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PREFACE

This is one of two volumes consisting of 33 invited papers presented 
at the International Indian Statistical Association Conference held during 
October 10-11, 1998, at McMaster University, Hamilton, Ontario, Canada. 
This Second International Conference of IISA was attended by about 240 
participants and included around 170 talks on many different areas of Prob­
ability and Statistics. All the papers submitted for publication in this 
volume were refereed rigorously. The help offered in this regard by the 
members of the Editorial Board listed earlier and numerous referees is 
kindly acknowledged. This volume, which includes 33 of the invited pa­
pers presented at the conference, focuses on Advances on Methodological 
and Applied Aspects of Probability and Statistics.

For the benefit of the readers, this volume has been divided into nine 
parts as follows:

Part I 
Part II 
Part III 
Part IV 
Part V 
Part VI 
Part VII 
Part VIII 
Part IX

Applied Probability
Models and Applications
Estimation and Testing
Robust Inference
Regression and Design
Sample Size Methodology
Applications to Industry
Applications to Ecology, Biology and Health
Applications to Economics and Management

I sincerely hope that the readers of this volume will find the papers to 
be useful and of interest. I thank all the authors for submitting their papers 
for publication in this volume.
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CHAPTER 1

FROM DAMS TO 
TELECOMMUNICATION -  

A SURVEY OF BASIC MODELS

N. U. PRABHU
Cornell University, Ithaca, N Y

Abstract: In 1954 P.A.P. Moran formulated a simple discrete time model for 
a finite dam. This model was extended in several directions by J. Gani and the 
author during 1956-1963. The concepts underlying this model and the techniques 
used in its analysis are applicable in a wide variety of situations, as has already 
been demonstrated. Most recently, models for data communication systems have 
also been analyzed with these techniques. In this paper we survey some of this 
work.

Keywords and phrases: Buffer content, dam, data communication, idle time, 
input, fluid input, Levy process, Markov chain, Markov-additive process, packets, 
Poisson arrivals, queues, subordinator, unmet demand, workload

1.1 INTRO DUCTIO N

In 1954 P. A. P. Moran formulated a simple discrete time model for the finite 
dam. The basic components of this model are inputs that are independent 
and identically distributed random variables, a constant demand for water 
and the release policy “meet the demand if physically possible.” During 
1956-1963 J. Gani and the author extended this discrete time model to con­
tinuous time, where the input is described by a subordinator, the demand is 
at a unit rate and the release policy is the same as before. This continuous

3
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time model has several applications, in particular, to single server queues 
with Poisson arrivals and first come, first served discipline or priority dis­
cipline of the static or dynamic type. Because these models have several 
common features in regard to the underlying concepts and techniques of 
analysis, the author proposed the term stochastic storage processes to de­
scribe the processes that arise from the family of such models and presented 
a unified theory of these processes [see Prabhu (1998)]. The most recent 
extension of this theory is to models for transmission of telecommunication 
data. Here the input of data is characterized as a Markov-additive process, 
the desired transmission (demand) rate depends on the Markov component 
of the input and the actual transmission (release) policy is to “meet the 
demand if physically possible.” The resulting theory may be viewed as the 
Markov-modulated version of the theory of dams.

In this paper we survey some of this work, emphasizing only the mod­
eling aspects in order to point out the common features of the models 
considered. For detailed results and recent references see Prabhu (1998). 
For historical references see Prabhu (1965).

In Section 1.2 we describe Moran’s discrete time model for the finite 
dam. The continuous time dam model is described in Section 1.3, and its 
extension to the data communication model in Section 1.4.

1.2 M O R A N ’S MODEL FOR THE FINITE DAM

Moran’s discrete time model for a dam (water reservoir) is the following. 
A dam of finite capacity is designed to meet the demand for electric power 
(expressed in terms of the volume of water required to produce it) or for 
water to be supplied to a city. The demand for water at time n is m  
(< c) and this demand is met “if physically possible,” that is, to the extent 
that this quantity is available in the dam at time n. The dam is fed by 
inputs of water such that if An+i denotes the input during the time interval 
(n, n +  1], then {Xn,n  > 1} is assumed to be a sequence of independent 
and identically distributed random variables. Because of this randomness 
the amount of water in the dam (the dam content) at time n is a random 
variable which we denote by Zn (n > 0).

Since the capacity of the dam is finite there is a possibility of an overflow 
and the actual input during (n ,n +  1] is therefore

( 1.2.1)

The amount of water available for release at time n -F 1 is then Zn +  Vn+i 
and the rele&se policy implies that
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The sequence {Zn,n  > 0} satisfies the relation

(1.2.2)

To see how the dam operates subject to these assumptions we note that 
during a time interval (0, n\ there is a certain amount Fn of overflow from 
the dam, and an amount Dn of the total demand nm  that is not met. Easy 
calculations show that

(1.2.3)

where Sn = X \  -f X 2 +  * • • -f X n(n > 1), So =  0 and Sn — nm  is the net 
input (input minus demand) during (0 ,n].

The assumption on the inputs X n implies that {Zn,n  > 0} is a time- 
homogeneous Markov chain on the state space IR+ . The problems of prac­
tical importance that arise in the analysis of the model are the derivation 
of (i) the steady state distribution of {Zn} and (ii) the distribution of the 
random variable

(1.2.4)

which is the duration of the wet period in the dam whose initial content 
is Zq > 0. Although these problems are standard in the theory of Markov 
chains, general solutions are not known because of the presence of the 
constant c (< 00) in (1.2.2). However, solutions are available for some 
important special cases of the input distributions [see Prabhu (1965)].

When c =  00 (the case of the infinite dam) the equations (1.2.2) and 
(1.2.3) reduce to

(1.2.5)

and
( 1.2.6)

These lead to the expressions

(1.2.7)

( 1.2.8)

where m n is the minimum functional of the random walk {Sn — n m , n > 0}, 
namely

(1.2.9)

The equation (1.2.5) arises in queueing theory, specifically for waiting times 
Zn in the single server queue with constant interarrival times (= m) and
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general service times X n(n > 1). The quantity Dn in (1.2.6) is the total 
idle period during (0,n], while the random variable T(Z q) defined by (1.2.4) 
is the number of customers served during the busy period initiated by a 
waiting time Zo > 0. Thus the results for the infinite dam are applicable 
to queueing theory.

1.3 A CO NTINUOUS TIM E MODEL FOR THE DAM

In developing a continuous time model for the dam we first assume that 
its capacity is oo. For the input we postulate a nonnegative process with 
stationary independent increments, that is, a Levy process {X(£),£ > 0} 
with nondecreasing sample functions (also called a subordinator) and zero 
drift. The demand for water occurs at a rate d o Z(t), where Z(t) is the 
dam content at time t > 0. As in the discrete time case, this demand is met 
“if physically possible”. These assumptions lead to the integral equation

(1.3.10)

We can rewrite this is

(1.3.11)

Here on the right side of (1.3.11) the first integral represents the total 
demand during (0 , t] and the second integral is the part of this demand 
that is not met. The equation (1.3.11) is the continuous time analogue of 
( 1.2.6).

The most extensively studied special case of (1.3.10) is the one with 
unit demand rate (that is, d(x) = 1), which arises also in the queueing 
system M / G / l  and single server queues with Poisson arrivals and static 
or dynamic priorities. In the queue M /G /l, the input X(t)  of workload is 
a compound Poisson process, and Z(t) represents the remaining workload 
(virtual waiting time) at time t. In dam models the special cases of input 
include the gamma process, stable process with exponent 1 /2  and the in­
verse Gaussian process. The integral equation (1.3.11) reduces in the case 
of unit demand rate to

(1.3.12)

where Y(t) — X{t) — t (the net input) and the integral

(1.3.13)



FROM DAMS TO TELECOMMUNICATION -  A SURVEY 7

represents the amount of unmet demand (dry period in a dam or idle time 
in the queue M / G / 1).

As formulated above, the integral equation (1.3.12) does not have a 
unique nonnegative solution. However, if we modify it by writing

(1.3.14)

then the unique nonnegative solution of (1.3.14) is given by

(1.3.15)

where m(t) is the minimum functional

(1.3.16)

It follows from (1.3.14) that

(1.3.17)

on account of the nonnegativity of Z(t). The results (1.3.15) and (1.3.17) 
are the continuous time analogues of (1.2.7) and (1.2.8) for the discrete 
time case.

Remarks.

1. When Z(0) =  0, the solution (1.3.15) reduces to

(1.3.18)

In current literature (1.3.18) is referred to as reflection mapping. This 
term does not give credit to the pioneering 1958 paper by E. Reich, 
who derived (1.3.15) for the virtual waiting time in M /G / l .  Further­
more, the identification of the idle time with the minimum functional 
does not follow from the reflection mapping.

2 . The joint distribution of Z(t) and I(t) can be obtained directly from
(1.3.12). For the compound Poisson input the older technique of anal­
ysis is based on the forward Kolmogorov integro-differential equation 
for the distribution of Z(t). □
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1.4 A MODEL FOR DATA COM M UNICATION SYSTEM S

A buffer of infinite capacity receives inputs of data represented as a Markov- 
additive process (X(£), J(t ), t  > 0} on the state space IR+ x £  in which the 
additive component is a compound Poisson process. Specifically

(1.4.19)

Here Xo(£) is a compound Poisson process in which the rate at which jumps 
occur as well as the jump sizes depend on the state of the Markov process 
J  on a countable state space £, these jumps representing the arrivals of 
packets. In addition X  has a drift that occurs at a rate a(j) when J  is 
in state j ,  and the integral in (1.4.19) represents the amount of data that 
arrive in a fluid fashion. The desired transmission (demand) rate is d{j) 
when J  is in state j  and the transmission (release) policy is to meet the 
demand “if physically possible.” Let Z(t) denote the buffer content at time 
t > 0. The above assumptions lead to the integral equation

(1.4.20)

where the release rate r is given by

(1.4.21)

Comparison with (1.3.10) show that (1.4.20) is indeed an extension of the 
(now classical) dam model. The presence of J  is to be understood with 
reference to specific models. We first consider two special cases.

A fluid model for data communication. If the arrival of data is 
only in a fluid fashion, then X 0(t) = 0 and the integral equation (1.4.20) 
reduces to

(1.4.22)

where x(j)  is the net input rate

(1.4.23)

A m odel w ith packet arrivals. In the presence of packet arrivals we 
need to assume that the desired transmission rate d(j) exceeds the rate of
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fluid arrival a(j). The integral equation (1.4.20) then reduces to

(1.4.24)

where

The integral equation that describes each of the above models is of the 
form

(1.4.25)

where {X(t) ,J( t )}  is a Markov-additive process and

(1.4.26)

Comparing (1.4.25) with the integral equation (1.3.10) we see that the data 
communication models described here are extensions of the continuous time 
dam model of Section (1.3). The unique nonnegative solution of (1.4.25), 
modified as in (1.3.14), is formally the same as (1.3.15), where the net input 
Y  (t ) given by

(1.4.27)

and it should be noted that (Y(£), J{t)} is a Markov-additive process.

The following are two fluid models that have been investigated in the 
literature. The presence of the Markov component J  will be clear from 
these models.

a. A m ultip le  source d a ta  handling  system . There are N  sources
of messages, which are “on” or “off” from time to time. A switch receives 
messages at a unit rate from each source and transmits them at a fixed max­
imum rate c ( l  < N  < oo,0 < c < oo). Messages that are not transmitted 
are stored in a buffer of infinite capacity (see Figure 1.1). Denoting by J(t) 
the number of “on” sources at time t > 0, we assume that {J(t ), t  > 0} is 
a birth and death process on the state space {0 , 1, 2 , . . . ,  N}.  Of interest is 
the buffer content Z(t). It is seen that Z(t) satisfies the integral equation

(1.4.28)

where
(1.4.29)
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Clearly, this is a fluid model with a(j) = j  and d(j) — c.

FIGURE 1.1 A buffer of infinite capacity for storage

b. An integrated circuit and packet switching multiplexer. A
buffer of infinite capacity receives voice calls as well as data. There are s-\-u 
output channels, of which u channels are reserved for data transmission, 
while the remaining s channels are shared by data and voice calls, with 
calls having preemptive priority over data and calls that find all s channels 
that serve them being lost (see Figure 1.2).

FIG URE 1.2 An integrated circuit and packet switching multiplexer
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Voice calls arrive in a Poisson process and their service times have an 
exponential density. Data arrive continuously at a constant rate Co and are 
transmitted at a rate ci(<  Co). At time t > 0, let Z(t ) denote the amount 
of data in the buffer and J(t) the number of channels available for data 
transmission. It is clear that s 4- u — J(t) represents the queue length in an 
M / M / s  loss system, and Z(t) satisfies the integral equation

(1.4.30)

where
(1.4.31)

This is a fluid model with a(j) — cq and d(j) = c\j.

Remarks.

1 . Some authors take (1.3.18) as the starting point of their investigation
of data communication models. Such an approach neglects the mod­
eling aspects that are important in any area of applied probability. In
particular it does not emphasize the role of Markov-additive inputs.

2 . The forward Kolmogorov equation (in the matrix form) can be used 
to derive the joint distribution of Z(t) and J( t ). However, as in the 
case of the dam model it is much more straightforward to derive the 
joint distribution of Z(t),I(t )  and J(t) directly from (1.4.25), I(t) 
being the amount of the unmet demand.

3. It is hoped that this brief survey has made it clear that all of the
models described in Sections (1.3) and (1.4) are indeed storage models.
The use of the term fluid queue, currently in fashion, is obviously
based on lack of familiarity with earlier literature in this subject area.
This term is both unnecessary and unpleasant, and the author hopes
that discriminating researchers will not use it in the future.
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CHAPTER 2

MAXIMUM LIKELIHOOD 
ESTIMATION IN QUEUEING 

SYSTEMS

U. NARAYAN BHAT
Southern Methodist University, Dallas, TX

ISHWAR V. BASAWA
University of Georgia, Athens, GA

Abstract: This paper provides an overview of the literature on the use of the 
maximum likelihood method for estimating parameters in queueing models. Two 
cases, one when the system elements are fully observable and the second when 
only a limited amount of information is available are considered. The paper also 
includes some new results in later sections.

K eywords and phrases: Parameter estimation, maximum likelihood, GI/G/1 
queue, M /G /l queue, GI/M/1 queue, waiting time, queue length

2.1 IN T R O D U C T IO N

There are two key steps in the use of the method of maximum likelihood 
estimation (m.l.e.): constructing the likelihood function and deriving esti­
mators that maximize the function. It was Clarke (1957) who first demon­
strated that the likelihood function can be constructed for the underlying 
queue length process in the queueing system M /M /l (Poisson arrivals, ex­
ponential service times and single servers) if one can describe its sample

13
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path as a realization of random events that can be described in terms of 
distributions. The general maximum likelihood theory for Markov pro­
cesses, of which M /M /l is a simple example, has been given by Billingsley 
(1961). Since then, researchers have explored ways of using this method to 
non-Markovian systems as well.

In stochastic models, many times factors such as system structure and 
cost may prevent full observation. In such cases, inference on system param­
eters will have to be made using other system characteristics. For instance, 
in a queueing system where embedded Markov chains can be identified, 
observations relative to those Markov chains can be used to estimate pa­
rameters. Goyal and Harris (1972) provides one of the first examples of 
this procedure.

In this paper we provide an overview of the use of maximum likelihood 
estimation in queueing systems under both cases of complete and incom­
plete information. In addition to describing some of the basic work on 
Markovian systems, we review research on non-Markovian systems when 
the processes are fully observable and when information only on certain 
characteristics is available. In the latter case some new results are also pre­
sented. The paper is arranged in eight sections. Parameter estimation in 
Markovian and non-Markovian systems is described in Sections 2.2 and 2.3 
respectively. These procedures assume the availability of complete informa­
tion on the system, although in continuous time, discrete state Markovian 
systems the set of sufficient statistics used is smaller than that we normally 
require for non-Markovian systems. Section 2.4 deals with estimation using 
the embedded Markov chains for the waiting time process and in Section 
2.5, the procedure described in Section 2.4 is modified for system time 
(waiting time plus service time) instead of only waiting time. In Sections 
2.6 and 2.7 the process considered is the number of customers in the system 
and the two sections deal with the queues M /G /l and GI/M /1  respectively. 
Finally, Section 2.8 provides some concluding observations. Also Sections
2.5 and 2.7 include new results.

We do not plan to provide a long bibliography in this overview. Only 
those papers with major influence in the course of research are cited. For the 
general theory of inference on Markov processes Billingsley’s book (1961) 
is an excellent reference. Basawa and Prakasa Rao (1980) and Karr (1991) 
provide the theory of inference on stochastic processes, in general. For 
inference on queues, Bhat et at. (1997) is a good reference which includes 
an extensive bibliography.
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2.2 M.L.E. IN M ARKOVIAN SYSTEMS

Any discussion of m.l.e. in Markovian queues has to start with the pa­
per by Clarke (1957). Even though two earlier papers by Moran (1951, 
1953) described a procedure to estimate the birth and death parameters in 
the simple birth-and-death process, it was Clarke who used the complete 
description of the sample path to construct the likelihood function.

Let the system be observed for a length of time t such that the time 
spent in a busy state is a preassigned value t^. Let na,n s,£e represent 
the number of arrivals, number of service completions, and the time spent 
in the empty state, respectively, during [0,£]. Furthermore, let n0 be the 
initial queue length. Also assume that the system is in the steady state. 
The likelihood function can be written as

(2 .2. 1)

and the m.l.e.’s of A and fj, are found from the equations

(2.2.2)

Estimating /x from the second equation gives a quadratic in A. Of the 
two solutions, any negative solution is rejected, and for the remaining values 
of A, corresponding ji is obtained. Furthermore, any pair (A, /£) would be 
rejected for which // < 0 or \ / f i  > 1. If both solutions are valid, then the 
solution which maximizes the likelihood function is chosen.

For large ns — n$ Clarke gives a sample approximation for A and as

(2.2.3)

The consistency of A and }u has been examined by Samaan and Tracy 
(1978) who could establish only a weak consistency for A. If we ignore the 
initial queue size, the estimates of A and /x are, respectively, na/ t  and ns/tb- 

As noted by Cox (1965), specializing Billingsley’s (1961) results, this 
procedure can be extended to the generalized birth-and-death models. The 
conditional likelihood function (ignoring the contribution of the initial state) 
is of the form

(2.2.4)

where A*, ,/x* are the rates of arrival and service compilations in state x, nai 
and nSi are the numbers of arrivals and service completions in state x, and 
U is the total time spent in state x during the observation interval (0 , £].
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For a finite state birth-death queue, ignoring the impact of the initial queue 
size, the m.l.e’s of A* and /i* are given by

(2.2.5)

The above results and similar estimates for parameters in M /M /s, M/M/oo, 
and machine interference problem have been given by Wolff (1965), where 
many details are provided. For an extension of these methods to a simple 
Markovian queueing network, commonly known as the Jackson network, 
see Thiruvaiyaru et al (1991), where joint asymptotic normality of the 
estimators is also established. Also see, Benes (1957) for a discussion of the 
set of sufficient statistics in similar problems, and Cox (1965), and Lilliefors 
(1966) for confidence intervals for estimates.

2.3 M.L.E. IN NO N-M ARKO VIAN SYSTEMS

In Markovian systems, due to the memory less property of the exponential 
distribution data-collection gets simplified because of our ability to pool 
observations without losing information. In non-Markovian systems this is 
not the case and therefore the two cases, one with complete information 
and the second with incomplete information (which arises when the system 
cannot be observed fully), become relevant. In this section we cover two 
important papers by Basawa and Prabhu (1981, 1988) which assume the 
availability of complete information. Research on cases with incomplete 
information is discussed in later sections.

Basawa and Prabhu (1981) obtain the m.l.e.’s of parameters of the ar­
rival and service time distributions with continuous densities f(u;6)  and 
g{v\(f)), respectively. The sampling scheme is to observe the queue un­
til the first n customers have departed from the system and the service 
times of these n customers, say (vi, v<i, . . .  ,vn). Let the nth departure 
epoch be Dn and observe the interarrival times of all customers who arrive 
during (0, Dn], giving the interarrival sequence (ui, u<i, . . . ,  una), where
N a =  NA{Dn) =max{k : u\ + U2 + ---- h Uk < Dn}. Under this sampling
scheme, the likelihood function is

(2.3.6)

where
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Since the factor [1 — F(xn;6)] causes difficulty in obtaining simple es­
timates, consider the alternative approximate likelihood function obtained 
by dropping the last terms in (2.3.6):

(2.3.7)

If 0£,0£ are the m.l.e.’s of 6 and 0  based on L£(/,p), they are solutions 
of the equations

(2.3.8)

Basawa and Prabhu prove that 0“ , 0 £ are consistent estimators of 9 and 0  
and that

(2.3.9)

where iV2 represents a bivariate normal density with

(2.3.10)

77 =m ax(l,p), and p being the traffic intensity.
Let 9n and 0n be the estimators based on the full likelihood function

(2.3.6). It is seen that 0 n = 0 £, and 6n differs from 0£, but it can be 
shown that 6n and 6£ have the same limiting distributions whenever

(2.3.11)

This condition is satisfied for Erlangian arrivals. For large samples, estima­
tors of 6 and 0 can be determined from (2.3.8) at least numerically, if not 
in closed form. Using (2.3.9) confidence intervals for 6 and 0  can also be 
constructed. From a practical point of view, it is significant to note that the 
limit properties of these statistics are obtained without the assumption on 
the existence of equilibrium. Basawa and Prabhu also consider m.l.e.’s for 
arrival and service rates in the M /M /l queue based on a sample function 
observed over a fixed interval (0, £], as done by Wolff (1965), and obtain 
limit distributions of the m.l.e.’s without any restrictions on p.
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In a subsequent paper, Basawa and Prabhu (1988) have provided a 
unified framework for the estimation problem described above where the 
observation period is (0, T], with a suitable stopping time T. Four different 
stopping rules are considered. It is shown that the limit distribution does 
not depend on the particular stopping rule if a random norming is used. 
They assume that the interarrival and service time distributions belong to 
the class of non-negative exponential families. Basawa and Prabhu also 
derive similar results using a generalized linear model for interarrival and 
service time distributions.

An extension of these procedures to Jackson-type queueing networks 
with arrivals at each node following a renewal process and service times 
being arbitrary has been carried out by Thiruvaiyaru and Basawa (1996). 
As an illustration, the inter-arrival time and service time distributions are 
assumed to belong to two separate exponential families of distributions. 
Two sampling plans, one based on a realization over a fixed interval and 
the second with observations over a certain random interval are used.

2.4 M.L.E. FOR SINGLE SERVER QUEUES USING  
W AITING TIM E DATA

In Sections 2.4-2.7 m.l.e. procedures are described when complete infor­
mation on the systems under consideration is not available. This section 
uses waiting time data, Section 2.6 employs system time (waiting time plus 
service time) data and the following two sections use queue length data for 
estimation.

A maximum likelihood procedure for the estimation of parameters in a 
single server queueing system G I/G /1  was presented in a recent paper by 
Basawa, Bhat and Lund (1996) using information on waiting times {VF*}, 
t — 1 ,2 , . . . ,  n of n successive customers. Information is collected from each 
of n successive customers on the amount of time spent by them in waiting 
for service. Let Wt denote the waiting time of the tth customer. The 
waiting time process {Wt , t = 1, 2 , . . .} satisfies the following well known 
equation:

(2.4.12)

where X t = Vt-i — Ut, with Vt and Ut denoting, respectively, the service 
and inter-arrival times corresponding to the tth customer. It should be 
noted that { X t} is a sequence of independent and identically distributed
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random variables and X t+i is independent of W%. It is clear that {Wt} is 
a Markov chain and its transition distribution function can be written as

(2.4.13)

where Fx(•) is the distribution of X t. The transition distribution function 
has a discontinuity at 0. Define

(2.4.14)

Then, for the transition density we have

(2.4.15)

Define the indicator function

(2.4.16)

Using 1, for the transition density of Wt , we can write

(2.4.17)

The likelihood function based on the sample (JUi, W2, ..., Wn) is given by

(2.4.18)

Let 6  — (0i, 6 2 , 0r)' be the unknown parameter vector corresponding to 
the distribution of X t . Basawa et al. (1996) show that estimates for 6

can in fact be determined using the likelihood function (2.4.18) following 
the standard procedure. Basawa et al. also have established the consis­
tency and the asymptotic normality of the estimators, and discussed issues 
pertaining to their efficiency.

2.5 M.L.E. USING  SYSTEM  TIME

The sampling plan used in the last section requires the knowledge of the 
amount of time customers spend in waiting for service. In practice, in many 
instances, it may not be as easy to determine the actual waiting time as 
it is to determine the total time spent by customers in the system; i.e.,
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the waiting time plus service time. We shall call this characteristic system 
time.

Let Yt be the system time corresponding to the t th customer. Based on 
its definition, we have

(2.5.19)

which can also be written in display form as

(2.5.20)

Incidentally, the continuous time analog {Y{t), t > 0} of the process {Yt , t = 
1,2,3. . .} was originally introduced by Prabhu (1964) in the context of 
queue GI/M/1. The process Y(t)  exhibits properties of duality with the 
virtual waiting time process W(t)  as defined by Takacs (1955) and the 
graph of y (t) can be looked upon as a mirror image of the graph of W(t)  
[see, Prabhu (1965, p. 102)].

Equation (2.3.9) shows that {Yt}, £= 1 ,2 ,  —  is a Markov process. We 
now proceed to derive the transition density corresponding to the Markov 
process {Yt }. We have

(2.5.21)

where a(u) is the inter-arrival time density. The result in (2.5.21) follows 
readily from (2.5.20), considering the two possibilities: Ut+i > Yt and 
f/f+i < Yt and applying the addition law. The transition probability of 
Yt+1 given Yt is then obtained by differentiating (2.5.21) with respect to 
V t + 1 :

(2.5.22)

where 6(-) and A(-) denote the density of service time V  and the distribution 
function of inter-arrival time, {/, respectively. The likelihood function based
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on (Y\ , . . . ,  Yn) is then given by

(2.5.23)

where 9 is the parameter of interest, and p(Y\;6) is the initial density of 
Y\ . The ML estimator 6 is obtained as a solution of the equation

(2.5.24)

Since {Wt} is an ergodic process (assuming that the traffic intensity p < 1), 
it follows that {Yt}, Yt — Wt +  V*, is also ergodic. The consistency and the 
asymptotic normality of the MLE, 0, can therefore be deduced as in Basawa 
et al. (1996).

2.6 M.L.E. IN M /G / l  USING  QUEUE LENGTH DATA

In this and the next section, the sampling scheme used for collecting data 
includes only observing the number of customers in the system for a fixed 
length of time or some variation of it.

Consider the embedded Markov chain of the queue length in M /G /l ,  
defined at departure epochs. Let Qt be the number of customers in the sys­
tem immediately after the tth departure. The process {Qt , t =  0 ,1 ,2 , . . .} 
is a Markov chain. Let £(•) be the service time distribution and the Poisson 
arrival rate be A. If we denote by A t, the number of arriving customers 
during the service period, we get the distribution of At as

(2.6.25)

It is well known that Qt satisfies the relation

(2.6.26)

which is similar in structure to Eq. (2.5.20). For the transition probabilities 
of {Qt}, we have

(2.6.27)
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Suppose the process is observed until the number of departures reaches 
a fixed value n. Now tracing the sample path of the process we may write 
down the likelihood function as

(2.6.28)

Let riij be the number of transitions of Qt from i to j  on the sample path, 
and 0, the vector of parameters for which estimators are being sought. We 
get

(2.6.29)

Depending on the form of the service time distribution, an explicit expres­
sion for the likelihood function can be written down and maximized in the 
usual manner to determine maximum likelihood estimates. The same gen­
eral formulation holds when the service times are dependent. Goyal and 
Harris (1972) consider two such systems: (i) service times are exponential 
but with different means when the queue size is 1 and when it is > 1, (ii) 
service times are exponential with means linearly dependent on the number 
of customers in the system (pt — tp). They derive m.l.e.’s for utilization 
factors (arrival rate/service rate) in the case of these two systems when 
the effect of the initial queue length can or cannot be ignored. Depending 
on the complexity of likelihood functions to be maximized, some equations 
will have to be solved using numerical approximation methods.

Another approach to maximum likelihood estimation using embedded 
Markov chains is to observe only the number of arrivals during successive 
service periods. In particular, when the arrivals are Poisson and the service 
times are Erlangian, Harishchandra and Rao (1984) have constructed the 
likelihood function using the number of arrivals during successive service 
periods as the sample. In an M/E^/ l  queue, in which k is the shape 
parameter of the Erlangian distribution and p is the traffic intensity, let A t 
denote the number of arrivals during the service of the (t +  l)th  customer. 
Then A t has the negative binomial distribution given by
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(2.6.30)

Suppose the system is observed only at departure epochs. Using equation
(2.6.26), the queue length data can be easily converted into arrival data. 
Let x \ , #2, • • •, xn be the number of arrivals during the first n service times, 
respectively. The likelihood function for this sample is then

(2.6.31)

The maximum likelihood estimate of p is found to be p =  EXifn. This 
estimator is unbiased and consistent, since E(p) — p and Var(p) =  p(p -f 
k)/(kn).  Furthermore, it turns out that p is also the minimum variance 
bound (MVB) estimator and therefore uniformly minimum variance unbi­
ased estimator (UMVUE) of p. It can be shown that the probability dis­
tribution of X belongs to the one-parameter exponential family and hence 
T  = EXi is a sufficient statistic for p. Finally, for large values of n,

(2.6.32)

where

(2.6.33)

Even though, conceptually, estimating k using the likelihood function 
(2.6.31) is only a mathematical problem, due to the complexities of the 
expressions, the procedure does not become tractable. The results derived 
by Miller and Bhat (1997) overcome this problem by using a different ap­
proach.

Miller and Bhat use the number of customers served while the system 
has been busy for a specific length of time as the data element. In this 
formulation the service process, after eliminating idle times, resembles a 
renewal process. Consider the following two sampling plans for this renewal 
process.

Sampling Plan I: Assuming that the first observation period begins at 
time zero, observe the renewal process at time r  and record the num­
ber of renewals in (0 , r). To assure independent observations, the
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next observation period will begin when the next renewal occurs. 
Then after a period of r  time units, the number of renewals occurring 
in this second period is recorded. Wait until the next renewal occurs 
and the renewal epoch begins the following observation period, etc.

Sampling Plan II: Assuming the first observation period begins at time 
zero, observe the renewal process at time r  and record the number 
of renewals in (0, r). Also record the time until the next renewal fol­
lowing time t which will signal the start of a new observation period. 
Then after a period of r  time units, the number of renewals occurring 
in this second period is recorded. Record the time elapsed until the 
next renewal and the renewal epoch begins the following observations 
period, etc.

The second sampling plan uses the additional information on the waiting 
time to start the next observation.

Let N \ , JVJ,__  denote the number of renewals (service completions)
occurring in the observation periods, 1,2,3, . . . ,  respectively. In the second 
sampling plan the observations will be bivariate { (N[ , Yi(r)), i = 1,2,. . .} 
where Y*(r) is the excess life of the renewal period encountered at the zth 
observation. Using these observations, { N [ , i = 1,2,. . .} with Sampling 
Plan I and {(N[,  Ff(r))}, i — 1,2,. . .} with Sampling Plan II, Miller and 
Bhat construct likelihood functions which can be used to derive m.l.e. for 
k either assuming k to be continuous first and determining the best integer 
k from that result, or using the method of integer maximum likelihood 
estimation. As one would expect Sampling Plan II leads to better results 
in estimation.

2.7 M.L.E. IN G I/M /1  USING QUEUE LENGTH DATA

Consider the imbedded Markov chain {Qt , t =  0 , 1, 2 , . . .} in a GI/M /1  
queue in which arrivals from a renewal process and service times are expo­
nential. Let Qt represent the number of customers in the system just before 
the tth arrival. Let A(-) be the inter-arrival time distribution function and 
fi be the service rate so that the exponential service time density is given 
by fie~^x (x > 0). Define Dt as the number of potential departures during 
an inter-arrival period if an unlimited number of customers are available 
for service. The random variable Dt has the distribution

(2.7.34)
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It is well known that Qt satisfies the relation

(2.7.35)

Let

Then, (2.7.35) can be re-written in the form

(2.7.36)

which is similar in structure to Eq. (2.4.12). 
From equation (2.7.36) we get

(2.7.37)

where we have written

(2.7.38)

Using the indicator function Zt defined in (2.4.16), with Wt replaced by 
Qt, we may write the transition probability as

(2.7.39)

and the likelihood function as

(2.7.40)

It should be noted that when estimating 0 using maximization of (2.7.40), 
numerical methods maybe needed. For instance, when the inter-arrival time
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distribution is Erlangian with

(2.7.41)

Even though 6 (r) lends itself convenient for taking logarithms and differen­
tiating, a(z) = YH=o^(r) ls not; easily tractable in such operations. Then, 
direct maximization using numerical techniques is recommended.

If k is also an unknown parameter, methods using integer-maximum like­
lihood estimation will have to be incorporated in the process [see, Dahiya 
(1986) and Miller (1997)]. Another approach is to follow the procedure of 
Miller and Bhat (1977) described in Section 2.6. The arrival process is a 
renewal process and the estimation procedure proposed by Miller and Bhat 
gives m.l.e. for Erlang k of the arrival distribution.

In deriving Eq. (2.7.35), we note that Dt has been defined as the number 
of potential departures during an inter-arrival period. (It is the actual 
number when the system is busy throughout the period; otherwise it is 
the number of departures if there are an unlimited number of customers in 
the system). Consequently, the information available on {Qt} cannot be 
transformed into information on Dt completely as done for Eq. (2.6.30) in 
Section 2.6. Therefore, if one has to carry out inference based solely on 
queue length, the maximum likelihood method described above seems to 
be the best approach.

2.8 SOME OBSERVATIONS

From a review of research papers on the use of m.l.e. to estimate parame­
ters of queueing models, it is clear that if one is interested in deriving simple 
readily usable results, a Markovian model is almost a necessity. Even when 
using information from an embedded chain in the queue M /G /l, the proce­
dure leads to closed-form solutions only when the service time distribution 
is Erlangian. When likelihood function becomes complex, maximization can 
be accomplished only through numerical approximation methods. There­
fore, in applications with non-Markovian models where easy numerical re­
sults are needed, regardless of the sophistication of the maximum likelihood 
procedure and the desirable properties possessed by the estimators result­
ing from it, we may not have any recourse but to use moment estimators.


