# Acid Rain in Europe

## COUNTING THE COST

Edited by Helen ApSimon, David Pearce and Ece Özdemiroğlu

## ACID RAIN IN EUROPE

This page intentionally left blank

## ACID RAIN IN EUROPE COUNTING THE COST

Edited by

Helen ApSimon David Pearce Ece Özdemiroglu



First published by Earthscan in the UK and USA in 1997

This edition published 2013 by Earthscan

For a full list of publications please contact:

Earthscan 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN Simultaneously published in the USA and Canada by Earthscan 711 Third Avenue, New York, NY 10017

Earthscan is an imprint of the Taylor & Francis Group, an informa business

Crown copyright @ 1997. Published with the permission of the Controller of Her Majesty's Stationery Office

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

A catalogue record for this book is available from the British Library

ISBN: 1 85383 443 2

Typesetting and page design by PCS Mapping & DTP, Newcastle upon Tyne

Cover design by Yvonne Booth

The research project on which this publication is based was funded by the UK Department of the Environment as a contribution to the work of the Task Force on Economic Aspects of Abatement Strategies, led by the UK, and operating within the framework of the United Nations Economic Commission for Europe (UN/ECE) Convention on Long-Range Transboundary Air Pollution (CLRTAP). The report aims to review progress in estimating monetary values for transboundary effects, and to cite, as far as possible, state-of-the-art values. It should not be interpreted as implying that definitive figures can be derived for policy purposes. The text presented in this book has not been reviewed by the Task Force on Economic Aspects of Abatement Strategies or by any other UN/ECE body and does not necessarily reflect an official UN/ECE position. This book is published with the consent of the Department of the Environment, but does not necessarily reflect the Department's views. The Department does not take responsibility for any inaccuracies found in the text.

#### **CONTENTS**

| Tables                     | viii |
|----------------------------|------|
| Figures                    | x    |
| Acronyms and Abbreviations | xi   |
| Acknowledgements           | xiii |
| Authorship                 | xiv  |
| Foreword                   | xv   |

#### PART I: METHODOLOGY

| 1 | Background to the Acid Rain Problem<br>The Second Sulphur Protocol<br>The Renefits of Emission Abatement | <b>3</b><br>4<br>5 |
|---|----------------------------------------------------------------------------------------------------------|--------------------|
|   | The Benefits of Emission Abatement                                                                       | 5                  |
|   | Integrated Assessment and the Second Sulphur Protocol                                                    | 6<br>7             |
|   | Cost-Benefit Analysis                                                                                    | 8                  |
|   | What Benefits are Relevant?                                                                              | 8                  |
| 2 | The Scientific Assessment of Acidification                                                               | 10                 |
| _ | Emissions of Acidic Species and Abatement Measures to                                                    |                    |
|   | Reduce Them                                                                                              | 10                 |
|   | Atmospheric Transport and Deposition                                                                     | 13                 |
|   | Critical Loads and Exceedance                                                                            | 16                 |
|   | Integrated Assessment                                                                                    | 17                 |
| 3 | Dose-Response Relationships for Acidifying Species                                                       | 19                 |
|   | Dose-Response Relationships                                                                              | 20                 |
|   | Dose and Exposure                                                                                        | 20                 |
|   | Responses and 'Symptoms'                                                                                 | 22                 |
|   | The Nature of Change                                                                                     | 22                 |
|   | Uncertainty and Risk                                                                                     | 24                 |
|   | Summary and Conclusions                                                                                  | 25                 |
| 4 | The Economic Approach to Acidification Control                                                           | 27                 |
|   | The Nature of Damage Functions                                                                           | 27                 |
|   | Functional Forms and their Policy Implications                                                           | 29                 |
|   | Statics versus Dynamics                                                                                  | 31                 |
|   | Economic Valuation                                                                                       | 31                 |
|   | Damages and the Benefits of Control                                                                      | 36                 |
|   | ~                                                                                                        |                    |

#### PART II: IMPACTS AND ECONOMIC CONSEQUENCES

| 5  | Forests<br>The Nature of Acid Damage                                          | <b>39</b><br>40   |
|----|-------------------------------------------------------------------------------|-------------------|
|    | Dose-Response Functions                                                       | 44                |
|    | Stock at Risk                                                                 | 47                |
|    | Receptor Direct Use Impacts                                                   | 47                |
|    | Receptor Indirect Use Impacts                                                 | 59                |
|    | Receptor Non-Use Value                                                        | 59                |
|    | Omissions and Recommendations                                                 | 60                |
| 6  | Freshwaters                                                                   | 61                |
|    | Acidification of Lakes and Rivers                                             | 61                |
|    | Acid Toxicity in Fish                                                         | 65                |
|    | The Economic Effects of Freshwater Acidification                              | 68                |
|    | Conclusions                                                                   | 75                |
| 7  | Ecosystem Damage and the Effects on Biodiversity                              | 76                |
|    | Impacts of Acid Deposition on Biodiversity                                    | 78                |
|    | Dose-Response Functions                                                       | 85                |
|    | Economic Studies                                                              | 89                |
|    | Stock at Risk                                                                 | 89<br>91          |
|    | Omissions and Recommendations                                                 | 91                |
| 8  | Crops                                                                         | <b>93</b><br>93   |
|    | Dose-Response Functions                                                       | 93<br>97          |
|    | Receptor Direct Use Impacts                                                   | 97<br>99          |
|    | Receptor Indirect Use Impacts                                                 | 100               |
|    | Conclusions                                                                   | 100               |
| 9  | Buildings and Materials                                                       | <b>101</b><br>101 |
|    | Nature of Impacts                                                             | 101               |
|    | Dose-Response Functions                                                       | 104               |
|    | Stock at Risk                                                                 | 107               |
|    | Economic Valuation                                                            | 107               |
|    | Estimating Material Damage Costs in Europe<br>Conclusions and Recommendations | 112               |
|    | Conclusions and Recommendations                                               | 114               |
| 10 | Health                                                                        | 116               |
|    | Nature of Impact                                                              | 116               |
|    | Stock At Risk                                                                 | 118               |
|    | Types of Dose-Response Functions                                              | 119               |
|    | Direct Impacts of Acidifying Pollutants on Human Health                       | 120               |
|    | Acid Rain and Mortality                                                       | 122<br>125        |
|    | Acid Rain and Morbidity                                                       | 125               |
|    | Indirect Impacts of Acidifying Pollutants on Human Health                     | 128               |
|    | Conclusions                                                                   | 128               |

| 11 | Visibility                                                          | 131  |
|----|---------------------------------------------------------------------|------|
|    | Physical Impacts                                                    | 132  |
|    | Physical Evaluation of Visibility Impairment                        | 133  |
|    | Receptor Direct Use Values                                          | 134  |
|    | Receptor Non-Use Values                                             | 136  |
|    | Visibility Studies in Europe                                        | 137  |
|    | Conclusions                                                         | 138  |
| 12 | Global Warming and Acid Rain                                        | 139  |
|    | Sulphate Aerosols and Climate Cooling                               | 139  |
|    | Quantifying Negative Climate Change                                 | 140  |
|    | Receptor Indirect Use Impacts                                       | 141  |
|    | Conclusions                                                         | 141  |
|    | Conclusions                                                         | 1.11 |
| 13 | Damage from NO <sub>x</sub> Emissions: Counting the Costs in Europe | 143  |
|    | Methodological Developments                                         | 143  |
|    | Economic Valuation                                                  | 144  |
|    | Health Dose-Response Functions                                      | 145  |
|    |                                                                     | 145  |
|    | Non-Human Health Dose-Response Functions                            |      |
|    | Air Dispersion Models                                               | 146  |
|    | The Final Damage Results                                            | 147  |

#### PART III: SUMMARY AND RECOMMENDATIONS

| 14 Summary and Conclusions                     | 151 |
|------------------------------------------------|-----|
| The Historical Context                         | 151 |
| Purpose of the Book                            | 151 |
| What Is Known About Dose-Response Functions?   | 152 |
| What Is Known About Economic Damage Estimates? | 153 |
| Conclusions                                    | 153 |
| Annexe: The Methodology of Economic Valuation  | 157 |
| Valuation Techniques                           | 157 |
| Benefits Transfer                              | 163 |
| Conclusions                                    | 164 |
| References                                     | 167 |
| Index                                          | 181 |

#### TABLES

| 1.1<br>2.1 | The Second Sulphur Protocol: Country Emissions in 2010<br>Country Emissions 1990 | 5<br>11   |
|------------|----------------------------------------------------------------------------------|-----------|
| 2.1        | Comparison of Some Costs and Benefits of Emission                                | 11        |
|            | Abatement at Different Expenditure Levels in an Optimised                        |           |
|            | European SO <sub>2</sub> Abatement Strategy Derived using the                    | 10        |
|            | ASAM Model                                                                       | 18        |
| 5.1        | Stresses Experienced by a Tree Related to Acid Deposition                        | 42        |
| 5.2        | Examples of Forest Surveys                                                       | 48        |
| 5.3        | Percentage Growth, Inventory and Harvest Reductions due to                       | <b>F1</b> |
| - 1        | Possible Damage Caused by Air Pollution                                          | 51        |
| 5.4        | Percentage Price Increases Associated with Growth                                | E1        |
|            | Reductions                                                                       | 51<br>52  |
| 5.5        | Summary Results of Forest Studies (Decline in Tree Growth)                       | 52        |
| 5.6<br>6.1 | Summary Results of Forest Studies (Recreational Use)                             | 50        |
| 0.1        | EIFAC pH Ranges for the Protection of European<br>Freshwater Fish                | 67        |
| 6.2        |                                                                                  | 07        |
| 0.2        | Multiple Regression Relationships between Trout                                  |           |
|            | Density and Survival, Water Quality and Catchment<br>Features in North Wales     | 68        |
| 6.3        | US Studies of the Economic Effects of Acidification on                           | 00        |
| 0.5        | Freshwater Fisheries                                                             | 70        |
| 6.4        | Norwegian CV Studies of the Value of Freshwater                                  | 70        |
| 0.4        | Recreational Fishing                                                             | 71        |
| 6.5        | Illustrative Monetised Dose-Response Function for                                | 71        |
| 0.0        | Norwegian Recreational Fishing                                                   | 72        |
| 7.1        | Taxon Richness and Density of Brown Trout in Upland                              | , -       |
| /.1        | Wales as Characterised by Different Mean ANC                                     | 81        |
| 7.2        | Differences between Acidic and Non-Acidic Catchments                             | 01        |
|            | in Breeding Performance and in Characteristics of Pre-Breeding                   |           |
|            | Dippers in Wales                                                                 | 83        |
| 7.3        | Parameters 'a' and 'b' in Simple Dose-Response                                   |           |
|            | Relationships of the form $y=a+(bxANC)$ for Aquatic                              |           |
|            | Invertebrate Diversity                                                           | 86        |
| 9.1        | The Main Atmospheric Pollutants Involved in Material                             |           |
|            | Damage                                                                           | 103       |
| 9.2        | Common Construction Materials and Uses                                           | 108       |
| 9.3        | Estimated Annual Cost Savings Resulting from Implementation                      |           |
|            | of the Second Sulphur Protocol                                                   | 114       |
| 10.1       | WHO Air Quality Guidelines for Acidifying Pollutants                             | 119       |
|            |                                                                                  |           |

| SO <sub>2</sub> and Mortality                                        | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Particulates (including SO <sub>4</sub> ) and Mortality              | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cost of Mortality (Value of a Statistical Life)                      | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                      | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Particulates and Morbidity                                           | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                      | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                      | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Morbidity (Willingness to Pay to Avoid Symptoms)                     | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Increase in Mean Summer Maximum Daily O <sub>3</sub> Levels in parts |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| per tonne over Rural Areas per 1000 ktonnes Reduction in             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                      | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mean Marginal Damage per Tonne of NO, Emitted                        | 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| An Economic Taxonomy for Environmental Resource                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Valuation                                                            | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                      | $SO_2$ and Mortality<br>Particulates (including $SO_4$ ) and Mortality<br>Cost of Mortality (Value of a Statistical Life)<br>$SO_2$ and Morbidity<br>Particulates and Morbidity<br>$NO_2$ and Morbidity<br>$O_3$ and Morbidity<br>Morbidity (Willingness to Pay to Avoid Symptoms)<br>Increase in Mean Summer Maximum Daily $O_3$ Levels in parts<br>per tonne over Rural Areas per 1000 ktonnes Reduction in<br>$NO_x$ from the UK<br>Mean Marginal Damage per Tonne of $NO_x$ Emitted<br>An Economic Taxonomy for Environmental Resource<br>Valuation |

#### FIGURES

| 1.1 | The Integrated Assessment Approach to Abatement Strategies   | 7   |
|-----|--------------------------------------------------------------|-----|
| 1.2 | The Economic Approach to Abatement Strategies                | 8   |
| 2.1 | Air Pollution and Acid Deposition: Principal Pathways        | 14  |
| 3.1 | A Dose-Response Relationship                                 | 21  |
| 3.2 | A Schematic Representation of the Relationships Between      |     |
|     | the Effects of Pollutant 'X' and the Economic Cost of Damage | 25  |
| 4.1 | Examples of Hypothetical Functional Forms                    | 30  |
| 4.2 | Critical Loads and Cost-Benefit Analysis                     | 31  |
| 4.3 | Convex Pollution Damage Functions                            | 32  |
| 4.4 | Concepts of Economic Surplus                                 | 33  |
| 5.1 | Timber Valuation                                             | 54  |
| 7.1 | A Schematic Representation of the Modelling Procedure        |     |
|     | Applied to Welsh Catchments                                  | 87  |
| 7.2 | Survival Time of Caged Brown Trout in Relation to            |     |
|     | Concentration of Dissolved Al in Streams                     | 88  |
| 7.3 | Relationship Between Acidity Score of Invertebrate           |     |
|     | Assemblages and pH in Upland Welsh Streams                   | 88  |
| 9.1 | Estimated Surface Recession of Galvanised Steel at 12        |     |
|     | Locations in Europe                                          | 106 |
| A.1 | Valuation Approaches and Techniques                          | 159 |
|     |                                                              |     |

#### ACRONYMS AND ABBREVIATIONS

| ANC<br>ASAM<br>ATLAS<br>BERG<br>BV<br>CAP<br>CASM<br>CEC | Acid Neutralising Capacity<br>Abatement Strategies Assessment Model<br>Aggregate Timberland Assessment System<br>Building Effects Review Group<br>Bequest Value<br>Common Agricultural Policy<br>Coordinated Abatement Strategy Model<br>Cation Exchange Capacity |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CEC                                                      | Commission of the European Community                                                                                                                                                                                                                              |
| CLRTAP                                                   | Convention on Long-Range Transboundary Air Pollution                                                                                                                                                                                                              |
| COPD                                                     | Chronic Obstructive Pulmonary Disease                                                                                                                                                                                                                             |
|                                                          | Coordination of Information of Emissions into Air                                                                                                                                                                                                                 |
| CORINE                                                   | Coordination of Information of Emissions                                                                                                                                                                                                                          |
| CSERGE                                                   | Centre for Social and Economic Research on the Global<br>Environment                                                                                                                                                                                              |
| CV                                                       | Contingent Valuation                                                                                                                                                                                                                                              |
| DRF                                                      | Dose-Response Function                                                                                                                                                                                                                                            |
| DUV                                                      | Direct Use Value                                                                                                                                                                                                                                                  |
| EDF                                                      | Economic Damage Function                                                                                                                                                                                                                                          |
| EFTEC                                                    | Economics for the Environment Consultancy Ltd                                                                                                                                                                                                                     |
| EIFAC                                                    | European Inland Fisheries Advisory Commission                                                                                                                                                                                                                     |
| EMEP                                                     | Cooperative Programme for Monitoring and Evaluation of                                                                                                                                                                                                            |
|                                                          | Long-Range Transboundary Air Pollution                                                                                                                                                                                                                            |
| EOTCP                                                    | European Open-Top Chamber Programme                                                                                                                                                                                                                               |
| ETS                                                      | Effective Temperature Sum                                                                                                                                                                                                                                         |
| FEV                                                      | Forced Expiratory Volume                                                                                                                                                                                                                                          |
| FGD                                                      | Flue Gas Desulphurization                                                                                                                                                                                                                                         |
| FVC                                                      | Forced Vital Capacity                                                                                                                                                                                                                                             |
| GHG                                                      | Greenhouse Gases                                                                                                                                                                                                                                                  |
| GNP                                                      | Gross National Product                                                                                                                                                                                                                                            |
| HAZOP                                                    | Hazard and Operability Techniques                                                                                                                                                                                                                                 |
| ICCET                                                    | Imperial College Centre for Environmental Technology                                                                                                                                                                                                              |
| ICP                                                      | Integrated Crop Programme                                                                                                                                                                                                                                         |
| ICPAMARL                                                 | International Cooperative Programme on Assessment and Monitoring of Acidification in Lakes and Rivers                                                                                                                                                             |
| IHD                                                      | Inflammatory Heart Disease                                                                                                                                                                                                                                        |
| IIASA                                                    | International Institute for Applied Systems Analysis                                                                                                                                                                                                              |
| ILWAS                                                    | Integrated Lake-Watershed Acidification Study                                                                                                                                                                                                                     |
| IPCC                                                     | Intergovernmental Panel on Climate Change                                                                                                                                                                                                                         |
|                                                          | intergovernmental i and on enhate change                                                                                                                                                                                                                          |

| IPC/IM | International Cooperative Programme/Integrated Monitoring  |
|--------|------------------------------------------------------------|
| IUV    | Indirect Use Value                                         |
| IVM    | Institute of Environmental Studies                         |
| JNC    | Just Noticeable Change                                     |
| MAGIC  | Model of Acidification of Groundwater in Catchments        |
| MWTP   | Marginal Willingness to Pay                                |
| MWTS   | Marginal Willingness to Supply                             |
| NAPAP  | National Acid Precipitation Assessment Panel               |
| NCLAN  | National Crop Loss Assessment Network                      |
| NOAA   | National Oceanic and Atmospheric Administration            |
| NOEL   | No Observed Effect Levels                                  |
| NUV    | Non Use Value                                              |
| OECD   | Organisation for Economic Co-operation and Development     |
| OR     | Odds Ratio                                                 |
| OV     | Option Value                                               |
| PAN    | Peroxy-Acetyl-Nitrate                                      |
| PEC    | Particulate Elemental Carbon                               |
| PM10   | Particulate Matter (10µmdia)                               |
| PSD    | Pine Stand Decline                                         |
| QALY   | Quality Adjusted Life Year                                 |
| RAD    | Restricted Activity Day                                    |
| RAINS  | Regional Air Pollution Information and Simulation          |
| RCHM   | Royal Commission on Historic Monuments                     |
| RIVM   | Rijksinstituut voor Volksgezondheid en Milieuhygiene       |
|        | (National Institute of Public Health and Environment) (The |
|        | Netherlands)                                               |
| SAV    | Submerged Aquatic Vegetation                               |
| SEI    | Stockholm Environmental Institute                          |
| SMART  | Simulation Model for Acidification's Regional Trends       |
| SSP    | Second Sulphur Protocol                                    |
| SSSI   | Site of Special Scientific Interest                        |
| TAMM   | Timber Assessment Market Model                             |
| TCM    | Travel Cost Model                                          |
| TEV    | Total Economic Value                                       |
| TFIAM  | Task Force on Integrated Assessment Modelling              |
| TSP    | Total Suspended Particulates                               |
| UN/ECE | United Nations Economic Commission for Europe              |
| USEPA  | United States Environmental Protection Agency              |
| UV     | Use Value                                                  |
| VOC    | Volatile Organic Compound                                  |
| VSL    | Value of a Statistical Life                                |
| WHO    | World Health Organization                                  |
| WTA    | Willingness to Accept                                      |
| WTP    | Willingness to Pay                                         |
| XV     | Existence Value                                            |

#### ACKNOWLEDGEMENTS

This book began life as a report to the UK Department of the Environment. It has been prepared by an interdisciplinary team from the Centre for Social and Economic Research on the Global Environment (CSERGE), University College London, the Imperial College Centre for Environmental Technology (ICCET) and the Economics for the Environment Consultancy Ltd (EFTEC). Chapter 13 summarises subsequent work undertaken by EFTEC for the Department of the Environment. The authors are grateful to countless individuals who contributed by way of comment and the supply of documentation. Valuable discussions took place during the CSERGE-ICCET Symposium on the benefits of acid rain control in London, May 1994. The authors wish to express their appreciation to the Department of the Environment for sponsoring the Symposium and this study, and in particular to Clare Cottingham and Robin Wilson for continuous encouragement and help. Finally, we wish to thank Jo Pieris, Salma Khatun and Janet Roddy for grappling valiantly with the word processing.

David Pearce Helen ApSimon Ece Özdemiroğlu August 1997

#### **AUTHORSHIP**

The authors formed a team known as VAPOURS – Valuation of Air Pollution Reduction Strategies. The team comprised:

#### **Directors:**

Dr Helen ApSimon, ICCET, Imperial College London Professor David Pearce, CSERGE, University College London

#### Staff:

Mr Giles Atkinson, CSERGE Mr Edward Calthrop, EFTEC Mr David Cowell, ICCET Mr Richard Dubourg, CSERGE Ms Ece Özdemiroglu, EFTEC Dr Andreas Papandreou, CSERGE Mr Paul Steele, EFTEC Mr Peter Swingewood, ICCET Dr Rachel Warren, ICCET

#### Foreword

The phenomenon of acid rain remains high on the political and environmental agendas some decades after it was first implicated in Scandinavian water ecosystem damage and, allegedly, in forest damage. Action on the policy front has combined scientific, economic and modelling research in a unique way. Data on the long-range transport of the relevant pollutants have been generated. The concept of a critical load, ie the deposition of pollution below which no damage is done, has provided a benchmark for the assessment of damage. Control costs and cost-minimising models have been developed. One result has been the 1994 Second Sulphur Protocol which is perhaps unique among international agreements for its foundations in these 'integrated assessment' approaches to policy. But much remains to be done. Control costs based on available technologies such as flue gas desulphurisation certainly overstate the true costs of compliance. Other activities such as energy conservation and fuel switching are cheaper. Critical loads represent a major scientific breakthrough but they tell us little or nothing about the behaviour of pollution damage once the loads are exceeded. This book has its rationale in the requirement for further work and research. It focuses on what is known about acid rain damages and their economic costs. Understanding more about damages has to be an essential ingredient in the next stage of integrated assessment modelling.

> David Pearce Chairman, Task Force on Economic Aspect of Abatement Strategies United Nations Economic Commission for Europe

This page intentionally left blank

### Part I

## METHODOLOGY

This page intentionally left blank

#### BACKGROUND TO THE ACID RAIN PROBLEM

The consequences of transboundary transport of acidifying pollutants from the increasing combustion of fossil fuels became apparent in Europe in the 1960s. Large numbers of lakes and streams in Scandinavia showed a marked change in pH, and rain was observed to be significantly more acid over large parts of Europe. Deterioration in the state of forests was also linked to exposure to acid substances and associated changes in soils, in addition to other causes such as drought and frost.

National and international concern led to the establishment of scientific research to investigate the causes of the observed changes and how they could be controlled and reversed. In particular this included the Cooperative Programme for Monitoring and Evaluation of Long-Range Transboundary Air Pollution (EMEP), initiated under the Organisation for Economic Cooperation and Development (OECD) and now an important part of the overall structure under the UN Economic Commission for Europe (UN/ECE) Convention on Long-Range Transboundary Air Pollution (CLRTAP). At first the emphasis was on sulphur dioxide (SO<sub>2</sub>) as the main pollutant causing damage, but subsequently the significant contribution from nitrogen species was also recognised; these include both oxides of nitrogen (NO<sub>x</sub>), generated by the transport sector and stationary sources of combustion, and reduced nitrogen originating as ammonia (NH<sub>3</sub>), mainly from agriculture.

In the 1970s models were developed at the Norwegian Meteorological Institute to simulate the transport of  $SO_2$  and other acidic species across Europe, and the contributions of different countries to the overall pattern of deposition. This became the EMEP Centre West, with a sister EMEP Centre East established in Moscow with similar objectives, both covering the whole of Europe. Simultaneously a monitoring programme was established with a number of 'EMEP stations' making comparable measurements of the concentrations of the same range of species in air and precipitation.

The clear trends in acidification and increasing concern about the effects on fish and forests resulted in agreement on the need to reduce  $SO_2$  emissions, and the First Sulphur Protocol. This was the so-called '30-percent club', whereby signatory countries agreed to reduce their emissions of

 $SO_2$  by 30 per cent relative to their emissions in 1980 by the end of 1993. A further protocol was set up to stabilize emissions of  $NO_{x'}$  which were also increasing steadily, especially with the growth of road transport.

However these steps were insufficient to combat increasing acidification in sensitive areas. Further measures were necessary, and the process of developing new international agreements to reduce acidification began under the auspices of the UN/ECE. Scientific questions arose as to just how low deposition of acidifying species needed to be to avoid further acidification. Furthermore, since some areas of Europe are more sensitive than others and are suffering from acidification far more severely, it was important to place more emphasis on reducing emissions which led to deposition in these areas. It was clear therefore that a further uniform reduction in emissions across all European countries would not be the most effective strategy for the next protocol on sulphur emissions to replace the '30-per-cent club' after 1993, but that it would be important to reduce emissions more in some countries than in others.

#### THE SECOND SULPHUR PROTOCOL

The Second Sulphur Protocol was signed in June 1994, with a schedule of agreed emission reductions to be achieved at specified times between the years 2000 and 2010 (Table 1.1). The development of this protocol represents a major step forward in recognising scientific criteria for setting environmental standards, as represented by critical loads. Critical loads represent levels at, or below, which annual deposition is expected to have no adverse effects on natural ecosystems. They have been derived across Europe according to objective methods agreed by the UN/ECE Working Group on Effects, and though necessarily simplified, distinguish the relative sensitivity of different regions of Europe in terms of soils and surface waters.

To investigate cost-effective strategies for emission reductions a special Task Force on Integrated Assessment Modelling (TFIAM) was established, which assessed different scenarios for emission reduction. Integrated assessment models were used to combine data on emissions, atmospheric transport between source and receptor regions, critical loads or target loads as an intermediate step towards them, and abatement options and costs. The aim of such modelling studies was to derive tables of emission reductions for each country which provided cost-effective strategies for reducing acidification.

Because of the cost, it was not possible to reduce emissions sufficiently to attain critical loads. Hence the TFIAM investigated a large number of scenarios setting less stringent target loads. Eventually the one adopted as the basis for the protocol was the '60-per-cent gap-closure scenario' whereby deposition in excess of the critical loads is to be reduced by at least 60 per cent relative to 1990. Thus critical loads will still be exceeded in some areas after the new protocol is implemented. This raises questions about the environmental effects that will result, and to what degree loads will be reduced by the year 2010.