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FOREWORD

and Reasoning in the Child, The Child’s Conception of the World, and

The Child’s Conception of Physical Causality), we analysed various
verbal and conceptual aspects of the child’s thought. Later on, we
examined the beginnings of thought on the practical and sensory-
motor planes (La Naissance de I’Intelligence and La Construction du Réel
chez UEnfant). It now remains, in order to discover the mechanisms
that determine thought, to investigate how the sensory-motor
schemata of assimilating intelligence are organized in operational
systems on the plane of thought. Beyond the child’s verbal
constructions, and in line with his practical activity, we now have to
trace the development of the operations which give rise to number
and continuous quantities, to space, time, speed, etc., operations
which, in these essential fields, lead from intuitive and egocentric
pre-logic to rational co-ordination that is both deductive and
inductive.

In dealing with these new problems, appropriate methods must
be used. We shall still keep our original procedure of free
conversation with the child, conversation which is governed by
the questions put, but which is compelled to follow the direction
indicated by the child’s spontaneous answers. Our investigation
of sensory-motor intelligence has, however, shown us the necessity
for actual manipulation of objects. In The Child’s Conception of
Physical Causality, we saw, though it was not possible to take full
advantage of the fact, that conversation with the child is much
more reliable and more fruitful when it is related to experiments
made with adequate material, and when the child, instead of
thinking in the void, is talking about actions he has just performed.
As far as the study of number is concerned, this is an essential
condition, and the gifts of Mlle Szeminska have made it possible
to discover techniques adapted to the various problems which
needed to be solved and analysed separately. In another volume,
written with the collaboration of Mlle Inhelder, the same methods
will be used in the description of continuous quantities as the
product of quantification of physical qualities (weight, volume,
etc.).

In the present volume, it has not been possible to include all
that we should have wished to say on the subject of the evolution
of number. In particular, there is an inexhaustible mine of

vil

In our earlier books (The Language and Thought of the Child, Judgment
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information, on which we have deliberately not drawn, in the
observations collected at the Maison des Petits by Mlles Aude-
mars and Lafendel, who constructed original material which they
have been using for more than twenty years. It is to be hoped that
these gifted teachers will shortly publish their findings concerned
with the beginnings of arithmetic in the school. We have, of course,
greatly benefited from the spirit of their research, and we are also
greatly indebted to many works on the arithmetic of the child,
particularly to those of K. Biihler, Decroly, Mlle Descceudres,
and others. We have not entered into a detailed discussion of
existing works because we have here deliberately restricted our-
selves to the problem of the construction of number in relation to
logical operations.

Our hypothesis is that the construction of number goes hand-
in-hand with the development of logic, and that a pre-numerical
period corresponds to the pre-logical level. Our results do, in fact,
show that number is organized, stage after stage, in close con-
nection with the gradual elaboration of systems of inclusions
(hierarchy of logical classes) and systems of asymmetrical rela-
tions (qualitative seriations), the sequence of numbers thus
resulting from an operational synthesis of classification and
seriation. In our view, logical and arithmetical operations there-
fore constitute a single system that is psychologically natural, the
second resulting from generalization and fusion of the first, under
the two complementary headings of inclusion of classes and
seriation of relations, quality being disregarded. When the child
applies this operational system to sets that are defined by the
qualities of their elements, he is compelled to consider separately
classes (which depend on the qualitative equivalence of the
elements) and asymmetrical relations (which express the seriable
differences). Hence the dualism of logic of classes and logic of
asymmetrical relations. But when the same system is applied to
sets irrespective of their qualities, the fusion of inclusion and
seriation of the elements into a single operational totality takes
place, and this totality constitutes the sequence of whole numbers,
which are indissociably cardinal and ordinal.

Although the facts recorded in this volume lead to this con-
clusion almost without any attempt at interpretation, its very
simplicity seemed to us a cause for doubt. Discussion as to the
relationship between number and logic has, as we know, been
endless. The logisticians, with Russell, have tried to reduce car-
dinal number to the notion of ‘class of classes’, and ordinal
number, dissociated from cardinal number, to the notion of ‘class
of relationships’, while their opponents maintained, with Poincaré
and Brunschvicg, that the whole number is essentially synthetic
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and irreducible. Our hypothesis seems to obviate the necessity
for this alternative, for if number is at the same time both class
and asymmetrical relation, it does not derive from one or other
of the logical operations, but from their union, continuity thus
being reconciled with irreducibility, and the relationships between
logic and arithmetic being regarded not as unilateral but as
reciprocal. Nevertheless, the connections established in the field of
experimental psychology needed to be verified in the field of
logistics, and we proceeded to attempt this verification.

In studying the literature on the subject, we were surprised to
find to what extent the usual point of view was ‘realist’ rather
than ‘operational’, with the exception of the interesting work of
A. Reymond. This fact accounts for the connections, many of
them artificial, established by Russell, which forcibly separated
logistic investigation from psychological analysis, whereas each
should be a support for the other in the same way as mathematics
and experimental physics.

If, on the contrary, we construct a logistics based on the reality
of operations as such, in accordance with, and not in opposition
to, the psychogenetic processes, we discover that the natural
psychological systems of thought, such as simple and multiple
classifications, simple and multiple seriations, nesting of sym-
metrical relations, etc., correspond from the logistic point of view
to operational structures closely akin to mathematical ‘groups’,
and which we have called ‘groupings’. The laws of these group-
ings, once formulated, proved to be of constant help in our
psychological analysis.

TRANSLATOR’s NOTE

While keeping as closely as possible to the French text, we have,
with the author’s permission, used a certain freedom on occasion,
but only when it seemed desirable in the interests of clarity and
when no essential idea was involved. In particular, we have
omitted the logistic algorism introduced by the author in Chapters
IIT and X to which reference can be made in the original text.

! Since this book was published (Geneva, 1941), this problem has been
considerably developed in two further volumes, Classes, relations et nombres
{Vrin, Paris, 1942) and Traité de Logique (A. Colin, Paris, 1950). (Translator’s
note).

The first chapter of this volume appeared in 1939 in the Journal de Psychologie,
and the first paragraphs of Chapter VII form part of an article published in
1937 in the Recueil de travaux de I’ Université de Lausanne, publié¢ d Uoccasion du IVme
Centenaire de la fondation de I’ Université.

In the Compte rendu des séances de la Société de Physique et d’Histoire naturelle de
Geneve (vol. 58, 1941) the theory of groupings appeared for the first time, in
condensed form.
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CHAPTER I

CONSERVATION OF CONTINUOUS
QUANTITIES

common sense, presupposes a set of principles of comn-

servation, either explicit or implicit. It is a matter of com-
mon knowledge that in the field of the empirical sciences the
introduction of the principle of inertia (conservation of rectilinear
and uniform motion) made possible the development of modern
physics, and that the principle of conservation of matter made
modern chemistry possible. It is unnecessary to stress the impor-
tance in every-day life of the principle of identity; any attempt by
thought to build up a system of notions requires a certain per-
manence in their definitions. In the field of perception, the schema
of the permanent object! presupposes the elaboration of what is no
doubt the most primitive of all these principles of conservation.
Obviously conservation, which is a necessary condition of all
experience and all reasoning, by no means exhausts the repre-
sentation of reality or the dynamism of the intellectual processes,
but that is another matter. Our contention is merely that con-
servation is a necessary condition for all rational activity, and we
are not concerned with whether it is sufficient to account for this
activity or to explain the nature of reality.

This being so, arithmetical thought is no exception to the rule.
A set or collection is only conceivable if it remains unchanged
irrespective of the changes occurring in the relationship between
the elements. For instance, the permutations of the elements in a
given set do not change its value. A number is only intelligible if
it remains identical with itself, whatever the distribution of the
units of which it is composed. A continuous quantity such as a
length or a volume can only be used in reasoning if it is a per-
manent whole, irrespective of the possible arrangements of its
parts. In a word, whether it be a matter of continuous or dis-
continuous qualities, of quantitative relations perceived in the
sensible universe, or of sets and numbers conceived by thought,
whether it be a matter of the child’s earliest contacts with number
or of the most refined axiomatizations of any intuitive system, in

1 La Construction du Réel chez I’Enfant, chapter i.
3

I :VERY notion, whether it be scientific or merely a matter of
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each ana every case the conservation of something is postulated
as a necessary condition for any mathematical understanding.

From the psychological point of view, the need for conservation
appears then to be a kind of functional a priori of thought. But does
this mean that arithmetical notions acquire their structure because
of this conservation, or are we to conclude that conservation pre-
cedes any numerical or quantifying activities, and is not only a
function, but also an a prior: structure, a kind of innate idea
present from the first awareness of the intellect and the first
contact with experience? It is experiment that will provide the
answer, and we shall try to show that the first alternative is the
only one that is in agreement with the facts.

§1.  Technique and general results

This chapter and the one that follows will be devoted to experi-
ments made simultaneously with continuous and discontinuous
quantities. It seemed to us essential to deal with the two questions
at the same time, although the former are not arithmetical and
were to be treated separately in a special volume, since it was
desirable to ascertain that the results obtained in the case of dis-
continuous sets were general,

The child is first given two cylindrical containers of equal
dimensions (A1 and A2) containing the same quantity of liquid
(as is shown by the levels). The contents of A2 are then poured
into two smaller containers of equal dimensions (Br and B2) and
the child is asked whether the quantity of liquid poured from A2
into (B +B2) is still equal to that in A1. If necessary, the liquid
in B1 can then be poured into two smaller, equal containers
(C1 and Cz2), and in case of need, the liquid in B2 can be poured
into two other containers Cg and C4 identical with C1 and Ca.
Questions as to the equality between (C1 +Cz2) and B2, or between
(C1 +C2 +Cg +C4) and A1, etc., are then put. In this way, the
liquids are subdivided in a variety of ways, and each time the
problem of conservation is put in the form of a question as to
equality or non-equality with one of the original containers.
Conversely, as a check on his answers, the child can be asked to
pour into a glass of a different shape a quantity of liquid approxi-
mately the same as that in a given glass, but the main problem is
still that of conservation as such.

The results obtained seem to prove that continuous quantities
are not at once considered to be constant, and that the notion of
conservation is gradually constructed by means of an intellectual

1]. Piaget and B. Inhelder, Le Dévelopment des Quantités chez I’Enfant (Con-
servation et Atomisme), 1941.
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mechanism which it is our purpose to explain. By grouping the
answers to the various questions, it is possible to distinguish three
stages. In the first, the child considers it natural for the quantity of
liquid to vary according to the form and dimensions of the con-
tainers into which it is poured. Perception of the apparent changes
is therefore not corrected by a system of relations that ensures
invariance of quantity. In the second stage, which is a period of
transition, conservation gradually emerges, but although it is
recognized in some cases, of which we shall attempt to discover the
characteristics, it is not so in all. When he reaches the third stage,
the child at once postulates conservation of the quantities in each
of the transformations to which they are subjected. Naturally this
does not mean that this generalization of constancy extends at this
stage beyond the limits of the field studied here.

In our interpretation of these facts, we can start from the fol-
lowing hypotheses, some of which directed the research of this
chapter while others arose in the course of our experiments. The
question to be considered is whether the development of the
notion of conservation of quantity is not one and the same as the
development of the notion of quantity. The child does not first
acquire the notion of quantity and then attribute constancy to it;
he discovers true quantification only when he is capable of con-
structing wholes that are preserved. At the level of the first stage,
quantity is therefore no more than the asymmetrical relations
between qualities, i.e., comparisons of the type ‘more’ or ‘less’
contained in judgements such as ‘it’s higher’, ‘not so wide’, etc,
These relations depend on perception, and are not as yet relations
in the true sense, since they cannot be co-ordinated one with
another in additive or multiplicative operations. This co-ordina-
tion begins at the second stage and results in the notion of ‘inten-
sive’ quantity, i.e., without units, but susceptible of logical
coherence. As soon as this intensive quantification exists, the child
can grasp, before any other measurement, the proportionality of
differences, and therefore the notion of extensive quantity. This
discovery, which alone makes possible the development of num-
ber, thus results from the child’s progress in logic during these
stages.

8§2. Stage I: Absence of conservation

For children at the first stage, the quantity of liquid increases or
diminishes according to the size or number of the containers. The
reasons given for this non-conservation vary from child to child,
and from one moment to the next, but in every case the child
thinks that the change he sees involves a change in the total value
of the liquid. Here we have some examples:
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Blas (4;0). ‘Have you got a friend?—2es, Odette.—Well look, we're
giving you, Clairette, a glass of orangeade (A1, § full), and we’re giving
Odette a glass of lemonade (A2, also  full). Has one of you more to
drink than the other?—The same.—This is what Clairette does: she
pours her drink into two other glasses (Br and B2, which are thus half
filled). Has Clairette the same amount as Odette?—Odette has more.—
Why ?—Because we’ve put less in (She pointed to the levels in Br and Be,
without taking into account the fact that there were two glasses).-——
(Odette’s drink was then poured into B3 and B4.) If’s the same.—And
now (pouring Clairette’s drink from Br + B2 into L, a long thin tube,
which is then almost full)?>—I"ve got more.—Why?—We've poured it into
that glass (pointing to the level in L), and here (B3 and B4) we haven’t.—
But were they the same before?—ZYes.—And now?—I’ve got more.’
Clairette’s orangeade was then poured back from L into Br and B2:
‘Look, Clairette has poured hers like Odette. So, is all the lemonade
(B3 +B4) and all the orangeade (B1 +B2) the same?—It's the same
(with conviction).—Now Clairette does this (pouring B into C1 which
is then full, while B2 remains half full). Have you both the same amount
to drink?—1I"ve got more.—But where does the extra come from?—From
in there (B1).—What must we do so that Odette has the same?— We must
take that little glass (pouring part of B3 into C2).—And is it the same
now, or has one of you got more?—Odette has more.—Why?—Because
we’ve poured it into that little glass (C2).—But is there the same amount to
drink, or has one got more than the other?—Odette has more to drink.—
Why?—Because she has three glasses (B3 almost empty, B4 and Cg, while
Clairette has Cr full and Be2).’

A moment later, a new experiment. Clairette was again shown
glasses A1 and A2, # full, one with orangeade for herself and the other
with lemonade for Odette. ¢ Are they exactly the same?—Zes (verifying
the levels).—Well, Odette is going to pour hers (A2) into all those (Ci1,
C2, C3, C4, which were thus about half full). Have you both the same
amount ?—1"ve got more. She has less. In the glasses there’s less (looking care-
fully at the levels).—But before, you both had the same?—Z%es.—And
now?—Here (pointing to the level in A1) it’s more, and here (indicating
the 4 glasses C) it’s less.’

Finally she was given only the big glass A1 almost full of orangeade:
‘Look, Clairette does this: she pours it like that (into Bi and B2, which
are then % full). Is there more to drink now than before, or less, or the
same?— There’s less (very definitely).—Explain to me why.— When you
poured it out, it made less.—But don’t the little glasses together make the
same?—It makes less.’

Sim (5;0). She was shown A1 and A2 half full. ‘There’s the same
amount in the glasses, isn’t there?—(She verified it) Yes.—Look, Renée,
who has the lemonade, pours it out like this (pouring Ar into Br and
B2, which were thus about  full). Have you both still the same amount
to drink?—No. Renée has more because she has two glasses—What could
you do to have the same amount?—Pour mine into two glasses. (She
poured A2 into Bg and B4.)-—Have you both got the same now?—(She
looked for a long time at the 4 glasses Yes.—Now Madeleine (herself)
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is going to pour her two glasses into three (B3 and B4 into C1, C2 and
Cg). Are they the same now?—No.—Who has more to drink?—
Madeleine, because she has three glasses. Rende must pour hers too into three
glasses. (Renée’s Br and B2 were poured into Cs, C6 and G7). There.
—It’s the same.—But now Madeleine pours hers into a fourth glass (C4,
which was filled with a little from Ci, C2 and C3). Have you both the
same amount?—1’ve got more.—Is there more of the lemonade (Cs, C6
and-C7) or of the orangeade (C1, C2, C3 and C4)?— The orangeade.—
(The two big glasses A1 and A2 were then put before her.) Look,
we’re going to pour back all the lemonade into this one (A1) as it was
before, and all the orangeade into that one. Where will the lemonade
come up to?—(She indicated a certain level)-——And the orangeade?—
(She indicated a higher level.)—Will the orangeade be higher than the
lemonade?—Yes, there’s more orangeade (pointing to the level she had
indicated) because there’s more orangeade here (pointing to Ci1, G2, Cg and
C4).—You think it will come up to here?—ZYes.—(This level was
marked by an elastic band and she herself poured in the liquid and
was delighted to find that it came up to the band. But when she poured
the lemonade into A1 she was very much surprised to find that it
reached the same level.) It’s the same!—How’s that?—1I think we’ve put a
little back, and now it’s the same.’

It is clear that so far the child had thought that there were changes in
quantity when the number of glasses varied, but with the next question
the level intervenes: ‘Look, Madeleine pours the orangeade into that
glass (A2 was poured into L, which was longer and narrower. L was
then  full, whereas the lemonade in A1 came only half way up.)—
There’'s more orangeade, because it’s higher.—Is there more to drink, or does
it just look as if there is?-—There’s more to drink.—And now (pouring the
lemonade into B1 and B2 and the orangeade into D1 and D2 which
were wide, low glasses)?—It’s the orangeade that’s, more, because there (in
D1 and D2) there’s a lot.—So if we pour the lemonade and the orange-
ade back here (A2 and Ar), will the orangeade come up higher or will
they be the same?—Higher.” She poured D1 and D2 back into A2, and
Br1 and B2 back into A1, and was again much surprised to see that the
levels were the same.

Lac (5;6). ‘Here are two glasses (A1 half full of orangeade and A2
slightly less full of lemonade.) The orangeade is for you and the lemon-
ade for Lucien. Lucien is cross because he has less. He pours his drink
into these two glasses (pouring A2 into Br and B2). Who has more?—
(Lac looked at the levels) Me.—Now you pour your drink into these
two glasses (B3 and B4, the levels being thus slightly higher than in Brx
and B2). Who has more?—Me.—And now Lucien takes this glass (B1)
and divides it between these two (Ci1 and C2, which are then full,
whereas B2 remains half-full). Who has more?—(Lac compared the
levels and pointed to glasses G) Lucien.—Why?—Because the glasses get
smaller (and therefore the levels rise).—But how did that happen?
Before it was you who had more and now it’s Lucien?—2Because there’s
a lot.—But how did it happen ?— We took some.—But where?—. . .—And
how?— ... —Has one of you got more?—1XYes, Lucien (very definitely).
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—And if I pour all the orangeade and all the lemonade into the two
big glasses (A1 and A2) who will have more?—1/ shall (thus showing
that he remembered the original position).—Then where has the extra
you had gone to?—. . . —What could you do to have the same amount
as Lucien? You can use any of the glasses.—Lac then took Bg and
poured some of it into C3, an empty glass. He filled it, and put it
opposite Lucien’s C1 and C2. Then he compared B3 to Lucien’s B2
and saw that there was less in B3 than in B2. He then took Cg again,
poured it back into B3, and then, showing great disappointment, cried:
‘But why was it quite full there (C3), and now (Bg) it isn’t full any longer?’

Mus (5;0). This child, like those quoted earlier, relied on the number
of glasses or the level, but in her case as in several others there was also
a new factor, the size of the glasses. Nevertheless she followed three
successive lines of thought:

1. Size of the containers—She was given A1 and Az, % full: ‘Is there
the same amount in both of them?—%es.—Olga pours hers out like this
(A2 into B1 and B2, almost full). Has she still the same amount?—No.
—Who has more to drink?—Gertrude (A1).—Why?-—DBecause she has a
bigger glass.—How is it that Olga has less>— . . . —And if I pour these
(B1 and B2) back into that one (A2) how will it be?—The same amount
(as in A1).—(I did so.) And if Olga pours it back again like this (A2
into Br and B2, almost full) is it the same?—No.—Why?—It makes
less.”

I1. Level ——*Now Gertrude pours hers like this (A1 into C1 and Ce,
almost filling C1 and C2 and leaving Ar } full). Who has more,
Gertrude with those (A1 + Cr1 + C2), or Olga with those (B1 and B2)?
—(She looked at the levels, which were about equal) Both the same.—
Olga pours some of hers into another glass (B3, thus lowering the
general level in her glasses).—Gertrude will have more. Olga will have less.
—Olga pours again into these glasses (B1 and B2 into Cg and C4, which
were then full).—She will kave more (level).—But before she had less; has
she more now?—2Yes.—Why?—Because we put back here (C3 and Cy)
what was in the big glasses (B1 and B2).” The reasoning here was thus just
the opposite of what it was in I.

II1. Number of glasses and level— If T give you some coffee in one cup,
will it still be the same if you pour it into two glasses?>—1I"ll have a little
more.—Where?—In the two glasses of course—~Mummy gives you two
glasses of coffee (B1 and B2). Then you pour that one (B2) into those
(C1 and Ce).—There’s more there (C1 and C): there are two glasses quite
Sull. There, there’s only one—And of those (B1 and the 4 C) which would
you rather have, that one (B1) or all those (4 C)?—The big one (B1).—
Why ?—DBecause there’s more : the glass is big.’

Such then are the earliest reactions of the child confronted with
the problem of conservation of quantities. He is not prepared to
believe that a given quantity of liquid remains the same irrespec-
tive of changes in shape when it is poured from one container to
another.

It might of course be argued that the child may not really have
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grasped the question. Does he always understand that it refers to
the total quantity, or does he think he is merely being asked about
changes in the number, level or size of the glasses? But the problem
is precisely to discover whether the child is capable of grasping a
quantity as being a whole, as a result of the co-ordination of the
various relationships he perceives. The fact that these children
isolated one of these relationships may therefore be due as much
to lack of understanding of the notions in question as to failure to
grasp the verbal question.

On the other hand, it might be suggested that when the liquid
is poured from one container to another before the eyes of the
child there are certain illusions of perception that counteract his
judgement as to conservation.! We are well aware that perception
of the quantifiable qualities such as length, weight, etc., leads to
systematic distortions, and that the child finds it extremely
difficult to perceive the constancy of these qualities. Hence, when
the constancy is directly perceived, there is no problem as far as
we are concerned. Our only problem is to discover by what means
the mind succeeds in constructing the notion of constant quantity
in spite of the indications to the contrary provided by immediate
perception. Judgement comes into play precisely when perception
proves inadequate, and only then. For instance, the discovery that
a given quantity of liquid does not vary when poured from a con-
tainer A into one or two containers B of a different shape, requires
on the part of the child an effort of intellectual understanding
which will be the greater and the more easily analysable the more
deceptive the immediate perception. We are therefore not con-
cerned to discover why this perception is deceptive, but why
children at a certain level accept it without question, whereas
others correct it by the use of intelligence. Moreover, either per-
ception must be studied ‘from the angle of the object’, in which
case intelligence will in the final resort be the origin of the
constancy, or else perception presupposes an organization which
elaborates the constancy on its own plane, in which case the
functioning and the successive structures of perception imply a
sensory-motor activity that is intelligent from the start. If the latter
is the case, the development of the notion of invariant quantities
(like that of ‘object’) would be a continuation, on a new, abstract
plane, of the work already undertaken by sensory-motor intelli-
gence in the field of conservation of the object.

We shall attempt to interpret the examples given above from
this second point of view. What is most striking at this first stage
is the inadequate quantification of the perceived qualities, and the
lack of co-ordination between the quantitative relations involved

* E. Brunswik, Wahrnehmung und Gegenstandwelt. Leipzig u. Wien, 1939.
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in the perception. For example, Blas (4;0) begins by thinking that
the quantity of liquid diminishes when the contents of a large
glass three-quarters full are poured into two smaller glasses, but
that it increases when poured from these small glasses into a long,
narrow tube. It is therefore only the level and not the number or
the cross section of the glasses which seems to be Blas’s criterion.
But a moment later he thinks there is more liquid in three small
glasses than in two medium-sized ones filled with the same quan-
tity. There are two noteworthy features in this reaction. In the first
place, the child continually contradicts himself. At one moment he
thinks there is more orangeade than lemonade, at another he
thinks the opposite, and yet it does not occur to him to question his
previous assumption. Obviously, if it is accepted that a liquid is
capable of expansion or contraction and has no constancy, there is
no contradiction. The real contradiction lies in the fact that the
child attempts to justify his opposing statements by resorting to
explanations that he cannot co-ordinate one with another, and
that lead to incompatible statements. Thus Blas sometimes finds
his evidence in the level of the liquid and thinks that the quantity
diminishes when it is poured from a large glass into several small
ones: sometimes he bases his statement on the number of glasses
involved, in which case the same operation is thought to imply an
increase in quantity, Alternatively, the child will use the cross
section of the containers in his estimate of the change, disregarding
the number of glasses and the level, and will then take one of these
factors into account and arrive at the opposite conclusion. This
brings us to the second feature of the reaction: the child behaves as
though he had no notion of a multi-dimensional quantity and
could only reason with respect to one dimension at a time without
co-ordinating it with the others. What has been said is true not
only of Blas, but of all the children quoted above.

The reactions of this stage can therefore be interpreted in the
following way. We must first look for the principle of differentia-
tion between quantity and quality, and this from the first per-
ceptual contact with the object. In every case, perception and
concrete judgement attribute qualities to objects, but they cannot
grasp these qualities without thereby relating them one to
another. These relations can only be of two kinds: symmetrical
relations expressing resemblances, and asymmetrical relations
expressing differences. Now resemblances between qualities can
only result in their classification (e.g., glasses C1, C2, C3 . . . are
‘equally small’), whereas asymmetrical differences imply ‘more’
and ‘less’ and thus indicate the beginnings of quantification (e.g.,
‘Ar is larger than B1’ or ‘Ar is narrower than D’). In its primitive
form, therefore, quantity is given at the same time as quality,
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since it is constituted by the asymmetrical relations that neces-
sarily link any qualities one to another. Qualities per se do not in
fact exist; they are always compared and differentiated, and this
differentiation, since it includes asymmetrical relations of differ-
ences, is the germ of quantity. From this point of view, the judge-
ments characteristic of the first stage are obviously already
quantitative in this sense. For instance, when Sim says: ‘There’s
more orangeade because it’s higher’; she is merely expressing in
terms of quantity a perceptual relation of difference between two
qualities (the heights of the liquids).

At this first level, however, which we shall call that of ‘gross
quantity’, quantification is restricted to the immediate perceptual
relationships, just as ‘gross quality’ (i.e., directly perceived
quality) is incapable of giving rise to a complete classification. The
relationship of similarity between qualities will of course eventu-
ally result in a system of classes, but this only becomes possible
with the elaboration of sequences of hierarchical inclusions involv-
ing the whole logic of classes and asymmetrical relations. As for
the relations of difference, with which alone we are for the
moment concerned, they will lead to a systematic quantification
whose stages we shall study in subsequent chapters. But before
this is achieved they must be able to satisfy two conditions that are
lacking at this level, which accounts for the absence of measurable
quantity and conservation.

The first of these conditions is that, from being mere perceptual
relationships, they shall become true relations, thus giving rise to
systems of graduations or ‘intensive quantities’. (See Glossary.)
Obviously a perceptual relationship does not as such constitute a
relation. The criterion for the psychological existence of relations
is the possibility of their- composition, or in other words, the
construction of their logical transitivity (or, if they cannot become
transitive, the justification for their non-transitivity). The main
characteristic of the perceptual relationships of gross quantity
used by the child at this first level is that they cannot be com-
posed one with another either additively or multiplicatively.
When the child thinks that the quantity increases because the
level rises, he is disregarding the cross section, and when he takes
the cross section into account he disregards the level, and so on.!

The following experiment makes this plain. The child is given

1By addition of asymmetrical relations we mean their actual or virtual
seriation and the resulting graduation of the seriated terms. By multiplication
of these relations we mean their seriation from two or more points of view
simultaneously. In the examples quoted above, the simple series do not appear,
but the children had to compare two quantities from several points of view,

height, cross-section, number of glasses, etc., which constitutes multiplication
of relations.
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two containers A and L of equal height, A being wide and L
narrow. A is filled to a certain height (one-quarter or one-fifth)
and the child is asked to pour the same quantity of liquid into L.
The dimensions are such that the level will be four times as high in
L as in A for the same amount of liquid. In spite of this striking
difference in the proportions, the child at this stage proves
incapable of grasping that the smaller diameter of L will require
a higher level of liquid. Those children who are clearly still at this
stage are satisfied that there is ‘the same amount to drink’ in L
when they have filled it to the same level as A.

Blas (4;0): ‘Look, your mummy has poured out a glass of lemonade
for herself (A) and she gives you this glass (L). We want you to pour
into your glass as much lemonade as your mummy has in hers.—(She
poured rather quickly and exceeded the level equal to that in A that
she was trying to achieve.}—Will you both have the same like that?—
No.—Who will have more?—Me.—Show me where you must pour to
so that you both have the same.—(She poured up to the same level.)—
Will you and mummy have the same amount to drink like that?—%es.
—Are you sure?—¥es.—Now watch what I'm doing (putting L’ next
to L). I’'m going to pour that one (A) into this one (L’). Will that make
the same here (L’) as there (L)?.—Zes. ——(When I did so, the child
laughed): Mummy has more.—Why?—. ..

Mus (5;0): ‘Look (same story as for Blas). Show me with your finger
how far I must pour.— There (indicating the same level in L as in A).—
{I filled it slightly higher). Will there be the same amount to drink?—
You’ve put too much. There's a little more there (in L). Pve a little more to drink
—What could you do to see if it’s the same? (putting L’ next to L).—

. —Where will it come up to if we pour that one (A) into this one
(L’) ?—To there (pointing to the same level as in A).—(I did so.).—
Mummy has more (with great surprise).—How did that happen?—
Because the glass (L) is smaller. (Mus thus appeared to have grasped the
relation height x cross-section, but it was only a momentary glimpse, as
we shall see.)—And if I pour this (L’) back into that (A), which will
have the most?—Both a little, both the same.— (1 poured it back). Who
has more to drink?—Both less.’

These reactions show that the child at the first stage is unable
to reckon simultaneously with the height and cross section of the
liquids he has to compare. It is not that he fails to notice the width
of glass A when circumstances oblige him to make the com-
parison (e.g. Mus, when A is poured into L), but when he merely
has to estimate the quantities in A and L’ he takes into account
only the height.

The child at this stage has therefore not yet acquired the notion
of multi-dimensional quantity, owing to lack of composition
between the relationships of differences. For him the quantity of
liquid does not depend on the combination of the various relations
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of height, cross section, number of glasses, etc., since each of these
relations is considered separately, as though independent of the
others. Each relation therefore constitutes merely a ‘gross quan-
tity’ that is essentially uni-dimensional. Even when the child uses
terms such as ‘big’ or ‘large’ this quality is still, as the case of
Mus shows, merely perceptual data not susceptible of com-
position with others, and therefore again constituting a uni-
dimensional ‘gross quantity’.

The second condition to be satisfied before these perceptual
relations can lead to true quantification, namely that there shall
be partition into equal units, is even more impossible of fulfilment
at this first stage than is intensive graduation. Before there can be
acceptance of the notion of conservation of the liquid, and there-
fore construction of the notion of extensive quantity (see Glossary),
there must be understanding that every increase in height is
compensated by a diminution in width, these two qualities being
inversely proportional. Yet even in the very simple problem of the
increase in the number of glasses, children at this stage show
clearly that they are unable to grasp the fact that a quantity of
liquid poured from one glass into two or three smaller glasses
remains the same. Composition by partition is therefore as
impossible as by relations.

§3. Stage II. Intermediary reactions

Between the children who fail to grasp the notion of conserva-
tion of quantity and those who assume it as a physical and logical
necessity, we find a group showing an intermediary behaviour
(not necessarily found in all children) which will characterize our
second stage. Two at least of these transitional reactions are
worthy of note. The first of these shows that the child is capable
of assuming that the quantity of liquid will not change when it is
poured from glass A into two glasses Br and B2, but when three or
more glasses are used he falls back on to his earlier belief in non-
conservation. The second reaction is that of the child who accepts
the notion of conservation when the differences in level, cross
section, etc., are slight, but is doubtful when they are greater.
Here we have some examples of the first type:

Edi (6;4): ‘Is there the same in these two glasses (A1 and A2)?—
Yes.—Your mummy says to you: Instead of giving you your milk in this
glass (A1), I give it to you in these two (B1 and B2), one in the morning
and one at night. (It is poured out.) Where will you have most to drink,
here (A2) or there (B1 +B2)?—If’s the same.—That’s right. Now,
instead of giving it to you in these two (B1 and B2), she gives it to you
in three (pouring A2 into C1, C2 and C3), one in the morning, one at
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lunch-time and one at night. Is it the same in the two as in the three,
or not?—It’s the same in g asin 2 . . . No, in g there’s more.—Why?— . . .
—(B1 and B2 were poured back into A1.) And if you pour the three
(Cr +C2 + Cg) back into that one (A2) how far up will it come?—(He
pointed to a level higher than that in Ar.}—And if we pour these 3 into
4 glasses (doing so into C1 + C2 + Cg +C4, with a consequent lowering
of the level) and then pour it all back into the big one (A2), how far
up will it come?—(He pointed to a still higher level.)-—And with §?—
(He showed a still higher level.)—And with 6?—There wouldn’t be
enough room in the glass.’

Pie (5;0): ‘Is there the same amount here (A1) and there (A2)?—
(He tested the levels.) Yes.—(A1 was poured into B1 + B2). Is there the
same amount to drink in these two together as in the other?—(He
examined the levels in Bt and B2, which were higher than in A1.)
There’s more here.—Why?—Oh yes, it’s the same.—And if I pour the two
glasses (Br and B2) into these three (C1 +C2 + Cg), is it the same?—
There's more in the 3.—And if I pour it back into the 2?—Then there’ll be
the same (B1 + B2) as there (A2).

Here is an example of the second type:

Fried (6;5) agreed that A1= A2. A1 was poured into B1 +Ba. ‘Is
there as much lemonade as orangeade?—2Yes.—Why?—DBecause those
(Br + B2) are smaller than that (A2).—And if we pour the orangeade (A2)
as well into two glasses (doing so into Bg + B4, but putting more in B3
than in B4), is it the same?—There’s more orangeade than lemonade.’—
(B3 + B4 thus seemed to him more than Br +B2).

A minute later he was given A1 half full, and A2 only a third full.
‘Are they the same?—WNo, three’s more here (A1).—(Ar1 was then poured
into several glasses C.) It’s the same now as there (A2).” He finally decided,
however: ‘ No, it doesn’t change, because it’s the same drink (i.e. A1 =C1 +
C2 +Cg + C4 and A1 <<A2)’

These two types of intermediary reactions are important and
enable us to dismiss an objection that doubtless occurred to the
reader in §2. Instead of concluding that the notion of conservation
has its origin in quantification properly so called (itself the result
of progressive co-ordination of the relations involved), could we
not explain the absence of the notion as being due merely to
failure to understand the question as referring to the quantity as a
whole? The child might simply be comparing one level with
another or one width with another, without considering the total
quantity of liquid, but that would not necessarily prove that he
was incapable of so doing. If this were so, as soon as the idea of the
whole quantity made its appearance, the child would suddenly
discover conservation; he would at once understand that the
liquid remains the same since nothing is added to or subtracted
from it. And indeed, when Edi and other children state, when first
questioned, that (A2) and (Br1 +B2) are ‘the same’, they give the
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impression that the difference between them and the children in
§2 is due merely to the fact that they interpret the question
differently. The correct solution would then be the result of a kind
of immediate identification and there would be no need for a com-
plex process of quantification. But the intermediary reactions of
this second stage make it clear that this too simple interpretation
is not 'valid. If the child hesitates, if he gives a correct answer
when the variations are slight but does not assume conservation
when the variation in shape is greater, it is obvious that he under-
stands the question but is not convinced a priori of the constancy
of the whole quantity.

This being so, how are we to interpret the progress shown by
children at the second stage? The two conditions laid down in §2
as defining the transition from ‘gross quantity’ to true quantifica-
tion are beginning to be fulfilled.

At this stage the child is attempting to co-ordinate the per-
ceptual relations involved and thus to transform them into true,
operational relations. Whereas the child at the first stage is satisfied
that two quantities of liquid are equal if the two levels are the
same, irrespective of the width of the containers, the child at the
second stage tries to take the two relations into account simul-
taneously, but without success, hesitating continually between this
attempt at co-ordination and the influence of the perceptual
illusions. This reaction is already apparent in the most advanced
children of the first stage, but generally speaking it is typical of the
second period. Here we have some examples, of which the first
belongs to the earlier stage:

Lac (536): ‘Your brother Lucien has this orangeade (A, 3 full). Pour
the same amount for yourself into this glass (L).-—(He filled L. to a
higher level than that in A.) No, I’ve got too much (he poured some back
so that L was } full, i.e. the same level as in A).—Are they the same?—
No (bringing L nearer to A and saying to himself): Who has the most?>—
Yes, who has the most?—(He pointed to A): If’s that one, because it’s
bigger.—But you must have as much as Lucien.—(He added a little to
L and compared the two levels.) It’s too much. (He poured back the
contents of L. and began again. He gave himself the same level as in A,
then added a little more so that L was about % full.) Oh/! i’s to0 much!
It’s not the same. (In order to arrive at an equal quantity in L and A he
then made the Jevels the same.)}—You think you have the same amount
to drink like that?—ZYes.—(A was then poured into L'.)—Ok! if’s
more! (greatly astonished.)’ Lac thus showed that he was still at the
first stage, although his first reactions suggested the second stage.

Edi (6;4). Glass A was $ filled. ‘Pour as much orangeade into this
one (L) as there is there (A).—(He filled L to the same level as that in
A.)—Is there the same amount to drink?—%es.—Exactly the same?—
No.—Why not?—That one (A) is bigger.—What must you do to have the



