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PREFACE

The human brain is the most complex and powerful computer known. It has
been studied intensively for decades and has been the subject of thousands of
books, tens of thousands of journal articles, hundreds of university courses, and
even several television specials. Among the computational processes that have
been investigated are memory, learning, language, visual and auditory percep-
tion and recognition, analogical reasoning, thought, attention, planning, and
the control of movement. These studies have provided valuable insights into the
computational nature of the brain.

However, even with all the advances in our understanding of human
information processing, and even with our ever-increasing knowledge of
computations in general, including the organization of knowledge, the nature of
algorithmic processes and theoretical limits on computability, the human brain
continues to elude our understanding. Among the reasons for this elusiveness
are its incredible complexity, the redundancy of its circuitry and the variety of
different ways that have evolved to reach the same computational goals. Because
all of the computational processes which can be brought to bear on a particular
problem seem to operate at the same time, the study of any one of them is
difficult at best.

Recent investigations, particularly over the past three decades, have
markedly increased our understanding of the human brain. Anatomical studies
have given us detailed knowledge of the structure of various networks and the
connections between them. Combined with clinical investigations, these
studies have given major insights into the computations they perform. Clinical
investigations, in particular, have characterized abnormalities resulting from
localized brain damage. These abnormalities include deteriorated visual,
auditory and tactile recognition, impaired language understanding and
production, and abnormal planning and control of movement. Each syndrome
gives considerable insight into the computational structure of the brain.
Particularly with the advent of noninvasive techniques for determining the

Xi



xii PREFACE

focus of damage, researchers are now able to determine the locations of the
neural systems which are responsible for the underlying pathology.
Neurobiological and neurophysiological investigations have also provided us
with information regarding the computations of the various networks of the
brain, and as a result, we are beginning to understand not only the biochemical
mechanisms that underlie the computations but also details of the computations
themselves.

The following excellent books have been written describing the human
brain, its structure, its organization, and its function. [ will therefore not
introduce general topics which are so well presented elsewhere.

Nancy C. Andreasen (1984) The broken brain. New York: Harper & Row.
This book has an excellent introduction to the anatomy of the brain, and
although its focus is on mental illness, the author describes recent techniques
for the study of brain function.

Jack Fincher (1984) The brain, mystery of matter and mind. New York:

Torstar Books.

This book has exceptionally nice illustrations of the anatomy of the brain but

focuses mostly on topics of the mind: language, creativity, intelligence,

feelings, and consciousness.

Dick Gilling and Robin Brightwell (1982) The human brain. New York:

Facts on File.

This book is based on seven BBC-TV programs describing the human brain.
Bryan Kolb and lan Q. Whishaw (1985) Fundamentals of human
neuropsychology (2nd ed.). New York: W. H. Freeman and Co.

This excellent book presents both basic background information as well as

clear, crisp, and thorough accounts of numerous clinical syndromes.

A. R. Luria (1973) The working brain. An introduction to neuropsychology.

New York: Basic Books.

This book analyzes various clinical syndromes by showing how they result

from damage to the underlying computational systems. Luria emphasizes the

computational nature of the human brain.

Richard M. Restak (1984) The brain. New York: Bantam Books.

This book is based on the eight-part PBS television series “The Brain.”

J. P. Schadé and Donald H. Ford (1965) Basic neurology. An introduction to

the structure and function of the nervous system. New York: Elsevier.

This textbook presents excellent introductions to four significant areas:

neuroanatomy, neurophysiology, neurochemistry, and neuropsychology.

Anthony Smith (1984) The mind. New York: Viking Press.

This book presents excellent introductions to the evolution, anatomy, and

growth of the brain, in addition to overviews of consciousness, the senses, and

ability.



PREFACE xiii

The study of brain function is an interdisciplinary endeavor. My formal
training was in mathematics, physics and computer science, but my goal, ever
since I began to study the brain in 1966, was to understand how it represents and
processes information. This endeavor has forced me to read the literature and
talk to researchers in disciplines quite distant from my own. Breaking into an
established discipline means learning a new vocabulary and new way of
thinking. The process can be overwhelming. One goal, then, in writing this
book is to summarize in one place the anatomical, physiological, and clinical
facts which are essential for understanding the computational architecture of the
brain. I hope to encourage new researchers to study the brain, particularly those
individuals with strong mathematical and theoretical talents. Perhaps my effort
will keep them from naively assuming properties of the brain which simply do
not exist. For example, many theorists in the past have studied models of neural
assemblies comprised of neurons which are connected together at random.
Fortunately, the brain is not built that way, and we have come too far in
understanding its structure to condone such naive assumptions. Chapters in
which [ have presented fairly standard background material include Chapter 1
(neurons), Chapter 6 (memory), Chapter 7 (the visual system), Chapter 10 (the
auditory system), Chapter 12 (the sensory-motor system), and the second half of
Chapter 13 (the tactile and vestibular systems).

The principal goal of the book is to describe the computational structure and
organization of the human brain. The theories presented here are, for the most
part, mine although some have been improved by my students. Many of the
ideas have been presented elsewhere as formal models, and several of them are
included as appendixes to the appropriate chapters. Much of the material is new
and under current investigation. For example, Scott Zimmerman and [ are just
now completing computer simulation studies of various parts of the movement
control system discussed in Chapters 14 and 15, and Bryant Julstrom has just
completed computer simulation studies of a model of parts of the spatial system,
including spatial memory and the object buffers. We have not yet begun to
simulate the body profile system described in Chapter 13, however.

The focus throughout this book is on information processing, but I will pay
particular attention to information storage. Information storage is, after all,
fundamental to virtually all intelligent activity. The first six chapters develop
the theoretical framework needed for understanding the computational nature of
the brain. Among the topics explored are the nature of information and the
structures and functions of storage networks, information pathways, and
information-encoding and transforming networks.

Chapter 1 describes the neuron, the basic computational element of the
brain. Various properties of neurons are discussed, including the different logical
operations they must perform and how they are organized into neural networks.
The appendix to Chapter 1 presents a mathematical model for the neuron as a
computational element.
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Chapter 2 focuses on information and its characteristics. After all, neural
networks store, transform, and transmit information, so an understanding of the
nature of information is essential. Finally, several types of neural networks are
introduced. These networks are components of many of the systems described
later in the book.

Chapters 3 and 4 focus on information storage networks and their control.
Chapter 3 describes the architecture of a typical associative storage network. It
is described both in terms of its input, output and control functions and in terms
of its internal organization: It is composed of numerous independent storage
locations. The appendix to Chapter 3 presents a model for cortical storage.

Associative storage networks are crucial to brain function. Associative
storage networks translate information from one representation to another.
When we see a familiar object, we can name it. When we want to move a finger,
we can move it. In the first case a visual representation is translated into a
symbolic representation; in the second case a high-level intention is translated
into a motor program. Both operations are performed by associative storage
networks. Associative storage networks generate representations whose tempo-
ral characteristics are better suited to the next stage of processing than the
previous representations. Phonemes vary rapidly as a function of time, words
vary more slowly, ideas more slowly yet. Associative memory stores generate
representations of phonemes from auditory patterns, representations of words
from phoneme patterns, and representations of ideas from word patterns. While
each representation varies more slowly than the previous one, it also lasts a lot
longer. Each representation has vastly different temporal characteristics than
the previous representation, which makes it more suitable for the next stage of
processing. Chapter 5 lays the foundation for understanding these and other
encoding and translating mechanisms.

Chapters 6 through 11 have a different flavor from the first five chapters.
Whereas the first five chapters present issues of a conceptual or theoretical
nature, Chapters 6 through 11 discuss particular sensory and storage systems and
the representations they use.

Chapter 6 describes selected aspects of human memory and presents evidence
that information is indeed stored by the human brain in storage systems of the
type described in the previous chapters. It also shows that there are many
different storage systems which differ from one another in structure, organiza-
tion, function, trace permanence (immediate, temporary or permanent), trace
time constants (rapidly varying to slowly varying) and pattern size (from a few
elements to tens of millions of elements).

Chapters 7 through 9 focus on the visual system. Chapter 7 describes the
low-level visual encodings and the networks which perform them. As you will
see, the visual system extracts specific low-level features from the visual field and
creates a set of storage representations which encode the world and objects in it.
These storage representations use codes which enable the storage systems to
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locate related stored information. Chapters 8 and 9 describe high-level visual
representations, including storage representations of visual experience, repre-
sentations of mental images, and representations of the world and objects in it.
Chapter 9 focuses on the permanent visual storage systems and describes how
visual experiences can be recognized and how memories of visual experiences
can be mentally scanned.

Chapter 10 describes the auditory system and draws parallels between
auditory and visual processes. The nature of stored auditory experiences is
explored.

Chapter 11 presents an introduction to understanding. We understand an
utterance, gesture, or situation when we know how to respond to it. That is, we
understand when we are able to control our mental and physical apparatus to
process all appropriate information, both current and stored, and decide what to
do. (Understanding does not mean that we will respond, however.) Mental
procedures are one high-level encoding of knowledge and I show in Chapter 11
that understanding means we recall from memory or generate a mental
procedure which, when executed, appropriately controls our response to the
situation. A final section briefly suggests the minimum computational circuitry
needed for a system to learn to use natural language.

Chapter 12, the first chapter that deals with the control of movement,
describes muscle tissue and the anatomy of the sensory-motor system. This
chapter lays the foundation for understanding how high-level intentions control
actions.

Chapters 13 through 15 have a notably different flavor from previous chapters
and describe a framework for understanding the control of movement. The ideas
presented in these chapters are under current investigation and lack many
details. Nonetheless, enough details are presented to show in principle how we
control movements.

Chapter 16 describes the affect system and suggests how affects influence
high-level decisions. The neural networks that process affects are only beginning
to be understood so this chapter serves to introduce affects and their relationship
to purposive behavior. The computations that underlie decision making differ
from those which underlie sensory and motor processing, and this chapter
illustrates the nature of the differences.

The final chapter attempts to organize the material presented in the previous
16 chapters. Networks introduced earlier in the book are grouped into the
sensory, symbolic, and purposive systems according to the types of information
they process. The spatial system deals with space, objects, the body, and physical
interactions between them, and it maintains all the representations used for
recognizing and manipulating objects, navigating, controlling locomotion, and
so forth. The symbolic system creates and processes symbolic information and is
responsible for natural language processing (recognition and production of
speech, writing, reading, etc.), mathematical and logical thought, planning,
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and game-playing, to name a few. The purposive system makes all high-level
decisions and ultimately controls itself and the spatial and symbolic systems.
The purposive system includes the affect system which, when we are born, is
controlled by innate (prewired) capabilities. All three systems work closely
together for much of what we do, and some of the interactions between them are
discussed. Finally, this chapter suggests how the brain learns to accept and
process information. [ conclude by reviewing Piaget's stages of cognitive
development and relating them to the computational networks already de-
scribed.

Although I have attempted to convey the computational nature of the
human brain, in fact | have only laid the groundwork for that understanding.
Almost nothing presented here is known for certain and our knowledge of the
computational systems is just beginning to accumulate. When trying to
understand how the brain works as a computer, and therefore how computations
are implemented in neural circuitry, it is clear that we know very little. We
know almost nothing about how the brain processes natural language, logical
thought, musical thought, mathematical thought, concepts, or intuitions. We
know almost nothing about how the brain encodes beliefs, dreams, hopes,
desires, pleasure, pride, or self-esteem. We know almost nothing about how the
brain generates plans. We know almost nothing about how the brain represents
will, inclination, motive, purpose, or choice. Even with respect to sensory
encoding, which is perhaps the best understood aspect of brain function, we are
certain about almost nothing. We do not know how many different represen-
tations are generated and kept about the world or the objects in it. We do not
know how physical properties of objects are represented. We do not know what
types of coordinate systems the brain uses, nor do we know how it determines
coordinates and uses them. We do not know how the brain translates between
coordinate systems.

On the other hand, we are at least beginning to ask the right questions. We
are beginning to understand how storage systems store, recognize, and recall
information. We are beginning to understand the relationships between storage
control, access control, and learning. We are beginning to understand how the
low-level sensory networks create canonical representations for storage and what
the organizations are within storage. We are beginning to understand the
relationships between time and information encoding and modality. We are
beginning to understand how recognition and perception occur. We will only
understand human thought in general when we understand the underlying
structures and representations used by the human brain, and this study is, I
hope, a start in that direction.

Robert J. Baron



SUGGESTED READINGS

The following readings are of a general nature and are excellent sources for
additional background information.

Clarke, E. & O'Malley, C. D. (1968). The human brain and spinal cord. A historical study illustrated
by writings from antiquity to the twentieth century. Berkeley, CA: University of California Press.

Pribram, K. H. (1971). Languages of the brain: Experimental paradoxes and principles in
neuropsychology. Englewood Cliffs, NJ: Prentice-Hall.

Restak, R. M. (1979). The brain. The last frontier. Garden City, NY: Doubleday.

Rock, 1. (1984). Perception. New York: Scientific American Books, an imprint of W. H. Freeman
and Co.

Russell, P. (1979). The brain book. New York: Hawthorne Books.

Scientific American (1979). The brain. A Scientific American book. San Francisco: W. H. Freeman
and Co.

Wooldridge, D. E. (1963). The machinery of the brain. New York: McGraw-Hill.

xvii






ACKNOWLEDGMENTS

Many people have contributed to this book in one way or another. My uncle and
dedicated teacher, Alexander Brodell, first stimulated my interest in science and
art; his influence is immeasurable. My mentor, Henry David Block, a true
educator and gentle man, introduced me to mathematical modeling and to the
study of brain function. He, more than anyone else, showed me the importance
of formal thinking in interdisciplinary research. This book is in memory of them
both.

I am also greatly indebted to many individuals who helped me in the final
preparation of the book. My son Robert and Heidi Fink did much of the original
artwork, and the staff of Kinko’s in lowa City courteously helped me with the
figures on a daily basis. My students Bryant Julstrom and Scott Zimmermann,
and my friends Richard Fink and John Huntley gave me many valuable editorial
suggestions. Harry Whitaker, David Waltz, Dana Ballard, Steven Kosslyn, and
Tim Teyler reviewed the manuscript and made suggestions which greatly
improved its quality. Thank you all very much. Finally, I am deeply grateful to
all the authors and publishers who allowed me to reproduce their figures and
illustrations. This book benefited greatly because of your generosity. I, alone,
take credit for any errors or misinterpretations of the literature.

Xix






L

NEURONS:
THE COMPUTATIONAL
CELLS OF BRAINS

INTRODUCTION

The fundamental assumption that underlies this entire presentation is that the
brain is a computer. It is comprised of some hundred billion computational cells
called nerve cells or neurons, which interact in a variety of ways. This chapter
will focus on neurons and how they interact with one another.

The brain is highly structured, with its major anatomical connections
specified genetically. Some connections appear to be regulated by sensory
stimulation early in life, but the extent to which the brain’s architecture is
determined by sensory stimulation is only beginning to be understood. In any
event, once the physical connections between neurons have been established,
they appear to remain fixed for the life of the system.

NEURAL NETWORKS AND THEIR ANALYSIS

Neurons are organized into well-defined and highly structured computational
networks called neural networks. Neural networks are the principal
computational systems of the brain and there are many types, including
receptor networks, encoding and decoding networks, storage networks, and
control networks. Many of them have been studied anatomically and have a
well-known structure or architecture, and many also have a well-understood
computational role. It is more often the case, however, that the brain’s
computational networks, which are sometimes called “nuclei,” “centers,” or
“bodies” by anatomists, have been studied anatomically with their specific
computational role not yet being understood. In many cases, certain
computational networks are predicted but their anatomical location and
structure are not known.

Each neural network receives inputs through specific input pathways, process

1



2 1. NEURONS: THE COMPUTATIONAL CELLS OF BRAINS

them in a well-defined way, and responds to them through specific output
pathways in a manner that depends on current and past inputs. The ultimate
goal of this research is to understand all computational activity of the brain in
terms of these constituent networks, how they interact with one another, and
for receptor networks, how they react to the environment. We are a long way
from achieving this goal.

There are many facets to understanding the human brain and its computa-
tions. At the most elemental level we seek to understand the mechanisms of the
nerve cell. In time, neural interactions will be understood in terms of cell
structure, metabolic activity, transport mechanisms, and so forth, and this level
of understanding should lead to descriptions of the networks in which both the
statistical properties of the nerve cells (spike train statistics) and the electrical
activity (presynaptic and postsynaptic potentials, refractory periods, synaptic
delays, axonal conduction, etc.) will be quantitatively related to the activities
of other neurons and nonneural elements (notably glial cells) that make inputs
to the networks. This level of understanding will not be discussed at any depth
here.

At a somewhat less elemental level we seek to understand the logical
interconnections of small groups of cells. We seek to understand their
input—output or computational behavior in terms of the activities of their cells.
This is the black box level of modeling, and there are two different
methodologies for studying neural networks at this level. One is to select a
particular biological network to study, model the structure and interactions of
its neurons, and determine by suitable mathematical analysis or computer
simulation how the model network behaves. The validity of the model is then
checked by comparing its computed properties with the corresponding
properties of the biological system as determined experimentally. This
methodology is generally adopted by the theoretical biologist when modeling
networks such as the nervous system of the crayfish, the eye of the cat, the
retina of the frog, the olfactory bulb, and the cerebellum. A second
methodology is to define the desired input—output properties of a network and
determine what types of neural interactions and structures are required to
realize the desired behavior. Within this methodology, experimental and
anatomical considerations are generally used to constrain the models. This is
the approach 1 have adopted for studying information processing in the brain,
including learning, visual and auditory recognition, information storage and
memory, natural language processing, the control of movement, and the affect
systems.

The most general level at which one can study brain function is in terms of
its component information-processing networks and interactions between them.
Thus one may consider a system that contains a receptor network (retina,
cochlea, etc.), information-transforming networks, memory stores, adaptive
control networks, and so on, without considering in detail the underlying neural
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activity. This is the system level of modeling. At this level of analysis one looks
primarily at the psychological (behavioral) properties of the entire system in
terms of its architecture—its functional components and their organization.

NEURONS

Since the primary concern throughout this book will be with the computational
nature of the human brain, I will begin with an overview of the neuron and
neural interactions. Two facts should temper this discussion. First, there is an
enormous variety of neurons in the brain, with fundamental differences in
morphology (structure), patterns of connections, and the way that neurons send
and receive information. (See for example my discussions on the retina, the
superior olive, and the cerebellum later in this book.) This discussion attempts
to convey only those features that are common to most types of neurons—the
average neuron, so to speak. Second, our current knowledge of neural
interactions is limited in many respects, and although there is a large body of
knowledge about certain aspects of neural interactions, other aspects are
virtually unknown. This discussion describes only those aspects which are best
understood.

A neuron consists of four parts essential to our understanding: the cell body
or soma, dendrites, an axon, and axon branches, collaterals, or terminal fibers.
See Figure 1.1. Dendrites are filamentous extensions of the soma which branch
many times in the region surrounding the soma, forming the dendrite tree. The
region in space occupied by the dendrite tree of a neuron is its dendrite field.
The soma and dendrite tree are the receptors of signals from other neurons. A
single axon originates at the soma, extends some distance, and divides often
many times into a set of axon collaterals. The place on the soma where the axon
originates is the axon hillock. Some axon collaterals progress to other parts of
the brain where they divide even further before contacting other neurons. The
regions in space occupied by the axon collaterals of a neuron are its axon fields.
Each terminal fiber ends in a synaptic button, which almost contacts a dendrite
branch or soma of another or the same neuron. Each such place of near-contact
is called a synapse, and the space separating the twa cells is called the synaptic
cleft. See Figure 1.2. Synapses are essential for the information processing done
by the neurons and will shortly be discussed in more detail.

A neuron normally maintains an ionic concentration gradient across its cell
membrane, which produces an electric potential. When the membrane poten-
tial at the axon hillock is sufficiently disturbed, a self-sustaining depolarization
pulse (sometimes called impulse, pulse, or spike) propagates along the axon and
spreads throughout all axon collaterals. When the potential fluctuation caused
by a depolarization pulse reaches a synapse, chemical transmitters are released.
The chemical transmitters, which are ordinarily held in synaptic vesicles, are
released and diffuse across the synaptic cleft to the cell membrane of the



A synapse.
See Figure 1.2

Terminal fibers

A glial cell
See Figure 1.5

Dendrites

A soma or

cell body
Axon hillock

Myelin sheath

Axon collaterals

Figure 1.1 The structure of a typical neuron. Only a few of
its synaptic contacts are shown.

postsynaptic neuron where they bind to receptor sites and may excite (tend to
depolarize) or inhibit (tend to hyperpolarize) the postsynaptic cell. Within a
short time after the chemical transmitters are released from the nerve endings,
they are inactivated enzymatically, reabsorbed by the nerve terminals, or
removed from the synaptic area by diffusion. The postsynaptic cell soon returns
to its normal resting potential.

There are many different types of synapses as illustrated in Figure 1.3. Synapses
of the type just described are axosomatic or axodendritic depending, on whether
the contact is to a soma or dendrite. Axodendritic synapses may also terminate
on specialized dendritic structures called dendritic spines, as illustrated at the top
of the figure. Synapses between two axons are axoaxonic and those between two
dendrites are dendrodendritic. Axosynaptic synapses, illustrated in the figure, are
specialized structures often found in receptor networks; their intended compu-
tations are not yet understood. Finally, some synapses release chemical trans-
mitters which control capillary constriction, muscle contraction (at structures

4
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called motor end plates) or in some unknown way the extracellular medium. The
latter class of synapses are axoextracellular or free endings.

The influence that the presynaptic neuron has on the firing of a postsynaptic
neuron is not exerted at one synapse alone but through many synaptic contacts
that are distributed over parts or all of the soma or dendrite tree of the latter.
The morphology of a neuron and the geometry and distribution of the contacts
between itself and other neurons depends on the particular neuron and varies
greatly between neurons in different parts of the brain. Figure 1.4 illustrates a
few of the hundreds of varieties of neurons that can be found. Nonetheless,
when a presynaptic neuron fires, the depolarization pulse causes the release of
chemical transmitters at each of the synaptic contacts that it reaches. In this
way one presynaptic cell may simultaneously influence thousands and perhaps
tens of thousands of different postsynaptic cells, or in some cases only a single
cell. The neurotransmitters that are released at a single synapse cause a slight
fluctuation in the membrane potential of the postsynaptic cell in the region
immediately surrounding the synapse, and these individual fluctuations spread
from each focus of excitation. When a fluctuation arrives at the soma of the
postsynaptic cell, its influence combines with all other influences that arrive at
the same time from other focuses of excitation and may be of sufficient strength
to initiate a pulse in the axon of the cell.

Although some neurons are contacted by a single presynaptic cell, most are
contacted by many and often thousands of different presynaptic cells at thousands

Postsynaptic membrane

Presynaptic membrane

Synaptic cleft

Mitochondrion

Synaptic vesicles

Figure 1.2. The structure of a synapse. (Mitochondria, found in
most cells, serve as the center of intracellular enzyme activity.)
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Figure 1.3 Different types of synapses. (Reproduced, with permis-
sion, from B. Kolb & |. Q. Whishaw, Fundamentals of Human
Neuropsychology, 2d ed. © 1985 by W. H. Freeman and Co.)

and perhaps tens of thousands of synapses. The fluctuations in the membrane
potential at the soma, therefore, depend on the combined influence of all of the
presynaptic cells. Furthermore, at a given synapse and at a particular moment of
time, the effect of the neurotransmitters depends both on the quantity and type
of neurotransmitter released. The magnitude of the resultant potential fluctuation
in the postsynaptic cell also depends on the conductive properties of its dendrites,
on the current state of the neuron’s environment, on the current rate of cell
metabolism, and on the presence of drugs, chemicals, and hormones which
directly influence or regulate synaptic activity. At the present time there is not
a single cell in a mammalian brain that is completely understood.

Although neurons are the logic elements of the brain, the brain consists of
numerous other types of cells as well: blood vessels, connective and supporting
tissue, and protective tissue. Within the brain, glial cells or glia occupy
essentially all of the volume not occupied by neurons or blood vessels, and glia
outnumber the nerve cells by an estimated 10 times. Glia provide both structural
and metabolic support for the neurons and therefore directly influence neural
activity. However, the way and the extent to which glia influence neural
activity is not known in general.

6
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Figure 1.4 The appearance of the soma, dendrite tree, and axon ramifications of
several types of neurons. (Reproduced, with permission, from J. P. Schadé & D.H.
Ford, Basic Neurology. An Introduction to the Structure and Function of the Nervous
System. © 1965 by Elsevier Biomedical Press.)
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Perhaps the oldest known and best-understood aspect of neural activity is the
mechanism by which the cell membranes of neurons conduct potential fluctu-
ations. As described earlier, these fluctuations, which result from synaptic
activity, propagate away from each focus of excitation. Neural membranes are
semipermeable to sodium and potassium ions and act as a pump, removing
sodium ions from within the cell while pumping potassium ions into the cell.
The cell membrane cannot be penetrated by most other components of
intracellular fluids. The result of the pumping action is a potential gradient
across the cell membrane of about 70 millivolts, negative inside the cell and
positive outside. This is the cell's resting potential. A potential fluctuation at
one region of the cell'’s membrane triggers a change in the conductance of
neighboring regions to sodium and potassium ions. The stimulus trigger for the
changing conductance is local current flow in the cell’s membrane induced by
the potential fluctuation. Sodium ions are first allowed to rush into the cell.
This changes the membrane potential from approximately —70 millivolts to
approximately +40 millivolts. A moment later potassium ions are allowed to
rush out. The efflux of potassium ions restores the resting potential of the cell.
After that, the cell membrane slowly expels the sodium ions and restores the
potassium ions until the membrane once again reaches its resting potential.

For the axon of most neurons the situation is somewhat different. Most axons
are surrounded by an insulating sheath of myelin, which is a sheet-like extension
of one type of glial cell known as an oligodendrocyte. See Figure 1.5. The myelin
sheath partly isolates the axon from the normal concentrations of ions found in
most extracellular space and prevents the local currents from forming in the
neural membrane. In fact, the potential fluctuation propagating into an axon
would disappear entirely if it were not for one important fact. The myelin sheath
is not continuous along the entire length of the axon but is interrupted every
millimeter or so by a break called a node of Ranvier. The nodes of Ranvier are
the gaps between myelin supplied by different glial cells. The only currents that
can form pass through the nodes of Ranvier, and as a consequence, the potential
fluctuations, the pulses, jump from node to node. Conduction in myelinated
axons is called saltatory. A pulse entering one end of a myelinated axon essentially
“jumps” from node to node until it reaches the other end of the axon, where the
myelin sheath is no longer present. At that point the potential fluctuation is at
its full strength. This accounts for the all-or-none conductive property of myelin-
ated axons and enables one to characterize a nerve cell as “firing” or “conducting
a pulse.” The rate of firing of a cell is limited to about 1000 pulses per second
because of the time constants of the underlying mechanism. Based on the
all-or-none conductive property of axons, the firing rate of a neuron is taken to
be the number of times its axon conducts a pulse per unit of time. Researchers
often refer to spike train statistics when characterizing neural activity in this way.

In the peripheral nervous system, Schwann cells form the myelin sheaths
around axons as shown in Figure 1.6.
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Figure 1.5 An oligodendrocyte is one type of glial cell. The processes
of the cell illustrated here form the myelin sheaths surrounding the
axons of four different neurons of the central nervous system. The
separations along an axon where two glial cells almost contact each
other are the nodes of Ranvier. (Reproduced, with permission, from
R. S. Snell, Clinical Neuroanatomy for Medical Students. © 1980 by
Little, Brown, and Co.)

In summary, a neuron transmits information to other neurons along its axon
in an all-or-none fashion. Depolarization pulses are generated at the soma,
propagate along the axon and all collaterals, and release neurotransmitters
which cause perturbations in the resting potentials of all postsynaptic cells.
These cells integrate the effects of all arriving potential fluctuations and fire
accordingly.

OTHER TYPES OF NEURAL ACTIVITY

Nonspiking Neurons

The “spiking” or “depolarization” of a neuron is generally associated with axonal
conduction in myelinated axons. Keep in mind, however, the fact that the
membrane potential of every neuron is in a constant state of fluctuation, and it
is the fluctuation in membrane potential at a synapse, if sufficiently strong, that
initiates the release of chemical transmitters. In line with this, some cells,

9
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Figure 1.6 Schwann cells form the myelin sheaths of axons of nerve

cells in the peripheral nervous system. (Reproduced, with permission,

from R. S. Snell, Clinical Neuroanatomy for Medical Students. © 1980

by Little, Brown, and Co.)
notably certain receptor cells, do not spike at all and in fact do not have axons.
Information is conveyed from these nonspiking neurons to other cells through
synaptic contacts that occur between cell bodies or cell body and dendrites. The
fluctuations in a nonspiking cell cause corresponding fluctuations in the resting
potential of the postsynaptic cell, which may in turn generate spikes in its axon.
Nonspiking cells are highly specialized and have developed for specific
information-processing tasks.

Chemoemissive Neurons

The synaptic contact, although by far the most prominent and best understood,
is not the only type of information transfer between cells. Some neurons emit
different types of molecules which affect the transmittive properties of all nearby
cells. These nonspecific contacts have not been extensively studied, but the
need for nonspecific information transfer, particularly to support various control
processes, will become apparent in this and later chapters.

Logical Categories of Cells

For purposes of understanding the logic of neural networks it is convenient to
define several logical categories of neurons. Information input neurons deliver
information to a network for processing or analysis, and information output

10
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neurons deliver processed information from a network to another. The output
from one network is logically the input to another. For example, the optic nerve
delivers the output from the retina and therefore consists of output cells.
However, the optic nerve terminates in the lateral geniculate nuclei within the
brain and therefore consists of input cells to those networks.

Control cells regulate the processing done by a network. The control inputs
to one network may be the information outputs from another network.

A cell that is self-excitatory may be bistable. A cell is bistable if, when
stimulated by other cells to an adequately high firing rate, its self-excitation will
keep it firing indefinitely until turned off by an inhibitory input. If it is not
firing, however, it remains off until it is stimulated by other cells. Such a cell is
either active or inactive. The minimum firing rate that is required to activate an
inactive bistable cell is its threshold firing rate. By analogy, an ordinary light
switch can be lightly pushed without causing the switch to switch, but when
pushed hard enough—beyond its threshold—it snaps and the light turns on or
off. The switch is stable either in the “on” position or the “off” position; hence
it is a bistable device.

When a single control cell is used to initiate activity in a network, that
control cell is a command cell. If, for example, a single cell is used to initiate
recall from a memory store, then that cell is a command cell. However, activity
in a command cell may not be sufficient to initiate the action that it controls.
Again by analogy, the playback button on an ordinary tape recorder is a
command button. However, when the power is turned off or the batteries are
removed, the playback button does not initiate playback.

Logical Categories of Neural Interactions

Different neurochemicals, such as neurotransmitters, peptides, enzymes, or
pathological agents, influence neural transmission in a variety of ways. Inhibi-
tors of biosynthesis prevent neurotransmitters from forming. Presynaptic block-
ing agents inhibit the release of transmitters at the presynaptic membrane.
Presynaptic facilitators have the opposite effect. Postsynaptic blocking agents
bind to receptor sites at the postsynaptic membrane preventing ordinary
transmitters from doing so. This blocks their activity. Mimicking agents act as
neurotransmitters, causing depolarization or hyperpolarization of the post-
synaptic cell, depending on the type of mimicking agent. Some chemicals
inhibit metabolic breakdown of the transmitters while others block their
reuptake by the presynaptic cell. Still other chemicals alter the conductance of
the cell membrane, thereby changing its transmission properties. Moreover, the
affect that a particular chemical agent has depends on the normal neuro-
transmitter of the synapse. See, for example, Arnold (1984) for a detailed
discussion and references to the literature.

Different neural networks perform markedly different information-processing
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tasks, and the variety of requirements imposed on them accounts for the large
variety of mechanisms employed by the neurons themselves in their underlying
computations. Some networks simply route information from one place to
another. This implies a mechanism for blocking the transmission of all
information along a pathway. Networks which block transmission must act as
switches and have a very fast switching time. In contrast, some networks
transform information in a variety of subtle ways. Visual networks which
enhance the retinal image, for example, must transform their patterns in much
the same way that the contrast knob on a television set enhances the image.
Although we do not yet know what types of neural activity are used to
support any given information-processing task, and we are in fact only
beginning to understand the range of computational demands made on the
brain; still, the following sections suggest some of the expected types of
coupling needed by the brain to meet these demands. Only when researchers
specifically begin to look for these and other logical systems will we discover
which ones exist.

Regulatory Coupling. Neurons whose activity regulates the activity of other cells
are connected by regulatory coupling. Figures 1.7 and 1.8 each illustrate three
idealized cells, A, B, and C. In Figure 1.7, cells A and B have uniform coupling,
and cell C is a control cell with negative regulatory coupling. When control cell
C fires, the normal coupling between cells A and B, whether it be excitatory or
inhibitory, is reduced so that cell A makes a smaller contribution to the firing
rate of cell B. If cell C fires fast enough, then cell A makes no contribution to
the firing rate of cell B. When cell C does not fire, cell A is connected to cell
B as described earlier. Cell C regulates the coupling between cells A and B by
blocking their interaction and is said to have a negative regulatory effect.
Positive regulatory coupling is defined analogously and facilitates the inhibitory
and excitatory coupling between cells. In Figure 1.8, cells A and B have regional
coupling, and cell C is again a control cell having negative regulatory coupling.
When cell C fires, the coupling from cell A to cell B is reduced or blocked, but
only in that region influenced by cell C. Coupling elsewhere between cells A
and B is unmodified by the firing of cell C.

12
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Transformational Coupling. In contrast to neurons which regulate the activity of
other neurons, those which are connected together to process information use
either excitatory or inhibitory coupling. Figure 1.9 shows a simple network
having three sets of cells, I, C, and O. The collection named I is the input set,
collection C is the control set, and collection O is the output set. A neural
network model for the illustrated network consists of a complete and precise
specification of the activity of each output cell when given the activity of each
input and control cell for all time up to the present, and a complete specification
of the state of each neuron’s environment. For a biological network, a partial list
of parameters needed for determining the firing rate of each output cell at time
t is the following:

1. The structure of each output cell, including its size and the distribution of
synaptic contacts from all presynaptic cells.

2. The rate of firing of each presynaptic cell.

3. The rate of release of neurotransmitters from each presynaptic cell as a
function of its rate of firing, the current state of the neurons’ environ-
ment, the effects of the control inputs on the release of neurotransmitters,
and the history of all inputs to the network.

c

——

Axon field of cell ¢

Dendrite field of
of cell b

Axon field of cell a

Region of negative / Region of transformational
regulatory coupling coupling between cells
controlled by cell ¢ aandb

Figure 1.8 Two idealized neurons, a and b, whose coupling is regu-
lated by neuron c. Transformational coupling occurs between neurons
a and b within the volume enclosed by the larger intersecting cylinders.
Control neuron c regulates the coupling between neurons a and b only
within the volume enclosed by the smallest cylinder. Control neuron ¢
also regulates the coupling between all other transformational neurons
connected within that volume.
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Figure 1.9 A simple neural network composed of 100 input neurons,
3 control neurons and 61 output neurons.

4. The influence that the current state of each neuron’s environment has on
the movement of neurotransmitters from presynaptic to postsynaptic cells.

5. Any mutual influences that neurotransmitters released by different
presynaptic cells have on one another.

6. The sensitivity at the current time of the postsynaptic cell toward
depolarization (or hyperpolarization) due to the arrival of neurotransmit-
ters, and any modification to that sensitivity due to the current state of its
environment.

7. The influence that the current state of each neuron’s environment has on
its depolarization.

As the above list suggests, the influence that the presynaptic cells have on the
firing rate of a postsynaptic cell is only one part of the interaction between cells.
We call this component the transformational coupling between cells. In either
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case, if one cell tends to cause another cell to discharge it is excitatory and if it
tends to prevent another cell from discharging it is inhibitory. Transformational
coupling determines the type of processing performed and is distinguished from
control coupling, which regulates the transformation, and effectual coupling (to
be described next) which initiates or effects a temporary or permanent change
in coupling.

Effectual Coupling. The third and final type of neural coupling to be considered
is effectual coupling. An input to a network is an effectual input and has
effectual coupling in case its firing causes or initiates either temporary or
permanent changes to take place in the transformational coupling characteris-
tics of other cells. This differs from control coupling in that the changes do not
directly affect neural transmission. Furthermore, the changes may persist after
the effective neurotransmitters are no longer present. A neuron that initiates
the consolidation process in a storage network makes an effectual input to that
network. A neuron which makes an effectual input to one network may also
make regulatory or transformational inputs to the same or other networks.

SUMMARY

The three types of coupling described here, regulatory, transformational, and
effectual, are only beginning to be understood. From a logical point of view, all
three types of coupling are necessary. However, the differences between control
coupling and transformational coupling, for example, depend on the computa-
tional logic of networks, and the computational logic cannot be determined
without knowing exactly what functional role the various neurons play in the
computational process. Since computational roles are just beginning to be
understood, these notions will become increasingly important as time passes.
The relationship between cell morphology and its computational role will
someday be understood, and when that happens, | expect researchers will find
a direct relationship between cell morphology, coupling type, and coupling
characteristics.

It should be clear that any attempt to formulate a complete and detailed
model of the brain is, at the present time, impossible. We simply don’t have
enough quantitative information about the interactions between neurons to do
so, and even if we did, the computational difficulties of specifying the activities
of some hundred billion neurons with perhaps one hundred trillion synapses,
their environment, and the entire history of inputs to the system is simply not
computationally feasible. This, then, would be the end of this endeavor except
for one very important fact. We know a lot about the computational processes
of the brain. We know that representations of visual images are processed, that
records are made of our experiences, that we manipulate mental models of the
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world, that we communicate with one another using natural language, that we
can perform numerous types of logical computations, that we have emotional
experiences, and that we control our own movements. Our way out of the
dilemma of attempting to model the brain by studying its individual neurons,
then, is to to build various computational networks which perform the same
processes that occur in the brain, and use those neural network models as a
guide to understanding the computational logic of the brain. The neural
network models are constructed out of neuron-like elements called mathemat-
ical or abstract neurons, and by using our knowledge about the structure and
function of the human brain we can build those models to resemble the
networks of the brain closely. As our understanding of the brain increases, the
models will be refined and approximate more closely the corresponding
networks of the brain. This, then, will be the strategy followed throughout this
endeavor.
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APPENDIX 1
THE MATHEMATICS OF NEURAL INTERACTIONS?

This final section presents a formal model for neural interactions. The material
is not essential to the remainder of the book and the reader may wish to proceed
directly to Chapter 2.

"This material is reproduced, in part, from R. ]. Baron (1970) A model for cortical memory,
Journal of Mathematical Psychology, 7, 37-59.
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As I suggested above, the model presented here describes the logical
interactions between neurons and is an approximate description for the
interactions between biological neurons. The model relates the output behavior
of a network of abstract neurons to the behavior of the input and control
neurons to that network. The model is linear and assumes statistical interactions
between neurons.

When discussing different collections of neurons, either biological or
mathematical, it is convenient to name them. For example, the retinal
ganglion cells may be named RG whereas the cells of the olfactory bulb may be
named OB. In order to distinguish one cell from another in a particular
collection, we will enclose in parentheses a list of numbers which uniquely
identify a particular cell in the collection. These are the intrinsic coordinates
of the cell. If the collection is two-dimensional, then two number positions will
be used, where the numbers in each position specify (in arbitrary units) the
location of the cell in the collection. For example, the retinal ganglion cells
may be designated RG(1,1), RG(1,2), RG(1,3) . . . RG(2,1), RG(2,2) . ..
RG(M,1), RG(M,2) . .. RG(M,N), where M and N are the maximum number
of cells in the two dimensions under consideration. If the collection is
one-dimensional, then a single number position will be used, and if the
collection is three-dimensional, then three number positions will be used. This
notation clearly generalizes to any number of dimensions. When we wish to
designate an entire collection only the name will be used and it will be set in
boldface type.

If the coupling parameters between cells depend in a systematic way on the
cell’s intrinsic coordinates, then the network has high neural specificity. On
the other hand, if the coupling parameters do not depend on intrinsic
coordinates, the network has low neural specificity. The cells of a network
having random coupling coefficients would have low specificity. If each cell on
the retina is computationally distinguished by its position, then there would be
a functional relationship between its cell number and its position on the retina
and the retina would have high neural specificity. You will see that the human
brain has high neural specificity. It is generally assumed that cell morphology
and network architecture are genetically specified. Coupling parameters may not
be genetically specified, depending on the specific network.

We define a mathematical neuron (hereafter called simply “neuron”) as
consisting of four parts: (1) a soma, (2) a dendrite field, (3) an axon, and (4)
an axon field. The soma is a point whose geometric coordinates identify the
neuron. The dendrite field is a three-dimensional volume containing the soma.
The axon field is also a three-dimensional volume (not necessarily disjoint from
the dendrite field), and the axon is a line connecting the soma with the axon
field. See Figure 1.10.

When the axon field of one neuron, the presynaptic neuron, intersects the
dendrite field of a second neuron, the postsynaptic neuron, the intersection is
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Figure 1.10 The relationship between biological neurons and mathe-
matical neurons. (Adapted from R. J. Baron, A model for cortical
memory. Journal of Mathematical Psychology, 7, 1970, 37-59.

called the coupling field. The coupling may be transformational, control, or
effectual. Consider two neurons with nonempty coupling field. Neuron A, the
presynaptic neuron, is said to synapse on neuron B, the postsynaptic
neuron.

The frequency of a neuron is a nonnegative valued function of time, as
illustrated in Figure 1.11. Let I be a collection of input neurons, O be a
collection of output neurons, and C be a collection of control neurons as
illustrated in Figure 1.9. Let I(J)(t) denote the frequency of cell I(]) at time t
and similarly let O(K)(t) and C(M)(t) designate the frequencies of cells O(K)
and C(M) at time t.

Finally, let E(x,y,z)(t) designate the state of the neural environment at time
t and at geometric location (x,y,z). We say that the neural environment is in a
normal state in case E(x,y,z)(t) has value 1.

When the neural environment is in the normal state and neuron I(]) fires at
frequency 1(])(t), neuron I(]) releases transmitter substance to neuron O(K)
throughout their coupling field at a rate density (quantity of transmitter
substance per second per volume) given by

I(]}(t)CC[)H()) {XHY!ZIC(t})
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The parameters
&t (x,y,2,C(1)

are called coupling coefficients, where the superscript identifies the presynaptic
neuron and the subscript identifies the postsynaptic neuron. As indicated, the
coupling depends on pre- and postsynaptic neurons and on the control input
C(t) to the region of coupling (x,y,z). Excitatory coupling is represented by
positive coupling coefficients, and inhibitory coupling is represented by nega-
tive coupling coefficients.

When the neural environment is not in the normal state it may influence the
coupling between two neurons multiplicatively. Thus the rate of arrival of
transmitter substance at O(K) from I(]) is given by
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Figure 1.11 The relationship between the depolarization rate of a
biological neuron and the frequency of a mathematical neuron. (Re-
produced, with permission, from R. J. Baron, A model for cortical
memory. Journal of Mathematical Psychology, 7, 1970, 37-59.)
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1) (08 (x,y,2,C(0)E(x,y,2)(0).

Since E(x,y,z)(t) is | when the state of the neural environment is normal, this
same expression is valid in general.

The axon and soma of our mathematical neuron do not play a central part in
the model. Transmitter substance which arrives at the dendrite field of one
neuron causes it to fire at a frequency given by integrating all contributions of
transmitter substance which arrive throughout its dendrite field. However, the
sensitivity of the postsynaptic cell to transmitter substances may not be uniform
throughout its dendrite field. In any volume of the postsynaptic cell O(K), the
net rate density of arriving transmitter substance is given by

(% 10) (08l (x,y,2,C(1)) E(x,y,2)(t)

where summation is over all neurons whose axon fields intersect the dendrite
field of the postsynaptic neuron. The contribution toward depolarization of the
postsynaptic cell may be modified by its local sensitivity, ko) (x,y,z)(t), at
position (x,y,z). The contribution toward the frequency of the postsynaptic cell
made by the arrival of transmitter substance at point (x,y,z) in its dendrite field
is given by

ko) (x,y,2)(t) (“EJ'; 1) (DeStky(x,y,2,C(0)) E(x,y,2)(t)

The frequency of neuron O(M) is given by integrating all such contributions
over its entire dendrite field. The final result is given by

OM)(©) = POS(] [ [kow (v, (Z 1) (el (x,y,2.C(0))
E(x,y,2)(t)dxdydz.

The function POS(x) has value x if x is non-negative and zero otherwise. That
is, cell O(M) does not fire if the net effect of all arriving transmitter substance
is negative.

DISCUSSION

The equation given above represents a mathematical model for the logical
interactions between neurons in a neural network. In particular, it relates the
output firing pattern O(t) to the input pattern [(t) and the control pattern C(t).
Once all parameters are specified, the frequency of each output cell can, in
principle at least, be determined.
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A few comments are in order. First, this model is statistical and does not take
into account relative phases between spikes arriving from different presynaptic
neurons. Second, the model is linear: All effects contribute linearly to the
frequencies of the postsynaptic cells.

Perhaps more important are the biological counterparts of the various
coupling contributions. Coupling contributions come from three places:
presynaptic (the c’s), interneuronal (the E’s) and postsynaptic (the k’s). The
coupling coefficients (the c's) depend on the intrinsic coordinates of the pre-
and postsynaptic cell, the position of contact, and any effects that the control
patterns have on the coupling. This model therefore assumes that control inputs
regulate the presynaptic release of transmitter substance rather than the
interneuronal or postsynaptic parameters. The neural environment (the E's)
contributes in a similar way to the coupling between all cells occupying the same
volume of the network. Thus the environmental contribution is nonspecific.
Finally, the postsynaptic neuron can also modify the coupling influence, and the
postsynaptic cell’s contribution (the k’s) may vary as a function of position on
the postsynaptic cell. When creating a specific neural network model, it is
essential to assign values to the appropriate parameters in the equations,
depending on the assumed origin of the contribution.

Notice that effective coupling has not been included in the equation.
Effective coupling modifies coupling parameters and can be directly incorpo-
rated either in the definition of the coupling coefficients or the definition of the
local sensitivity values, whichever is appropriate. For the storage model
described in Appendix 2, the effective inputs determine when and where storage
will take place and are the “store now” signals to the storage system. Storage in
that model consists of establishing values for the local sensitivity values (the k's)
of certain storage cells. In particular, the k’s take on one set of values before
storage and a different set of values after storage. The effective inputs to a
storage location determine when the k’s change values but have no other effect
on the input—output relationships in the model.
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INFORMATION:
ITS MOVEMENT
AND TRANSFORMATION

INTRODUCTION

Many functions of the brain are similar to those of a modern digital computer.
Both the brain and a computer accept information as input and produce
information as output. Both encode and decode information. Both transform
information in a variety of ways. Both store, search for and recall information.
This chapter attempts to characterize information, how it is encoded, how it is
transformed, and how it is transmitted from one place to another.

Information will be used here to mean two different things: (1) the pattern,
arrangement, or configuration of constituent units that encode knowledge of
form or event, and, (2) the signal impressed upon the input of a system and used
to communicate knowledge of form or event. When used to encode knowledge,
information is static; when used to communicate knowledge, it is dynamic. The
terms static information pattern and dynamic information pattern, and static
pattern and dynamic pattern will also be used.

STATIC AND DYNAMIC PATTERNS

Static patterns are the encoding of stored knowledge. The ink patterns on a page
of text, the patterns of magnetic domains on a strip of recording tape, the
grooves on phonograph records, the silver particles on a photograph, and the
raised dots in braille are examples of static information patterns.

Dynamic patterns move or transmit knowledge from one place to another and
interact with information-processing systems by supplying the energy needed to
initiate information-processing operations. Light waves that convey printed
information, electric signals generated by a playback head in a tape recorder,
sound waves of speech, and firing patterns in collections of neurons are examples
of dynamic information patterns.

22
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Static patterns remain fixed in their supporting medium until modulated by
an external activator; dynamic patterns, in contrast, are spatio-temporal
patterns that exist because of a change in their supporting medium—an electric
signal, a light wave, a mechanical movement. Static patterns are useless until
converted into dynamic patterns: a book in the dark, a reel of magnetic tape
with no tape deck, a phonograph record with no record player. The static
patterns in these devices remains static, hence useless, without an appropriate
playback mechanism. Once converted, however, static patterns are the source
of all prior knowledge. When light shines on the printed page, when the
magnetic tape is moved across a playback head, or when the grooves of a
phonograph record move the stylus of a phonograph cartridge—these processes
recreate the dynamic patterns that were originally present and stored when the
static patterns were formed, and the recreated dynamic patterns once again
become available for further processing and analysis.

For the printed page, the presence of a uniform external light source is
necessary to convert from static to dynamic pattern; for a magnetic tape, the
uniform movement of the tape across the playback head, and for the phono-
graph record the uniform movement of the record under the playback cartridge.
Uniform light, uniform tape movement, and uniform record movement—these
are the external modulators necessary for converting static patterns into
dynamic information patterns.

Within the brain the dynamic patterns are the patterns of discharging
neurons which convey signals from one network to another; the static patterns
are the memory traces which are encoded as spatial patterns of biochemical
markers. Chapter 3 will discuss information storage in detail, but for now let us
take as self-evident the importance of static and dynamic patterns to brain
function and continue to explore other facets of information.

CONTROL AND CONTENT PATTERNS

Information patterns can be loosely divided into two categories: control
patterns, and content patterns. Consider a tape recorder that has three different
recording channels. Two of the channels are used just as they are on any home
stereo tape recorder: Each channel records a representation of the sound that
arrives at a recording microphone in one part of the room. This tape recorder,
however, has special circuitry that monitors the sound level in the room. If the
sound level in the room increases during the recording session, the recording
level of the two stereo channels is decreased. If the sound level decreases, the
recording level is increased. (This optimizes the signal-to-noise ratio on the
recording and enables a greater dynamic range without saturating the tape.) The
third channel maintains a record of the recording level of the two stereo
channels. If a tape consisting of just the two stereo channels is played back on
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an ordinary tape recorder, the average sound level during playback would remain
constant even though the sound level during the recording session varied.
However, on the special recorder being described, the information stored on the
third channel is used in a special way during playback. If the recording level was
reduced during the recording session, then the volume is increased during
playback so the sound level in the room is the same as it was during recording.
Similarly, if the recording level was increased during recording, then the sound
level is decreased during playback. The information recorded on the third
recording channel is control information, whereas the information recorded on
the two stereo channels is content information. The control information is
necessary for the proper operation of the tape recorder, whereas the content
information plays no direct role in its operation. Control information relates to
the circuitry—it controls a process; content information relates only to the
quality of the information being processed.

Notice that from the point of view of the recording circuitry there is no
difference between the content patterns and the control pattern. In fact, all
three patterns are stored and played back in exactly the same way. The pattern
stored by the third channel only becomes control information when used by the
playback mechanism. It is how information is used that distinguishes content from
control information, not the format of the information itself.

Notice also that information only becomes meaningful when it interacts with
a system that can correctly interpret it. The control information stored on the
third channel of the special tape recorder is only useful to that recorder. A book
written in Chinese is only useful to a person who reads Chinese. Information only
has meaning to a system that is designed to interact with it properly.

INFORMATION TRANSMISSION

There are many different ways that information can be transmitted. In
computers, for example, numerical quantities are transmitted as electrical
signals on collections of wires. For a given wire, a signal can either be present
or absent. For a single wire at a given time, the presence or absence of a signal
encodes either the value one (signal present) or the value zero (signal absent).
Likewise, the presence or absence of signals on N wires can be used to encode
up to 2N difference values. For example, for two wires, if ‘00" indicates that
neither wire has a signal, ‘10" indicates that wire 1 has a signal, ‘01’ indicates
that wire 2 has a signal, and ‘11’ indicates that both wires have signals, then
clearly all possibilities are exhausted. There are two wires and 2% or four different
patterns. In each case, the pattern is dynamic since the electrical signals can
directly interact with other computing devices which may be connected to the
wires.

It is also possible to send time-varying dynamic patterns along wires. The
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electrical impulses along a telephone wire are one example. As a second
example, consider the very simple case of one wire, and suppose that the
presence or absence of an electrical signal is inspected every second. If we
inspect the wire N times during a period of N seconds, then up to 2N different
sequences of on and off signals can be sent along the wire. In a collection of M
wires, up to 2MN different sequences of signals can be sent.

Within computers, information is transmitted from one component to
another along data buses. Data buses are simply collections of independent
wires, one for each component of the information being transmitted. When a
signal is impressed on one end of a wire, it can be sensed almost immediately at
the other. When one computer component is to transmit information to
another component, it places signals on the wires of a data bus. In some cases
a single signal is sent but in other cases a sequence of signals is sent and the
receiving circuits must inspect the data bus at exactly the correct times to
discover what the sequence is. In general, because of the critical timing
involved, all components of a computer are controlled by a master clock, a
circuit that periodically turns on and off a clock signal in a special control wire
that goes to all components of the computer to coordinate their activity. The
individual components use this clock signal to determine when to place data on
the data bus and when to inspect the data bus.

INFORMATION ENCODING

In computers, static information patterns are encoded in many different formats
but most often as the pattern of “on” and “off” states in sets of storage elements.
The fundamental storage element of a modern computer is the flip-flop, an
electronic switch that is either “set” (on) or “reset” (off). A set flip-flop holds
the value ‘1’ and a reset flip-flop holds the value ‘0.” This is analogous to a light
switch which can either be on or off. Since a flip-flop can only hold two values,
such a device is said to hold a binary digit or bit.

Although, like neurons, there are many different types of flip-flops, we will
consider only one type here. Our flip-flop has one information input wire, one
information output wire, and one control wire. See Figure 2.1a. When the
control input is off, the state of the flip-flop remains unchanged, either set or
reset, regardless of the value of the information input. The information output
is on when the flip-flop is set, and off when it is reset. When the control input,
called the copy input, is turned on, the flip-flop prepares to change state. The
flip-flop does not change state, however, until the very instant the copy input
turns off. At that instant, the flip-flop is set if the information input is on or
reset if the information input is off. Thus the state of the flip-flop is determined
by the input information (on sets it and off resets it) at the time specified by the
control input. The output of the flip-flop subsequently reflects its new state. The
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Figure 2.1. a) A flip-flop. b} A timing diagram showing the relationships
between information inputs, control (or clock) inputs, and the state
(hence output) of the flip-flop. For this flip-flop, a state change only
occurs when the control input turns off (indicated by arrows). The new
state is determined by the state of the input (on or off) at that instant. The
question mark indicates that the initial state of the flip-flop is not known.

flip-flop then stays set or reset until the control input initiates another state
change.

Flip-flops are generally grouped together into word-sized units which are
controlled as a single device called a register. A register is a storage device that
holds one word of information. See Figure 2.2. A four-bit register, for example,
consists of four flip-flops and can therefore hold one four-bit word or one of 2*
or 16 different patterns. An eight-bit register can hold one eight-bit word or
one of 28 or 256 patterns. These patterns may represent numbers, characters,
computer instructions, or some other set of logical quantities. The copy
input to a register causes it to hold the value on the input lines just as the copy
input to a single flip-flop caused that flip-flop to hold the last value on its
input line. Table 2.1 shows several different four-bit information codes used
today.

Registers are fundamental building blocks in computers. They are physically
connected to other registers and other computer components (storage devices,
processing units, and so forth) through data buses as described earlier. However,
registers are not directly connected to data buses. They are connected to the
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Figure 2.2. a) The circuit diagram for a 4-bit register composed of four
flip-flops. b) The symbolic diagram of a 4-bit register.

TABLE 2.1
Common Four-bit Number Representations
Absolute Sign One’s Two’s Excess  Binary
Binary Decimal Magnitude Complement Complement 3 Fraction

0000 0 0 0 0 -0 0
0001 1 1 1 1 -2 1/16
0010 2 2 2 2 -1 2/16
0011 3 3 3 3 0 3116
0100 4 4 4 4 1 4116
0101 5 5 5 5 2 5/16
0110 6 6 6 6 3 6/16
0111 7 7 7 7 4 7116
0000 8 -0 -7 -8 5 8/16
1001 9 -1 -6 -7 6 9/16
1010 10 -2 -5 -6 7 10/16
1011 11 -3 -4 -5 8 11116
1100 12 -4 -3 -4 9 12/16
1101 13 -5 -2 -3 10 13/16
1110 14 -6 =1 -2 11 14/16
111 15 -7 -0 -1 12 15/16

27
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buses through sets of switches, one switch for each bit in the register. This is
illustrated in Figure 2.3. If the word size of a computer is four bits, then each
register consists of four flip-flops and there are four switches that connect the
four flip-flops of the register to the corresponding four wires in the data bus. The
set of switches connecting a register to a data bus is called a bus gate, and in
general the switches in a bus gate are all controlled by a single control signal
which originates in the control unit of the computer. (Note that the control
signal is such precisely because it is used as a control signal by the register.)

When the control signal opens the switches in a bus gate, the static pattern
encoded by the register’s flip-flops is impressed on the data bus. It is by this
process that the static pattern in the register is converted into a dynamic
pattern in the data bus that can be sensed by other components in the
computer. Since the control unit generates the control signal that places data
on the bus, it can at the same time signal other computer components to
inspect the data bus and copy the information. It is by this very simple
technique that information is transferred from one device to another during a
computer’s computations.

The brain is very different and vastly more complex than a digital computer.
In the first place, neurons, which are the circuit components of the brain, are
not simply on or off like flip-flops and wires. The information encoded in a
collection of neurons is not represented by the states of the neurons at a
particular time but by their rates of firing. Second, although information is
conveyed from one part of the brain to another by the neurons themselves, the
connections are not like the wires of a data bus that do not modify the signals
they convey. Neurons are the computational elements of the brain, and
computations often take place during information transfer. Finally, the number
of neurons that encode patterns of information is significantly larger and the
patterns themselves are markedly more complex than the patterns in a
computer. The optic nerve, for example, which conveys the visual pattern from
eye to brain, consists of more than a million elements; in a computer, a word size
of 64 bits is considered very large!

NEURAL INFORMATION PATTERNS

Within a computer, the smallest indivisible unit of information is the bit, but
the fundamental unit of dynamic information—the word—is the pattern of
on-and-off signals in the wires of a data bus. Within the brain, the smallest
indivisible unit of information is the rate of firing of an individual neuron but
the fundamental unit of dynamic information is the depolarization pattern, the
set of firing rates of the neurons in a specific collection of neurons.

The data buses of the brain are the neural pathways or nerves. Neural
pathways are collections of myelinated axons of particular sets of cells. The
information being transmitted by a particular neural pathway is the pattern
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generated by the neurons whose axons form the pathway. The transmitted
pattern is the depolarization pattern sensed by the postsynaptic cells upon
which the pathway terminates. The optic nerve is one example. It is comprised
predominantly of the axons of retinal ganglion cells. The retinal ganglion cells
perform the final stage of processing by the retina, so the optic nerve conveys
the eye's representation of the ocular image to the brain. See Figure 2.4.

When describing neural information, one must always have in mind a specific
collection of neurons, and the information pattern is specified by giving the rate
of firing of each neuron in the collection, not by giving the state of each neuron
at a particular time. For example, some of the axons in the optic nerve convey
information from the brain to the eye. These efferent axons are not included in
the pattern that describes the retinal output even though their activity may
control the retinal output.

The size or dimensionality of a neural pattern is the number of axons
conveying the pattern. Since there are approximately a million afferent axons
(conducting information toward the brain) in the optic nerve, the afferent
pattern conveyed by the optic nerve has size 1,000,000. In contrast, if it requires
only three neurons to encode the color projected at a particular point on the
retina, then the dimension of that subpattern is three.
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Figure 2.4. The synaptic structure of the retina showing that axons of
the ganglion cells form the final pathway of visual information. Note
the specialized synaptic structures. Compare this figure with Figures
7.6 and 7.7. (Reproduced, with permission, from J. E. Dowling, Orga-
nization of Vertebrate Retinas. Investigative Ophthalmology, 9, 1970,
655-679.)

Neural information patterns in general are spatial, time-varying patterns.
They vary both as a function of the particular neuron in the collection and as
a function of time. Many information patterns are two-dimensional, where the
two dimensions represent the geometric coordinates of the incoming sensory
signals (e.g., position on the surface of the skin, position on the retina of the
eye), or the geometric coordinates of the origin of the pattern within the brain
(e.g., position on the cerebral cortex).

As stated earlier, the firing pattern in a collection of cells varies as a function
of time. | will use the notation S(N)(t) to designate the rate of firing of cell N
in collection S at time t, and I will use S(t) to designate the firing pattern in the
entire collection at time t. If the retinal ganglion cells are named RG, for
example, then RG(t) designates the afferent information conveyed by the optic
nerve to the brain at time t and RG(3,6)(t) designates the rate of firing of retinal
ganglion cell RG(3,6) at time t. A similar notation was used in Chapter 1 to
represent the frequency of a mathematical neuron.

This notion of neural information is based on the fundamental assumption
that neural interactions are statistical and neural information is encoded in
terms of the firing rates of cells. Pulse height and relative phases between spikes
are assumed not to be of primary concern. However, for those brain systems
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where phase of depolarization is a critical parameter (for example, in the
auditory system), this notion will need to be refined appropriately.

Describing Patterns in Neural Networks

The following descriptive mechanism is often convenient for describing the
information in a particular collection of neurons. Imagine that each neuron in
the collection can be connected to a small light bulb which glows with an
intensity proportional to the rate of firing of the neuron. The light bulbs are
then arranged in a geometric pattern determined by the intrinsic coordinates of
the neurons in the collection. For example, light bulbs connected to retinal
ganglion cells would be arranged in a pattern similar to the arrangement of the
retinal ganglion cells themselves. An observer can now look at the light pattern
just as he or she might look at a television screen and describe the neural activity
as he or she would the picture on the screen. For example, he or she can describe
the shape, size, position, and intensity of the activity within the collection.

Equality and Similarity of Information Patterns

The notion of equality of neural information patterns is fundamental and will be
defined here. Two spatial neural patterns are equal in case two conditions hold:
(1) There is a one-to-one correspondence between the cells in the two pathways
that convey the patterns, and (2) The firing rates of each pair of cells under this
correspondence are the same. Using the descriptive mechanism of the previous
section, two patterns are equal if they look identical. Two spatial neural patterns
are similar or proportional in case: (1) There is a one-to-one correspondence
between the cells in the two collections, and (2) The ratios of the firing rates of
each pair of cells under this correspondence is the same. For example, the firing
patterns in two collections of cells are similar if the cells in the two collections
correspond and the firing rate of each cell in the second collection is twice the
firing rate of the corresponding cell in the first collection. Once again, using the
descriptive mechanism of the previous section, two patterns are similar if they
look the same only one is brighter than the other.

It is important to recognize that, according to this definition, two spatial
neural patterns can be equal even if the corresponding neurons do not fire at
corresponding times. It is only necessary that the rates of firing at corresponding
times be equal.

I will now extend the notion of equality to spatial, time varying or
spatio-temporal neural patterns. Two spatio-temporal neural patterns are equal
for T seconds provided three conditions hold: (1) there is a one-to-one
correspondence between the cells in the two pathways that convey the patterns,
(2) there is a temporal correspondence between the onsets of the two
depolarization patterns, and (3) the spatial neural patterns are equal at



32 2. INFORMATION: ITS MOVEMENT AND TRANSFORMATION

corresponding times. This can be stated mathematically as follows. If I and O are
the pathways, cell (M) corresponds to cell O(M), and t1 and t2 are the onset
times of the two patterns, then O(M)(tl + t) = [(M)(t2 + t) for all t between
0 and T. Thus two spatio-temporal neural patterns are equal provided there is a
spatial and temporal correspondence between the patterns.

Two spatio-temporal neural patterns are similar provided that (1) there is a
one-to-one correspondence between the cells in the pathways that convey the
patterns, (2) there is a temporal correspondence between the onset times of the
two patterns, and (3) the spatial patterns are similar at similar times after pattern
onset. Again, this can be stated mathematically as follows. Using our earlier
notation, the patterns O(t2) and I(tl) are similar in case O(M)(tl +¢cl X t)=
[(M)(t2 +1) for all t between 0 and T. Thus two spatio-temporal patterns are
similar in case there is a spatial correspondence between them and one pattern
either progresses faster or slower (or the same speed) than the other.

As an example, sentences read by the same person at different rates of speed
are similar as are the images in a movie when played at normal speed or in slow
motion.

Logical Categories of Patterns

Information input and output neurons were defined in Chapter 1 as were control
and effector neurons. The patterns of information conveyed by these types of
neurons are input patterns, output patterns, control patterns, and effector
patterns. These are logical categories and depend not on the encoding of
information in the pathways but on how the information is used.

SOME NEURAL NETWORKS

Having now built up a vocabulary for understanding the logical interactions
between neurons, the final sections of this chapter will present several very
simple neural network models for information transfer.

Transmission Lines

An information pathway consists of the set of myelinated axons of cells that
transfer information from a source to a destination. The cells at the source
whose axons form the pathway are input cells. They generate the input pattern
that enters the pathway. The cells whose axons leave the pathway are output
cells. They convey the output pattern from the pathway. The one requirement
imposed on a pathway is that the input pattern equals the output pattern: The
pathway must not modify the information.
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The simplest realization of a pathway is when the input cells are the output
cells so the pathway consists entirely of the axons of the input cells. In this case,
the pathway is part of the source network. An alternate realization is that each
input cell is either an output cell, or it connects to a single intermediate or relay
cell. Each intermediate cell is either an output cell or it connects to another
intermediate cell. Any number of intermediate cells may connect each input
cell with one output cell, the connections all being sequential. When an input
cell fires, the cell that it contacts fires, and so on until the output cell fires. Thus
the output from a pathway is identical to the input except for a possible time
delay in the pattern.

In the brain the most obvious candidates for pathways are the optic and
auditory nerves. If, as in the auditory nerves, information is encoded in terms of
the relative phases of depolarization between the cells, then the pathway must
preserve the phase relationships or information would be lost or destroyed.

Switching Networks

A switching network is a network that has one or more collections of
information input cells, one or more collections of information output cells, and
one or more control inputs. The control inputs determine which information
input cells will be connected to which information output cells. Three examples
of switching networks and their graphic symbols are shown in Figures 2.5
through 2.7. The network in Figure 2.5 has one collection I of information
input cells, two collections A and B of information output cells, and two control
cells, C; and C;, which have inhibitive regulatory coupling. When control cell
C, fires, the coupling between the information input cells and the information
output cells will be inhibited where shown. This means that the input cells are
only connected to the output cells of collection A. Connections to the output
cells in collection B are blocked. Similarly, when control cell C; fires, the
connections to the output cells of collection A are blocked, and the inputs are
connected to the outputs named B. If neither control cell fires, then both
collections A and B will receive copies of the input pattern, and if both control
cells fire, no information will be transmitted.

The network shown in Figure 2.6 has two collections [ and ] of input cells and
one collection K of output cells. Both input sets I and J stimulate the output
cells, which fire at the sum of rates of the corresponding input cells. However,
if only one of the input sets | or ] is active, then the output pattern is equal to
that input pattern.

A third example of a switching network is a shift network. Figure 2.7 shows
a shift network having one collection R of input cells, one collection S of output
cells, and five control cells C; through Cs. When all five control cells fire, no
information is transmitted from R to S. When control cell C; stops firing, the
inputs are gated to output cells Sy, S;, S3, S4, and Ss, respectively. When control
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Figure 2.5. One way to use negative regulatory coupling to control
information transmission along two pathways.

| o I(t) K K(t)
lp O o2

BT [ e .
. [ ] [ [ Ks .

Is . o
J,////J(f) Ko
J2J3 5 ; :J{l}

Symbolic diagram

Figure 2.6. The uncontrolled merging of two information pathways.
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cell C; stops firing, the inputs are gated to output cells S, S3, Sy, Ss, and Sg.
When control input cell Cs stops firing, the inputs are gated to output cells Ss,
Se, S7, Sg, and Sy. The network shifts the input pattern in the output cells as
determined by the control pattern C.

Masking Networks

The notion of switching can be generalized so that the information in one or
more of the information input cells is selectively allowed to pass to the
corresponding information output cell. Consider the network shown in Figure
2.8. Each information input cell is connected to a single information out-
put cell, and each connection is regulated by a different inhibitive control cell.
If a control cell fires, then information will be blocked between the
corresponding information input and output cells. If a control cell does not
fire, then information will be allowed to pass. By presenting a spatial pattern to
the control cells, the corresponding pattern will be blocked by the network; it
will be masked. Figure 2.9 shows the appearance of an input pattern, a control
pattern or mask and the corresponding output pattern for the network. A
graphic symbol for a masking network is also illustrated.
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Figure 2.7. A shift network. Cells labeled R1 thru R5 convey the input
pattern, cells labeled S1 thru S5 convey the shifted output pattern, and
cells labeled C1 thru C5 control the amount of shift. The inset shows the
symbolic notation for a shift network.



