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Introduction 

Jill H. Larkin and Ruth W. Chabay, Editors 
Center tor Design of Educational Computing, Carnegie Mellon University 

THE PURPOSE OF THIS BOOK 

Two groups of individuals share a vision that computers can provide 
excellent instruction for large numbers of students. The first of these groups we 
call developers of computer-assisted instruction (CAl). This group consists 
predominantly of experienced teachers and educational researchers, with strong 
backgrounds in the subject matter of their programs. The second group we call 
developers of intelligent tutoring systems (ITS). This group consists 
predominantly of researchers in cognitive psychology and computer science who 
develop principles of learning and apply them in instructional programs. 

Unfortunately, these groups have had few vehicles for sharing ideas or 
programs. Different backgrounds and settings have meant reading different 
journals and attending different conferences. The purpose of this book is to 
foster a mutual understanding of shared issues and complementary approaches so 
as to further powerful educational applications of computing. 

The following pages first summarize the complementary, but distinct, 
approaches of CAl and ITS, and then discuss shared issues toward which these 
complementary approaches are directed. 

COMPLEMENTARY APPROACHES 

Central Aims 

The aim of CAl programs is to address existing needs of particular groups of 
students. The CAl developer wants to produce the program that has the best 
chance of teaching effectively and applies to this end all available experience and 
expertise. CAl programs are specific and hand-crafted for the domain, topic, and 
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students addressed. With these specifically tailored programs, CAl pushes the 
frontier of the best that can be done with current technology and imaginative 
techniques. 

In contrast, the aim of ITS developers is to implement in programs a set of 
instructional principles sufficiently general to provide effective instruction for a 
variety of teaching tasks. ITS programs are strongly rooted in research on the 
psychology of learning. With large programs that provide instruction for many 
tasks (e.g., a significant part of a course), ITS pushes the frontier of knowledge 
about what general instructional techniques work and why. 

Instructional Models 

CAl programs do not follow a single theoretical model of instruction. In 
many CAl programs, the instruction emulates (in a form appropriate to the 
computer medium) interactions that might occur between a student and an 
excellent teacher. Other programs attempt to create an engaging, motivating 
environment that encourages purposeful exploration in a domain. A rich 
diversity of environments and problems is often a goal in CAl, and a suite of 
programs developed for a single course may vary significantly in goals, tasks, 
and style. 

CAl programs reflect their developers' experienced beliefs about good 
teaching and good design for the computer medium. Some of the most 
interesting programs derive from developers' intuitions about activities well-
suited to the medium, rather than from traditional instruction in the domain. 
Learning goals can be implicit in CAl, and activities may or may not be 
explicitly related to the tasks the student will be expected to perform after 
instruction. 

ITS programs, in contrast, contain an explicit computer-implemented model 
of instruction. It is this model, and not the hand-crafted code of the developer, 
that determines how the program responds to the student. This model of 
instruction consists of two parts: (a) a performance model capable of performing 
the tasks the student is learning to perform, and (b) a teaching model that 
compares the student's actions with those of the performance model, and 
determines what (if any) reactions the ITS will provide to the student. 

The performance model usually consists of a large set of fine-grained 
inference rules (although other techniques may be used in conjunction with these 
rules). Each rule consists of actions together with conditions under which these 
actions should occur. It is important that the rules be small in scope, because 
then they can be combined flexibly, in different ways, to do different activities. 
When an ITS is running, these rules are not invoked in any fixed order. Instead, 
at each point in time, the program searches for the rule most likely to contribute 
useful information to the current situation. This rule-based program architecture 
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has had repeated success in building computer programs that apply large amounts 
of knowledge flexibly to a variety of tasks. 

The teaching model in an ITS consists of engaging the learner in a 
reasoning task, and comparing the student's actions with the set of actions that 
can be generated by the performance model. This comparison lets the ITS 
identify when the student does something either wrong (according to domain 
knowledge) or useless in pursuit of the current task. The teaching model then 
determines what (if any) advice is to be offered. Furthermore, the tasks given to 
the student are designed so that (a) all inference rules in the performance model 
are required to solve the full set of tasks, and (b) each inference rule is applied in 
several contexts. Thus, the student has multiple opportunities to practice and 
acquire the knowledge represented by each rule. 

In summary, CAl programs reflect experience in teaching in a particular 
domain, and consist of varied activities designed to help students increase domain 
knowledge and apply that knowledge in different contexts. ITS programs have 
an explicit model of the knowledge required for a domain of tasks, and the 
activities they include provide systematic practice in using all relevant 
knowledge. 

Program Structure 
CAl programs are interaction centered, reflecting the CAl model of 

instruction in which the computer is an interactive medium for instruction 
characteristic of excellent teachers. CAl programs are therefore built to provide a 
specific kind of student interaction with the computer screen. These programs 
start with a vision of this interaction, and then programming is done to make 
that vision real. CAl developers see the computer screen as a programmable 
interactive communications medium. 

Single CAl programs are usually relatively brief (although some can be used 
in many ways) and deal with only a few aspects of a domain (e.g., comparing the 
size of fractions). A set of related programs, carefully coordinated by their 
developer(s), can provide instruction throughout an entire course. 

In contrast, ITS programs are knowledge centered, reflecting the explicit 
model of performance knowledge on which they are based. Interaction with a 
student consists of the model sending a message to the interface which in turn 
uses its own knowledge of graphics and layout to convey the information to the 
student, and to convey student input back to the central model. 

ITS programs are typically comprehensive, with one program, in a single 
format, providing most or all of the instruction for a large fraction of the 
material in a course. The knowledge encoded for early lessons is re-used when 
appropriate for later lessons, much as the student is intended to use knowledge 
acquired earlier, along with new knowledge to address more complex tasks. An 
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ITS systematically teaches a body of knowledge by providing multiple and 
varying opportunities for the student to learn each inference rule in the 
performance model. 

Necessary Experience 

Because CAl is interaction centered and because it takes time to learn the 
sensitive use of a new and difficult medium (e.g., film and television as well as 
the computer), many of the best CAl programs are written by people with years 
of experience. The authors in this book, for example, have up to 20 years 
experience in the computer medium. 

In particular, three of the CAl chapters reflect work which began in the 
PLAT01 instructional computing environment originating at the University of 
Illinois. This environment provided a graphics screen with nearly twice the 
number of pixels as the standard Macintosh, a touch interface, and the ability to 
back-project microfiche-all available in the early 1970's! The size of the 
PLATO system allowed very large courses to require several hours of computer 
work each week. Thus new programs could accrue hundreds or thousands of 
hours of student use each semester. 

In contrast, ITS is based on efforts to represent explicitly the knowledge 
humans use in performing a set of tasks. Building such programs is an 
extremely difficulty task, and stresses existing principles and techniques in both 
psychology and computer science. Therefore, developers of ITS are usually 
researchers in psychology or computer science, and have extensive experience in 
both fields. In particular, they draw on about 20 years of research on detailed 
processes of the human mind, and ways of characterizing these processes through 
computer-implemented models. 

Computer Implementation 
The aim of CAl is to provide practical instruction, consisting of interactive 

programs that teach effectively. Therefore CAl programs are developed under 
heavy computational and other constraints (eloquently described in the chapter by 
Brackett). They must respond rapidly (to support interaction and varied graphic 
interactions). Without graphics and fast interaction, no CAl program described 
in this book could exist in anything like its current form. Yet these programs 
must run on affordable and widely available machines (low end Macintoshes and 
PCs, and the educationally ubiquitous Apple II), machines with severe memory 
and speed limitations. 

1 PLATO® is a registered trademark of The Roach Organization, Inc. The PLATO system is 
a development of the University of illinois. 
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CAl programs are generally algorithmic in structure (i.e., describable by a 
flow-chart) with user input often determining branching. Programs are organized 
around the screen display, and interactions with students center on the display, 
which changes in response to various inputs from the student. Algorithmic 
programs can be faster and simpler than those with more complex architectures. 
In CAl, the most-used languages are algorithmic languages, e.g., versions of 
BASIC, PASCAL, and assembly language, as well as descendents of TUTOR 
(the PLATO programming language). 

In contrast, ITS programs exploit models of knowledge and teaching. 
Because the human mind is complex, computational models of its functioning 
are complex. Implementing them requires powerful machines and the most 
sophisticated techniques of computer science research. 

ITS programs can not be algorithmic because humans have abilities far 
more varied than those of any algorithmic program. Instead ITS programs have 
a logic based on repeatedly applying knowledge (encoded as rules) to react to a 
current situation. Furthermore, content of this knowledge consists not of 
numbers, but of symbols (words, phrases, rules). ITS systems are therefore 
almost always written in languages that support processing of symbols and lists 
(e.g., LISP, Prolog) and their rule-based extensions (e.g., GRAPES, OPSS). 
ITS systems use extensively techniques of "artificial intelligence," that is 
techniques for building large programs that can incorporate large amounts of 
knowledge, and use it flexibly. For efficiency, ITS programs are sometimes 
written (or rewritten) in C, one of the most powerful modem algorithmic 
languages. 

Implications 
The differing aims, constraints, and instructional models imply the 

following substantial differences between CAl and ITS programs. 
CAl programs are hand-crafted using deep knowledge of the domain, the 

students, and the computer medium. In CAl, the interface is intuitive, and using 
it is part of the instructional process. Good CAl has clarity and charm. Despite 
their algorithmic architecture, the clever hand-crafting of interactions gives these 
programs the feeling of freedom of interaction. Good CAl typically has been 
used for many thousands of hours by varying students, although quantitative 
studies of its effectiveness are rare. 

In contrast ITS programs are the product of an applied science. They are 
based on, and explicitly include, psychological principles of learning. The 
instruction aims to provide systematically opportunities for learning all 
knowledge in a carefully defined domain. These programs are often meticulously 
tested with student groups, and their effectiveness can be dramatic (although there 
are few demonstrations of continued utility in widespread use). 
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SHARED PRINCIPLES 

The chapters in this book, each describing the development and nature of 
one or more instructional programs, make concrete the contrasts discussed above. 
However, they also illustrate a rich set of largely shared design principles for 
good educational computing. The following paragraphs summarize these shared 
principles, which appear as continuous themes throughout the chapters in this 
book. 

Engage the student in active work on central tasks 
For example, Corbett & Anderson's principles of intelligent tutoring 

include providing instruction in the context of active problem solving. Chabay 
and Sherwood, summarizing their experience-based guidelines for CAl, give the 
mandate "Ask, don't tell," and go on to discuss techniques for designing 
programs that consistently engage the student in active work. This principle is 
reflected by every instructional program described in this book. Students do not 
passively read screens of text, or simply watch graphic simulations. 

Use the interface to suggest appropriate reasoning 
Displays and interfaces have long been a primary focus of CAL In 

particular, Dugdale provides an excellent description of the intricate interaction 
between the domain being taught and the intricate displays that teach it. Only 
recently have ITS developers given significant attention to the difficult task of 
designing principled and effective graphic interactions. The chapters by Reiser 
et. al, and by Lesgold et. al., discuss this work. 

Center work on appropriate reasoning 
Most of the time the student should be working smoothly and successfully 

on important tasks. In Dugdale's Green Globs, for example, students are free to 
write whatever equations they like, with the aim of producing a graph that will 
pass through "globs" placed on the screen. Any engagement in the program 
means thinking about the relation between equations and their graphs. The 
actual graph that does appear is itself immediate feedback on whether the 
student's thinking about this relation was accurate or not. In the ITS world, 
relevant, successful, active thinking is achieved by tracing inference rules used 
by the student, and by intervening with a correction or hint if the student moves 
more than a step or two away from an appropriate reasoning sequence. This does 
not mean the student can solve a problem in just one "correct" way-the 
program's inference rules always attempt to support any correct solution, and 
often to provide strategic advice on incorrect reasoning. 
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Provide prompt feedback focusing attention on erroneous thinking 
For example, Dugdale's elegant CAl programs are designed so that the 

interface gently prohibits many irrelevant actions, and the results of relevant 
actions are immediately apparent. All of the ITS programs are designed to track 
the student's reasoning and to give increasingly detailed feedback when the 
student does something wrong or irrelevant. In particular, the chapter by Reiser, 
et., al., discusses the use of knowledge in the ITS to formulate this feedback. 

Adapt instruction to individual student knowledge 
Corbett & Anderson describe how ITS programs can adapt through selecting 

the inference rules required by the task-a small set at first, more later on. In 
contrast the ITS SHERLOCK (Lesgold, et. al.) provides a single set of 
problems, but uses hints to suggest inferences the student finds difficult. 
Dugdale's CAl adapts to students' knowledge by letting students set their own 
tasks, within a cleverly designed environment where involvement in any task is 
likely to increase skill and ability to design and solve more complex problems. 
Many CAl programs (e.g., Culley's earlier grammar programs), provide the 
student with unlimited practice, together with information on success rates. 
Thus students with varying initial capabilities can readily use the program as a 
tool to build skill. 

VALUE OF INTERACTION 

Although the shared instructional principles discussed above are, of course, 
implemented quite differently in ITS and CAl programs, there are also the 
beginnings of joint implementations. For example, the chapter by Culley 
describes how a CAl developer began explicitly to need the techniques used in 
ITSs. Sack and Soloway, ITS developers, discuss both their needs for the 
evaluation techniques of educational research, and for a program structure that 
provides greater student interaction. 

The purpose of this book is to acquaint both ITS and CAl developers with a 
broad range of approaches to their common vision of broadly effective 
educational computing. 
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SUMMARY OF CHAPTERS AND PROORAMS 

Ch. Author Program Age Level Subject matter 
No. T e 
1. Dugdale CAl Pre College Mathematics 

2. Culley CAI/ITS2 University Latin 

3. Corbett & Anderson ITS University Programming in LISP 

4. Reiser et al. ITS University Programming in LISP 

5. Chabay & Sherwood CAl All Levels Design issues in CAl 

6. Brackett CAl Pre College Slide presenter & 
scientific reasoning 

7. Lesgold et al. ITS Military Electronic device 
troubleshooting 

8. Sack & Soloway ITS2 University Programming in 
PASCAL 

2These two chapters describe programs which are not "tutors", but which use techniques of 
artificial intelligence. 
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Overview 

The Design of Computer-Based 
Mathematics Instruction 

Sharon Dugdale 
Division of Education, University of California, Davis 

INTRODUCTION 

This chapter illustrates, by example, some design goals and instructional 
techniques devised and used during a fifteen-year software development and 
implementation effort for mathematics instruction. 

The example instructional programs illustrate a variety of styles, sharing a 
common goal of encouraging students to become active, creative, independent 
learners. To this end, the programs minimize rote repetition of algorithms and 
procedures in favor of more attention to analyzing problems and developing 
strategies. 

Three programs are presented in some detail with discussions of their 
features, goals, and classroom dynamics. A hypothetical fourth example is used 
to extend the instructional perspective to the teaching of more routine skills and 
to suggest considerations for defining appropriate roles for computer-
implemented tutors. In conclusion, the chapter contrasts three styles of feedback 
in response to student errors and offers suggestions for the design of instructional 
materials in general. 

An Introductory Remark 

This chapter is about mathematics in particular, due to reservations about 
discussing instructional design independent of a subject matter context. Imagine 
entering the kitchen of a good restaurant and asking the chef, "What food 
preparation method do you use?" The chef would likely respond with a blank 
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stare-not out of incompetence, but simply because the choice of a food 
preparation method is so obviously dependent on what particular food is being 
prepared, and for what audience. Similarly, in preparing knowledge for 
consumption, it is important to take a careful look at what is to be served, 
understand its inherent qualities and characteristics, and then select or devise a 
presentation method which best brings out its unique flavor and character. 

This is not to say that a basic knowledge of general instructional design is 
unnecessary, any more than a basic knowledge of cooking is unnecessary for the 
good chef. On the contrary, a knowledge of a variety of methods seems useful, 
and the basic sense of where to use (and not use) these various methods is at 
least as important as the methods themselves. The sense of where to apply what 
methods is probably rooted more in an understanding of their function than in a 
strict recall of their form, and the designer who is led by a more functional 
approach may be better able to set aside the recipe box and do some inventive 
things. 

Of course we can point to examples of educational software that could be 
improved by the strict application of generic design rules-just as we sometimes 
encounter food that is better doused with ketchup. This chapter is not expected 
to remedy such fundamental deficiencies, nor is it intended to address efficient 
production of routine materials. (Though there is undeniably much to be said for 
the consistent quality, reliability, and economy of a good fast food operation.) 
The purpose here is, rather, to explore issues beyond those addressed in the basic 
recipe books. This purpose requires a specific content, although it is hoped that 
the examples and discussions presented will provide insights applicable beyond 
the content covered here. 

Background 

The Fractions Curriculum 
The first two examples represented here, Sort Equivalent Fractions and 

Darts, are from the Fractions Curriculum of the PLATO® Elementary 
Mathematics Project1 (Dugdale and Kibbey, 1980). Developed for use on the 
PLATO network (Smith and Sherwood, 1976; Lyman, 1984), this curriculum 
covers common fractions, mixed numbers, and an introduction to decimal 
notation. It includes approximately 100 individual computer programs, a 
teacher's manual, and booklets and worksheets for students. 

The management system allows a teacher to assign topics and individual 
activities. Based on the teacher's assignments and on individual student 

1 PLATO is a registered trademark of The Roach Organization, Inc. The PLATO system is a 
development of the University of lllinois. 
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background information (either stored by the programs during interaction or 
entered by the teacher), the management system constructs personalized student 
sessions. Although many session structures are possible, a typical student 
session might include: 

1. a few minutes of review from previous material, 
2. 15-20 minutes of work from a menu of currently assigned topics, 
3. 5-l 0 minutes of work from an expanded menu which includes several 

general experience programs in addition to the currently assigned 
topics. The general experience programs are typically games and 
exploratory activities which provide practice with previous material, 
expansion of current topics, or initial exploration of new areas. 

The management system provides an extensive on-line data reporting facility 
with which teachers and students can follow individual progress. 

The curriculum offers students extensive experience using fractions and 
mixed numbers to manipulate interactive models, establishing a variety of 
representations for rational numbers and links between those representations. 
The models usually allow many different ways of solving problems. This 
provides opportunities for exploration, helps students attend to the meaning of 
what they are doing, and helps avoid the notion that mathematics is simply the 
repetition of dictated algorithms. 

The curriculum provides a mix of instruction, review, practice, experience, 
and exploration. In many of the programs, the difficulty and complexity of the 
task is automatically adjusted (up or down) based on the student's performance. 
Completion of these programs depends on reaching a "mastery level," that is, 
demonstrating proficiency with problems of a complexity deemed necessary for 
use in succeeding materials. The mastery level number and the student's current 
level number are continuously displayed to keep the student informed about 
progress through the program. 

As a pioneering effort in the use of computer networks to encourage sharing 
of ideas among students, the curriculum includes: 

I. inter-terminal programs which allow students to interact with each 
other in real time from widely separated terminals, and 

2. "libraries" which allow students to store their work and see products 
generated by other students who are working not only at other places 
but at other times. 

Through these network facilities students share their work and ideas not only 
with their own classmates, but also with students in other classes and other 
schools (Dugdale, 1979). 
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Beginning in 1973, the fractions curriculum was developed in conjunction 
with use by students in public school classrooms. This permitted the authors to 
tailor the materials to the needs of students and teachers in realistic educational 
settings. During the 1974-75 and 1975-76 school years the curriculum was pilot 
tested as a regular part of the mathematics program in about a dozen classrooms, 
serving a total of approximately 300 students each year. The curriculum reached 
essentially finished form during the second of those years. 

A summative evaluation done by Educational Testing Service proved these 
materials highly effective in both achievement and attitude improvement 
(Slottow, 1977; Swinton 1978). Further work and adaptations were done in 
conjunction with special needs programs, including work with hearing impaired 
students and those with other physical, emotional, or learning problems 
(Dugdale and Vogel, 1978). 

This curriculum and related materials produced by other development teams 
(Seiler and Weaver, 1976; Cohen and Glynn, 1974) continue to be a regular part 
of the daily mathematics program for students in approximately 20 local 
classrooms. The materials were designed for use by students in grades 4-6 in a 
classroom situation where they could be integrated with the ongoing 
mathematics instruction on a daily basis. However, most of the activities have 
found broad applicability in adult education programs and numerous other 
settings served by the PLATO/NovaNErM computer network2 . Because it was 
developed to take full advantage of the network capabilities, touch-sensitive 
display, and other features of the PLATO system, the fractions curriculum as a 
whole has not been transported to microcomputers more common in elementary 
school classrooms. 

Fortunately, the theoretical results of the development effort have transferred 
more readily to other systems. The following design principles were distilled 
from analysis of the style and techniques used in many of the programs. 
Programs displaying these characteristics were labelled intrinsic models. 

1. The student is given a working model to explore and manipulate. 
2. The mathematics to be learned is intrinsic to the model. In other 

words, the model is a direct expression of the underlying mathematics. 
3. Feedback is direct, relevant, diagnostic, and often graphic, so that 

students can tell at a glance what the error was and how it relates to a 
correct solution. Unnecessary verbiage and gimmicks unrelated to the 
mathematics are avoided. 

2 NovaNET has evolved from the earlier PLATO system. NovaNET is a service mark of 
University Communications, Inc. 
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4. The model provides a rich environment for exploration by students of 
widely varying mathematical background and ability, but students find 
that the more mathematics they apply, the more they are able to do. 
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In short, intrinsic models provide students a rich, mathematically accurate 
environment and the motivation to manipulate and learn from that environment. 
Models of this sort can engage students in formulating and using mathematical 
strategies in ways that were not possible before computers entered the classroom 
(Dugdale, 1982). Two of the programs presented in this chapter, Darts (from the 
Fractions Curriculum) and Green Globs (from a later development effort), are 
examples of intrinsic models. 

Materials on Graphing and Functional Relationships 

A later project applied the design principles outlined above to create software 
to improve students' understanding of functional relationships-concepts 
fundamental to further work in mathematics, science, and engineering, and an 
area to which the calculational and display capabilities of the microcomputer 
proved especially well suited (Dugdale and Kibbey, 1984). This project was one 
of the first efforts to use microcomputers to involve students in the exploration 
of graphic representations of functions, including qualitative, as well as 
quantitative, aspects of graphs. Green Globs, the third example presented here, 
is taken from this development effort. 

Initial development of the graphing materials was done on the Color 
MicroPLATO system (Stifle, et al., 1979). The materials have since been 
revised and expanded, and derivative works have been created for IBM-PC and 
Apple II series microcomputers (Dugdale and Kibbey, 1983a, 1983b, 1986a, 
1986b). 

The materials were developed in conjunction with student use in two public 
high schools. Students generally worked in pairs or groups of three, actively 
discussing what they were doing and sharing ideas. Some students, however, 
became deeply engrossed in working out complicated equations and seemed more 
intensely involved when working alone. Observation indicated that each of these 
modes of use (individual and small group) provided different important learning 
and exploration opportunities. 

Evaluation was largely formative, involving on-site observation of students 
and interviews with teachers and students. The materials underwent several 
cycles of testing and revision. In an informal two-week trial with the finished 
materials, students showed gains in performance on test items concerning linear 
and quadratic graphs (Dugdale and Kibbey, 1983). 

Later efforts have extended the work with functional relationships, 
developing various approaches to understanding algebraic concepts and physical 
phenomena through functions and their graphs (Dugdale, 1986-87). 
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EXAMPLE 1: SORT EQUIVALENT FRACTIONS 

Description 

As shown in Figure 1, this is a practice program in which students sort fractions 
into equivalence sets. The student is given a collection of fractions and some 
loops to sort them into by size. A fraction can be moved into a loop or moved 
from one loop to another by touching the fraction and then touching the desired 
location on the screen. 

After all of the fractions have been placed into the loops and the student has 
indicated that he or she is finished, the computer checks the equivalence of the 
fractions within each loop and responds by telling the student how many 
fractions are not in the correct loop. The student is asked to correct any wrong 
placements and may move the fractions around the screen until the problem has 
been solved correctly. 

The program adjusts to student performance, increasing or decreasing the 
difficulty of discriminations, the number of fractions to sort, and the number of 
loops to sort them into, based on student proficiency in sorting the fractions. 
Completion of the exercise requires passing a specified difficulty level. The 
current level is shown at the bottom of the screen to keep the student informed 
of progress through the activity. 

Discussion 

This example is included here because the content objectives appear simple 
and obvious-to identify equivalent fractions and group them into equivalence 
sets. The exercise might be appropriately classified as "drill and practice," and 
the surface objectives could be met by various other computer or paper-and-
pencil activities. However, upon working with the program or observing 
students using it, it becomes apparent that beyond this surface agenda are several 
unobtrusive features that foster a richer experience for the student. 

First, the feedback for student errors simply tells how many fractions are not 
in the correct loop. Of course, the computer could just as easily tell which 
particular fractions are misplaced and which loops they belong in, leaving 
nothing for the student to figure out. The issue of how much and what kind of 
feedback to provide for student errors is an important one. Here, the limited 
feedback leaves students to diagnose their own errors. Having just finished 
scrutinizing each fraction to place it into a loop, few students are eager to 
methodically check each fraction again in order to find one or two errors. The 
common tendency is to scan the page and ask, "What is an easy way to spot a 
misfit?" Observation of students indicates that this diagnostic step is important 
in encouraging students to step back and look at the problem in a less 
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Figure la: Initial display from Sort Equivalent Fractions. 
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Figure lb: Sort Equivalent Fractions. The student has sorted the fractions into the 
loops, and the computer has responded that one fraction is misplaced. 
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Figure lc: Sort Equivalent Fractions. The student has moved the misplaced 
fraction to the correct loop. 

mechanical way. It can foster multiple perspectives on the problem, 
encouraging a habit of parallel checking for reasonableness of answers. 

Coupled with this incentive to take an overall view of the problem to spot 
errors, the program provides a strategic choice of items. In the early levels, 
students sometimes encounter zero in the numerator. Few students find it 
necessary to apply an algorithmic approach to many zero-numerator fractions 
before concluding that an algorithm is unnecessary for sorting the zeros into 
their loop. Some students (and reviewers, too) may chuckle at the lack of 
sophistication of a program that would know no better than to include such a 
trivial problem. But this apparent lack of sophistication has planted an 
important seed-scanning the problem for shortcuts can sometimes avoid a lot 
of tedious work! 

Once a student begins taking an overview of the problem and looking for 
shortcuts, various strategies can be noticed. For example, in Figure 2 there is 
only one loop named by a fraction greater than one (i.e., the numerator is greater 
than the denominator). Since every fraction must go into a loop, no algorithmic 
checking is necessary to know that all of the fractions greater than one go into 
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the % loop. Although this is hardly an earthshaking mathematical revelation in 
itself, it can serve as a step toward more interesting ideas. 

For example, factors and multiples become useful, too. If the denominator 
of a fraction is not divisible by 7, it does not belong in the~ loop. But anyone 
assuming that all fractions with denominators divisible by 7 necessarily do 
belong in the ~ loop is in for a thought-provoking surprise. (This may have 
been the error in Figure lb.) The intent is not to avoid the possibility of errors 
and misrules, but to treat them as conjectures to be tested and revised. Strategies 
are developed and refined with experience, and the insights gained in the process 
can be useful beyond the task at hand. 
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Figure 2: Sorting fractions into loops: just one loop has a value greater than 1. 
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Of course, different students notice different things. One student looking at 
the display in Figure 2 might begin by placing all of the fractions greater than 1 
into the i loop, while another might scan for multiples of numerators and 
denominators, and still another might notice that any fraction with the 
denominator more than twice the numerator must go into the ~ loop (the only 
loop for fractions less than&). Students can make substantial progress on the 
problem using any combination of these strategies, but even taken together, 
these techniques are not sufficient to finish the problem. Something further is 
needed to decide whether~ belongs in the ~ loop or the j loop. 

Students are generally eager to share their insights and discoveries, and 
students who interact with each other as well as with the computer are likely to 
learn more strategies than those working in isolation. A critical breakthrough 
for a student might be simply a classmate's offhand remark,"* doesn't belong 
in the } loop, because 15 isn't an even number." Teachers can help by 
encouraging students to share their ideas. 

As Whitney (1986) points out, 

A primary aim of studying mathematics must be to grow in 
your own natural reasoning powers, especially in domains 
where precise reasoning is valid. The growth must include 
creative and critical thinking, increasing control over one's 
own work, seeing connections with related matters, and raising 
communication skills. 

Whitney then contrasts this aim with what usually happens in the 
classroom: 

In the usual school mathematics class, the student's aim is to 
try to remember particular patterns of thought coming from 
reasoning, but to disregard the reasoning from which they 
came. Thus the essence of the process is lost. 

Indeed, it is not uncommon to see students engaged in tasks in which it is 
easy to bypass any mathematical thinking by using the available non-
mathematical cues. For example, when a textbook introduces an algorithm for 
multiplying fractions, follows it with a page of practice, then concludes the 
section with a set of"applications" (i.e., word problems), students do not need to 
make sense of the word problems to know that the task is to pick out the two 
fractions in each problem and apply the algorithm. 

There are some subtle but critical differences between this sort of 
mathematics bypass and the following things that happen in using Sort 
Equivalent Fractions. 


