through the whole array, print out
 % largest_so_far, which will be the largest value found.

 theDataArray = [7 33 39 26 8 18 15 4 0];
 %start with an absurdly small maximum
 largest_so_far = -inf;

 for i = 1:length(theDataArray)
 if theDataArray(i) > largest_so_far
 %Got a new candidate!
 largest_so_far = theDataArray(i);
 end
 end

 % All done. . .so what's the maximum?
 largest_of_them_all = largest_so_far

 Output 1.11.2:

 largest_of_them_all =
 39

 1.12 Writing Correct Programs

 If your program does not generate any error messages and generates plausible output, does
that mean the results are correct? You will find that the MATLAB programming environ-
ment, introduced in Chapter 2, serves as an excellent source of feedback as you write and
then try to run your own programs. You will be told, indirectly or directly, if your syntax
(word use and punctuation) is acceptable or unacceptable. If your syntax is unacceptable,
you will get an error message. Otherwise, your program will run. If you get an error mes-
sage, it will be up to you to figure out what needs to be done to resolve the error. It takes
some time to learn to interpret error messages, but over time you will learn to do so.

 If your syntax is acceptable, it is your responsibility to confirm that the output you get is cor-
rect, because correct syntax alone does not guarantee correct program logic. You will find that
judging the correctness of your programÊs output is often as challenging as generating accept-
able syntax. As in natural language, an expression can be syntactically correct but not mean
what you intend. Sometimes a program seems to work, but lurking within it is some subtle error
that makes the output obviously wrong or, much worse, seemingly correct but actually flawed.

 Detecting such mistakes is one of the most challenging aspects of programming. In gen-
eral, developing a program that works correctly requires more than an understanding of
programming syntax. It also requires greater clarity and explicitness about procedures to

18 Introduction

be followed than is usually required in daily life. Additionally, it requires some way of veri-
fying the output. Striving for such clarity and explicitness is one of the things that makes
programming a humbling, though educational, experience.

 As you plan your program, pay attention to the eventual means of verification as well as
the logic of computation. For instance, suppose you have a set of reaction-time data from a
within-subjects design experiment. In such a design, the number of trials observed in each
condition may be determined by the experimental design. Part of the output of the analysis
program that you write can be the number of trials in each condition (n_trials) for each
subject, even if those values do not enter into subsequent analyses. You can take getting
the correct (i.e., predicted) values of n_trials in each condition as evidence that all tri-
als have been considered in the analysis. Conversely, any apparent anomaly in the values
of n_trials may alert you to an error somewhere, whether in data acquisition or in the
summary computation.

 Relatedly, if a program analyzes the data of dozens of participants, it is well worth per-
forming the analysis of at least one or two participants by hand, if possible, to verify the
match between the computerÊs computations and your own. In fact, beginning by doing
one subject by hand will give you insights into how best to approach the programming
problem. Similarly, itÊs not a bad idea to have two researchers each independently write a
program to analyze the same data. If the two programmersÊ results agree in every detail,
you can be reasonably confident in the correctness of the analysis. If it turns out that there
is some detail in which the two results do not agree, that outcome provides an opportunity
to explore the difference to see if it is due to a programming error, a difference in under-
standing the data, or error(s) in the analysis logic.

 Another useful shortcut for data verification is to exploit a different analysis environment
to serve as that „second programmer.‰ The results of analyzing a small subset of the data in
a spreadsheet or statistical package should agree perfectly with the corresponding output
of your MATLAB program. If the results differ, even apparently trivially, you will want to
track down the source of the disagreement.

 1.13 Understanding How the Chapters of This Book Are Organized

 If you are persuaded that it makes sense for you to go further with this book, it will help
you to understand how the bookÊs chapters are organized.

 Each chapter begins with the sentence, „This chapter covers the following topics,‰ after which
those subjects are listed. The way the subjects are listed is via presentation of the chaptersÊ
section names. All the section names of this book begin with gerunds, such as „Understand-
ing . . . ,‰ „Approaching . . . ,‰, or „Deciding‰ The sections are titled this way because we
want you to learn by doing. You should be actively engaged in understanding, approaching,
and deciding (to name some activities) as you pursue the material presented here.

 Continuing with the layout of the chapters, after all the section titles are given, each chapter
continues with the sentence, „The commands that are introduced and the sections in which
they are premiered are:.‰ This sentence precedes a list of all the new commands introduced
in the chapter, along with the sections in which those new command are first discussed. If
you run your finger down the list and find the activity to which it corresponds, you should

19Introduction

be able to turn to that section and find an example of how the command is used. The com-
mands discussed are also listed alphabetically, with reference to their first mention, in the
Commands Index.

 Every program shown in this book has a code number. The first number (to the left of the
decimal point) corresponds to the chapter in which the code appears. The second number
(between the two decimal points) corresponds to the section in which the code appears. The
third number (to the right of the second decimal point) is the number of the code within the
section. All MATLAB code appears in Courier font, as do all words taken from the code
shown in the text body of this book.

 Every program that yields output has its output shown in the same format as the code. The
output has a number that corresponds to the code that produced it.

 One thing that is missing from the programs shown in this book are extensive comments.
We have left them out not because comments are unimportant but because, for most of the
programs in this book, the comments are, in effect, presented in the text leading up to the
programs. If you imagine percent signs in front of the lines of text preceding the code for
a program shown here, you effectively have the kind of comment that can be supplied in
a program.

 Does it make sense for you to read the code shown in this book? ShouldnÊt you just dive
in code for yourself, sinking or swimming as the case may be? We donÊt want you to sink.
We want you to swim, and we think there is much to be learned by reading successful
code to figure out what it does and how it does it. You can learn by example. Starting with
examples of code can be one of the best ways to learn to program. You can always edit the
working example for your own needs, much as a cook can edit a recipe he or she reads in
a cookbook.

 1.14 Using the Website Associated With This Book

 As you leaf through this book, you will see that all the graphs and images are in grayscale.
The programs that yield these graphs and images allow for color graphics. The reason the
book has grayscale images is to keep the cost of production down, which translates into a
lower price for you. You can see the color images generated by the programs, and animations,
by going to the website associated with this book (www.routledge.com/9780415535946).
You will be able to copy the programs and outputs as you wish.

 1.15 Obtaining and Installing MATLAB

 How can you access MATLAB? You or your institution can purchase individual or shared
licenses. Students can also purchase the educational version for their own use.

 MATLAB is, formally, a cross-platform programming environment with versions for Win-
dows, Mac OS, and Unix. There are superficial differences between the Windows version
of MATLAB and the version that runs under the Mac OS or Unix operating system. If a
program involves certain kinds of input-output, there may be differences across platforms,
but these will not interfere with your mastery of the basics of the language.

http://www.routledge.com/9780415535946

20 Introduction

 The differences between the Windows and Mac OS platforms relate primarily to common
platform-specific GUI (graphical user interface) conventions and aspects of interfacing for
real-time data acquisition. Most of the computational features of MATLAB are equivalent
across platforms, so programs written on one platform should work on another. Where
there are important platform differences that can cause problems, we will point them out,
though we cannot anticipate all problems that might arise.

 As of this writing, we have used versions MATLAB installed in the following contexts:

 Ć As a stand-alone program, individually licensed to a particular researcher under an
academic license.

 Ć As a stand-alone program (student version), individually licensed to an undergradu-
ate or graduate student.

 Ć Under an educational site license in which the number of simultaneous users on a
campus is monitored by a local server.

 Ć As a program that runs remotely on a central server, to which a limited number of
simultaneous users may log on.

 Ć Using an open-source alternative to MATLAB, called OCTAVE (www.gnu.org/soft
 ware/octave/), that allows the running of much of the code of MATLAB. OCTAVE
lacks the closely coordinated debugging and program management tools of MAT-
LAB, and we have found that its graphics are less sophisticated, but it is capable of
most of the computational operations of MATLAB.

 The examples in this text should almost all run identically regardless of the environment
and MATLAB version („release‰) that is used. For the most part, we have relied on the
current Windows release, R2013a, released March 1, 2013. Because successive MATLAB
releases are upward compatible (later versions are compatible with earlier versions), what
you learn here should apply to later releases.

 How should MATLAB be installed? It is outside our scope to describe the installation pro-
cedures needed to get MATLAB to run wherever you are, in part because the details vary
depending on the version you are using, the platform you are running on, and the type of
license you hold. Ideally, you will have local knowledge to draw on, but MATLAB support
through The MathWorks, Inc., is typically very responsive to calls for installation assis-
tance, provided you have your license number handy; see the ver command in Chapter 2,
Section 2.2.

 1.16 Acknowledging Limits

 The final section of this chapter is concerned with the limits of this book, our limits as the
bookÊs authors, and the limits of MATLAB itself. It is important for you to know what
these limits are so you wonÊt form unrealistic expectations.

 First, with regard to the book, you should know that you will not be able to program in
MATLAB if you just read this book without also trying to program yourself. Reading how

http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/

21Introduction

to program is a little like reading how to ride a bike. You have to get on and try it yourself.
DonÊt worry if you fall off a few times. Indeed, experienced as we authors may be, in pre-
paring the examples in this book we had to spend quite a bit of time getting the syntax to
work just right, often with many cycles of the edit-run-error-edit loop. ItÊs no reflection on
your skills, then, if you have lots of false starts when putting together a new programming
project. We, the authors of this book, have gone through those false starts ourselves.

 You should also know that the material presented in this book is meant to acquaint you
with MATLAB but not to convey every aspect of this vast language and its associated
applications. This book would be much denser if it went into many more detailed and
advanced aspects of the MATLAB programming language. You should be able to delve
into these topics on your own having worked through the material provided here.

 Third, you should know about the limits of MATLAB. The „word on the street‰ is that
MATLAB is terrific for graphics and for creating conceptual models. Its reputation is less
secure when it comes to real-time data gathering, where commercial or free alternatives
like E-Prime, PsyScope, and SuperLab are often favored. For large-scale number crunch-
ing or statistics, C/C++, R, SPSS, or SAS may be better than MATLAB. On the other hand,
MATLAB is being actively enhanced in so many quarters that its limitations, whatever
they may be, will probably wane over time as needed tools are being developed to address
deficiencies that are spotted by the MATLAB community.

 Three examples of such tools can be mentioned here. One is Psychtoolbox (discussed in
Chapter 13), which has methods for precise real-time control in psychophysical research.
Another tool is an add-on toolbox, MATLAB Coder (not discussed further in this book),
which enables MATLAB programs to be converted and distributed as C++ code. A third
toolbox from The MathWorks, Parallel Computing, enables intensive computation to be dis-
tributed across multiple processors if your computer has more than one. You can learn more
about these and other toolboxes provided by The MathWorks by going to their website.

 Another comment about the limits of the book is that while the program examples pre-
sented here should be comprehensible to you as a behavioral scientist (veteran or fledg-
ling), the program examples are not drawn from a particular approach or finding. The
interests of behavioral scientists are highly varied, so the examples offered here are generic
rather than specific. They are selected more to highlight particular features of MATLAB
than to address specific scientific questions.

22

 2. Interacting With MATLAB

 This chapter covers the following topics:

 2.1 Using MATLABÊs windows
 2.2 Using the Command window
 2.3 Writing tiny programs in the Command window
 2.4 Allowing or suppressing outputs by omitting or including end-of-line semi-colons
 2.5 Correcting errors in the Command window
 2.6 Writing, saving, and running larger programs as scripts (.m files)
 2.7 Running and debugging MATLAB programs
 2.8 Keeping a diary
 2.9 Practicing interacting with MATLAB

 The commands that are introduced and the sections in which they are premiered are:

 calendar (2.2)
 clc (2.2)
 ctrl-c (2.2)
 date (2.2)
 disp (2.2)
 doc (2.2)
 exit (2.2)
 help (2.2)
 ls (2.2)
 open (2.2)
 pwd (2.2)
 quit (2.2)
 ver (2.2)
 who (2.2)

 ; (output suppression) (2.4)

 up-arrow (2.5)

 % (2.6)
 ... (2.6)
 commandwindow (2.6)
 ctrl-[(2.6)
 ctrl-] (2.6)
 ctrl-0 (zero) (2.6)
 ctrl-i (2.6)

23Interacting With MATLAB

 edit (2.6)
 F5 key (2.6)
 New Script button (2.6)
 Run button (2.6)

 diary (2.8)
 type (2.8)

 2.1 Using MATLAB’s Windows

 To use MATLAB, you must launch the program. MATLAB is activated, as are most com-
puter applications, by clicking on its icon on the computer desktop or wherever its icon is
located. When MATLAB is running, a number of windows will be opened, often as panes
docked together in a single window.

 When MATLAB is first launched, the Command window appears as a pane in the com-
posite window (the one with the name beginning „MATLAB . . . ,‰ followed by the ver-
sion of MATLAB that you are running). The Command window is the most important
window in MATLAB. It is where you control what happens and where you see the results
of your programming efforts. The Command window will be described in more detail in
Section 2.2.

 The second most important window is the Editor window, which usually appears as a
separate window (the one named „Editor -. . .‰ followed by the location and name of the file
you are editing). Here you exploit MATLABÊs editing capabilities by writing, revising, and
saving program scripts and functions, both of which are files that end with a .m suffix. The
Editor window will be discussed in Section 2.3. Suggestions for how best to arrange these
windows will be given in Section 2.5.

 The two windows just mentioned are the ones that are most critical. Both are normally
used to write and run MATLAB programs. There are also several other windows, however,
which are more specialized and are described briefly below.

 One is the Help window. This window provides a portal to MATLABÊs tutorials. The Help
window can be opened directly by entering a command in the search bar at the top right of
the MATLAB window, or it can be opened indirectly by typing the doc command in the
Command window.

 The Command History window chronicles the commands used in the Command window.
You can use this information to remind you what commands you have issued in a MAT-
LAB session.

 The Current Folder window lists the contents of the working directory. You will learn
how to change the Current Folder in Chapter 6 („Input-Output‰). By default, the Current
Folder is set to My Documents/MATLAB in Windows, and Documents/MATLAB in
 Mac OS.

24 Interacting With MATLAB

 The Workspace window lists the variables that are currently active, giving their names
and values. The values of a variable can be viewed in this window in spreadsheet form by
clicking on the grid icon to the left of its name.

 Other windows, called Figure windows, can be created, opened, and closed in your pro-
grams to show graphics, text, and other related information (e.g., sounds). Details will be
given in Chapter 9 („Plots‰).

 2.2 Using the Command Window

 As mentioned above, after MATLAB is activated, it brings up the Command window. This
is the window where you can issue commands. You do so by typing after the >> prompt.

 Some useful commands that can be typed after the >> prompt are given below, followed
by the purposes they serve. It will be helpful for you to read through this list now because
the commands are listed more or less „chronologically,‰ in a way that corresponds to what
occurs in a typical MATLAB session. Some of the commands tend to be used more than
others. The most frequent ones, in our experience, are help , ls , pwd , edit , open ,
 ctrl-c , and exit.

 ver Information about your license, computer, and MATLAB ver-
sion, together in a convenient summary. If you consult with
MathWorks support, you will need this information.

 date The current date (in a format you can specify).

 disp The value of an expression (numeric or string), displayed in the
Command window.

 calendar The calendar for the current month.

 help Topics for which help can be provided within the command
window. Adding a topic name after help (followed by a space)
brings up help about that topic, provided it is known to MAT-
LAB. You can find out what topics are known to MATLAB by
first typing help alone. This brings up all the categories for
which help is available.

 doc This is a shortcut to the Help window, where all the help that
can be viewed in the Command window is available, plus more.
The Help navigator can also be accessed via the Help tab at the
top of the main MATLAB window.

 pwd Identifies the current directory, the one listed in the Current
Folder window, and the default location for saving a script.
(pwd stands for „print working directory‰.)

 ls Lists the contents of the current directory. Adding just part of
a file name after ls (following a space) with an asterisk

25Interacting With MATLAB

replacing part of the file name causes all the files with
that named part to be listed. Thus, ls tim* lists
 tim_program_01.m , tim_program_02 . m , timmy_
program_101.m , and timothy.doc, provided these
files exist in the current directory. ls tim*.m lists tim_
program_02.m , and timmy_program_101.m , but
not timothy.doc .

 open Opens a file in the current directory or invokes other programs
as needed (e.g., Adobe Acrobat for .pdf files).

 who Lists the names of the currently active variables.

 whos Lists the names of the currently active variables along with their
sizes and other attributes.

 ctrl-c Holding down the ctrl key and then pressing the c key interrupts
the program that is currently running, provided the Command
window is the active window (the window in front of any others
that are open). This is very useful when you have „runaway‰
programs and unwanted data are being spewed on the screen or
when you have a program that is running for a long time with-
out any output that you actually want.

 clc Clears the Command window.

 exit Terminates MATLAB.

 quit Runs an optional program called fi nish.m , whose contents can
be customized by the user, then terminates MATLAB, just as
 exit does.

 2.3 Writing Tiny Programs in the Command Window

 The preceding list of commands is just a small subset of those that can potentially be typed
in the Command window. In fact, the number of possible commands that can be typed in
the Command window is infinite, because a series of commands of arbitrary length and
complexity can be typed or pasted after the command line prompt (>>).

 In practice, typing or pasting very long series of commands is not a good idea, however,
because the longer and more complex the commands, the greater the chance of error. Once
your sequence of commands has grown to a few lines (or is expected to be several lines
long), it is better to generate program scripts „off-line‰ in MATLABÊs Editor. There, the
scripts can be saved and modified. We will turn to the Editor in the next section. In this
section, setting the stage for what will come when we turn to the Editor per se and to
acquaint you with some elementary programming, we will consider a few tiny programs
that can be written in the Command window. The rules governing acceptable command
syntax are the same whether the commands are typed into the command line „by hand‰

26 Interacting With MATLAB

or are part of a file in the Editor. Therefore, typing commands into the Command window
can be a good way to experiment with getting the syntax right before you add the lines to
an edited program.

 One of the most fundamental programming tasks is to assign a value to a variable. Suppose
you want to assign the number 2 to some variable, arbitrarily called A . This can be done by
typing A = 2 after the command line prompt as follows:

 Code 2.3.1:

 >> A = 2

 Output 2.3.1:

 A =
 2

 The ordering of terms in the assignment is important, as shown below.

 Code 2.3.2:

 >> 2 = A

 Output 2.3.2:

 ??? 2 = A

 Error: The expression to the left of the equals sign is
not a valid target for an assignment.

 The error message indicates that, in contrast to mathematics, where an equation means
the same thing regardless of whether terms appear to the left or right of the equal sign,
order matters in MATLAB. Thus, 2 = A does not mean the same thing as A = 2 . Pro-
grammers often say „A gets 2‰ when referring to statements such as A = 2 to indicate
that they are referring to a variable assignment rather than to a conventional mathematical
equation.

 In MATLAB, variable names, program names, and other file names are case sensitive.
Consequently, if you query MATLAB about the value of A , you can get a satisfying, if not
terribly exciting, result:

 Code 2.3.3:

 >> A

 Output 2.3.3:

 A =
 2

