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Preface

The massive social and economic changes that occurred during the last century not
only led to the virtual eradication of nutrient deficiency diseases in the developed
world, but they also focused attention on the problems associated with the appear-
ance of a relatively new phenomenon, an increasingly ageing population. In the last two
decades, scientists studying the animal and plant kingdoms have become increasingly
occupied with gaining a deeper understanding of the genetic basis for ageing and the
impact of the environment on this process. Since, the maintenance of youth, youth-
fulness or at least healthy ageing in animals is a goal aspired to by many, researchers in
this area have become increasingly engaged in developing innovative strategies for de-
laying the ageing process. Similarly, plant stay-green phenotypes are highly sought
after because of their enhanced performance in the field, particularly during periods of
exposure to environmental stress. This volume addresses the recent issues that have
emerged in ageing research, outlined in the context of the individual personal per-
spectives and insights of key researchers working in the field. 

Current knowledge would suggest that in all probability, the mythical Fountain of
Youth resides in the ability of animals and plants to recycle damaged cells. While the
complex and multifactorial aetiology of the ageing process remains far from under-
stood, a consensus of view is emerging regarding the nature of the ageing process as it
operates in the few model animal species that have been subjected to intensive study.
The original simple concept defined in the ‘oxidant theory of ageing’, of a clear causal
relationship between oxidative damage and animal ageing, has not been substantiated
and is giving way to a much more complex and intellectually stimulating picture of
ageing as a failure to recycle damaged cells and macromolecules. All aerobic organ-
isms exploit the potential of oxygen chemistry and effectively deal with the ever-pre-
sent generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS).
A late addition to this grouping of reactive metabolites is sugar-derived dicarbonyls in-
volved in physiological glycation. Within the context of the sugar economy of the cell,
redox metabolism impacts directly on genome and proteome, which are modified by
processes such as oxidation, nitration and glycation. The field of redox biology has
witnessed a reappraisal of the function of ROS and antioxidants in recent years. Once
considered only as ‘molecular hoodlums’ to be suppressed or policed by the antioxi-
dant system, ROS are now considered to be dynamic information-rich signalling mol-
ecules in some instances and mediators of oxidative damage in others. Similarly, taking
low-molecular-weight antioxidants such as vitamins C and E as dietary supplements
is no longer considered to be beneficial in retarding the ageing process. This volume
reviews current concepts concerning cellular redox homeostasis and ageing in animals
and plants, relationships to programmed cell death, the production of oxidants and di-
carbonyls, the ways that different organisms perceive and respond to oxidative, nitra-
tion and glycation challenges, and how this might be intricately connected to ageing
and lifespan. The topics to be covered in this volume include the science of ageing, the

xix
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ecology of ageing, the role of mitochondria and energy metabolism, the free radical
theory of ageing, redox homeostasis and antioxidant signalling, reactive oxygen and re-
active nitrogen species, senescence and programmed cell death, glycation, quantifying
protein and nucleotide modifications during ageing, redox proteomics in ageing in an-
imals and plants, genomics of ageing and caloric restriction, bioinformatics tools in
human ageing genomics and caloric restriction mimetics. The chapter by Richard
Faragher provides an overview of ageing in animals, while the chapter presented by
Paul Thornalley and co-investigators provides a critical appraisal of methods used to
assess damage to the proteome in ageing, and considers the emerging evidence for a de-
cline in enzymatic defences against oxidation, nitration and glycation with age as an ex-
planation for increased proteome damage of the ageing phenotype. The protective
effects of glyoxalase 1 in plants exposed to stress are considered in the chapter by Sudir
Sopory. An anti-ageing effect of over-expression of glyoxalase 1 in Caenorhabditis el-
egans (see cover) was recently reported by Thornalley and collaborators. While con-
cepts of lifespan are rarely considered in plants, the possible roles of oxidants in leaf
senescence are discussed by Ulrike Zentgraf and in programmed cell death in seeds by
Paul Bethke. The roles of ROS as signalling molecules in plants are discussed in detail
by John Hancock, who considers the paradox between their functions in the stimula-
tion of growth and development and as triggers for programmed cell death. The role
of cellular redox metabolism in the developmental responses of plants to enrichment
in atmospheric carbon dioxide are described by Christine Foyer and colleagues, while
the chapter from Stanisław Karpiński and his team considers the interfacing pathways
of light signalling and plant/pathogen responses in programmed cell death. 

The chapter by João Pedro de Magalhães considers informatics and data approaches,
providing a database of genes related to human ageing (GenAge) and related ageing re-
search informatics (http://genomics.senescence.info/index.html). The battery of pro-
tective genes that are involved with detoxification of xenobiotics and the enzymatic
defences against protein damage, and that are associated with longevity in C. elegans,
is reviewed in the chapter by David Gems. The latest research on increased longevity
through dietary restriction and therapeutic agents with related mimetic activity is dis-
cussed by Stephen Spindler, who demonstrates that the calorie-restricted state in mam-
mals is associated with significant tissue re-sorption and the up-regulation of enzymes
involved in phase 1 and phase 2 drug metabolism – the same pathways associated with
extended lifespan in the simple metazoan organisms. Finally, Lamb and Shiels provide
an updated review on the role of telomere biology in ageing at the cellular level while
Pekovic and Hutchison put forward a cellular stress hypothesis to explain the links
between A-type lamins, ageing and premature ageing diseases.

These chapters bring together current knowledge on cell senescence and pro-
grammed cell death in animals and plants with the underpinning processes of tissue
turnover and molecular recycling. While Ponce de Leon’s never-ending search for the
mythical Fountain of Youth proved to be fruitless, the contents of this volume demon-
strate that we are now in a better position to understand the respective roles of accu-
mulating damage to protein and nucleotides, and thus develop nutritional and
prospective interventions to slow the ageing process.

June 2008. Christine Foyer, Richard Faragher & Paul Thornalley

xx PREFACE
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What can we learn from
the cross-species
biology of ageing?

Richard G.A. Faragher

1 Introduction: What is ageing and why should we care?
In 1967, the Society for Experimental Biology played host to a symposium on the bi-
ology of ageing which included studies of the comparative biology of ageing in plants,
insects, protozoa and mammals (Woolhouse et al., 1967). Scientists lacking an all-con-
suming interest in the field were less than impressed. One participant in particular was
heard to remark that ‘a professional biochemical team could have all this sorted out in
a fortnight’ (Woolhouse et al., 1967). Four decades on, this chapter is written with
much the same intent as that original SEB volume. It is a newscast-like account of the
longest fortnight in scientific history (or perhaps 10 days since many areas in ageing
research remain opaque) written for the student who is embarking on a career as a
gerontologist or the specialist who has, perhaps by chance, blundered into the mine-
field of confused terminology and muddled debate that until recently characterized
ageing research.

The thing which is most striking as a contemporary gerontologist looking back at
the literature from the beginnings of the field is the complete absence of any organ-
izing theoretical principles which would allow investigators to gain understanding
(rather than simply experimental results) from the systems they chose to study. There
seems to have been little consensus on what the ageing process actually was and this
rendered discussion of any subsequent questions turbid to say the least. Some years
before, Strehler (Strehler and Mildvan, 1960) had set out four principle criteria that de-
fined the ageing process (or at least distinguished it from maturation and develop-
ment) but there is little evidence from the 1967 SEB symposium that these were
enthusiastically embraced by his contemporaries. Strehler defined ageing as a process
which was:

• Universal (i.e. all members of a population of organisms will show it, a distinction
from infectious disease);

• Progressive (the process was continual and incremental rather than sudden as in
the case of ‘programmed’ organismal death);

• Intrinsic (distinguishing ageing from death due to outside events);
• Degenerative (this captures the idea that ageing is associated with both increasing

chances of mortality but also an increasing level of morbidity).

1

1
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Applying these criteria helps distinguish ageing from other pathological processes
at work within organisms. However, they do not lay sufficient stress on one key as-
pect of the physiology of ageing, the increased frailty of old organisms compared to
their young counterparts. Put simply, aged organisms often fail to survive physiolog-
ical stresses which young organisms are able to weather effectively. For example, the
budding yeast Saccharomyces cerevisiae reproduces asexually but shows an ageing
process marked by the eventual cessation of reproductive capacity in older mother
cells (Powell et al., 2003). If young and old cultures of yeast are exposed to an ageing
that induces physiological stress (such as UV radiation), old yeast cells are markedly
more prone to die (Kale and Jazwinski, 1996). In the nematode Caenorhabditis elegans,
multiple mutations or interventions that lengthen the life of the animal also impart a
stress resistance phenotype compared to wild-type controls (Gill et al., 2003). Many
other examples of similar phenomena across the biosphere could be listed.

Understanding and dealing with human frailty, along with human morbidity, are
both the major challenges facing modern gerontology and its primary justification as
more than a disinterested search for the truth concerning our condition. Morbidity, the
time spent sick before either death or recovery occurs, is prolonged, painful, expensive
and undesirable for all concerned (it has been calculated that a 1% reduction in mor-
bidity will result in savings of billions of pounds per year in long-term care costs by
the middle third of this century). In contrast, death as a result of frailty can be both
abrupt and apparently cheap (as in the case of death by infection in elderly humans fol-
lowing hip fracture); however, the fact that it falls on members of the population who
are healthy, active and socially engaged means that it also has significant financial, as
well as emotional, costs.

To venture upon a mechanistic analogy, ageing is the study of the biology of worn
parts and the consequences thereof. But, before discussing the mechanisms of wear in
more detail, it is necessary to consider briefly a question which has troubled many
thinkers in human history: ‘why does ageing happen at all?’

2 Why does ageing happen? 
Ageing is not universal across all species, or even among all metazoans, but it is ex-
tremely common and thus presumably provides some form of selective advantage to
organisms that show it compared to those that do not. The theories I am about to pres-
ent concerning ageing have been formulated with regard primarily to species that show
a germ-line to soma distinction (the soma is the bits of you that are reading this chap-
ter). Although a soma could, in principle, be either ageing or non-ageing the germ-line
must, by definition, be immortal in order to allow the organism to contribute any off-
spring at all to future generations (an observation that appears to have been first made
by the 19th-century evolutionary biologist August Weismann). These theories thus
have only a tangential bearing on organisms that can reproduce clonally for extended
periods (e.g. some plants). Nonetheless, at least some asexual metazoans do display an
individual ageing process (Martínez and Levinton, 1992) and clonal lineages of these
organisms can suffer a reduction of average fitness through time by the accumulation
of slightly deleterious mutation which cannot be repaired without sexual recombina-
tion (a mechanism known as Muller’s Ratchet). Muller’s Ratchet should, in theory,
drive purely asexual replicators to extinction unless the population is extremely large.
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 However, many metazoan species that replicate clonally retain the ability to initiate
sexual reproduction at specific time points (often generating germ-line from undiffer-
entiated stem cells). Such organisms can thus be seen as opting in and out of the germ-
line/soma distinction and when they are ‘in’ the evolutionary forces described below
most definitely bite. The best current example of this is probably the cnidarian Hydra,
which has been shown to be non-ageing in its asexual form (Martinez, 1998) but after
sexual reproduction the population shows an exponential increase in mortality rate
associated with functional deficits in cellularity, contractile movement and food cap-
ture in individual organisms (Yoshida et al., 2006).

Modern explanations for ‘why ageing happens’ are all based on the evolutionary tru-
ism that the force of natural selection declines with age. This means that, even in a pop-
ulation of immortal organisms, there are always far fewer chronologically old ones than
young ones around (because the longer a given organism has been around the more
likely it is to have been eaten, met with an accident, etc.). Thus, even though the repro-
ductive ability of ‘old’ and ‘new’ non-ageing organisms is the same, the ‘old’ organisms
contribute fewer offspring to the next generation than the ‘new’ organisms simply be-
cause there are fewer of them. Thus, any mutation that favours early life fecundity will
be selected for even if it results in deleterious effects later on in the lifetime (a type of
gene action termed antagonistic pleiotropy; Williams, 1957). This view of ageing argues
against the operation of a ‘programme’ controlling the ageing of individuals (i.e. the ex-
istence of a genetic pathway or process that causes the organism to age but does noth-
ing else). Rather, it suggests that ageing will result from an accumulation of unrepaired
faults, which are generated at different rates in different tissues. 

Antagonistic pleiotropy and related theories which conceptualize ageing as the by-
product of selection for early-life fecundity (such as the ‘disposable soma’ theory of
Thomas Kirkwood, which considers the problem in terms of resource allocation be-
tween somatic repair and reproduction) have proved highly satisfactory in explaining
why ageing happens (Kirkwood, 2005). According to antagonistic pleiotropy, optimal
lifespan is determined by selection pressure for maximum reproductive success. This
is itself determined by the level of environmental risk (e.g. the chance of predation) to
which members of the population are exposed as a consequence of the ecological niche
which they occupy. The huge range of lifespans seen among organisms on this planet
can thus be conceived of as points lying on a continuum between two opposing evo-
lutionary strategies. Organisms at very high levels of risk tend to display ‘prodigal’
(or r selected) life history strategies marked by single reproductive events which gen-
erate many small and rapidly maturing young which then disperse without parental
care. In contrast, species following ‘prudent’ (or K-selected) strategies tend to repro-
duce steadily and produce a few large young that receive intensive parental care and
mature slowly. Clearly, prudence is only an option for a species whose members have
a chance of making it to the end of the week in one piece. These models allow an or-
ganism to be non-ageing only under two conditions: (i) the lack of a germ-line soma
distinction (exemplified by non-sexually differentiated Hydra discussed above) or (ii)
if the efficiency of the organism at producing offspring per unit energy increases over
time (thus counteracting the beneficial effect of mutations favouring early fecundity). 

Fecundity-based theories have also provided a powerful conceptual framework for
the manipulation of lifespan itself. This is best exemplified by the work of
Charlesworth, Rose and colleagues (Rose and Charlesworth, 1981). These researchers
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were able to extend significantly the overall longevity of female Drosophila by the sim-
ple expedient of selecting those females that showed the highest fecundity in the late
phase of the lifespan (typically 20–25 days) as the parents of the F1. If performed over
many generations this procedure produces increased longevity, increased late-life fe-
cundity and generally enhanced resistance to physiological stress compared to age-
equivalent wild-type flies (Nghiem et al., 2000). Essentially similar findings have been
reported by Austad, comparing populations of opossums living in relatively high and
low predation environments. These studies are consistent with the hypothesis that se-
lection for early-life fecundity is the primary reason for organismal ageing.

Despite these successes, care should be taken always to view antagonistic pleiotropy
and disposable soma as theories or hypotheses (q.v.) not immutable laws delivered
from on high. The number of species in which their predictions have been tested is ex-
tremely limited and the majority of these have been organisms maintained under lab-
oratory conditions for many generations. It has even been suggested that these
hypotheses may have actually hindered progress in evolutionary studies of ageing re-
search (Promislow and Pletcher, 2002). This question will be revisited at the end of
this chapter.

3 How does ageing happen?
Johnson once famously described patriotism as the ‘last refuge of the scoundrel’ and
in a similar vein gerontology could sometimes be described as the last refuge of the
theorist. At the last count, there were approximately 300 distinct ‘theories of ageing’
(Medvedev, 1990). Some gerontologists (often new students) see this as evidence of a
flourishing and vigorous field. However, like many of my colleagues, I do not see this
morass in a positive light; after all, no-one in the mitochondrial field now hankers for
the good old days when the chemiosmotic hypothesis stood alongside rival theories
(including the production of the elusive high energy ‘~’ and conformational strain) as
an attempt to explain how ATP was produced. The recognition that proton-motive
force generates ATP allowed the field to move forward. Thus a field with a few well-
tested ideas is a field which is going places. A field which lovingly retains many theo-
ries (some of them discredited antique curios fit only for the historian of science)
probably deserves the jibe made about archaeology (sometimes called by wags the ‘sci-
ence of rubbish’): ‘As fast as the rubbish is dug up; it is written down’. I would advise
anyone new to the field of ageing to treat many theories of ‘how we age’ as though they
carried a health warning.

To be fit for purpose as a research tool any scientific hypothesis must satisfy the fol-
lowing criteria (best described by Karl Popper). To avoid the fundamental philosoph-
ical problem posed by induction (the commonplace but unprovable assumption that
objects outside the study will behave in the same way as objects within the study) any
theory must be capable of being refuted or falsified (i.e. it should make predictions
that are incompatible with certain possible results of observation). Thus all good sci-
entific theories should be very precise (to maximize the number of potentially incom-
patible observations that could be made) and every genuine test of a hypothesis should
be an attempt to falsify it (because it is easy to obtain verifications of a theory if you
do nothing but look for them). In addition, every theory formulated to explain ageing
needs to meet three common-sense criteria.

4 CH. 1.  WHAT CAN WE LEARN FROM THE CROSS-SPECIES BIOLOGY OF AGEING?
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• In order to cause organismal ageing the postulated mechanism must be present in
vivo.

• If the mechanism is present in vivo it must be capable of exerting degenerative ef-
fects.

• Increasing the rate at which the mechanism operates should increase the rate of
ageing and (perhaps more convincingly) slowing the rate at which the mechanism
works should slow the rate of ageing.

Looked at from this point of view very many theories of ageing (e.g. the original for-
mulation of the somatic mutation hypothesis) either collapse due to insufficient pre-
cision (they are simply untestable) or have already been tested and refuted. The classic
example of the latter is probably Orgel’s error-catastrophe theory (Orgel, 1963). This
theory proposed that insertion of the wrong tRNA into a growing polypeptide chain
during translation could give rise to long-lived molecules (such as DNA or RNA poly-
merase) which were themselves error-prone. This was postulated to drive an expo-
nential propagation of ‘errors’ through the cell leading to cell death. The most elegant
refutation of this is probably a study in which senescent cells (q.v.) were infected with
a virus that used the host replication machinery in order to reproduce. If ‘error-cata-
strophe’ had occurred, this machinery should have been dysfunctional1. In fact, it gave
rise to yields of virus essentially identical to those found in non-senescent cells from
the same donors (Danner et al., 1978). Unfortunately, well-designed experiments of
this type have been uncommon in ageing research until quite recently.

Attempts to arrive at a mature understanding of the cross-species biology of ageing
also run the risk of foundering on an unusual problem in biology. Cross-species stud-
ies have been hugely successful in elucidating the operation of a very wide variety of
fundamental processes (e.g. DNA replication and repair) because the molecular ma-
chinery necessary to carry out the process under study is often tightly conserved (i.e.
it is a safe bet that a DNA polymerase from E. coli will be substantially similar to that
found in Homo sapiens because both species ultimately derive from a common ances-
tor and the functional requirements of replicating human and bacterial DNA are very
similar indeed). There has thus been an expectation in some quarters of close similar-
ities between species when the mechanistic causes of ageing are the subject of investi-
gation (i.e. the study of ageing in yeast will inform on human ageing). To an extent
this expectation has been justified. A series of mutants in genes affecting the insulin-
IGF axis have been shown to lengthen lifespan in very different species by mecha-
nisms that have yet to be fully clarified (Partridge et al., 2005). Unfortunately, there is
no logical reason that this must always be the case.

Ageing is the unprogrammed result of selection for early reproductive success and
thus there is no a priori reason why the deleterious changes that result from that se-
lection pressure have to be universal across species (by the same token there is also
nothing to exclude similar changes if they impact a common pathway). In fact, there
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1 In retrospect, it probably wasn’t worthwhile carrying out this experiment at all since error catastrophe
predicted cell death and senescent cells were known by this time not to do this at appreciably greater
frequencies than their growing counterparts. However, in fairness the theory was concerned with cells in
culture and was being invoked to explain senescence at the time (e.g. Holliday and Tarrant, Nature 238:
26–30).
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is evidence that the primary driver of organismal ageing can sometimes be quite dif-
ferent between species. For example, a major cause of ageing and death in female D.
melanogaster is the toxic effect of compounds present in the seminal fluid products
secreted from the main cells of the male fruit fly accessory gland (Barnes et al., 2008).
Seminal fluid toxicity is not seriously advanced as a primary cause of mammalian age-
ing. Similarly, replicative senescence (the loss of divisional capacity in the mitotic tis-
sue compartments of the soma) is not seriously advanced as an ageing mechanism for
species such as C. elegans, that have a completely post-mitotic soma. In summary, an
ageing mechanism which is ‘universal’ is not necessarily ‘primary’ in all species and a
mechanism which is ‘primary’ in one species is not necessarily ‘universal’ in all the
others. Picking one’s way through this morass requires clear thought and by way of il-
lustration I give two theories which stand out from the confusion. One is a much-
touted theory which (in its original form) probably captures everything that used to
be wrong with studies of ‘how ageing happens’ but which is now being reformulated
in a much more testable manner. The other is a much-maligned theory that does seem
a candidate for a plausible ageing mechanism in some species at some times.

3.1 Who’s afraid of ‘free’ radicals?

The free radical theory of ageing proposes that damage caused by free radical reac-
tions is a key contributor to both ageing and age-associated disease. It was first pro-
posed by Denham Harman in the 1950s (Harman, 1956) and is probably the only
theory of ageing that the general public are familiar with. Perhaps no single theory in
gerontology has attracted quite as much interest among researchers.

The free radical theory passes two of the three common-sense criteria I gave above.
Free radical reactions certainly take place in real bodies (a fact not formally established
at the time the theory was proposed) and both radicals and reactive oxygen species
clearly have the potential to exert degenerative effects. However, the evidence that
slowing the rate at which oxidative damage occurs slows the rate of ageing is far more
problematic. Much of the data on which the oxidative damage theory of ageing is based
is correlative and is based on the examination of antioxidant defence levels in differ-
ent species to determine if the ability to defend against oxidative stress correlates with
species-specific lifespan (in general the correlation is rather good but see Section 4.0).
Similarly, long- and short-lived strains of the same organism have been compared for
antioxidant defence levels (longer-lived animals have more; see Dudas and Arking,
1995). However, when interventional tests of the theory have been attempted (typically
by feeding ageing rodents dietary antioxidants such as vitamin E to try and extend
their lifespans) the results have been far less successful. One particularly well-con-
ceived series of studies may stand for the whole. A class of molecules known as the
salens were shown some years ago to act as superoxide dismutase and catalase mimics
in vivo and in vitro. In particular these molecules were shown to be able to somewhat
extend the lifespan of mice carrying a loss-of-function mutation in mitochondrial
 superoxide dismutase (these animals normally have a lifespan of only a few days, the
salen was able to increase this to some weeks; Melov et al., 2001). An initial report also
appeared to show a clear increase in normal nematode lifespan when treated with the
same compounds (Melov et al., 2000). However, a subsequent series of nematode
 studies: (i) determined the dose of salen needed to give a protective effect against
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paraquat-mediated killing (to ensure physiological efficacy) and (ii) measured the ef-
fect of continuous supplementation at that dose on the mean of maximum lifespans of
a population of nematodes. No extension of lifespan could be observed (Keaney and
Gems, 2003; Keaney et al., 2004). This is quite a typical pattern in which a study seek-
ing to test the free radical theory reports a positive effect and others (often in less com-
monly read journals) fail to reproduce it. Explanations for this failure to produce a
consistent lifespan extension effect by interdiction of a pathway that is proposed to be
of primary (and perhaps universal) importance generally include some form of the no-
tion that the effective dose of antioxidants delivered is not high enough. Whilst there
can be a certain amount of truth in these statements it is hard not to consider them a
variant of the ‘conventionalist twist’2.

In at least one species (C. elegans) the classical formulation of the free radical the-
ory of ageing appears to have been refuted. Knocking out the manganese-containing
forms of the antioxidant enzyme superoxide dismutase has no apparent effects on lifes-
pan (although loss of major Cu/Zn SOD, sod-1, does shorten life). Over-expression of
sod-1 does not produce any increase in longevity in this organism. These data are sim-
ply not consistent with a simple relationship between free radical (or oxidative) dam-
age and organismal ageing. What is going on?

One clue is provided by microarray analysis of genes regulated by insulin/insulin-
like growth factor-1 (IGF-1) signalling in this species. Mutants in this pathway signifi-
cantly increase lifespan and that increased lifespan is associated with up-regulated
antioxidant defences (including superoxide dismutase levels). However, many other en-
zymes are also up-regulated which have no role in dealing with oxidative stress but in-
stead are components of either the phase 1 or phase 2 detoxification system used for
xenobiotic metabolism. Thus it appears that long life is associated with increased activ-
ity in pathways that are primarily designed to detoxify a broad spectrum of damaged
macromolecules. Molecules damaged by reactive oxygen species (ROS) are only one
feedstock going into this recycling plant. This ‘green theory’ of ageing (Gems and McEl-
wee, 2005) represents a considerable conceptual advance on anything which has gone
before and is consistent with a number of other studies (not least the observation that
over-expression of glyoxalase I increases lifespan in C. elegans; see Morcos et al., 2008).

3.2 Replicative senescence causes ageing: Definitely maybe

Replicative senescence is a permanent block to further replication in cells from the mi-
totic tissue compartments of a metazoan organism. First reported in the 1960s by
Leonard Hayflick and Paul Moorhead (reviewed in Faragher and Kipling, 1998) the
phenomenon has been extensively studied in cells from mammals but much less so in
cells from lower vertebrates (although it is known to occur in amphibians and may
occur in molluscs). Senescent cells are normally unable to traverse the cell cycle as the
result of an active block to cell-cycle traverse. This block usually occurs in the G1
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phase of the cell cycle and is mediated by one or more cyclin-dependent kinase in-
hibitors. In most circumstances the result is a living, viable and metabolically active, but
reproductively sterile cell. The primary physiological role of entry into senescence is
almost certainly to act as a longevity assurance mechanism by preventing the uncon-
strained proliferation of clones of cells that may have accumulated pro-carcinogenic
mutations. Senescent cells are responsible for the decline in growth potential of in vitro
cell populations that have undergone substantive turnover. They display many bio-
chemical features that are distinct from their growing counterparts as a result of highly
selective changes in gene expression. The expression of some genes goes up (as a con-
sequence of both increased transcription and mRNA stabilization), the expression of
others goes down and the expression of still more is unaffected. The overall effect is to
produce a cell that is locked into a pro-inflammatory phenotype by comparison to
cells of the same time that are still capable of division. It has been proposed that pro-
gressive tissue turnover during life leads to ever-increasing numbers of cells entering
the senescent state.

For many years replicative senescence was a remarkably poor candidate as an in
vivo ageing mechanism (measured against the three common-sense criteria above).
From the 1960s to the 1990s, there was very little evidence that senescent cells were
present in bodies. There was even less evidence that senescent cells were capable of ex-
erting degenerative effects. The best evidence that there might be correlations between
senescence and organismal ageing were probably: (i) the observation that the prolifer-
ative capacity of fibroblasts co-varied in a roughly linear fashion with maximum lifes-
pan in eight different mammalian species (Röhme, 1981) and (ii) reports that fibroblasts
derived from humans with progeroid (accelerated ageing) syndromes, such as Werner’s
syndrome and progeria, showed a greatly attenuated capacity to proliferate in culture
(Kipling et al., 2004). This was hardly impressive, but the lack of data represented a lack
of interest in these questions. The majority of workers in the field were far more con-
cerned with dissecting the molecular mechanisms that led to the initiation and estab-
lishment of the senescent state in vitro.

However, the situation is now very different. A landmark paper in the mid-1990s
used a modified catalytic histochemical assay for β-galactosidase to demonstrate that
senescent cells were present in vivo and that they increased in an age-dependent man-
ner (Dimri et al., 1995). Techniques for the visualization of senescent cells have im-
proved considerably since this paper was published (although it is still far from easy)
and a recent study using multiple markers has concluded that upwards of 15% of cells
in the skin of old baboons are in fact senescent (Herbig et al., 2006). Thus, there is lim-
ited but solid evidence consistent with senescent cells being present in real bodies.

When incorporated into reconstituted human skin equivalents, human dermal
 populations made senescent in vitro are known to increase dermal fragility and sub -
epidermal blistering in a cell-number-dependent manner demonstrating that the pres-
ence of such cells could exert degenerative effects in ex-vivo equivalents (Funk et al.,
2000). However, a still more striking demonstration that senescent cells can produce
life-threatening pathology was provided by experimental induction of senescence in
living rat carotid arteries (Minamino et al., 2004). This produced severe vascular
 inflammation and changes consistent with the development of atheroma. This study is
probably the best current evidence that senescent cells are deleterious to living
 organisms.
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Since the early 1990s, it has been known that the short replicative lifespan of Werner’s
syndrome is due to a three- to fivefold increase in the rate at which cells exit the cell
cycle and become senescent in vitro (Faragher et al., 1993). Although this strongly sug-
gests that a similar process drives the accumulation of senescent cells in Werner’s patients
the best evidence that senescent cells cause accelerated ageing comes from work on two
strains of mice made null for the Werner’s syndrome gene (wrn). Mice singly deficient
for wrn show little by way of any obvious premature ageing phenotype despite the fact
that they show other cellular phenotypes of human WS. However, the differences in
replicative lifespan between wild-type and wrn–/– mouse fibroblasts were small. How-
ever, a second knock out strain (a wrn–/– terc–/– double null) developed age-dependent
pathologies that closely paralleled those seen in Werner’s syndrome humans. These in-
clude grey hair, osteoporosis, type-II diabetes, cataracts, an elevated frequency of non-
epithelial malignancies and premature death. Fibroblasts from the wrn–/– terc–/– animals
showed accelerated replicative senescence in vitro (Kipling et al., 2004). The conclu-
sion that senescent cells are driving the ‘ageing’ changes is very hard to avoid. 

4 Strengths and weaknesses of a cross-species approach

4.1 Short-lived ageing models

In a sense, the majority of studies of the ageing process are cross-species studies by in-
ference. After all, there is limited utility in learning about the mechanisms of ageing in
C. elegans or Drosophila melanogaster unless the data gained are eventually of value
in advancing our understanding of human ageing. However, we may perhaps distin-
guish between three styles of cross-species study.

• The study of short-lived organisms that show a defined ageing process.
• The study of ultra-long-lived species that still show ageing.
• Comparative studies across a wide range of different species intended to test a

mechanistic or evolutionary hypothesis.

The first of these styles of study is quite familiar. The use of organisms such as C.
elegans and Drosophila has brought much needed rigour to biogerontology. The pri-
mary advantages of these species are that they reproduce quickly, have lifespans of
only a couple of months and have excellent genetic tools which allow any ‘ageing’ phe-
notypes to be quickly identified and dissected. The chief disadvantage of these classic
short-lived models is that they are a long way (phylogenetically speaking) from hu-
mans. To that end, there is a need for alternative short-lived ageing models that are
closer to mammals (Gerhard, 2007). A particularly promising candidate is the zebrafish
(Danio rerio). This animal is small, prolific, easily reared and has excellent molecular
genetics resources available due to its use as a developmental model (forward and re-
verse genetics can be performed in zebrafish and there are a variety of expression con-
structs available which permit the construction of transgenic animals). Some
physiological parameters are perturbed in the animal (e.g. circadian rhythm) that are
of direct relevance to human ageing and thus potential avenues of research for groups
seeking to improve quality of life for the elderly (Zhdanova et al., 2008). The chief dis-
advantage of the animal is, ironically, that it lives rather too long. Zebrafish have a
maximum lifespan of about 5–6 years (and a mean lifespan of about 3.5 years). This is
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longer than that of the laboratory mouse, Mus musculus, which has a maximum lifes-
pan of about 4 years. Promising alternative short-lived vertebrates are the killifish
(Nothobranchius furzeri) and a closely related species, the Japanese medaka (Oryzias
latipes). The medaka lives about as long as a mouse (2–4 years) but has a small genome
(~800 Mb) that has already been cloned into BAC libraries. The killifish in contrast is
much shorter-lived (just 3 months) and has the potential to represent a superb ageing
resource. However, there is an almost complete lack of molecular or cellular tools for
the study of the organism (although its genome seems to have a relatively high ho-
mology to that of medaka, which may facilitate molecular biology studies). In addition,
Nothobranchius is potentially challenging to rear because the organism has a require-
ment for embryonic diapause (in the wild, killifish lay eggs in ponds which dry up
during the summer). Establishing proper husbandry techniques for the animals is thus
not trivial, but is likely to be rewarding for any group able to make the investment.

One other short-lived organism of great potential utility to ageing researchers is the
pond snail, Lymnaea stagnalis (Patel et al., 2006). Compared to higher organisms the
snail has a relatively small central nervous system (~20 000 neurones) and has been ex-
tensively studied with regard to learning and memory (it can display both appetitive
and aversive conditioning response) and as a result the neural circuits underlying a va-
riety of physiological responses (including rhythmic feeding and respiration) are well
understood. Recent studies have extended this analysis to the neurobiology of ageing
in the animal and have found that the feeding response is significantly blunted with age
(old animals bite less frequently following a stimulus and take longer to swallow food).
This ‘senility’ is driven by changes in the connectivity of a pair of serotonergic neurones
known as the cerebral giant cells (CGCs). Thus, although Lymnaea currently lacks a
sequenced genome this is compensated for by its short lifespan (typically around 10–
12 months) and the wealth of data available on cognition in the young animal. 

4.2 Long-lived ageing models

If the advantage of short-lived organisms to ageing research is speed then the advan-
tage of ultra-long-lived organisms is staying power; or more precisely, the fact that the
organism in question is able to maintain normal physiological function for a much
longer period than is possible for a human. Organisms which are documented as hav-
ing much longer lifespans than humans are actually quite rare, and gerontologists seek-
ing to work with them require some way of actually dating the organism to see how
old it is (typically through some form of annual growth ring). Creatures known to live
longer than humans include rockfish (~200 years), bowhead whales (at least one spec-
imen dated to over 200) and sturgeon (~150 years of age). However, none of these or-
ganisms is suitable as a laboratory species for reasons which do not require elaboration
(Balaena mysticetus weighs ~50 000 kg and is about 15 m long). The best candidate
for an ultra-long-lived laboratory animal is almost certainly Arctica icelandica (the
quahog or cyprine), a suspension-feeding bivalve mollusc which lives in deep water
(below 25 m) in the shelf seas off the North European and North American conti-
nents. The species is dioecious (separate sexes), with larval development taking  between
30 to 60 days and individuals become sexually mature within 15 years. Crucially, Arc-
tica shells contain a growth record of the animal in the form of wide annual  summer
growth increments separated by narrow winter growth lines. This allows the  organisms
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