

Real-time 3D Character
Animation with Visual C++

This book is dedicated to David Lever (1927–2001).

My Dad, who is greatly missed.

Real-time 3D
Character Animation
with Visual C++

Nik Lever

First published 2002
This edition published 2012 by Focal Press
70 Blanchard Road, Suite 402, Burlington, MA 01803

Simultaneously published in the UK by Focal Press
2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

Focal Press is an imprint of the Taylor & Francis Group, an informa business

Copyright © 2002, Nik Lever. All rights reserved.

The right of Nik Lever to be identified as the author of this work has been asserted in
accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in
any form or by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying and recording, or in any information storage or
retrieval system, without permission in writing from the publishers.

Notices
Practitioners and researchers must always rely on their own experience and knowledge
in evaluating and using any information, methods, compounds, or experiments
described herein.

Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloguing in Publication Data
A catalogue record for this book is available from the Library of Congress

ISBN 13: 978-0-240-51664-6 (pbk)

Contents at a glance

About the author xiii

Introduction xv

Chapter 1: 3D basics 1
Chapter 2: Drawing points and polygons the hard way 14
Chapter 3: Drawing points and polygons the easy way

with OpenGL 39
Chapter 4: OpenGL lighting and textures 58
Chapter 5: Creating low polygon characters 78
Chapter 6: Texture mapping 97
Chapter 7: Setting up a single mesh character 124
Chapter 8: Keyframe animation 145
Chapter 9: Inverse kinematics 168
Chapter 10: Importing geometry and animation from

Lightwave 3D 184
Chapter 11: Importing geometry and animation from 3DS Max 215
Chapter 12: Motion capture techniques 259
Chapter 13: Collision detection 287
Chapter 14: Using morph objects 304
Chapter 15: Using subdivision surfaces 320
Chapter 16: Using multi-resolution meshes 346
Chapter 17: The scene graph 364
Chapter 18: Web 3D, compression and streaming 386
Appendix A: Using Toon3D Creator 405
Appendix B: MFC Document/View architecture – a short

introduction 444
Appendix C: Further information 457

Index 461

vi Contents at a glance

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

The Toon3D Creator application.

Contents in summary

� About the author xiii

� Introduction xv
How to install the CD software. Compiling a first test program with
Visual C++.

� Chapter 1: 3D basics 1
Describing points in space. Transforming, rotating and scaling points.
Connecting points to form triangles and quads to form polygons.
Polygon normals and point normals. Connecting polygons to form
objects. This chapter introduces vector manipulation, dot and cross
products.

� Chapter 2: Drawing points and polygons the hard way 14
Creating memory for a background display. Writing to the display.
Blitting the display to the screen. Drawing a line with Bresenham’s
algorithm. Painting a flat coloured polygon. Painting a shaded polygon.
Painting a textured polygon.

� Chapter 3: Drawing points and polygons the easy way with
OpenGL 39

Introducing the OpenGL library. Creating a double buffered window
using PIXELFORMATDESCRIPTOR. Drawing a point. Drawing a line.
Drawing an unshaded polygon.

� Chapter 4: OpenGL lighting and textures 58
Using lights. Transforming normals. Drawing a shaded polygon.
Drawing a textured polygon.

viii Contents in summary

� Chapter 5: Creating low polygon characters 78
An introduction to low polygon modelling. The tutorial uses Lightwave
3D for the modelling. However, the ideas can easily be applied to the
reader’s preferred modelling environment. If it is possible to get a demo
version of a CGI modeller to ship on the CD, then an explanation will be
offered as to how to use this for low polygon modelling.

� Chapter 6: Texture mapping 97
Loading a windows bitmap. Loading a TGA file. Loading a JPEG file.
Assigning the pixel data to the OpenGL texture engine. Generating
texture coordinates. Displaying the result.

� Chapter 7: Setting up a single mesh character 124
Introducing the alternative approaches to the control of the movement
of individual vertices in a mesh. A detailed look at one method, that of
control objects with shared points. Producing a hierarchy of control
objects and adjusting the pivot location.

� Chapter 8: Keyframe animation 145
Principles of keyframe animation. Using live action reference. Using
Toon3D Creator to animate ‘Actions’ for your characters. Ensuring the
action’s loop.

� Chapter 9: Inverse kinematics 168
The problem of anchoring parts of a character while continuing to
animate the remainder. How inverse kinematics can eliminate foot slip
and provide a solution for characters picking up something from the
environment.

� Chapter 10: Importing geometry and animation from Lightwave
3D 184

Lightwave 3D scene files are simple text files that define how objects
appear and animate in a scene. In this chapter we look in detail at the
scene file and how to extract the animation data. Lightwave is unusual
for CGI packages in storing rotation data as Euler angles. This is why
the package can suffer from gimbal lock; a mathematical explanation of
this is covered in the chapter. Lightwave 3D object files are binary files
containing point, polygon and surface data. This chapter covers in
detail how to parse such a file and extract the information necessary to
display the geometry.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Contents in summary ix

� Chapter 11: Importing geometry and animation from 3DS
Max 215

3DS Max has an option to export an entire scene as an ASCII text file.
This chapter goes into detail showing how to use this file to rebuild the
geometry it contains, use the surface data to recreate maps and the
mapping coordinates to allow these to be displayed accurately.

� Chapter 12: Motion capture techniques 259
Starting with an overview of motion capture techniques, optical,
magnetic and mechanical, the chapter goes on to show how it is
possible with a little simple engineering and some limited electronics
skill to create a motion capture set-up using simple electronics and
hardware. A full motion capture set-up for less than $1000. Applying
motion capture data to your characters’ actions.

� Chapter 13: Collision detection 287
Collision detection at the bounding box level and the polygon level is
covered in this chapter.

� Chapter 14: Using morph objects 304
To get total control over the deformation of your characters, you need
to be able to model deformations using a modelling application and
then blend between several different models in the runtime application.
Morph objects are the easiest solution to this complex geometrical
problem.

� Chapter 15: Using subdivision surfaces 320
How to implement subdivision surfaces using modified butterfly
subdivision.

� Chapter 16: Using multi-resolution meshes 346
Displaying an appropriate amount of polygons for the display. Reducing
polygons using subdivision surfaces. Reducing polygons using Quadric
Error Metrics.

� Chapter 17: The scene graph 364
How to store the complexity of a scene, using object, light, camera,
image and surface lists. Using multiple scenes in a single project.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

x Contents in summary

� Chapter 18: Web 3D, compression and streaming 386
If you intend to distribute your masterpiece on the Internet, then you will
find this chapter particularly useful. How to deliver the data so that the
user gets to see some content before it has all downloaded. Delivering
bounding box data first so that some painting can start early.

� Appendix A: Using Toon3D Creator 405
Using the included application Toon3D Creator to import geometry,
surfaces and animation. Creating geometry, animation and surfaces.
Defining behaviours and compressing your data. Using Tscript to add
interactivity. Check out the website for more tutorials, toon3d.com

� Appendix B: MFC Document/View architecture – a short
introduction 444

Most examples in this book from Toon3D source code use MFC. For
those readers who are unfamiliar with the document/view architecture,
this appendix provides a brief introduction.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Animating with Toon3D.

Contents in summary xi

� Appendix C: Further information 457
Where to start to look for additional information.

� Index 461

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

The Toon3D logo.

Supplementary Resources Disclaimer
Additional resources were previously made available for this title on CD. However, as CD
has become a less accessible format, all resources have been moved to a more
convenient online download option.

You can find these resources available here: https://www.routledge.com/9780240516646

Please note: Where this title mentions the associated disc, please use the downloadable
resources instead.

About the author

The author has been programming for about 20 years. Professionally, he
started out as a drawn animator. These days he spends most of his time
programming, but occasionally gets his pencil out. He is married with two
children, one of whom spends far too long glued to his PS1!! He lives high
in the Pennines in England and tries to get out sailing when it’s not raining,
which means he spends most of his time playing with computers, because
it rains a lot in England.

Using the Toon3D application.

http://taylorandfrancis.com

Introduction

Who should read this book?

To get the best from this book, you need some experience with C and a
reasonable knowledge of C++. It does not attempt to teach the basics of
C/C++ programming. If you are new to programming then I recommend
getting a good introduction to C++ programming, particularly Visual
C++.

If you have ever looked at a PC or Playstation game with characters
running and leaping through an exciting landscape and wondered how it
was done, then you should read this book. You may be a hobby
programmer, a student or a professional.

Hobby programmer

The book takes you on an exciting adventure. From the basics of 3D
manipulation to morph objects and subdivision. On the way, you get
Visual C++ project files to load and software that runs on the Windows
desktop. You get a full-featured development environment for 3D
character animation, so even if you find the maths and the code hard to
follow, you can still create games to impress the kids. The game engine
even has an ActiveX control that allows you to distribute your work on the
Internet.

Student

The computer games industry has become an important employer,
always looking for new talent. After reading this book you will be ready to
create the sample programs that will get you that first job. You will be
guided through the maths and the principal ideas involved in displaying

xvi Introduction

complex moving characters. You will get an insight into the artist’s
problems in keeping the characters interesting while not exhausting the
game engine.

Professional

You need to display characters in architectural walkthroughs or you may
want to add this level of sophistication to multimedia kiosks that you
produce. Maybe you use Director and want to add 3D support via an
ActiveX control. If you are a web developer then you will find the chapter
on streaming and compression particularly useful.

Using the CD

Most of the chapters have example programs to help illustrate the
concepts described. These example programs provide you with source
code to get you started with your own programs. The CD has two folders,
Examples and Toon3D.

Inside the Examples folder you will find folders labelled Chapterxx,
where xx is the chapter number. To find the examples for the chapter you
are reading simply look in the appropriate Chapter folder. Many of the
examples use Microsoft Foundation Classes (MFC). When programming
with Visual C++, MFC is a common approach. You will find a brief
introduction to MFC in Appendix B; if you have never used MFC then I
recommend reading this and perhaps getting one of the many intro-
ductory MFC books.

The Toon3D folder contains all the source code for a Web3D
application. Toon3D allows you to develop in Lightwave 3D or Max and
import the geometry, surface data and animation into Toon3D. In the
application you can add interactive behaviour and then publish the
material suitable for the Internet. Toon3D is mentioned throughout the
book because it is used to illustrate some concepts; the application is also
in the Toon3D folder along with some content to play about with. Toon3D
is explained in detail in Appendix A.

There is no installation program on the CD. If you want to use an
example then copy it to your hard drive and remember to change the file
attributes from Read-only. In Explorer you can do this by selecting the files
and right clicking; in the pop-up menu select Properties and uncheck the
Read-only check box.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Introduction xvii

Typographic conventions

All code examples are set out using Courier New:

BOOL CMyClass::CodeExample(CString str){

CString tmp;

if (str.Find(“code example”)!=-1) return FALSE;

tmp.Format(“The string you passed was %s”, str);

AfxMessageBox(tmp);

Return TRUE;

}

All C++ classes are prefixed with the letter C. When variables or
function names are used in the text they are italicized; for example,

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Altering file attributes using Windows Explorer.

xviii Introduction

CodeExample uses the parameter str. I prefer not to use the m_ to
indicate a member variable in a class. Additionally, I do not use Hungarian
notation to indicate the variable type. Source code style is a matter of
heated debate but I prefer name rather than m_szName. Variables are all
lower case and function names use capital letters to indicate the
beginning of a word, for example CodeExample.

How much maths do I need?

3D computer graphics uses a lot of maths, there is no denying it. In this
book I have kept the maths to a minimum. You will need basic school
maths up to trigonometric functions, inverse trigonometric functions and
algebra. When concepts are introduced they are explained fully and if you
find some of the later chapters confusing in their use of the trig functions
then I recommend reading Chapter 1 again, where the concepts are
explained more fully. You will not find any proofs in this book. If you want
to find why a particular technique for using a curve works rather than
taking it on trust, then I suggest you look at Appendix C. Appendix C
provides a list of alternative sources of information if you want to delve
deeper into a particular topic.

All vertex transformations are done with the processor in the sample
code. This helps illustrate what is going on, but it does mean that the
accelerated graphics card that includes transformations is not being used
to its best effect. Once you are familiar with the techniques you may
choose to let the hardware look after transformations, leaving the
processor to look after the logic.

Credits

The development of 3D graphics has been a combined effort by many
people. In the text I explain most techniques with no clear indication of
who should be given the credit for developing the technique in the first
place. Appendix C on further information makes some attempt to give the
credit to the individuals who devised the techniques and also to those who
have provided much needed assistance to fledgling developers in the 3D
industry.

Contacting the author

I hope you enjoy the book and find it useful. If you do then send me an email
at nik@toon3d.com, if you don’t then send me an email at nik@anywhere-
else.com; just kidding, I would like to hear your views good and bad.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

1 3D basics

In this chapter we are going to introduce the 3D basics. We will look at
how to store the information required for a computer to display a 3D
object. In addition, we will consider the maths required to manipulate this
object in 3D space and then convert this to a 2D display. We need a
sufficiently general scheme that will allow us to store and manipulate the
data that can be displayed as a box, a teapot or an action hero. The
method generally used is to store a list of points and a list of polygons.
Throughout this book, all the source code is designed to handle polygons
with three or four sides.

In later chapters we will leave most low-level operations to a graphics
library, which will manage most of the mathematical manipulation. In this
book we use the graphics library, OpenGL. But to ease the creation of
seamless mesh characters, we will need to do some of our own
manipulation of point data; to understand how this code operates you will
need to follow the methods outlined in this chapter.

OpenGL is the most widely adopted graphics standard

From the OpenGL website www.opengl.org

‘OpenGL is the premier environment for developing portable,
interactive 2D and 3D graphics applications. Since its introduction in
1992, OpenGL has become the industry’s most widely used and
supported 2D and 3D graphics application programming interface
(API), bringing thousands of applications to a wide variety of computer
platforms. OpenGL fosters innovation and speeds application devel-
opment by incorporating a broad set of rendering, texture mapping,
special effects and other powerful visualization functions. Developers
can leverage the power of OpenGL across all popular desktop and
workstation platforms, ensuring wide application deployment.’

www.opengl.org

2 3D basics

Describing 3D space

First let’s imagine a small box lying on the floor of a simple room (Figure
1.1).

How can we create a dataset that
describes the position of the box? One
method is to use a tape measure to find
out the distance of the box from each
wall. But which wall? We need to have a
frame of reference to work from.

Figure 1.2 shows the same room, only
this time there are three perpendicular
axes overlaid on the picture. The point
where the three axes meet is called the
origin. The use of these three axes
allows you as a programmer to specify
any position in the room using three
numerical values.

In Figure 1.2, the two marked lines
perpendicular to the axes give an indica-
tion of the scale we intend to use. Each
slash on these lines represents 10 cm.
Counting the slashes gives the box as 6
along the x-axis and 8 along the z-axis.
The box is lying on the floor, so the value
along the y-axis is 0. To define the
position of the box with respect to the
frame of reference we use a vector,

[6, 0, 8]

In this book, all vectors are of the form
[x, y, z].

The direction of the axes is the
scheme used throughout this book. The y-axis points up, the x-axis points
to the right and the z-axis points out of the screen. We use this scheme
because it is the same as that used by the OpenGL graphics library.

Transforming the box
To move the box around the room we can create a vector that gives the
distance in the x, y and z directions that you intend to move the box. That

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 1.1 A simplified room
showing a small box.

Figure 1.2 A simplified room
with overlaid axes.

y

z

X

3D basics 3

is, if we want to move the box 60 cm to the right, 30 cm up and 20 cm
towards the back wall, then we can use the vector [6, 3, 2] (recall that the
scale for each dash is 10 cm) to move the box. The sum of two vectors is
the sum of the components.

[x, y, z] = [x1, y1, z1] + [x2, y2, z2]

where x = x1 + x2, y = y1 + y2 and z = z1 + z2

For example, [12, 3, 10] = [6, 0, 8] + [6, 3, 2]

Describing an object

The simplest shape that has some volume has just four points or vertices.
A tetrahedron is a pyramid with a triangular base. We can extend the idea
of a point in 3D space to define the four vertices needed to describe a
tetrahedron. Before we can draw an object we also need to define how to
join the vertices. This leads to two lists: a list of vertices and a list of faces
or polygons.

The vertices used are:

A: [0.0, 1.7, 0.0]
B: [–1.0, 0.0, 0.6]
C: [0.0, 0.0, –1.1]
D: [1.0, 0.0, 0.6]

To describe the faces we give a list of the
vertices that the face shares:

1: A,B,D
2: A,D,C
3: A,C,B
4: B,C,D

Although the triangles ABD and ADB appear to be the same, the order of
the vertices is clearly different. This ordering is used by many computer
graphics applications to determine whether a face is pointing towards the
viewer or away from the viewer. Some schemes use points described in
a clockwise direction to indicate that this face is pointing towards the
viewer. Other schemes choose counter-clockwise to indicate forward-
facing polygons. In this book we used counter-clockwise. There are no
advantages or disadvantages to either scheme, it is simply necessary to

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 1.3 A tetrahedron.

A

B
C

D

y

z X

4 3D basics

be consistent. Think about the triangle ABD as the tetrahedron rotates
about the y-axis. If this rotation is clockwise when viewed from above then
the vertex B moves right and the vertex D moves left. At a certain stage
the line BD is vertical. If the rotation continues then B is to the right of D.
At this stage in the rotation the face ABD is pointing away from the viewer.
Since we know that the order of the vertices read in a counter-clockwise
direction should be ABD, when the order changes to ADB, the triangle has
turned away from the viewer. This is very useful because in most
situations it is possible to effectively disregard this polygon. (If an object
is transparent then it will be necessary to continue to render back-facing
polygons.) We will look at other techniques to determine back-facing
polygons, but vertex order is always the most efficient to compute.

Polygon normals

A normal is simply a vector that points
directly out from a polygon. It is used in
computer graphics for determining lighting
levels, amongst other things. For the soft-
ware accompanying this book we store the
normal for every polygon in a scene. We
have already seen how to deal with the sum
of two vectors. The method is easily exten-
ded to allow us to subtract two vectors:

[x, y, z] = [x1, y1, z1] – [x2, y2, z2]

= [x1 – x2, y1 – y2, z1 – z2]

For example, [6, 0, 8] – [6, 3, 2] = [6 – 6, 0 – 3, 8 – 2]

= [0, –3, 6]

But what happens when we choose to multiply two vectors. In fact, there
are two methods of ‘multiplying’ vectors. One is referred to as the dot
product. This is defined as

a•b = �a � �b� cos(�) where 0 ≤ � ≤ 180°

The symbol |a| refers to the magnitude of the vector a, which is defined
as:

�a� = √(x*x + y*y + z*z)

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 1.4 A polygon normal.

3D basics 5

This is a method of measuring the length of the vector. It is a 3D version
of the famous theorem of Pythagoras that gives the length of the
hypotenuse of a right-angled triangle from the two other sides.

For example, if a = [6, 3, 2], then:

�a� = √(6*6 + 3*3 + 2*2)

= √(36 + 9 + 4)

= √49 = 7

The dot product is a scalar; this simply means it is a number with a single
component not a vector. Given two vectors a = [ax, ay, az] and b = [bx, by,
bz], the dot product is given by

a•b = ax × bx + ay × by + az × bz

The dot product is very useful for finding angles between vectors. Since
we know that

a•b = �a � �b� cos �

This implies that

a•b

�a � �b�
= cos �

Now we can calculate cos � directly. We can then use the inverse function
of cos, acos, to calculate the value of �. Here is a code snippet that will
pump out the angle between two vectors.

double angleBetweenVectors(VECTOR &v1, VECTOR &v2){

doubles,dot,mag1,mag2;

//Calculate the magnitude of the two supplied vectors

mag1=sqrt(v1.x*v1.x + v1.y*v1.y + v1.z*v1.z);

mag2=sqrt(v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);

//Calculate the sum of the two magnitudes

s=mag1 * mag2;

//Avoid a division by zero

if (s==0.0) s=0.00001;

dot=v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;

//Cos theta is dot/s. Therefore theta=acos(dot/s)

return acos(dot/s);

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

6 3D basics

The alternative technique for ‘multiplying’ vectors is the cross product.
This method creates a further vector that is at right angles or orthogonal
to the two vectors used in the cross product. Unlike the dot product the
operation is not commutative. This simply means that

A × B does not necessarily equal B × A. Whereas A•B = B•A

The cross product of two 3D vectors is given by

A × B = [Ay*Bz – Az*By, Az*Bx – Ax*Bz, Ax*By – Ay*Bx]

This is easier to remember if we look at the pattern for calculating
determinants. Determinants are important scalar values associated with
square matrices. The determinant of a 1 × 1 matrix [a] is simply a. If A is
a 2 × 2 matrix then the determinant is given by

A = � a b

c d �, det A = � a b

c d � = ad – bc

That is the diagonal top left, bottom right minus top right, bottom left.
When extended to 3 × 3 matrices we have:

A = �
a b c

d e f

g h i �,
det A = a � e f

h i � – b � d f

g i � + c � d e

g h �
= a(ei – fh) – b(di – fg) + c(dh – eg)

Here we take the top row one at a time and multiply it by the determinant
of the remaining two rows, excluding the column used in the top row. The
only thing to bear in mind is that the middle term has a minus sign. If we
apply this to the vectors A and B we get

A = �
x y z

Ax Ay Az

Bx By Bz � det A = x �Ay Az

By Bz� – y �Ax Az

By Bz� + z �Ax Ay

Bx By �

= x(AyBz – AzBy) – y(AxBz – AzBx) + z(AxBy – AyBx)

= x(AyBz – AzBy) + y(AzBx – AxBz) + z(AxBy – AyBx)

The x, y and z terms are then found from the determinants of the matrix A.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

3D basics 7

The purpose of all this vector manipulation is that, given three vertices
that are distinct and define a polygon, we can find a vector that extends
at right angles from this polygon. Given vertices A, B and C we can create
two vectors. N is the vector from B to A and M is the vector from B to C.
Simply subtracting B from A and B from C respectively creates these
vectors. Now the cross product of the vectors N and M is the normal of the
polygon. It is usual to scale this normal to unit length. Dividing each of the
terms by the magnitude of the vector achieves this.

Rotating the box

There are many options available when rotating a 3D representation of an
object; we will consider the three principal ones. The first option we will
look at uses Euler angles.

Euler angles

When considering this representation it is useful
to imagine an aeroplane flying through the sky.
Its direction is given by its heading. The slope of
the flight path is described using an angle we
shall call pitch and the orientation of each wing
can be described using another angle which we
shall call bank. The orientation can be com-
pletely given using these three angles. Heading
gives the rotation about the y-axis, pitch gives
rotation about the x-axis and bank gives rotation
about the z-axis.

To describe the orientation of an object we store an angle for the
heading, the pitch and the bank. Assuming that the rotation occurs about
the point [0, 0, 0] as the box is modelled then heading is given from the 3
× 3 matrix:

H = �
cos(h) 0 sin(h)

0 1 0

–sin(h) 0 cos(h) �

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 1.5 Euler angle
rotation.

8 3D basics

Rotation in the pitch is given by:

P = �
1 0 0

0 cos(p) –sin(p)

0 sin(p) cos(p) �
and bank rotation is given by:

B = �
cos(b) sin(b) 0

–sin(b) cos(b) 0

0 0 1 �
Combining columns with rows as follows is another form of matrix
multiplication:

a b c A B C Aa + Db + Gc Ba + Eb + Hc Ca + Fb + Ic
d e f D E F = Ad + De + Gf Bd + Ee + Hf Cd + Fe + If�g h i� �G H I� �Ag + Dh + Gi Bg + Eh + Hi Cg + Fh + Ii �

Using this method we can combine the H, P and B rotation matrices:

cos(h)cos(b) – sin(h)sin(p)sin(b) cos(h)sin(b) + sin(h)sin(p)cos(b) sin(h)cos(p)

HPB = –cos(p)sin(p) cos(p)cos(b) –sin(p)�–sin(h)cos(b) – cos(h)sin(p)sin(b) –sin(h)sin(b) + cos(h)sin(p)cos(b) cos(h)cos(p)�
Matrix multiplication is non-commutative, so HPB, HBP, PHB, PBH, BHP
and BPH all give different results.

Now, to translate the object vertices to world space we multiply all the
vertices as vectors by the rotation matrix above. Vector and matrix
multiplication is done in this way:

a b c x ax + by + cz
R = d e f v = y Rv = dx + ey + fz� g h i� � z� �gx + hy + iz�

So the vertex (x, y, z) maps to the vertex (ax + by + cz, dx + ey + fz, gx
+ hy + iz). If the object also moves in the 3D world by T = (tx, ty, tz), then
the new position of the vertex should include this mapping. That is, the
vertex maps to Rv + T, giving the world location

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

3D basics 9

(x, y, z) → (ax + by + cz + tx, dx + ey + fz + ty, gx + hy + iz + tz)

Euler angle rotation suffers from a problem that is commonly called
gimbal lock. This problem arises when one axis is mapped to another by
a rotation. Suppose that the heading rotates through 90°, then the x- and
z-axes become aligned to each other. Now
pitch and bank are occurring along the same
axis. Whenever one rotation results in a map-
ping of one axis to another, one degree of
freedom is lost. To avoid this problem, let’s
consider another way of describing rotations
which uses four values.

Angle and axis rotation

The values used are an angle � and a vector A
= [x, y, z]T that represents the axis of rotation.
When the orientation of the box is described in
this way the rotation matrix is given by:

1 + (–z2 – y2)(1 – cos(�)) –z sin(�) + yx(1 – cos(�)) y sin(�) + zx(1 – cos(�))

R = z sin(�) + yx(1 – cos(�)) 1 + (–z2 – x2)(1 – cos(�)) –x sin(�) + zy(1 – cos(�))�–y sin(�) + zx(1 – cos(�)) x sin(�) + zy(1 – cos(�)) 1 + (–y2 – z2)(1 – cos(�))�
We can use this rotation matrix in the same way as described for Euler
angles to map vertices in the object to a 3D world space location.

Quaternion rotation

Yet another way to consider an object’s orientation uses quaternions.
Devised by W. R. Hamilton in the eighteenth century, quarternions are
used extensively in games because they provide a quick way to
interpolate between orientations. A quaternion uses four values. One
value is a scalar quantity w, and the remaining three values are combined
into a vector v = (x, y, z). When using quaternions for rotations they must
be unit quaternions.

If we have a quaternion q = w + x + y + z = [w, v], then:

The norm of a quaternion is N(q) = w2 + x2 + y2 + z2 = 1
A unit quaternion has N(q) = 1

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 1.6 Angle and
axis rotation.

10 3D basics

The conjugate of a quaternion is q* = [w, –v]
The inverse is q–1 = q*/N(q). Therefore, for unit quaternions the
inverse is the same as the conjugate.
Addition and subtraction involves q0 ± q1 = [w0 + w1, v0 + v1]
Multiplication is given by q0q1 = [w0w1 – v0v1, v0 × v1 + w0v1 + w1v0];
this operation is non-commutative, i.e. q0q1 is not the same as q1q0.
The identity for quaternions depends on the operation; it is [1, 0] (where
0 is a zero vector (0, 0, 0)) for multiplication and [0, 0] for addition and
subtraction.

Rotation involves v� = qvq*, where v = [0, v].
Turning a unit quaternion into a rotation matrix results in

1 – 2y2 – 2x2 2xy + 2wz 2xz – 2wy
R = 2xy – 2wz 1 – 2x2 – 2z2 2yz – 2wx�2xz + 2wy 2yz – 2wx 1 – 2x2 – 2y2�

We will consider the uses of quaternions for smooth interpolation of
camera orientation and techniques for converting quickly between the
different representations of rotation in Chapter 8.

Rotation about a point other than
the origin

To rotate about an arbitrary point, which in
many CGI applications is called the pivot
point, involves first translating a vertex to
the origin, doing the rotation then translating
it back. If the vertex [1, 1, 1]T were rotated
about the point (2, 0, 0), then we want to
consider the point (2, 0, 0) to be the origin.
By subtracting (2, 0, 0) from [1, 1, 1]T we
can now rotate as though this is the origin
then add (2, 0, 0) back to the rotated
vertex.

Scaling the object

The size of the object has so far been unaffected by the operations
considered. If we want to scale the object up or down we can use another

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 1.7 Rotation about a
pivot point.

3D basics 11

matrix. The scaling in the x-axis is Sx, scaling in the y-axis is Sy and
scaling in the z-axis is Sz. This results in the matrix

Sx 0 0
S = 0 Sy 0� 0 0 Sz�

Scaling should be applied before any other operations. We can
concatenate our rotation matrix to ensure that scaling occurs first. If R is
our rotation matrix from either Euler angles or from the angle/axis method,
then the matrix becomes:

a b c Sx 0 0 aSx bSy cSz
R = d e f S = 0 Sy 0 RS = dSx eSy fSz�g h i � �0 0 Sz� �gSx nSy iSz �

The full operation to translate a vertex in the object to a location in world
space including pivot point consideration becomes

RS(v – p) + t + p, where R is the rotation matrix, S the scaling matrix,
v is the vertex, p is the pivot point and t is the translation vector.

For every vertex in a solid object, t + p and RS will be the same. Pre-
calculating these will therefore speed up the transformation operations. It is
highly likely that the pivot point of an object will remain constant throughout
an animation, so the object could be stored already transformed to its pivot
point. If this is the case then the equation becomes

RSv + t

So now we can move and rotate our box. We are now ready to transfer
this to the screen.

Perspective transforms

Converting 3D world space geometry to a 2D screen is surprisingly easy.
Essentially we divide the x and y terms by z to get screen locations (sx,
sy). The technique uses similar triangles to derive the new value for (sx,
sy) from the world coordinates. Referring to Figure 1.8, here we indicate
the position of the camera, the screen and the object. Following the vertex
P to the image of this on the screen at P�, we get two similar triangles,
CPP•z and CP�d, where d is the distance from the camera to the screen.
We want to know the position of P�:

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

12 3D basics

(Px – Cx)/(Pz – Cz) = (P�x – Cx)/d

(Py – Cy)/(Pz – Cz) = (P�y – Cy)/d

which can be rearranged to become

P�x = ((Px – Cx)*d)/(Pz – Cz) + Cx

P�y = ((Py – Cy)*d)/(Pz – Cz) + Cy

The value for d, the distance from the camera to the screen, should be of
the order of twice the pixel width of the 3D display window to avoid serious
distortion.

The above equations assume that the centre of the display window is
(0, 0) and that y values increase going up the screen. If (0, 0) for the
display window is actually in the top left corner, then the y values should
be subtracted from the height of the display window and half the width and
height if the display is added to the result.

sx = ((Px – Cx)*d)/(Pz – Cz) + Cx + screen width/2

sy = screen height/2 – (((Py – Cy)*d)/(Pz – Cz) + Cy)

Using 4 × 4 matrix representations

Although rotation and scaling of an object can be achieved using 3 × 3
matrices, translation cannot be included. To get around this problem it is
usual to add a row and column to the matrix. We move from

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 1.8 Perspective transform.

c

P
P

3D basics 13

a b c
d e f� g h i �

to

a b c 0
d e f 0
g h i 0� tx ty tz 1 �

where (tx, ty, tz) is the translation in the x-, y- and z-axes respectively.
This technique requires us to add a component to the vector

representation of a vertex. Now a vertex is defined as [x, y, z, 1]T. Such
coordinates are often referred to as homogeneous coordinates. The
matrix can now include the perspective transform that converts world
coordinates into the 2D screen coordinates that the viewer ultimately
sees. By concatenating the above matrix with a matrix that achieves this
perspective transform, all the calculations necessary to take a vertex from
model space through world space to camera space and finally to screen
space can be achieved by a single matrix.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Summary

The basic operations presented here will act as building blocks as we
develop the character animation engine. To get the most out of this book,
you need to be confident of the use of vectors, matrix multiplication and
the simple algebra manipulation we used in this chapter. I have tried to
present the material in a form that is suitable for those who are unfamiliar
with mathematical set texts. If the reader wishes to explore the
mathematics presented in this chapter in more depth, then please check
Appendix C, where further references are mentioned.

2 Drawing points and
polygons the hard way

Some people like to climb mountains, others prefer to fly over them
sipping a chilled wine. If you are a climber then this chapter is for you.
Most of this book uses the OpenGL library, which originated on the SGI
platform and is now available for Windows, Mac and Unix boxes. The
advantage of using such a library is that it shields much of the complexity
of displaying the 3D characters we create. Another very definite benefit is
that the library takes advantage of any hardware the user may have
installed. The disadvantage to the climbers is that we have no
understanding of how the display is actually generated at the individual
pixel level. This chapter takes you through this process; if you are a
climber then read on, if you are a flyer then feel free to skip this chapter,
no one will ever know!

Creating memory for a background display

In this chapter we are trying to avoid using Windows-specific code
wherever possible. For this reason we use a class library that deals with
a memory-based bitmap. This class library, which is supplied as part of
the sample code for this chapter on the CD, is called CCanvas. CCanvas
has a constructor that can be supplied with a width and a height in pixels,
together with the bit depth.

A colour can be specified in many ways. Generally you will need a red
value, a green value and a blue value. Many applications allow for 256
levels of red, 256 levels of green and 256 levels of blue. Zero to 255 is the
range of values available in 1 byte. One byte contains 8 bits of
information. Hence with 8 bits for red, 8 bits for green and 8 bits for blue,
we have a 24-bit colour value, 8 + 8 + 8.

When colour is specified using 3 bytes in this book, it is called an RGB
value. If we define the colour value for an array of pixels then we can
display this as a bitmap. If the value for each pixel were the same, then

Drawing points and polygons the hard way 15

the display would simply show a flat coloured rectangle. If we carefully
choose the value for each pixel then we can display a photograph. If the
range of colours in the displayed bitmap is limited then we could choose
to store the bitmap as a combination of all the different colours used,
followed by a list of where to use these colours. This type of display is
called a palletized display and we are not supporting palletized displays in
this book. Usually, palletized displays are limited to 256 colours. Creating
an optimized palette for each frame of animation is time consuming. The
alternative is to use a master palette, which has definite restrictions on the
way that the display can handle lighting. Imagine the simplest of scenes
with three bouncing balls all lit from above. Ball A is red, B is blue and C
is green. If the master palette has about 80 levels of red, green and blue,
then 240 slots in the palette have been used. Now in comes a purple,
yellow and orange cube. Somehow, this has to be displayed using the
remaining 16 colours; the results, while acceptable on desktop computer
platforms 10 years ago, simply do not cut it by today’s standards.

Another type of display uses 16 bits for the colour value of each pixel.
This gives just 32 levels of red, 32 levels of green and 32 levels of blue.
This standard is often used in computer games, resulting in faster frame
rates with most hardware than 24-bit displays. A 32-bit display can use the
additional 8 bits for alpha or stencil use or it can be used by the display
driver to ensure all colour calculations use 32-bit integers. This results in
fewer instructions for the processor to handle and consequently faster
image transfers.

The code for the creation of the buffer is:

// Create a new empty Canvas with specified bitdepth

BOOL CCanvas::Create(int width, int height, int bitdepth)

{

// Delete any existing stuff.

if (m_bits)) delete m_bits;

// Allocate memory for the bits (DWORD aligned).

if (bitdepth==16) m_swidth =width*2;

if (bitdepth==24) m_swidth =width*3;

if (bitdepth==32) m_swidth =width*4;

m_swidth =(m_swidth + 3) & ~3;

m_size= m_swidth *height;

m_bits = new BYTE[m_size];

if (!m_bits) {

TRACE(”Out of memory for bits”);

return FALSE;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

16 Drawing points and polygons the hard way

}

// Set all the bits to a known state (black).

memset(m_bits, 0, m_size);

m_width=width; m_height=height; m_bitdepth=bitdepth;

CreateBMI();

return TRUE;

}

Two things to notice here. First, the code to ensure that our line widths are
exact multiples of 4.

m_swidth =(m_swidth + 3) & ~3;

We do this by adding 3 to the storage width and then bitwise And-ing this
with the bitwise complement of 3. A bitwise complement has every bit in
the number inverted. If we take an example, suppose that the width of the
bitmap is 34 pixels and it is stored as a 24-bit image. A 24-bit image uses
3 bytes of information for each pixel, so if the storage width was simply the
width times 3 then it would be 102. However, 102 is not a multiple of 4. We
need to find the next multiple of 4 greater than 102. Three as a byte wide
binary value is 00000011. The bitwise complement is 11111100. The
algorithm adds 3 to the storage width, making it 105. Now 105 as a binary
value is 01101001; note here that one of the lowest 2 bits is set, which
means it cannot be a multiple of 4. 01101001 And 11111100 = 01101000,
which is 104. This is divisible by 4 as required. The effect of the operation
is to clear the last 2 bits of the number. This kind of alignment is used
regularly in such buffers because it allows a pixel location in memory to be
found with fewer instructions. The memory variable, m_swidth, holds the
storage width of a single line and m_size keeps a check on the buffer size,
so that we can easily check for out of bounds memory errors.

The other curiosity is the call to CreateBMI. Our canvas uses a
Windows structure called BITMAPINFO, so that ultimately we can display
the canvas on the user’s screen using a simple Windows API call.
A BITMAPINFO contains a BITMAPINFOHEADER and a single
RGBQUAD. We are only interested in the BITMAPINFOHEADER, so we
cast our member variable to a header to fill in the appropriate details. By
keeping it in a function call, this minimizes the changes necessary to port
this code to another platform.

BOOL CCanvas::CreateBMI(){

// Clear any existing header.

If (m_pBMI) delete m_pBMI;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Drawing points and polygons the hard way 17

// Allocate memory for the new header.

m_pBMI = new BITMAPINFO;

if (!m_pBMI) {

TRACE(”Out of memory for header”);

return FALSE;

}

// Fill in the header info.

BITMAPINFOHEADER *bmi=(BITMAPINFOHEADER*)m_pBMI;

bmi->biSize = sizeof(BITMAPINFOHEADER);

bmi->biWidth = m_width;

bmi->biHeight = -m_height;

bmi->biPlanes = 1;

bmi->biBitCount = m_bitdepth;

bmi->biCompression = BI_RGB;

bmi->biSizeImage = 0;

bmi->biXPelsPerMeter = 0;

bmi->biYPelsPerMeter = 0;

bmi->biClrUsed = 0;

bmi->biClrImportant = 0;

Return TRUE;

}

Blitting the display to the screen

My rule about not using Windows code falls down again here, since at
some stage we need to display the result of our labours. Windows uses
device contexts in such operations. This book does not go into any detail
in this regard. There are many other books that explain graphics operation
for Windows; the Appendix lists some of the author’s favourites. We use
a simple blit to get our memory-based bitmap onto the screen. Now you
will realize why the BITMAPINFO structure was needed.

// Draw the DIB to a given DC.

void CCanvas::Draw(CDC *pdc)

{

::StretchDIBits(pdc->GetSafeHdc(),

0, // Destination x

0, // Destination y

m_width, // Destination width

m_height, // Destination height

0, // Source x

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

18 Drawing points and polygons the hard way

0, // Source y

m_width, // Source width

m_height, // Source height

m_bits, // Pointer to bits

m_bmi, // BITMAPINFO

DIB_RGB_COLORS, // Options

SRCCOPY); // Raster operation code (ROP)

}

So that is it for the Windows stuff. Now we can get down to the actual
code.

Drawing a line with Bresenham’s algorithm

We now have in memory a BYTE buffer. We can draw on this by setting
the RGB values at a particular memory location. For convenience, the
class includes a private function GetPixelAddress(x, y), which returns a

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 2.1 PolyDraw Sample drawing lines.

Drawing points and polygons the hard way 19

pointer to the pixel or NULL if it is out of range. The function includes a
simple clip test. If either x is greater than the bitmap’s width or y is
greater than the bitmap’s height, then it is out of range. Similarily, if x or
y are less than 0 then they are out of range. To indicate this fact, the
function returns a null pointer. The bitmap is stored in memory one line
following another. We know how many bytes are required for a single
line; this is the information that we ensured was divisible by 4, the
storage width. To access the appropriate line, we simply need to
multiply the storage width by the value for y. The distance along the line
is dependent on whether we are using a 24-bit pixel or a 32-bit pixel. If
we are using a 24-bit pixel then we need to multiply the x value by the
number of bytes in a 24-bit pixel, that is 3. A 32-bit pixel needs 4 bytes
for each pixel, hence the x value needs to be multiplied by 4. Having
calculated the offset from the start of the bitmap in memory, all that
remains is to add this to the start of the bitmap ‘bits’ memory to return
the memory location of the pixel (x, y).

BYTE* CCanvas::GetPixelAddress(int x, inty)

{

// Make sure it’s in range and if it isn’t return zero.

if ((x >= m_width)|| (y >= m_height())||(x<0)||(y<0)) return↵
NULL;

// Calculate the scan line storage width.

if (m_bitDepth()==24) x*=3;

if (m_bitDepth()==32) x*=4;

return m_pBits +y * m_swidth + x;

}

We want to create a function that will draw an arbitrary line that is defined
by the starting and ending points. Before we go any further with such a
function, we need to ensure that the start and end of the line are actually
within the boundaries of the off-screen buffer we are using as a canvas.
For this we will create a ClipLine function. The aim of the ClipLine function
is to adjust the (x, y) values of each end of the line so that they are within
the canvas area. That is 0 ≤ x < width, where width is the CCanvas width,
and 0 ≤ y < height, where height is the CCanvas height.

The ClipLine function creates a code value for the start point, cs, and
the end point, ce. This code value determines whether the point is within
the canvas area, off to the left, right, above or below, or a combination of
these. This is done using the code:

cs=((xs<0)<<3)|((xs>=m_width)<<2)|((ys<0)<<1)|(ys>=m_height);

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

20 Drawing points and polygons the hard way

Here, xs and ys are the x, y values of the starting point for the line. If xs
is less than 0, then cs is given the value 1 shifted three places to the left,
which is 8. If xs is greater than or equal to the width of the canvas, then
4 is added to the code value. If the y value is less than 0, then 2 is added
to the code value, and finally if ys is greater or equal to the height of the
canvas, then 1 is added to the code value. This places the point in one of
the number sections of Figure 2.2, the number being the code value for a
point in that section. For example, if we have the point (–3, 16) on a
canvas that is 200 pixels square, then

cs = ((-3<0)<<3)|(-3>=200)<<2)|((16<0)<<1)|(16>=200)

cs = (1<<3)|(0<<2)|(0<<1)|0

cs = 8|0|0|0

cs = 8

From the code value, we know that the point (–3, 16) with respect to our
canvas is to the left in the section labelled 8 in the diagram.

The next step is to determine the slope of the line. This is done using
the y distance divided by the x distance. The x distance is the end x value
minus the start x value. The y distance is the end y value minus the start
y value. The slope of this line is a floating point value; since the values for
x and y are all integer values, we must remember to cast the integer
values as doubles to get a meaningful result for the slope. Now we have
a point location and a slope. By doing a bitwise And-ing of the start and
end locations, we determine whether the line remains off-screen
throughout its length.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 2.2 Determining point location.

10 2 6

8 4

9 1 5

0

(0,0)

(w,h)

Drawing points and polygons the hard way 21

A table of values for a bitwise And-ing of the start and end point codes
will help in the understanding of the result of this operation (Table 2.1).

Looking at Table 2.1, we can see that if the start point is in section 1 and
the end point is in section 5, then the result of a bitwise And-ing is 1; since
this is not zero the function returns FALSE, indicating that there is nothing
to draw. If the bitwise test results in a zero value then the aim of the
remainder of the function is to determine where the line crosses the
canvas area and return both a TRUE to indicate that drawing is required
and revised values for xs, ys, xe and ye that are within the canvas
area.

To adjust the start and end points we use the slope or gradient of the
line that we have calculated and stored as the variable m. If the code
value for the point when And-ed with 8 does not equal zero, then the point
must be off to the left; in this case we aim to set x to 0, but what value
should we store for y? Here we use the fact that we have added –x to the
y value, so we must subtract x times the slope of the line to y. Similar
principles are adopted for each off-screen area. Having adjusted the line
the function loops, setting the code values for the start and end points.
This continues until the point is totally within the canvas area at which
point the function exits returning a TRUE value. This clever clipping
routine is known as Cohen–Sutherland after its creators.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Table 2.1

Codes 0 1 2 4 5 6 8 9 10

0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 0 0 1 0

2 0 0 2 0 0 2 0 0 2

4 0 0 0 4 4 4 0 0 0

5 0 1 0 4 5 4 0 1 0

6 0 0 2 4 4 6 0 0 2

8 0 0 0 0 0 0 8 8 8

9 0 1 0 0 1 0 8 9 8

10 0 0 2 0 0 2 8 8 10

22 Drawing points and polygons the hard way

BOOL CCanvas::Clip(int &xs, int &ys, int &xe, int &ye){

int cs, ce;

doublem;

//Calculate the slope of the line (xs,ys)-(xe,ye)

m = (double)(ye-ys)/(double)(xe-xs);

while (cs|ce){

cs=((xs<0)<<3)|((xs>=m_width)<<2)|((ys<0)<<1)|↵
(ys>=m_height);

ce=((xe<0)<<3)|((xe>=m_width)<<2)|((ye<0)<<1)|↵
(ye>=m_height);

if (cs & ce) return FALSE;

if (cs){

if (cs & 8) ys-=(int)((double)xs*m), xs=0; else

if (cs & 4) ys+=(int)((double)(m_width-xs)*m),↵
xs=m_width-1; else

if (cs & 2) xs-=(int)((double)ys/m), ys=0; else

if (cs & 1) xs+=(int)((double)(m_height-ys)/m),↵
ys=m_height-1;

}

if (ce){

if (ce & 8) ye+=(int)((double)(0-xe)*m), xe=0; else

if (ce & 4) ye+=(int)((double)(m_width-xe)*m),↵
xe=m_width-1; else

if (ce & 2) xe+=(int)((double)(0-ye)/m), ye=0; else

if (ce & 1) xe+=(int)((double)(m_height-ye)/m),↵
ye=m_height-1;

}

}

return TRUE;

}

Running this function with the values (–10, 100)–(150, 300) for a 200
pixel square canvas gives the following results:

Slope is 1.25

Loop 1 cs = 8 ce = 1 Starting point (-10, 100) End point (150,300)

Loop 2 cs = 0 ce = 0 Starting point (0, 112) End point (70,199)

We now know both the starting and ending points are on-screen. If neither
were on-screen then there is nothing to do, so we exit. Assuming we
actually have something to draw, we adjust the drawing width to the
canvas storage width. Remember a 24-bit file will have a storage width

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Drawing points and polygons the hard way 23

that is at least three times the pixel width, plus the extra up to 3 bytes to
ensure divisibility by 4. We set two variables x and y to the starting value.
Then we create two distance variables for the x distance, dx, and the y
distance, dy.

We set xinc and yinc to 1. The value for xinc indicates whether xe is
greater than xs. If so, then we will reach xe by 1 to xs, a dx number of
times. If, however, xs > xe, then we must subtract 1 from xs, dx number
of times. We check dx to indicate which direction we are working in. If dx
is less than 0, then the xinc is made to be –1 and the value for dx is
negated. A similar technique is used for the y values.

The COLORREF parameter passed to the function is simply a 32-bit
integer. The values for red, green and blue are embedded in this value,
and we retrieve them with the code:

red= col&0xFF;

green=(col&0xFF00)>>8;

blue=(col&0xFF0000)>>16;

Now we use a switch statement to select based on bit depth. In our code
we only support 24 bits, but it gives us flexibility for the future to support
alternative bit depths.

void CCanvas::DrawLine(int xs,int ys,int xe,int ye,COLORREF col){

int x, y, d, dx, dy, c,m, xinc, yinc, width;

BYTE red,blue,green;

if (!ClipLine(xs,ys,xe,ye)) return;

//If ClipLine returns false then start and end are out off the

//canvas so there is nothing to draw

//m_swidth is the DWORD aligned storage width

width=m_swidth;

//x and y are set to the starting point

x=xs; y=ys;

//dx and dy are the distances in the x and y directions

//respectively

dx=xe-xs; dy=ye-ys;

//ptr is the memory location of x,y

BYTE* ptr=GetPixelAddress(x,y);

xinc=1; yinc=1;

if (dx<0){xinc=-1; dx=-dx;}

if (dy<0){yinc=-1; dy=-dy; width=-width;}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

24 Drawing points and polygons the hard way

red =(BYTE)col&0xFF;

green=(BYTE)(col&0xFF00)>>8;

blue =(BYTE)(col&0xFF0000)>>16;

d=0;

switch (m_bitdepth){

case 24:

if (dy<dx){

c=2*dx; m=2*dy;

while (x!= xe){

*ptr++=blue; *ptr++=green; *ptr++=red; //Set↵
the pixel

x+=xinc; d+=m;

if (xinc<0) ptr-=6;

if (d>dx){y+=yinc; d-=c; ptr-=width;}

}

}else{

c=2*dy; m=2*dx;

while (y!=ye){

*ptr++=blue; *ptr++=green; *ptr=red; //Set the↵
pixel

y+=yinc; d+=m; ptr-=width; ptr-=2;

if (d>dy){ x+=xinc;↵
d-=c;ptr+=xinc;ptr+=xinc;ptr+=xinc;}

}

}

break;

}

}

When drawing the line we need to decide whether our principle increment
axis is going to be x or y. The test involves simply testing which is greater,
the y distance or the x. If x is greater, then we use the x-axis. For every
column in the x-axis, we need to colour a pixel. If the line were horizontal,
then simply incrementing along the x-axis would be sufficient. But we also
need to find the y position. For each column the y value can increment by
1 or decrement by 1. The maximum slope of a line where x is the principle
axis is a 45° slope. For this slope, y is incremented for each x increment.
So the question we need to ask as we move to the next x column is: Do
we need to alter our y value?

To answer this question we use three variables. Double the x distance,
c, double the y distance, m, and an incremental value d. For each x value,

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Drawing points and polygons the hard way 25

we add m to the incremental value d. If it tips over the value for dx then
we need to increase y. When we increase y we decrease the incremental
value d by c and adjust our memory pointer to point to another line. The
operation for the y-axis works in the same way. So now we can draw
arbitrary lines on our memory bitmap using integer arithmetic alone.

A simple class to implement a polygon
Now we have an off-screen buffer in the form of CCanvas and the ability
to draw an arbitrary line on this buffer defined by two points. The next step
is to implement a class to store and display a polygon. This class is
defined as:

class CPolygon

{

public:

//Member variables

POINT3D pts[4];//Stores the vertex data

CVector normal;//The unit length normal

int numverts;//Number of vertices in polygon

doubleh,p,b;//Euler angle rotation

COLOUR col;//RGB values for the unshaded colour of the polygon

BYTE red,green,blue;//Used for all drawing operations

CTexture *tex;//Bitmap texture pointer

CPolygon *next;//Used if the polygon is one of a list

//Functions

CPolygon();//Constructor

CPolygon(int total, CVector *pts);//Constructor

~CPolygon();//Standard destructor

BOOL Facing();//True if screen coordinates of vertices

//are in counter clockwise order

void SetColour(int red,int green, int blue);

void AveragePointNormal(CVector &norm);//Define normal from an

//average of the vertex

//normals

void SetNormal();//Calculates normal from vertex positions

void HorzLine(CCanvas &canvas, int x1, int x2,

int y, double light=1.0, double ambient=0.0);

BOOL SetPoints(int total, CVector *pts);//Set the vertex values

void SetColour(COLOUR col);//Set the colour value

void SetTexture(CString &filename);//Set texture from bitmap

//filename

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

26 Drawing points and polygons the hard way

void DrawOutline(CCanvas &buffer);//Draw outline version of

//polygon

void DrawFlat(CCanvas &buffer);//Draw flat coloured version

void DrawShaded(CCanvas &buffer, BOOL drawNormal=FALSE);↵
//Draw shaded

void DrawTextured(CCanvas &buffer);//Draw textured polygon

protected:

};

The POINT3D class is a structure defined as:

typedef struct stPOINT3D{

double x,y,z;//Untransfromed position

double nx,ny,nz;//Untransformed normal

double wx,wy,wz;//Transformed position

double wnx,wny,wnz;//Transformed normal

int sx,sy;//Screen location

int snx,sny;//Normal screen location

}POINT3D;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 2.3 An outline polygon.

Drawing points and polygons the hard way 27

Drawing an outline polygon

We can use this new class to draw an outline polygon simply by
connecting all the points in the polygon. Once the polygon has been
transformed to screen coordinates using the techniques from the previous
chapter, this involves just this simple code. Note that, once a polygon has
been transformed, the screen coordinates are stored in the sx and sy
members of the POINT3D structure points.

void CPolygon::DrawOutline(CCanvas &buf){

if (numverts<3) return;

for (int i=0;i<numverts-1;i++){

buf.DrawLine(pts[i].sx, pts[i].sy, pts[i+1].sx,↵
pts[i+1].sy,col);

}

//Finally join the last point to the first

buf.DrawLine(pts[numverts-1].sx, pts[numverts-1].sy,↵
pts[0].sx, pts[0].sy,col);

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 2.4 A flat coloured polygon.

28 Drawing points and polygons the hard way

Drawing a flat coloured polygon

In order to paint a filled polygon we need to raster scan the polygon. That
is, we need to break up the polygon into horizontal lines and draw each of
these in turn. To keep things simple we will work only with triangles. If the
polygon has four sides then we draw one half first and then the next. A
triangle can sometimes be orientated so that one of its sides is horizontal,
but an arbitrary triangle can be split into two triangles, each with one
horizontal side.

To determine the starting point of each horizontal line in the traingle we
need the slope of all three lines. In our code we first order the points by
height; to create variables y[max], y[mid] and y[min]. The slope of each
side is the y distance divided by the x distance. Using this information, we
can determine the start and end points of each horizontal line and draw
the line for each y value. The starting point for each horizontal line is given
by the starting point for this slope, the slope of the line and the current y
value.

If we look at an example then it will be clearer. The vertices of the
triangle in Figure 2.5 are

A(28, 16) B(268, 76) C(150, 291)

Taking the line AC, we can calculate point D using the following technique.
First determine the slope of line AC.

The slope of the line is the y distance divided by the x distance:

(291 – 16)/(150 – 28) = 275/122 = 2.254

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 2.5 Dividing a triangle into two, each with a horizontal line.

A
D

B

C

1

2

Drawing points and polygons the hard way 29

Now we want the x value when the y value on this line is 76, i.e. the y
value for vertex B. A line is defined as

y = mx + c

where m is the slope and c is a constant.
Since we know that the vertex (28, 16) is on the line, we can calculate

c as

c = y – mx = 16 – 2.254 × 28 = –47.112

We also know that the vertex (150, 291) is on this line, so a quick check
gives

y = mx + c = 2.254 × 150 – 47.112 = 290.98

which rounded up is the 291 y value of this vertex.
Having calculated this constant, we can rearrange the equation for a

line to derive the x value:

x = (y – c)/m

For our line we know that y is 76 and the slope is 2.254, so the x value on
the line AC when y is 76 is

(76 – (–47.112))/2.254 = 54.62

So the point D is (54.62, 76).
When we draw the triangle, we use the same technique that we have

used to determine the point D to determine the horizontal values for the
start and end of each horizontal line. To calculate the end points of each
horizontal line in the triangle ABD we will also need to know the slope and
constant value for the line AB. Using this information, we know the start
and end x values for each integer y value in the triangle ABD. Having
drawn the upper triangle ABD, we go on to draw the lower triangle DBC.
For this triangle we need to know the slope and constant value for the line
BC. We can then go on to draw each horizontal line in the triangle
DBC.

One end of the line will be the slope from y[min] to y[max] and the other
end will change when the y value reaches the mid value. The code works
through each section in turn.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

30 Drawing points and polygons the hard way

void CPolygon::DrawFlat(CCanvas &buf){

//This function will draw a triangle to the off screen buffer

//class CCanvas

//Only 24 bit supported a the moment

if (buf.GetBitDepth()!=24) return;

//The polygon is facing away from camera

if (!Facing()) return;

int count,min,max,mid,i;

int x[c],y[c];

double m1, d1, m2, d2, q, u, v;

count=1;

//Set the values for red, green and blue directly. No shading

red=col.red; green=col.green; blue=col.blue;

while(count<(numverts-1)){

x[0]=pts[0].sx; x[1]=pts[count].sx; x[2]=pts[count+1].sx;

y[0]=pts[0].sy; y[1]=pts[count].sy; y[2]=pts[count+1].sy;

//Sort points by height

max=(y[0]<y[1])?1:0;

max=(y[max]<y[2])?2:max;

min=(y[0]<y[1])?0:1;

min=(y[min]<y[2])?min:2;

mid=3-(max+min);

//x distance

q=(double)(x[max]-x[min]);

//Avoid division by zero

q=(q)?q:EPSILON;

m2=(double)(y[max]-y[min])/q;

d2=y[max]-m2*x[max];

//Now we know the highest. middle and lowesty positions

//Draw horizontal lines from highest to middle position

if (y[max]!=y[min]){

q=(double)(x[mid]-x[max]);

q=(q)?q:EPSILON;

m1=(double)(y[mid]-y[max])/q;

d1=(double)y[mid]-m1*x[mid];

for (i=y[max];i>y[mid];i–){

u=((double)i-d1)/m1; v=((double)i-d2)/m2;

HorzLine(buf, (int)u, (int)v, i);

}

}

//Reached the mid point

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Drawing points and polygons the hard way 31

if (y[mid]!=y[min]){

q=(double)(x[mid]-x[min]);

q=(q)?q:EPSILON;

m1=(double)(y[mid]-y[min])/q;

d1=(double)y[mid]-m1*x[mid];

for (i=y[mid];i>y[min];i–){

u=((double)i-d1)/m1; v=((double)i-d2)/m2;

HorzLine(buf, (int)u, (int)v, i);

}

}

count++;

}

}

The function to draw a horizontal line is quite simple. We do some simple
clipping to ensure we stay within memory, get a memory pointer and paint
the pixels one after the other. Notice the class CPolygon has colour
values red, green and blue defined by member variables.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 2.6 Drawing a shaded polygon.

