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PREFACE

This volume is published in celebration of the 13 years of existence of the
Department of Statistics of the Athens University of Economics and Business
(www.stat-athens.aueb.gr). The Department was -and still is- the only
Department exc1usively devoted to Statistics in Greece. The Department was set
up in 1989, when the Athens School ofEconomics and Business was renamed as
the Athens University of Economics and Business. Until then, Statistics was
part of the Department of Statistics and Informatics. In its 13 years of existence
the Department has grown to a center of Statistics in Greece, both applied and
theoretical, with many international links. As part of the 13th anniversary
celebration, it was decided to put together a volume with contributions from
scientists of international calibre as weil as from faculty members of the
Department.
The goal of this volume is to bring together contributions by some of the leading
scientists in probability and statistics of the latter part of the 20th century who
are the pioneers in the respective fields . (David Cox writes on "Statistics and
Econometrics", C. R. Rao (with M. B. Rao & D. N. Shanbhag) on "Convex
Sets of Multivariate Distributions and Their Extreme Points" , Bradley Efron on
"the Future of Statistics", David Freedman on "Regression Association and
Causation", Vic Barnett on "Sample Ordering for Effective Statisticallnference
with Particular Reference to Environmental Issues", David Bartholomew on "A
Unified Statistical Approach to Some Measurement Problems in the Social
Sciences" , Joe Gani on "Scanning a Lattice for a Particular Pattern", Leslie
Kish on "New Paradigms (Models) for Probability Sampling" (his last paper),
Samuel Kotz & Norman L. Johnson on "Limit Distributions of Uncorrelated but
Dependent Distributions on the Unit Square", Jef Teugels on "The Lifespan of
a Renewal", Wolfgang Urfer (with Katharina Emrich) on "Maximum
Likelihood Estimates of Genetic Effects", and Vladimir M. Zolotarev on
"Convergence Rate Estimates in Functional Limit Theorems". The volume also
contains the contributions of faculty members of the Department. All the papers
in this volume appear for the first time in the present form and have been
refereed.
Academic and Professional Statisticians, Probabilists and students can benefit
from reading this volume because they can find in it not only new developments
in the area but also the reflections on the future direct ions of the discipline by
some of the pioneers of the late zo" century. Scientists and students in other
scientific areas related to Probability and Statistic s, such as Biometry,
Economics, Physics and Mathematics could also benefit for the same reason.
The volume is dedicated to professors Constantinos Kevork and Panagiotis
Tzorzopoulos who were the first two professors of Statistics of the former
Athens School of Economics and Business who joined the newly established
Department in 1989. Professor Tzortzopoulos has also served as Rector of the
University.

xi



What relates the Department to this volume is that the international contributors,
a11 of them renowned academics, are connected to the Department, one way or
another. Some of them (e.g. L. Kish, D. R. Cox, C. R. Rao) have been awarded
honorary doctorate degrees by the Department. They, as weil as the rest of the
contributors, have taught as distinguished visiting professors in the international
graduate program of the Departrnent.

I am indebted to a11 the authors, especia11y those from abroad, for kindly
contributing to this volume but also for the help they have provided to the
Department. Fina11y, I would like to thank Lawrence Erlbaum Publishers for
kindly accepting to publish the volume and to make it as widely available as its
reputation guarantees.

lohn Panaretos
Chairman of the Departrnent
Athens, Greece
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1
SAMPLE ORDERING FOR EFFECTIVE STATISTICAL

INFERENCE, WITH PARTICULAR REFERENCE TO
ENVIRONMENTAL ISSUES

Vic Bamett
Department ofComputing and Mathematics

Nottingham Trent University, UK

1. Introduction

The random sample is the fundamental basis of statistical inference. The
idea of ordering the sample values and taking account both of value and order
for any observation has a long tradition. While it might seem strange that this
should add to our knowledge, the effects of ordering can be impressive in terms
of what aspects of sarnple behaviour can be usefully employed and in terms of
the effectiveness and efficiency of resulting inferences.

Thus, for any random sample x., xJ, ... xn of a random variable X, we have
the maximum x(n) or minimum x(l) (the highest sea waves or heaviest frost), the
range x(n) - x(J) (how widespread are the temperatures that a bridge must
withstand) or the median (as a robust measure of location) as examples using
the ordered sample. The concept of an outlier as a representation of extreme,
possibly anomalous, sampie behaviour or of contamination, also depends on
ordering the sample and has played an important role since the earliest days of
statistical enquiry. Then again, linear combinations of all ordered sample values
have been shown to provide efficient estimators, particularly of location
parameters.

An interesting recent development has further enhanced the importance and
value of sample ordering. With particularly wide application in environmental
studies, it consists of setting up a sampling procedure specifically designed to
choose potential ordered sample values at the outset- rather than taking a
random sampie and subsequently ordering it. An example of such an approach
is ranked set sampling which has been shown to yield high efficiency inferences
relative to random sampling. The basic approach is able to be readily and
profitably extended beyond the earlier forms of ranked set sampling. We shall
review the use of ordered data

• as natural expressions of sample information
• to reflect external influences
• to reflect atypical observations or contamination
• to estimate parameters in models
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with some new thoughts on distribution-free outlier behavior, and a new
estimator (the memedian) for the mean of a symmetrie distribution.

2. Inference from the Ordered Sampie

We start with the random sample x.. X2 ... x; of n observations of a random
variable X describing some quantity of, say, environmental interest. If we
arrange the sample in increasing order of value as x(l)' x(2j ... x(n) then these are
observations of the order statistics X{l)' X(2) ... X(n) from a potential random
sample of size n. Whereas the x, (i = 1, 2 ... n) are independent observations,
the order statistics X(i)' X(j)' (i;t j) are correlated. This often makes them more
difficult to handle in terms of distributional behaviour when we seek to draw
inferences about X from the ordered sample. (See David, 1981, for a general
treatment of ordering and order statistics).

At the descriptive level, the extremes x(l) and x(n)' the range x(n) - x(l)' the
mid-rangetx.j, + x(n)/2 and the median m (that is, x([n+!jl2) if n is odd, or (X(nI2) +
x I[,,<!]! ]) )/2 if n is even) have obvious appeal and interpretation. In particular
the extremes and the median are frequently employed as basic descriptors in
exploratory data analysis, and modified order-based constructs such as the box
and whisker plot utilize the ordered sample as a succinct summary of a set of
data (see Tukey, 1977, for discussion of such a non-model-based approach).

More formally, much effort has gone into exarnining the distributional
behavior ofthe ordered sample values (again David, 1981, gives comprehensive
cover). As an example, we have an exact form for the probability density
function (pdt) of the range r as

g (r) = n(n-l) [, {F(x + r) - F(x)} n-2 f(x + r)dF (x)

wheref(x) is the pdf ofX (see Stuart and Ord, 1994, p.494).
But perhaps the most important and intriguing body of work on extremes

is to be found in their limit laws. Rather like the Central Limit Theorem for a
sample mean, which ensures convergence to normality from almost any
distributional starting point, so we find that whatever the distribution of X
(essentially), the quantities x(l) and x(n) tend as n increases to approach in
distribution one of only three possible forms. The starting point for this work is
long ago and is attributed by Lieblein (1954) to W. S. Chaplin in about 1860.
David (1981, Chapter 9) gives a clear overview of developments and research
continues apace to the present time (see, for example, Anderson, 1984; Gomes,
1994).

The three limits laws, are known as, and have distribution functions (df's)
in the forrns:

=
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A: (Gumbel) FA(x) = exp{- exp[ -(X-A)/b]}

B: (Frechet) FB(x) = exp{-[(X-A)/b]-U}

C: (Weibull) Fdx) = exp{- [-(X-A)/b]-U}

-00 < X< 00

X>A

X<A

(8)0)

(8)0)

(8)0)

Which of these is approached by X(n) (and X(1) which is simply dual to X(n)
on a change of sign) is determined by the notion of zones 01attraction, although
it is also affected by whether X is bounded below or above, or unbounded.

A key area of research is the rate of convergence to the limit laws as n
increases - the question of the so-called penultimate distributions. How rapidly,
and on what possible modelled basis, X(II) approaches a limit law L is of much
potential interest. What, in particular, can we say ofhow the distributions ofX(II)
stand in relation to each other as n progresses from 40 to 100,250 or 1000, say?
Little, in fact, is known but such knowledge is worth seeking! We shall
consider one example ofwhy this is so in Section 3.

Consider the following random sampie of 12 daily maximum wind speeds
(in knots) from the data of a particular meteorological station in the UK a few
years ago:

19,14,25,10,11,22,19,17,49,23,31,18

We have x(1) = 10, X(II) = X(I}) = 49.

Not only is X(II) (obviously) the largest value - the upper extreme - but it
seems extremely extreme! This is the stimulus behind the study of outliers:
which are thought of as extreme observations which by the extent 01 their
extremeness lead us to question whether they really have arisen from the same
distribution as the rest of the data (i.e., from that ofX). The alternative prospect,
of course, is that the sampie is contaminated by observations from some other
source. An introductory study of the links between extremes, outliers, and
contaminants is given by Bamett (1983) - Bamett and Lewis (1994) provide an
encyclopaedic coverage of outlier concepts and methods, demonstrating the
great breadth of interest and research the topic now engenders.

Contamination can, of course, take many forms. It may be just a reading
or recording error - in which case rejection might be the only possibility
(supported by a test 01 discordancy). Altematively, it rnight reflect low­
incidence mixing of X with another random variable Y whose source and
manifestation are uninteresting. If so, a robust inference approach which draws
inferences about the distribution of X while accommodating Y in an
uninfluential way might be what is needed. Then again, the contaminants may
reflect an exciting unanticipated prospect and we would be anxious to identify
its origin and probabilistic characteristics if at all possible. Accommodation,
identification, and rejection are three of the approaches to outlier study, which
must be set in terms of (and made conditional on) some model F for the
distribution of X. This is so whether we are exarnining univariate data, time
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series, generalized linear model outeomes, multivariate observations, or
whatever the base of our outlier interest within the rieh field of methods now
available.

But what of our extreme daily wind speed of 49 in the above data? We
might expeet the wind speeds to be reasonably modelled by an extreme value
distribution - perhaps of type B (Freehet) or A (Gumbel), sinee they are
themselves maxima over a 24-hour period. Bamett and Lewis (1994, Seetion
6.4.4) deseribe various statisties for examining an upper outlier in a sample from
a Gumbel distribution. One partieular test statistie takes the form of a Dixon
statistie,

(x(n) _x(n -1) )/(x(n) - x(lJ

For our wind-speed data with n=12, this takes the value ~ = 0.46 whieh
39

aecording to Table XXV on page 507 of Bamett and Lewis (1994) is not
significant. (The 5% point is 0.53, so notiee how eritieal is the value of t(n -1)

i.e., t(lJ) • If instead of 31 it were 28, then x = 49 would have been a discordant
outlier at the 5% level. This illustrates dramatieally how some outlier tests are
prone to 'rnasking ': Bamett & Lewis, 1994, pp. 122-124.) Thus we eoncIude
that although 49 seems highly extreme it is not extreme enough to suggest
eontamination (e.g., as a mis-reading or a mis-recording or due to freak
circumstances).

A fourth use of ordered data is in regard to basie estimation of the
parameters of the distribution F followed by X. Suppose X has df whieh takes
the form F [(x - ,u ja] where ,u refleets loeation and cr scale or variation. IfXis
symmetrie, ,u and aare its mean and standard deviation. Nearly 50 years ago,
Lloyd (1952) showed how to eonstruet the BLUE or best linear unbiased
estimator of ,u and of a based on the order statisties, by use of the Gauss­
Markov theorem.

Suppose we write U(i) = (X(i) - ,u)ja (i = J, 2... .n) as the reduced
(standardised) order statistics and let a and V denote the mean veetor and
varianee eovarianee matrix of U. Note that V is not diagonal sinee the U(O and
Um (for i ;c j) are eorre1ated. Using the prineiple of extended least squares we
obtain the BLUE B* of () - where ()' = (f.1, a) - in the form

() * = (A' V-I AY' A' V-I X

with varianee/eovariance matrix

var( ()*) = a? (A' V-I AY'

where A = (1, a) with a' = {n.} = {E(U(,)} = {E[(X(j) - ,u)/a]} and V = {uij} is
the varianee/eovarianee matrix of the redueed order statisties
U(;) = (X(;) - ,u)/ a ,

This ean be readily separated to yield the individual BLUE's, ,u* and 0"*.
(See David, 1981, for broader diseussion of optimal and sub-optimal estimators
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based on order statistics and of how they compare with estimators based on the
unordered sampie.)

This approach is central to the more modern environmentally important
principles of ranked set sampling, which we consider briefly in Section 3.

3. Possible New Routes for Outliers and for Order-Based SampIes

Some of the principles reviewed suggest possible developments in outlier
methodology on the one hand and in order-based estimation on the other.

3.1 A Distribution-Free Approach to Outliers

It is c1ear from the above outline, that the methodology of outliers depends
crucially on the form of the null (no-contamination) model. Thus, for example,
even a discordancy test of a single upper outlier x(n) based on the statistic t = (x(n)

- XIII _ i) / (X(II) - x(I) is constrained in this way - since the null distribution of t
(and its critical values) depends vitallyon the form of F. The distribution of t
and its percentage points will obviously be different if F is normal, exponential,
Gumbel, etc. Yet we may not have any sound basis for assuming a particular
form of F, especially if the only evidence is the single random sample in which
we have observed an outlier. This is the fundamental problem ofoutlier study.

In practice, this dilemma is well-recognized and is usually resolved by a
judicious mix of historical precedent, broad principle, association and wishful
thinking (as in all areas of model-based statistics).

Thus it may be that a previous related study, and general scientific or
structural features of the practical problem, link with formal statistical
considerations (e.g., the Central Limit Law, characteristics of extremal
processes) to support a form for F, such as a normal distribution or an
exponential distribution. We then relate our inferences to appropriate null (no­
outlier) distributions for that particular F.

But we are concerned, of course, in studying outliers which as extremes
must have the distributional behaviour ofextremes, which we have just seen to
be essentially distributionally independent of the family F from which the
sample has been chosen - in view of the limit laws. So in principle it seems that
we might essentially ignore Fand examine outlier behavior in terms 0/
properties of the extreme value distribution which is being approached by x(i)
or XIII} (or by some appropriate outlier function of them). This is an attractive
prospect: a distribution-free and hence highly robust alternative to the usual
model-based methods.

So what is the difficulty? Precisely the following. Although x(n)

approaches A, Bore, we have to deal with finite samples and not enough is
known in detail about how quickly and in what manner the forms A or B or C
are approached as n progresses from, say 40 to 100 to 250, etc. The study of
convergence to the limit laws and of 'penultimate distributions' is not yet
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sufficiently refined for our purpose (See Gomes, 1994, for some of the latest
developments).

To consolidate this point consider Table 1.1 which shows samples of
maximum daily, 3-daily, weekly, fortnightly, and monthly wind speeds (in
knots) at a specific location in the UK.

Daily
36 46 13 18 34 19 23 15 18 14 28 10 31 28 22 40 20 23 28

3-Daily
33 31 21 19 22 28 29 25 36 41 16 24 43 20 38 51 34 20 31

Weekly
40 36 47 21 41 27 34 32 45 42 54 19 30 31 24 31 33 34 36

Fortnightly
35 32 45 37 39 31 34 28 47 58 31 33 51 42 50 47 40 41 52

Monthly
40 44 39 32 48 36 51 40 38 52 62 51 39 50 42 56 29 36 45

Table 1.1: Sampies of maximum windspeeds (in knots) at a single UK location
over days, 3-days, weeks, fortnights, and months.

Assuming (reasonably) that these approach the limit law A (they are all
maxima) we would expect to find that plots of In In[(n + 1)Ii] against x(i) in each
case, will yie1d approximately linear re1ationships. It is interesting to confirm
from the data that this is indeed so. We will further see that we obtain the
natural temporal ordering we would expect (reflected, particularly, in the
implied differences in the values of, particularly, ,.1,) in the approximating
extreme value distribution in each case. Essentially the plots are parallel with
intercepts increasing with the lengths 0/ the periods over which the maximum is
taken.

Davies (1998) also carried out an empirical study of limiting distributions
of wind speeds (again from a single UK site) and fitted Weibull distributions to
maxima over days, weeks, fortnights, months, and 2-month periods. Figure 1
(from Davies, 1998) shows the fitted distributions in which the time periods
over which the maxima are taken increase monotonically as we move from the
left-hand distribution to the right-hand one.

We need to know much more about how the distributions change with
change in the maximizing period. It might be hoped that we can obtain a clearer
understanding of how the limit distribution of an extreme is approached in any
specific case as a function of sample size n and that such knowledge might
eventually lead to an essentially new (largely) distribution-free outlier
methodology.



1. SAMPLE ORDERING FOR EFFECTIVE STATISTICAL INFERENCE

004

0.035

0.03

0.025

0.02

0.015

0.01

0005

o
o ~ ~ ~ ~ g ~ ~ ~ ~ g ~ ~ ~

WIndspeeds

7

Figure 1.1: Fitted Weibull distributions to maximum windspeeds over different
periods of time from 1 day to 2 months.

3.2 The Median and the Memedian

Ranked set sampling has become a valuable method particularly in
environmental study. Bamett (2000) remarked:

"A method which is becoming widely used for sampling in the context of
measuring expensive environmental risk factors is that of ranked set sampling.
It can be used for the estimation of a mean, a measure of dispersion, quantiles or
even in fitting regression models. The gains can be dramatic: efficiencies
relative to simple random sampling may reach 300%.

The aim is to employ concomitant (and cheaply and readily available,
sometimes subjective) information to seek to 'spread out' the sample values
over their possible range. This can result in a dramatic increase in efficiency
over simple random sampling. The method has been around for nearly 50 years
since it was first mooted in an agricultural/environmental context (McIntyre,
1952). Further modifications continue apace to improve efficiency and
applicabi1ity for different distributional forms ofthe underlying random variable
and of the type of inference needed."

The method works as follows (Barnett, 2000):
"Conceptual random samples, of observations of the random variable X, take the
form

From each subsarnple we take one measured observation xi(i) : the ith

xi(i)

xi(i)

xi(i)

xi(i)

xi(i)

xi(i)

xi(i)

xi(i)

xi(i)
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ordered value in the ith sample (i = 1,2, ..., n). The ranked-set sample is then
defined as Xl(l)' X 2(2) , •••, xn(n)' In early applications, the mean j.J of the
underlying distribution was estimated by

(1)

which is the ranked set sampie mean, which compares favorably with x (the
mean of a random sample of size n ; not of size n2

, because measurement is

assumed to be of overriding effort compared with ordering). We find that .x is
unbiased and that (for n > 2) typically

var ( .x )< var ( x)

often markedly so, for different sampIe sizes and distributions, if we have
correctly ordered the potential observations in each conceptual subsample."

It will prove interesting to extend (1) to a more general form: that of an
arbitrary linear combinations of the Xi(i) terms. We consider estimators of the
form

(2)

In the general case where X has df F[(x - j.J)/a] , we just noted how to
determine the BLUE of u and a from the ordered sample, For the ranked set
sample x1(l)' X2(2)"" xn!n) we have a simplification in that the variance
covariance matrix is now diagonal (since Xiii) , J0(j)' are independent if i :;rj) and
V in the development of Section 2 can be replaced with W = diag (Vii) = diag
(vJ So if we write the optimal estimators as

n

fl'" =ViXi(i),
j=]

n

0*= L17iXi(i)
j=]

we have

(IIU,{t~/ luJa,t(ajIUj)]
r,

(II+,t,(11uJ-t,(a} IU})]
n, = 6

(3)

(4)

.x )< var ( x)

var ( x)var ( x)

j=] j=]
=
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where

with

(5)

9

The properties of these, and related estimators, are discussed by Barnett
and Moore (1997), Sinha et al. (1996), Stokes (1995) and Barnett (2000). In
particular fJ.* is highly efficient in comparison with the random sample mean
(from an unordered sample) and more efficient than the ranked set sample
mean.

Modified schemes in which we take different numbers of observations of
different xi(i) have been discussed in terms of sampling design and effect by
Kaur et al. (1997) and Barnett (1999).

Suppose we consider an extreme version of such a differential choice of
the Xi(i/ namely that from each conceptual sample we chose only the median m;

So our sample is now the set of n values m, (i = 1, 2, ... n). Rather than
spreading out the sample - the original aim of ranked set sampling - we have
now concentrated it into all the medians. Could this be sensible for estimating fJ.
in a symmetrie distribution where Xhas df F [(x - .wa)]?

Suppose the median m has variance v(m)d. Then, if we define the
memedian Mto be the mean value ofthe medians:

its sampling variance will be vM =v(m)(T2 In where v(m)(T2is the variance of

an individual sample median, obtained from the diagonal variance covariance

matrix W. In comparison, we know that the ranked set sample mean, x, has
n

variance V x =I "«(T2 I n2 so that the relative efficiency of M and xis
1

e\ = I Vi; I(nv(m»)' Clearly M will be more efficient than x if Vii ~ v(m)

which will be true ifv(ml = min (v.). Can this happen? We will see that it can.

luJa,t(ajIUj)]
j=]

luJa,t(ajIUj)]
j=]

luJa,t(ajIUj)]
j=]

where

where

where

xisxisM =
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For illustrative purposes, we show in Table 1.2 the varianees of
standardized order statisties from samples of size 5 for four symmetrie
distributions whieh in standardized forms have pdf's as follows:

• Normal exp(-x2/2)

• Uniform 1

• Triangular 4x+2 (-l/2<x<0)
2-4x (0< x<l/2)

• Double exponential exp{ -lxi}

We see, not unsurprisingly, that the varianees of the standardized order
statisties are symmetrie about that of the median, but what is perhaps surprising
is that sometime the median has largest varianee, sometimes the smallest.
(Results for the triangular and double exponential distributions eome from
Sarhan,1954).

Distribution v;;

Normal .4475 .3115 .2868 .3115 .4475
Uniform .01984 .03175 .03571 .03175 .01984
Triangular .1524 .1407 .1333 .1407 .1524
Double exponential 1.4703 .5025 .3512 .5025 1.4703

Table 1.2: Varianees of standardized order statisties for samples of size 5 from
symmetrie distributions

So for the normal, triangular and double exponential distributions the
memedian is more efficient than the ranked set sample mean. That this is not
universally true is seen from the results for the uniform distribution. The values
of the relative effieieney e l in the four eases are:

1.67,0.78, 1.080,2.45

showing major effieieney gains for the normal and double exponential
distributions.

Is it even possible that M is more efficient than the ranked set BLUE, p*?
n

The relative effieieney of M and p* is now ez =n /[V(m)I Cl /Vii)] .

1

Again, we ean eonsider this for the four distributions in Table 1.2
illustrated for sample size n = 5. The values of e2 are now

1.21,0.73,1.077,1.74

so that again (for the same three eases) we eonclude rather surprisingly that M
ean indeed be more effieient than u", Further, it is mueh easier to ea1culate and
we reeall that it is also (in appropriate distributional eireumstanees) a fortiori


