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Foreword

Signal Detection Theory (SDT) has had, and continues to have, an enormous impact on
many branches of psychology. Although its initial applications were in the interpretation
of sensory processes, its domain has since widened considerably. For example, concepts
derived from SDT are widely used in memory research and in studies of the processing of
verbal information. SDT has been called by many a revolution and I do not think that is
an exaggeration. A basic understanding of SDT has become essential for anyone with a
serious interest in experimental psychology.

The classic work on SDT is Signal Detection Theory and Psychophysics by D.M.Green
and J.A.Swets, originally published by Wiley in 1966 and reprinted with corrections by
Kreiger in 1974. This remains a very useful source for advanced researchers and those
with  mathematical  sophistication.  However,  for  many  readers,  the  descriptions  and
derivations  will  be  beyond their  grasp.  A more recent  and more user-friendly text  is
Detection Theory: A User’s Guide  by N.A. Macmillan and C.D. Creelman, originally
published in 1991. The second edition of this book has just been published by Lawrence
Erlbaum Associates. The Macmillan and Creelman book still  assumes a good deal of
mathematical and statistical sophistication, but it makes more use of visual analogies, and
is intended especially as a practical guide to those actively involved in areas of research
that  depend  on  a  good  understanding  and  appreciation  of  SDT.  In  their  preface,
Macmillan and Creelman state “It could be the basic text in a one-semester graduate or
upper  level  undergraduate  course.”  However  some  undergraduates  may  find  it  too
detailed if they simply want to get a basic understanding of SDT.

When I first had to teach SDT to undergraduates in psychology, I was delighted to
come across A Primer of Signal Detection Theory by D.McNicol, published by George
Allen and Unwin in 1972. This was the only text book I could find that covered SDT at
an introductory level, and that assumed only limited skills in algebra and statistics. I used
this book with success as my recommended text for several my two personal copies of
the  book  both  “went  missing,”  and  all  copies  in  our  library  also  mysteriously
disappeared. I was left “in limbo” for many years. It is with relief and pleasure that I now
write this foreword to a new printing of the book. I can strongly recommend the book as
an introduction to SDT and its applications. It is suitable for use as a student text book,
but will also be useful for teachers and researchers in psychology who need to acquire a
working understanding of SDT.

—Brian C.J.Moore, FmedSci, FRS

Department of Experimental Psychology

University of Cambridge



Preface

There is hardly a field in psychology in which the effects of signal detection theory have 
not been felt. The authoritative work on the subject, Green’s & Swets’ Signal Detection 

Theory  and  Psychophysics  (New  York:  Wiley)  appeared  in  1966,  and  is  having  a 
profound influence on method and theory in psychology. All this makes things exciting 
but  rather  difficult  for  undergraduate  students  and their  teachers,  because a  complete 
course in psychology now requires an understanding of the concepts of signal detection 
theory, and many undergraduates have done no mathematics at university level. Their 
total mathematical skills consist of dim recollections of secondary school algebra coupled 
with  an  introductory  course  in  statistics  taken  in  conjunction  with  their  studies  in 
psychology. This book is intended to present the methods of signal detection theory to a 
person with such a mathematical background. It assumes a knowledge only of elementary 
algebra and elementary statistics. Symbols and terminology are kept as close as possible 
to those of Green & Swets (1966) so that the eventual and hoped for transfer to a more 
advanced text will be accomplished as easily as possible.

The  book  is  best  considered  as  being  divided  into  two  main  sections,  the  first 
comprising Chapters 1 to 5, and the second, Chapters 6 to 8. The first section introduces 
the basic ideas of detection theory, and its fundamental measures. The aim is to enable the 
reader to be able to understand and compute these measures. The section ends with a 
detailed  working  through  of  a  typical  experiment  and  a  discussion  of  some  of  the 
problems which can arise for the potential user of detection theory.

The second section considers three more advanced topics. The first of these, which is 
treated thoroughly elsewhere in the literature, is threshold theory. However, because this 
contender  against  signal  detection  theory  has  been  so  ubiquitous  in  the  literature  of 
experimental psychology, and so powerful in its influence both in the construction of 
theories and the design of experiments, it is discussed again. The second topic concerns 
the  extension  of  detection  theory,  which  customarily  requires  experiments  involving 
recognition tests, to experiments using more open-ended procedures, such as recall; and 
the third topic is an examination of Thurstonian scaling procedures which extend signal 
detection theory in a number of useful ways.

An author needs the assistance of many people to produce his book, and I have been no 
exception. I am particularly beholden to David Ingleby, who, when he was working at the 
Medical Research Council Applied Psychology Unit, Cambridge, gave me much useful 
advice, and who was subsequently most generous in allowing me to read a number of his 
reports. The reader will notice frequent reference to his unpublished Ph.D. thesis from 
which I gained considerable help when writing Chapters 7 and 8 of this book. Many of 
my colleagues at Adelaide have helped me too, and I am grateful to Ted Nettelbeck, Ron 
Penny and Maxine Shephard, who read and commented on drafts of the manuscript, to Su 
Williams and Bob Willson, who assisted with computer programming, and to my Head of 
Department,  Professor  A.T.Welford  for  his  encouragement.  I  am equally  indebted  to 
those responsible  for  the production of  the  final  manuscript  which was organised by 
Margaret Blaber ably assisted by Judy Hallett. My thanks also to Sue Thom who prepared 
the diagrams, and to my wife Kathie, who did the proof reading.



Preface  v

The impetus for this work came from a project on the applications of signal detection 
theory to the processing of verbal information, supported by Grant No A67/16714 from 
the Australian Research Grants Committee. I am also grateful to St John’s College, 
Cambbridge, for making it possible to return to England during 1969 to work on the 
book, and to Adelaide University, which allowed me to take up the St John’s offer.

A final word of thanks is due to some people who know more about the development of  
this  book  than  anyone  else.  These  are  the  Psychology  III  students  at  Adelaide University 
who have served as a tolerant but critical proving ground for the material which follows.

Adelaide University                                                                                 D.MCNICOL
September 1970
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Chapter 1
WHAT ARE STATISTICAL DECISIONS?

AN EXAMPLE

Often we must make decisions on the basis of evidence which is less than perfect. For 
instance, a group of people has heights ranging from 5 ft 3 in. to 5 ft 9 in. These heights 
are measured with the group members standing in bare feet. When each person wears 
shoes his height is increased by 1 inch, so that the range of heights for the group becomes 
5 ft 4 in. to 5 ft 10 in. The distributions of heights for members of the group with shoes 
on and with shoes off are illustrated in the histograms of Figure 1.1.

FIGURE 1.1

You can see that the two histograms are identical, with the exception that s, the ‘Shoes 
on’ histogram, is 1 in. further up the X-axis than n, the ‘Shoes off histogram.

Given these two distributions you are told that a particular person is 5 ft 7 in. tall and 
from this evidence you must deduce whether the measurement was taken with shoes on 
or with shoes off. A look at these histograms in Figure 1.1 shows that you will not be able 
to make a decision which is certain to be correct. The histograms reveal that 3/16ths of 
the group is 5 ft 7 in. tall with shoes off and that 4/16ths of the group is 5 ft 7 in. tall with 
shoes on. The best bet would be to say that the subject had his shoes on when the 
measurement was taken. Furthermore, we can calculate the odds that this decision is cor-
rect. They will be (4/16)/(3/16), that is, 4/3 in favour of the subject having his  shoes on.

You can see that with the evidence you have been given it is not possible to make a 
completely confident decision one way or the other. The best decision possible  is  a 
statistical  one  based  on  the  odds  favouring  the  two possibilities, and  that  decision 
will only guarantee you being correct four out of every seven choices, on the average. 



2  A primer of signal detection theory

TABLE 1.1 The odds favouring the hypothesis ‘Shoes on’ for the eight possible heights of

group members.

Height in inches x

Probability of obtaining this height with

Odds favouring s l(x)Shoes off (n) P(x|n) Shoes on (s) P(x|s)

63 1/16 0 0

64 2/16 1/16 1/2

65 3/16 2/16 2/3

66 4/16 3/16 3/4

67 3/16 4/16 4/3

68 2/16 3/16 3/2

69 1/16 2/16 2/1

70 0 1/16  

P(x|n) and P(x|s) are called ‘conditional probabilities’ and are the probabilities of x given n, and of

x given s, respectively.

l(x) is the symbol for the ‘odds’ or likelihood ratio.

For the sake of brevity we will refer to the two states of affairs ‘Shoes on’ and ‘Shoes 
off as states s and n respectively.

It can be seen that the odds favouring hypothesis s are calculated in the following way: 
For a particular height, which we will call x, we take the probability that it will occur 

with shoes on and divide it by the probability that it will occur with shoes off. We could, 
had  we  wished,  have  calculated  the  odds  favouring  hypothesis  n  rather  than  those 
favouring s, as has been done in Table 1.1. To do this we would have divided column 2 
entries  by  column  3  entries  and  the  values  in  column  4  would  then  have  been  the 
reciprocals of those which appear in the table.

Looking at the entries in column 4 you will see that as the value of x increases the odds 
that hypothesis s is correct become more favourable. For heights of 67 in. and above it is 
more likely that hypothesis s is correct. Below x=67 in. hypothesis n is more likely to be 
correct. If you look at Figure 1.1 you will see that from 67 in. up, the histogram for ‘Shoes on’ 
lies above the histogram for ‘Shoes off. Below 67 in. the ‘Shoes off histogram is higher.

SOME DEFINITIONS

With the above example in mind we will now introduce some of the terms and symbols
used in signal detection theory.

It is possible to calculate the odds that each of the eight heights of the group was ob-
tained with shoes on. This is done in Table 1.1. The probabilities in columns 2 and 3 
have been obtained from Figure 1.1.
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The evidence variable

In the example there were two relevant things that could happen. These were state s (the subject 
had his shoes on) and state n (the subject had his shoes off). To decide which of these had 
occurred, the observer was given some evidence in the form of the height, x, of the subject. The 
task of the observer was to decide whether the evidence favoured hypothesis s or hypothesis n.

As you can see we denote evidence by the symbol x.1 Thus x is called the evidence 

variable. In the example the values of x ranged from x=63 in. to x=70 in. In a psycholog-
ical experiment x can be identified with the sensory effect produced by a stimulus which 
may be, for example, a range of illumination levels, sound intensities, or verbal material 
of different kinds.

Conditional probabilities

In the example, given a particular value of the evidence variable, say x=66 in., Table 1.1 
can be used to calculate two probabilities:

(a) P(x|s): that is, the probability that the evidence variable will take the value x given 
that state s has occurred. In terms of the example, P(x|s) is the probability that a subject is 
66 in. tall given that he is wearing shoes. From Table 1.1 it can be seen that  for x=66 in., 

(b) P(x|n): the probability that the evidence variable will take the value x given that state 

n has occurred. Table 1.1 shows that for x=66 in., 

P(x|s)  and  P(x|n)  are  called  conditional  probabilities  because  they  represent  the 
probability of one event occurring conditional on another event having occurred. In this 
case we have been looking at the probability of a person being 66 in. tall given that he is 
(or conditional on him) wearing shoes.

The likelihood ratio

It was suggested that one way of deciding whether state s or state n had occurred was to 
first calculate the odds favouring s. In signal detection theory, instead of speaking of 
‘odds’ we use the term likelihood ratio. ‘Odds’ and likelihood ratio’ are synonymous The 
likelihood ratio is represented symbolically as l(x).

From the foregoing discussion it can be seen that in this example the likelihood ratio is 

obtained from the formula1

1 Another symbol used by Green & Swets (1966) for evidence is e.
1 More correctly we should write l

sn
(x
i
)=P(x

i
|s)/P(x

i
|n), with the subscripts i, s and n, added to 

(1.1). The subscript i denotes the likelihood ratio for the ith value of x but normally we will just 

write x with the subscripts implied. The order of the subscripts s and n tell us which of P(x
i
|s) and  

P(x
i
|n) is to act as the denominator and numerator in the expression for the likelihood ratio. The 

likelihood ratio l
sn

(xi) is the ratio of P(x
i
|s) to P(x

i
|n) where P(x

i
|s) serves as the numerator. On the 

other hand the likelihood ratio l
ns

(x
i
) is the ratio of P(x

i
|n) to P(x

i
|s) where P(x

i
|n) serves as the 

numerator. As all likelihood ratios in this book will use probabilities involving s as the numerator  

and probabilities involving n as the denominator the s and n subscripts will be omitted.
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Thus from Table 1.1 we can see that

 

Hits, misses, false alarms and correct rejections

We now come to four conditional probabilities which will  be often referred to in the 
following chapters. They will be defined by referring to Table 1.1.

First,  however,  let  us  adopt  a  convenient  convention  for  denoting  the  observer’s 
decision.

The two possible stimulus events have been called s and n. Corresponding to them are 
two possible  responses  that  an  observer  might  make;  observer  says  ‘s  occurred’ and 
observer says ‘n occurred’. As we use the lower case letters s and n to refer to stimulus 
events, we will use the upper case letters S and N to designate the corresponding response 
events. There are thus four combinations of stimulus and response events. These along 
with their accompanying conditional probabilities are shown in Table 1.2.

TABLE 1.2 The conditional probabilities, and their names. which correspond to the four 

possible combinations of stimulus and response events. The data in the table 

are the probabilities for the decision rule: ‘Respond S if x > 66 in.; respond N if 

x!66 in.’

(1.1)

The meanings of the conditional probabilities are best explained by referring to an ex-
ample from Table 1.1. An observer decides to respond S when x>66 in. and N when x<66 
in. The probability that he will say S given that s occurred can be calculated from column 3 of 
the table by summing all the P(x|s) values which fall in or above the category x=66 in., namely,

. This is the value of P(S|s), the hit  rate or hit  probability.  
Also from column 3 we see that P(N|s), the probability of responding N when s occurred is 

. From column 2 P(N|n), the probability of responding N when n
occurred, is 10/16, and P(S|n), the false alarm rate, is 6/16. These hits, misses, false 
alarms and correct rejections are shown in Table 1.2.

 

DECISION RULES AND THE CRITERION

The meaning of !

In discussing the example it has been implied that the observer should respond N if the 

value of the evidence variable is less than or equal to 66 in. If the height is greater than or 

equal to 67 in. he should respond S. This is the observer’s decision rule and we can state 

it in terms of likelihood ratios in the following manner:

 

Check Table 1.1 to convince yourself that stating the decision rule in terms of likelihood 

ratios is equivalent to stating it in terms of the values of the evidence variable above and 

below which the observer will respond S or N.

Another way of stating the decision rule is to say that the observer has set his criterion 

at !=1. In essence this means that the observer chooses a particular value of l(x) as his 

criterion. Any value falling below this criterion value of l(x) is called N, while any value 

of l(x) equal to or greater than the criterion value is called S. This criterion value of the 

likelihood ratio is designated by the symbol !.

Two questions can now be asked. First, what does setting the criterion at !=1 achieve 

for the observer? Second, are there other decision rules that the observer might have used?
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Maximizing the number of correct responses

If, in the example, the observer chooses the decision rule: ‘Set the criterion at !=1 in., he
will make the maximum number of correct responses for those distributions of s and n.

This can be checked from Table 1.1 as follows:
If he says N when l(x)<1 he will be correct 10 times out of 16, and incorrect 6 times

out of 16. If he says S when  he will be correct 10 times out of 16, and incorrect 6
times out of 16. Overall, his chances of making a correct response will be 20/32 and his
chances of making an incorrect response will be 12/32.

Can the observer do better than this? Convince yourself that he cannot by selecting
other decision rules and using Table 1.1 to calculate the proportion of correct responses. 

For example, if the observer adopts the rule: ‘Say  and say S if ,’ his
chances of making a correct decision will be 19/32, less than those he would have had
with !=1.

It is a mistake, however, to think that setting the criterion at !=1 will always maximize
the number of correct decisions. This will only occur in the special case where an event
of type s has the same probability of occurrence as an event of type n, or, to put it in
symbolic form, when P(s)=P(n). In our example, and in many psychological experiments,
this is the case.

When s  and n  have different probabilities of occurrence the value of !  which will 

(1.2)

. Therefore by formula (1.2) !=2 will be the
criterion value of l(x) which will maximize correct responses. This criterion is twice as
strict as the one which

TABLE 1.3 The number of correct and incorrect responses for !=1 when P(s)= ! P(n).

maximized correct responses for equal probabilities of s and n. First we can calculate the
proportion of correct responses which would be obtained if the criterion were maintained

maximize correct decisions can be found from the formula 

Assume that in the example
We can see how this rule works in practiće by referring to the example in Table 1.1.
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at !=1. This is done in Table 1.3. As n events are twice as likely as s events, we multiply 
entries in row n of the table by 2.

The same thing can be done for !=2. Table 1.1 shows that !=2 falls in the interval 
x=69 in. so the observer’s decision rule will be: ‘Respond S if  in., respond N if

 in.  Again,  with  the  aid  of  Table  1.1,  the  proportion  of  correct  and  incorrect 
responses can be calculated. This is done in Table 1.4.

TABLE 1.4 The number of correct and incorrect responses for ß=2 when P(s)= .

It can be seen that !=2 gives a higher proportion of correct responses than !=1 when

. There is  no other value of !  which will  give a better  result  than 33/48 
correct responses for these distributions of s and n.

Other decision rules

One or two other decision rules which might be used by observers will now be pointed 
out. A reader who wishes to see these discussed in more detail should consult Green & 
Swets (1966) pp. 20–7. The main purpose here is to illustrate that there is no one correct 
value of l(x)  that an observer should adopt as his criterion. The value of !  he should 
select will depend on the goal he has in mind and this goal may vary from situation to 
situation. For instance the observer may have either of the following aims.

(a) Maximizing gains and minimizing losses. Rewards and penalties may be attached to 
certain types of response so that

V
s
S=value of making a hit,

C
s
N=cost of making a miss, 

C
n
S=cost of making a false alarm, 

V
n
N=value of making a correct rejection.

In the case where P(s)=P(n) the value of ! which will maximize the observer’s gains 
and minimize his losses is

(1.3)
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It  is  possible  for  a  situation  to  occur  where  P(s)  and  P(n)  are  not  equal  and  where
different  costs  and  rewards  are  attached  to  the  four  combinations  of  stimuli  and
responses. In such a case the value of the criterion which will give the greatest net gain
can be calculated combining (1.2) with (1.3) so that

It can be seen from (1.4) that if the costs of errors equal the values of correct responses,
the  formula  reduces  to  (1.2).  On  the  other  hand,  if  the  probability  of  s  equals  the
probability of n, the formula reduces to (1.3).

(b) Keeping false alarms at a minimum: Under some circumstances an observer may
wish to avoid making mistakes of a particular kind. One such circumstance with which
you will already be familiar occurs in the conducting of statistical tests. The statistician
has  two  hypotheses  to  consider;  H

0
 the  null  hypothesis,  and  H

1
,  the  experimental

hypothesis. His job is to decide which of these two to accept. The situation is quite like
that of deciding between hypotheses n and s in the example we have been discussing.

In making his decision the statistician risks making one of two errors:
Type I error: accepting H

1
 when H

0
 was true, and

Type II error: accepting H
0
 when H

1
 was true.

The Type I errors are analogous to false alarms and the Type II errors are analogous to
misses. The normal procedure in hypothesis testing is to keep the proportion of Type I
errors  below  some  acceptable  maximum.  Thus  we  set  up  confidence  limits  of,  say,
p=0·05, or, in other words, we set a criterion so that P(S|n) does not exceed 5%. As you
should now realize, by making the criterion stricter, not only will false alarms become
less likely but hits will also be decreased. In the language of hypothesis testing, Type I
errors can be avoided only at the expense of increasing the likelihood of Type II errors.

SIGNAL DETECTION THEORY AND PSYCHOLOGY

The relevance of signal detection theory to psychology lies in the fact that it is a theory
about the ways in which choices are made. A good deal of psychology, perhaps most of
it, is concerned with the problems of choice. A learning experiment may require a rat to
choose one of two arms of a maze or a human subject may have to select, from several
nonsense-syllables, one which he has previously learned. Subjects are asked to choose,
from a  range  of  stimuli,  the  one  which  appears  to  be  the  largest,  brightest  or  most
pleasant.  In  attitude  measurement  people  are  asked  to  choose,  from  a  number  of
statements, those with which they agree or disagree. References such as Egan & Clarke
(1966),  Green  &  Swets  (1966)  and  Swets  (1964)  give  many  applications  of  signal
detection theory to choice behaviour in a number of these areas.

Another interesting feature of signal detection theory, from a psychological point of
view,  is  that  it  is  concerned  with  decisions  based  on  evidence  which  does  not
unequivocally support one out of a number of hypotheses. More often than not, real-life

(1.4)
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decisions have to be made on the weight of the evidence and with some uncertainty,
rather than on information which clearly supports one line of action to the exclusion of all
others.  And, as will  be seen, the sensory evidence on which perceptual decisions are
made can be equivocal too. Consequently some psychologists have found signal detection
theory  to  be  a  useful  conceptual  model  when  trying  to  understand  psychological
processes.  For  example,  John (1967)  has  proposed a  theory of  simple  reaction times
based on signal  detection theory;  Welford (1968)  suggests  the  extension of  detection
theory to absolute judgement tasks where a subject is required to judge the magnitude of
stimuli lying on a single dimension; Boneau. & Cole (1967) have developed a model for
decision-making in lower organisms and applied it to colour discrimination in pigeons;
Suboski  (1967)  has  applied  detection  theory  in  a  model  of  classical  discrimination
conditioning.

The most  immediate  practical  benefit  of  the  theory,  however,  is  that  it  provides  a
number of useful measures of performance in decision-making situations. It is with these
that this book is concerned. Essentially the measures allow us to separate two aspects of
an  observer’s  decision.  The  first  of  these  is  called  sensitivity,  that  is,  how well  the
observer is able to make correct judgements and avoid incorrect ones. The second of
these is called bias, that is, the extent to which the observer favours one hypothesis over
another independent of the evidence he has been given. In the past these two aspects of
performance have often been confounded and this has lead to mistakes in interpreting
behaviour.

Signal and noise

In an auditory detection task such as that described by Egan, Schulman & Greenberg
(1959) an observer may be asked to identify the presence or absence of a weak pure tone
embedded in a burst of white noise. (Noise, a hissing sound, consists of a wide band of
frequencies of vibration whose intensities fluctuate randomly from moment to moment.
An everyday example of noise is the static heard on a bad telephone line, which makes
speech  so  difficult  to  understand.)  On  some trials  in  the  experiment  the  observer  is
presented with noise alone. On other trials he hears a mixture of tone+noise. We can use
the already familiar symbols s and n to refer to these two stimulus events. The symbol n
thus designates the event ‘noise alone’ and the symbol s designates the event ‘signal (in
this case the tone)+noise’.

The selection of the appropriate response,  S  or  N,  by the observer raises the same
problem of deciding whether a subject’s height had been measured with shoes on or off.
As the noise background is continually fluctuating, some noise events are likely to be
mistaken for signal+ noise events, and some signal+noise events will appear to be like
noise  alone.  On any given trial  the  observer’s  best  decision will  again  have to  be  a
statistical one based on what he considers are the odds that the sensory evidence favours s
or n.

Visual detection tasks of a similar kind can also be conceived. The task of detecting the
presence  or  absence  of  a  weak  flash  of  light  against  a  background  whose  level  of
illumination fluctuates randomly is one which would require observers to make decisions
on the basis of imperfect evidence.

Nor is it necessary to think of noise only in the restricted sense of being a genuinely
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random component to which a signal may or may not be added. From a psychological
point of view, noise might be any stimulus not designated as a signal, but which may be
confused with it. For example, we may be interested in studying an observer’s ability to
recognize letters of the alphabet which have been presented briefly in a visual display.
The observer may have been told that the signals he is to detect are occurrences of the
letter ‘X’ but that sometimes the letters ‘K’, ‘Y’ and ‘N’ will appear instead. These three
non-signal letters are not noise in the strictly statistical sense in which white noise is
defined,  but  they  are  capable  of  being  confused  with  the  signal  letter,  and,
psychologically speaking, can be considered as noise.

Another example of this extended definition of noise may occur in the context of a
memory experiment. A subject may be presented with the digit sequence ‘58932’ and at
some later time he is asked: ‘Did a “9” occur in the sequence?’, or, alternatively: ‘Did a
“4” occur in the sequence?’ In this experiment five digits out of a possible ten were
presented to be remembered and there were five digits not presented. Thus we can think
of the numbers 2, 3, 5, 8, and 9, as being signals and the numbers 1, 4, 6, 7, and 0, as
being noise. (See Murdock (1968) for an example of this type of experiment.)

These two illustrations are examples of a phenomenon which, unfortunately, is very
familiar to us—the fallibility of human perception and memory. Sometimes we ‘see’ the
wrong thing or, in the extreme case of hallucinations, ‘see’ things that are not present at
all. False alarms are not an unusual perceptual occurrence. We ‘hear’ our name spoken
when in fact it was not; a telephone can appear to ring if we are expecting an important
call; mothers are prone to ‘hear’ their babies crying when they are peacefully asleep.

Perceptual errors may occur because of the poor quality or ambiguity of the stimulus
presented to an observer. The letter ‘M’ may be badly written so that it closely resembles
an ‘N’. The word ‘bat’, spoken over a bad telephone line, may be masked to such an
extent by static that it is indistinguishable from the word ‘pat’. But this is not the entire
explanation of the perceptual mistakes we commit, Not only can the stimulus be noisy
but noise can occur within the perceptual system itself. It is known that neurons in the
central  nervous  system  can  fire  spontaneously  without  external  stimulation.  The
twinkling spots of light seen when sitting in a dark room are the result of spontaneously
firing retinal cells and, in general, the continuous activity of the brain provides a noisy
background from which the genuine effects of external signals must be discriminated
(Pinneo, 1966). FitzHugh (1957) has measured noise in the ganglion cells of cats, and
also the effects of a signal which was a brief flash of light of near-threshold intensity. The
effects  of  this  internal  noise  can  be  seen  even  more  clearly  in  older  people  where
degeneration of nerve cells has resulted in a relatively higher level of random neural
activity  which  results  in  a  corresponding  impairment  of  some  perceptual  functions
(Welford, 1958). Another example of internal noise of a rather different kind may be
found in schizophrenic patients whose cognitive processes mask and distort information
from the outside world causing failures of perception or even hallucinations.

The concept of internal noise carries with it the implication that all our choices are
based on evidence which is to some extent unreliable (or noisy). Decisions in the face of
uncertainty are therefore the rule rather the exception in human choice behaviour. An
experimenter must expect his subjects to ‘perceive’ and ‘remember’ stimuli which did not
occur (for the most extreme example of this see Goldiamond & Hawkins, 1958). So, false
alarms  are  endemic  to  a  noisy  perceptual  system,  a  point  not  appreciated  by  earlier
psychophysicists who, in their attempts to measure thresholds, discouraged their subjects
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from  such  ‘false  perceptions’.  Similarly,  in  the  study  of  verbal  behaviour,  the 
employment of so-called ‘corrections for chance guessing’ was an attempt to remove the 
effects of false alarms from a subject’s performance score as if responses of this type 
were somehow improper.

The fact is, if noise does play a role in human decision-making, false alarms are to be 
expected and should reveal as much about the decision process as do correct detections. 
The  following  chapters  of  this  book  will  show that  it  is  impossible  to  obtain  good 
measures of sensitivity and bias without obtaining estimates of both the hit  and false 
alarm rates of an observer.

A second consequence of  accepting the  importance  of  internal  noise  is  that  signal 
detection theory becomes something more than just  another technique for  the special 
problems of psychophysicists. All areas of psychology are concerned with the ways in 
which the internal states of an individual affect his interpretation of information from the 
world  around  him.  Motivational  states,  past  learning  experiences,  attitudes  and 
pathological  conditions  may  determine  the  efficiency  with  which  a  person  processes 
information  and  may  also  predispose  him  towards  one  type  of  response  rather  than 
another. Thus the need for measures of sensitivity and response bias applies over a wide 
range of psychological problems.

Egan (1958) was first to extend the use of detection theory beyond questions mainly of 
interest  to  psychophysicists  by  applying  it  to  the  study  of  recognition  memory. 
Subsequently  it  has  been  employed  in  the  study  of  human  vigilance  (Broadbent  & 
Gregory,  1963a,  1965;  Mackworth & Taylor,  1963),  attention (Broadbent  & Gregory, 
1963b; Moray & O’Brien, 1967) and short-term memory (Banks, 1970; Murdock, 1965; 
Lockhart  &  Murdock,  1970;  Norman  &  Wickelgren,  1965;  Wickelgren  &  Norman, 
1966). The effects of familiarity on perception and memory have been investigated by 
detection theory methods by Allen & Garton (1968,1969) Broadbent (1967) and Ingleby 
(1968).  Price  (1966)  discusses  the  application  of  detection  theory  to  personality,  and 
Broadbent & Gregory (1967), Dandeliker & Dorfman (1969), Dorfman (1967) and Hardy 
&  Legge  (1968)  have  studied  sensitivity  and  bias  changes  in  perceptual  defence 
experiments.

Nor has detection theory been restricted to the analysis of data from human observers. 
Suboski’s  (1967)  analysis  of  discrimination conditioning in  pigeons has  already been 
mentioned,  and  Nevin  (1965)  and  Rilling  &  McDiarmid  (1965)  have  also  studied 
discrimination  in  pigeons  by  detection  theory  methods.  Rats  have  received  similar 
attention from Hack (1963) and Nevin (1964).

Problems

The following experiment and its data are to be used for problems 1 to 6.
In a card-sorting task a subject is given a pack of 450 cards, each of which has had from 

1 to 5 spots painted on it. The distribution of cards with different numbers of spots is as follows:

Number of spots on card                                  Number of cards in pack  

                1                                                                            50

                2                                                                           100
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Before giving the pack to the subject the experimenter paints an extra spot on 225 cards 
as follows:

Original number of spots on card Number of cards in this group receiving an extra spot

                            1                                                                            25

                            2                                                                            50

                            3                                                                            75

                            4                                                                            50

                            5                                                                            25

The subject is then asked to sort the cards in the pack into two piles; one pile containing 
cards to which an extra spot has been added and the other pile, of cards without the extra 
spot.

1. What is the maximum proportion of cards which can be sorted correctly into their 
appropriate piles?

2. State, in terms of x, the evidence variable, the decision rule which will achieve this 
aim.

3. If the subject stands to gain 1¢ for correctly identifying each card with an extra spot 
and to lose 2¢ for incorrectly classifying a card as containing an extra spot, find firstly 
in terms of !, and secondly in terms of x, the decision rule which will maximize his 
gains and minimize his losses.

4. What proportions of hits and false alarms will the observer achieve if he adopts the 

decision rule ?
5.  What  will  P(N|s)  and  !  be  if  the  subject  decides  not  to  allow  the  false  alarm 

probability to exceed ?
6.  If the experimenter changes the pack so that there are two cards in each group with an 

extra spot to every one without, state the decision rule both in terms of x and in terms 
of ! which will maximize the proportion of correct responses.

7.  Find the likelihood ratio for each value of x for the following data:

x 1 2 3 4

P(x|n) 0·2 0·4 0·5 0·6

P(x|s) 0·5 0·7 0·8 0·9

                3                                                                           150

                                 4                                                                           100

                                 5                                                                             50
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8.  At a particular value of x, l(x)=0·5 and the probability of x given that n has occurred 
is 0·3. What is the probability of x given that s has occurred?

9.   If P(S|s)=0·7 and P(N|n)=0·4, what is P(N|s) and P(S|n)?
10. The following table shows P(x|n) and P(x|s) for a range of values of x.

x 63 64 65 66 67 68 69 70 71

P(x|n) 1/16 2/16 3/16 4/16 3/16 2/16 1/16 0 0

P(x|s) 1/16 1/16 2/16 2/16 4/16 2/16 2/16 1/16 1/16

Draw histograms for the distributions of signal and noise and compare your diagram with 
Figure 1.1. What differences can you see?

Find l(x) for each x value in the table. Plot l(x) against x for your data and compare it 
with a plot of l(x) against x for the data in Table 1.1. How do the two plots differ?

If P(s) were equal to 0·6 and P(n) to 0·4 state, in terms of x, the decision rule which 
would maximize correct responses:

(a) for the problem data,
(b) for the data in Table 1.1.

(The issues raised in this problem will be discussed in Chapter 4.)



Chapter 2

NON-PARAMETRIC MEASURES OF SENSITIVITY

In Chapter 1 it was said that signal detection theory could be used both as the basis for a 
general  theory  of  behaviour  and  for  devising  methods  for  measuring  performance  in 
experimental tasks. For the time being we will concern ourselves with this latter use and 
proceed to describing the basic types of detection task. There are three main types of 
experimental situation in which detection data can be collected; the yes-no task, the rating 
scale task and the forced-choice task.

THE YES-NO TASK

(Green & Swets, 1966, 32, ff.; Swets, Tanner & Birdsall, 1961)
The following is an example of a yes-no task. An observer watches a television screen 

on which, at regular intervals, some information appears. This information takes one of 
two forms. On half the occasions noise alone is shown. On other occasions noise plus a 
weak signal (a circular patch of light in the centre of the screen) is shown. Noise, and 
signal+noise  trials  occur  at  random.  After  each  presentation  the  observer  must  say 
whether it was a signal+noise trial or just noise alone.

After  a  number  of  trials  it  is  possible  to  construct  a  stimulus-response  matrix 
summarising the results of the experiment. The form of the matrix is shown in Table 2.1. 
In it  appear the four conditional probabilities,  calculated from the subject’s raw data, 
which were introduced in Table 1.2.

From the stimulus-response matrix we ought to be able to get some measure of how 
well the observer discriminates signal events from those consisting of noise alone. At first 
sight  it  might  be  thought  that  P(S|s),  the  hit  rate,  is  a  good index of  the  observer’s 
sensitivity to signals.  However it  seems reasonable that  some account should also be 
taken of P(S|n), the false alarm rate. An observer who never looked at the display would 
be able to give a perfect hit rate by responding S to all trials. At the same time he would 
produce a false alarm rate equal to the hit rate and we would be unwilling to believe that 
such a perverse observer was showing any real sensitivity to signals.


