

COGNITIVE SCIENCE
and its APPLICATIONS
for HUMAN-COMPUTER
INTERACTION

Copyrighted Material

Copyrighted Material

COGNITIVE SCIENCE
and its APPLICATIONS
for HUMAN-COMPUTER
INTERACTION

Edited by

Raymonde Guindon
Microelectronics and
Computer Technology Corporation

~ LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS
1988 Hillsdale, New Jersey Hove and London

Copyrighted Material

Copyright © 1988 by Lawrence Erlbaum Associates, Inc.
All rights reserved. No part of this book may be reproduced in
any form , by photostat, microform, retrieval system, or any other
means, without the prior written permission of the pubisher.

Lawrence Erlbaum Associates, Inc., Publishers
365 Broadway
Hillsdale, New Jersey 07642

Library of Congress Cataloging-in-Publication Data

Cognitive science and its applications for human-computer
interaction .

Includes indexes.
I. Interactive computer systems. 2. System design.

3. Cognition . I. Guindon, Raymonde.
QA 76.9.158C63 1988 004'.33 87-36523
ISBN 0-89859-884-2

Printed in the United States of America
10 9 8 7 6 5 4 3 2

Copyrighted Material

Contents

List of Contributors vii

Preface ix

1. Constrained Design Processes : Steps Towards
Convivial Computing
Gerhard Fischer and Andreas C. Lemke

2. The Consequences of Consistent and Inconsistent
User Intertaces 59
Peter G. Polson

3. Computer-Aided Reasoned Discourse or,
How to Argue with a Computer 109
Paul Smolensky, Barbara Fox, Roger King, and Clayton Lewis

4. A Multidisciplinary Perspective on Dialogue Structure
in User-Advisor Dialogues 163
Raymonde Guindon

5. SemNet: Three-Dimensional Graphic Representations
of Large Knowledge Bases 201
Kim M. Fairchild, Steven E. Poltrock, and George W. Furnas

6. "As We May Think"?: Psychological Considerations in
the Design of a Personal Filing System 235
William P. Jones

7. The Application of User Knowledge
to Intertace Design 289
James E. McDonald and Roger W. Schvaneveldt

Author Index 339

Subject Index 343

v

Copyrighted Material

Copyrighted Material

Contributors

Kim M. Fairchild
Microelectronics and Computer

Technology Corporation
3500 West Balcones Center Drive
Austin , Texas 78759

Gerhard Fischer
Computer Science Department
University of Colorado
Boulder, Colorado 80309

Barbara Fox
Linguistics Department
University of Colorado
Boulder, Colorado 80309

George W. Furnas
Bell Communications Research
435 South Street, Room 2M 397
Morristown, New Jersey 07960

Raymonde Guindon
Microelectronics and Computer

Technology Corporation
3500 West Balcones Center Drive
Austin , Texas 78759

William P. Jones
Microelectronics and Computer

Technology Corporation
3500 West Balcones Center Drive
Austin, Texas 78759

Roger King
Computer Science Department
University of Colorado
Boulder, Colorado 80309

Andreas C. Lemke
Computer Science Department
University of Colorado
Boulder, Colorado 80309

Clayton Lewis
Computer Science Department
University of Colorado
Boulder, Colorado 80309

James E. McDonald
Computing Research Laboratory
New Mexico State University
Las Cruces, New Mexico 88003

Peter G. Polson
Department of Psychology
University of Colorado
Boulder, Colorado 80309

Steven E. Poltrock
Microelectronics and Computer

Technology Corporation
3500 West Balcones Center Drive
Austin , Texas 78759

Roger W. Schvaneve/dt
Computing Research Laboratory
New Mexico State University
Las Cruces , New Mexico 88003

Paul Smolensky
Computer Science Department
University of Colorado
Boulder, Colorado 80309

Copyrighted Material

vii

Copyrighted Material

Preface

Breaking the communication barriers between experts in different dis­
ciplines requires overcoming differences in jargon, and more importantly,
profound differences in paradigms. Being an expert in more than one
technical area is a rare achievement. The field of human-computer inter­
action is striving to provide the conceptual foundations for designing
computer tools and the environment needed to perform increasingly
more complex and specialized tasks. To achieve this goal, human­
computer interaction must rely on the meeting of specialized, expert
minds. Each of the research projects presented in this book investigate
some critical question on the path of progress in human-computer inter­
action. These projects would not have been feasible without the mul­
tidisciplinarity of the research team or of the researchers themselves.

This book is composed of chapters organized around the theme of mul­
tidisciplinary research and the contribution of cognitive science to the
research projects. Interestingly, we find instances of research projects
overlapping in goals, but using widely diverse methodologies. We also
find research projects using the same or similar methodologies to answer
quite different questions. These methodologies and techniques come
from such diverse fields as scaling and measurement, computer science,
experimental psychology, and lingu istics. The applications of these
varied methodologies and techniques act in synergy to solve the
problems posed by human-computer interaction.

Why say in many words what an annotated diagram can explain more
concisely and directly? Some of the interconnections between the
research projects presented in this book are depicted in the figure on the
next page. The dotted links point to the concepts, techniques, and
models underlying the research projects , while the solid links point to the
goals of the projects.

The goal of Fischer and Lemke, in the first chapter, is to provide maximal
access to the rich functionality available in current computer systems to

ix

Copyrighted Material

x Guindon

Figure 1: Overlap in goals and techniques between chapters

casual and intermediate users. They present an analysis of these users'
needs based on previous research and their own observations. They
found that casual and intermediate users are rarely willing or capable of
spending the time necessary to acquire the detailed knowledge needed
to make adequate use of the available functionality. They have
developed a computer environment supporting constrained design
processes as a step towards convivial computer systems. These
processes allow the novice and intermediate users to access rich

Copyrighted Material

Preface xi

functionality without extensive initial learning, while allowing expert users
to reuse already developed and tested components . The described con­
strained design processes are achieved through selection, combination,
and instantiation of general tools , and design kits.

In the second chapter, Polson also concerns himself with maximizing the
use of available functionality . His strategy is to empirically determine the
conditions favoring skills transfer between interfaces. He describes in
detail the notion of consistent interfaces in terms of the GOMS model.
He builds and validates a model of the transfer process between consis­
tent interfaces based on the cognitive complexity theory. He shows that
basic findings from early research in psychology on human memory is
relevant to understanding the transfer of skills between computer sys­
tems and the phenomenon of interference between interfaces.

Smolensky, Fox, King, and Lewis describe an environment to support
reasoning and decision-making. This environment provides for the
representation of complex arguments with semi-structured forms. The
argumentation language, ARL, captures the formal aspects of the ar­
gument, while the user provides the informal components in natural lan­
guage. The environment, EUCLID, provides some processability of the
semi-structured arguments by testing, for example, their well­
formed ness. It also provides already built-in schemas or templates for
many types of arguments. Moreover, users can examine the content
and structure of an argument with graphical or tabular displays. EUCLID
is expected to increase the logical reasoning ski ll s of users, both in the
generation and in the comprehension of arguments and proofs. This
research project is based on linguistics research in argumentative dis­
course structure, artificial intelligence, database technology, and cog­
nitive psychology.

Turning to my chapter, I compare the structure of user-advisor dialogues
in their most frequent form, spoken face-to-face between two humans, to
the structure of typed dialogues between a user and a computerized ad­
visory system. The purpose of the study is to gather data about users'
dialogues to guide the design of natural language front-ends to advisory
systems. It is hoped that determining the structure of users' dialogues
will help natural language interfaces perform anaphora resolution. The

Copyrighted Material

xii Guindon

study uses findings and methods from linguistic discourse analysis and
experimental psychology to answer a question in human-computer inter­
action. In the study, a task analysis based on the GOMS model is com­
pleted and a corresponding task structure is derived . The task structure
seems to have more influence on the structure of spoken face-to-face
dialogues than on the structure of typed dialogues. Typed user-advisor
dialogues resemble independent queries more than cohesive discourse.
Implications for the design of natural languages interfaces are generated.

Contending with information overload, SemNet is a 3-D graphical inter­
face for large knowledge bases. Designed by Fairchild , Poltrock, and
Furnas, SemNet allows easy retrieval of information from and exploration
of large knowledge bases. The user "travels through" the knowledge
base with a choice of many navigation techniques. The knowledge base
information is also selectively displayed through FishEye views specified
by the user. The positioning and the selection of elements to be dis­
played is based on techniques such as multidimensional scaling and the
centroid heuristic. SemNet has been used and empirically evaluated as
an interface to a large knowledge base of Prolog rules to perform mor­
phological analysis.

Also struggling with information overload, Jones' Memory Extender sys­
tem provides for context based retrieval of files from large filing systems.
In the ME system, files and context are represented in an associative
network of weighted term links. Three processes underly the adaptive
and contextually sensitive retrieval: an exchange of representational in­
formation, a decay mechanism, and a spreading activation matching al­
gorithm. The ME system is founded on a task analysis of information
retrieval and, as in Polson's model, on basic research on the properties
and mechanisms of human memory. By designing a system with good fit
to both the task and the user's capabilities, ME provides a computational
extension to the user's memory. Jones' research reveals a mutually
beneficial interplay between basic research in human information
processing and applied efforts to build more usable computer systems.

Copyrighted Material

Preface xiii

McDonald and Schvaneveldt share the goal of Fischer and Lemke and of
Polson: maximal access to the functionality of computer systems to
casual and intermediate users. They propose an interface design
methodology which they are testing. The methodology involves uncover­
ing the conceptual models of a computer system from experienced
users. These models are uncovered through the use of hierarchical
cluster analysis, multidimensional scaling, and the Pathfinder algorithm.
They have applied the methodology to the design of an interactive Unix
documentation system, Superman II. They present a review of several
applications that illustrate key aspects of their methodology.

This book grew from presentations at a regional meeting of the American
Association for the Advancement of Sciences, held at the University of
Colorado, Boulder. I was asked to help organize a session at the
Psychological Sciences section of the conference by Dr. Jesse Purdy.
Strong interest was expressed by the conference organizers in the topics
of cognitive science and of human-computer interaction. I felt that these
topics were quite close to each other in the sense that the development
of cognitive science had provided many of the empirical methodologies
and conceptual models used in the field of human-computer interaction.
So I selected as the theme of the session the contribution of the different
disciplines composing cognitive science to the study of human-computer
interaction. I also emphasized the multidisciplinarity required of the
researchers or teams of researchers working in the area of human­
computer interaction. The University of Colorado was an especially ap­
propriate site for the conference because of its excellent Institute for
Cognitive Science and multidisciplinary work in human-computer inter­
action. Moreover, this conference gave me an opportunity to describe
some the work in progress in human-computer interaction at the
Microelectronics and Computer Technology Corporation.

I wish to thank the many colleagues who reviewed one or more chapters
of this book and who significantly helped increase their quality: Ernest
Chang, Jeff Conklin, Joyce Conner, Nancy Cooke, Jonathan Grudin, Will
Hill, Patrick Lincoln, Gale Martin, Jim Miller, Don Norman, Ken Paap,
Nancy Pennington, and Elaine Rich . And thanks to all the contributors
who also reviewed each other's chapters and thus, helped produce a
more integrated book. Also, this book would have never appeared

Copyrighted Material

xiv Guindon

without Bill Curtis' encouragement and support throughout. Finally,
Joyce Conner performed excellent editorial supervision, accomplished
the feat of producing the camera-ready version of this book, keeping
track of chapters in various stages of completion, designing the layout of
the chapters, ensuring uniformity of style throughout the book, improving
the writing style, and much more.

Raymonde Guindon

Copyrighted Material

1
Constrained Design Processes:
Steps Towards Convivial Computing

GERHARD FISCHER
ANDREAS C. LEMKE

Our goal is to construct components of convivial computer systems
which give people who use them the greatest opportunity to enrich their
environments with the fruits of their vision. Constrained design
processes are a means of resolving the conflict between the generality,
power, and rich functionality of modern computer systems, and the
limited time and effort which casual and intermediate users want to
spend to solve their problems without becoming computer experts. Intel­
ligent support systems are components which make it less difficult to
learn and use complex computer systems. We have constructed a
variety of design kits as instances of intelligent user support systems
which allow users to carry out constrained design processes and give
them control over their environment. Our experience in building and
using these design kits will be described.

1. Introduction

Most computer users experience computer systems as unfriendly, un­
cooperative and requiring too much time and effort to get something
done. Users find themselves dependent on specialists, they notice that
software is not soft (i.e., the behavior of a system can not be changed
without reprogramming it substantially), they have to relearn a system
after they have not used it for some time, and they spend more time
fighting the computer than solving their problem.

In this chapter we will discuss what design kits can contribute to the goal
of convivial computing systems. From a different perspective, design kits
also contribute to two other major goals of our research: to construct
intelligent support systems (Fischer, 1986) and to enhance incremental
learning processes with knowledge-based systems (Fischer, 1987). In

Copyrighted Material

2 Fischer and Lemke

Section 2 we will briefly describe what we mean by convivial systems.
One way of making (especially functionality-rich) systems more convivial
is to provide intelligent support systems (Section 3). In Section 4 we
argue that for certain classes of users and tasks there is a need for
constrained design processes. In Section 5 we present methodologies
and systems which support constrained design processes. In Section 6
we describe in detail some of the tools and the systems which we have
built to support constrained design processes:

1. WLlSPRC is a tool to customize WLiSP (a window-based
user-interface toolkit, based on LISP, developed by our
research group over the last 6 years (Fabian & Lemke,
1985; Boecker, Fabian, Lemke, 1985; Fabian, 1986)).

2. WIDES, a window design kit for WLlSP, allows designers to
build window-based systems at a high level of abstraction
and it generates the programs for this application in the
background.

3. TRIKIT is a design kit for TRISTAN. TRISTAN (Nieper, 1985) is
a generic tool for generating graphical representations for
general graph structures. TRIKIT uses a form-based ap­
proach to allow the designer to combine application
specific semantics with the generic tool.

In Section 7 we briefly describe our experience with using these sys­
tems. Section 8 relates our systems to other work in this area, and the
last section discusses a few conclusions drawn from this work.

2. Convivial Computer Systems

IIlich (1973) has introduced the notion of "convivial tools" which he
defines as follows:

Tools are intrinsic to social relationships. An individual relates himself
in action to his society through the use of tools which he actively
masters, or by which he is passively acted upon. To the degree that he
masters his tools, he can invest the world with his meaning; to the
degree that he is mastered by his tools, the shape of the tool deter­
mines his own self-image. Convivial tools are those which give each
person who uses them the greatest opportunity to enrich the environ­
ment with the fruits of his or her vision.

Tools foster conviviality to the extent to which they can be easily used,

Copyrighted Material

Constrained Design Processes

by anybody, as often or as seldom as desired, for the accomplishment
of a purpose chosen by the user.

3

lllich's thinking is very broad and he tries to show alternatives for future
technology-based developments and their integration into society. We
have applied his thoughts to information processing technologies and
systems (Fischer, 1981) and believe that conviviality is a dimension
which sets computers apart from other communication technologies. All
other communication and information technologies (e.g., television,
videodiscs, interactive videotex) are passive, i.e ., users have little in­
fluence to shape them to their own taste and their own tasks. They have
some selective power but there is no way that they can extend system
capabilities in ways wh ich the designer of those systems did not directly
foresee .

General-purpose programming languages

Object-oriented programming

UniH Shell

T[H

Construction Kits

Design Kits

S p re ads h e e t s

Scribe

Editors with keyboard macros

Turn-key systems

• functionality

iiiiWiii. Learnability and Accessability

Figure 2-1: The spectrum of conviviality

Copyrighted Material

4 Fischer and Lemke

We do not claim that currently existing computer systems are convivial.
Most systems belong to one of the extremes of the spectrum of con­
viviality (Figure 2-1) :

1. General purpose programming languages: They are
powerful, but they are hard to learn , they are often too far
away from the conceptual structure of the problem, and it
takes too long to get a task done or a problem solved. This
class of systems can be adequately described by the
Turing tar-pit (defined by Alan Perlis; see Hutchins , Hollan,
& Norman (1986)):

Beware the Turing tar-pit, in which everything is pos­
sible but nothing of interest is easy.

2. Turn-key systems: They are easy to use, no special
training is required , but they can not be modified by the
user. This class of systems can be adequately described
by the converse of the Turing tar-pit:

Beware the over-specialized system where operations
are easy, but little of interest is possible.

Starting from both ends, there are promising ways to make systems
more convivial. Coming from the "general purpose programming
languages" end of the spectrum, object-oriented programming (in
smaliTalk (Goldberg, 1981) or ObjTalk (Rathke, 1986)), user interface
management systems, programming environments and command lan­
guages like the UNIX shell are efforts to make systems more accessible
and usable. Coming from the other end, good turn-key systems contain
features which make them modifiable by the user without having to
change the internal structures. Editors allow users to define their own
keys ("keyboard macros") and modern user interfaces allow users to
create and manipulate windows, menus, icons etc., at an easy to learn
level.

Turn-key systems appear as a monolithic block (Figure 2-2). The user
can choose to use them if their functionality is appropriate. But they
become obsolete if they cannot meet a specific requirement .

The user should have control over a tool on multiple levels. Figure 2-3
shows the levels of control for the EMACS editor (Stallman, 1981 ; Gosling,
1982) . The keystroke level together with its special purpose extensions
(lisp mode, etc.) is most frequently and most easily used. The lower

Copyrighted Material

Constrained Design Processes 5

monolithic application

I general-purpose programming language J

Figure 2-2: Turn-key systems

levels gradually provide more functionality but require more knowledge
about the implementation of the editor. Due to this structure, EMACS is
perceived as a convivial tool that can be extended and adapted to many
different needs.

~
~

scribe
mode

keystrokes

eHtended commands

system parameters

~
~

special-purpose language I mock-lisp

general-purpose programming language

Figure 2-3: Levels of control over the EMACS editor

Despite our goal of making computer systems more convivial, i.e., giving
more control to the user, we do not believe that more control is always
better. Many general advances in our society (e.g., automatic

Copyrighted Material

6 Fischer and Lemke

transmission in automobiles) and those specifically in computing are due
to the automation of tasks which before had to be done by hand. As­
semblers freed us from keeping track of memory management, high level
languages and compilers eliminated the need to take specific hardware
architectures into account , and document production systems allow us to
put our emphasis on content instead of form of written documents.

The last domain illustrates that the right amount of user control is not a
fixed constant, but depends on the users and their tasks. Truly convivial
tools should give the user any desired control, but they should not re­
quire that it be exercised. In this sense, the text formatt ing systems TEX

and Scribe (Furuta, Scofield , & Shaw, 1982) , show the following dif­
ferences (see also Figure 2-1) :

1. The T EX user is viewed as being an author who wants to
position objects exactly on the printed page, producing a
document with the finest possible appearance. The user
has to exercise a rather large amount of control. The em­
phasis is on power and expressiveness of the formatting
language.

2. The Scribe user is viewed as an author who is more inter­
ested in easily specifying the abstract objects within the
document, leaving the details of the appearance of objects
to an expert who establishes definitions that map the
author's objects to the printed page. The Scribe user
usually exercises little control. Although Scribe offers sub­
stantial control over the appearance of a document, it does
not allow to specify everything that is possible with TEX .

Scribe's emphasis is on the simplicity of its input language
and on support by writer's workbench tools.

The development of convivial tools will break down an old distinction :
there will be no sharp border line between programming and using
programs -- a distinction which has been a major obstacle for the useful­
ness of computers . Convivial tools will remove from the "meta­
designers" (i.e., the persons who design design-tools for other people)
the impossible task of anticipating all possible uses of a tool and all
people's needs. Convivial tools encourage users to be actively engaged
and to generate creative extensions to the artifacts given to them. Their
use and availability should not be restricted to a few highly educated
people. Convivial tools require to replace "Human Computer

Copyrighted Material

Constrained Design Processes 7

Communication" by "Human Problem-Domain Communication" . Human
Problem-Domain Communication is an important step forward , because
users can operate within the semantics of their domain of expertise and
the formal descriptions closely match the structures of the problem
domain.

Convivial tools raise a number of interesting questions, which we will
investigate in our future research : Should systems be adaptive (i.e ., the
system itself changes its behavior based on a model of the user and the
task (Fischer, Lemke, & Schwab, 1985)) or should systems be adapt­
able by the user? Should systems be composed of simple or intelligent
tools (Norman, 1986)? Simple tools can have problems, because they
require too much skill , time and effort from the user. It is, for example,
far from easy to construct an interesting model using a sophisticated
technical construction kit (Fischer & Boecker, 1983) . Intelligent tools can
have problems because many of them fail to give any indication of how
they operate and what they are doing ; the user feels like an observer,
watching while unexplained operations take place. This mode of opera­
tion results in a lack of control over events and does not achieve any
conviviality.

3. Intelligent Support Systems

The " intelligence" of a complex computer system must contribute to its
ease of use. Truly intelligent and knowledgeable human communicators,
such as good teachers, use a substantial part of their knowledge to ex­
plain their expertise to others. In the same way, the " intelligence" of a
computer should be applied to providing effective communication .
Equipping modern computer systems with more and more computational
power and functionality will be of little use unless we are able to assist
the user in taking advantage of them. Empirical investigations (Fischer,
Lemke , & Schwab, 1985) have shown that on the average only a small
fraction of the functionality of complex systems such as UNIX, EMACS, or
Lisp is used. In Figure 3-1 we give an indication of the complexity (in
number of objects, tools , and amount of written documentation) of
modern computer systems.

Copyrighted Material

8 Fischer and Lemke

Number of Computational Objects in Systems

EMACS:

• 170 function keys and 462 commands

UNIX:

• more than 700 commands and a large number of
embedded systems

LISP-Systems:

• FRANZ-LISP : 685 functions
• WLlSP : 2590 LISP functions and 200 ObjTalk classes
• SYMBOLICS LISP MACHINES: 19000 functions and

2300 flavors

Amount of Written Documentation

Symbolics LISP Machines:

• 10 books with 3000 pages
• does not include any application programs

SUN workstations:

• 15 books with 4600 pages
• additional Beginner's Guides: 8 books totaling 800

pages

Figure 3-1: Quantitative analysis of some systems

In our research work we have used the computat ional power of modern
computer systems to construct a variety of intelligent support systems
(see Figure 3-2). These support systems are called intelligent, because

Copyrighted Material

Constrained Design Processes 9

they have knowledge about the task, knowledge about the user, and they
support communication capabilities which allow the user to interact with
them in a more "natural" way. Some of the components (e .g. , for ex­
planation and visualization) are specifically constructed to overcome
some of the negative aspects of intelligent tools as mentioned above
(e.g. , the user should not be limited to be an observer, but should be
able to understand what is going on) .

Help
System

Critics

Figure 3-2: The architecture of intelligent support systems

By constructing these intelligent support systems we hope to increase
the conviviality of systems. Some of our prototypical developments are
described in the following papers:

• documentation systems in (Fischer & Schneider, 1984),

• help systems in (Fischer, Lemke, & Schwab, 1985),

• critics in (Fischer, 1987),

• visual ization tools in (Boecker, Fischer, & Nieper, 1986) and

• design kits in Section 6 of this chapter.

Copyrighted Material

10 Fischer and Lemke

4. The Need for Constrained Design
Processes

Alan Kay (1984) considers the computer as the first metamedium with
degrees of freedom for representation and expression never before
encountered and as yet barely investigated. This large design space
makes design processes very difficult. Much experience and knowledge
is needed if this space is to be successfully used. Especially for those
who use the computer only as a tool, this space is overwhelming and can
prevent any attempts at making the computer convivial. Constraining the
design space in a user- and domain-dependent way can make more
design processes tractable, even for non-computer experts.

With these research goals in mind, we encounter a difficulty in terminol­
ogy: our users should not just be consumers but also designers. There­
fore, we have to introduce the notion of meta-deSigner for the group of
people who build design tools for other people. For simplicity, we will
use the pair "designer and user" instead of "meta-deSigner and
designer". Having pointed out this distinction, a "user" is still not a clearly
defined concept. In some cases he/she may be the domain expert (i.e .,
a person who knows little about computers but much about a certain
application domain), in other cases he/she may be a system designer
who uses a knowledge representation formalism or a user interface
toolkit. Most of the design kits described in Section 6 build a bridge
between these two levels.

The following objectives generate a need for constrained design
processes :

1. to enhance incremental learning of complex systems and
to delimit useful microworlds -- inexperienced users should
be able to get started and do useful work when they know
only a small part of the system (Fischer, 1987);

2. to increase subjective computability (e .g., by eliminating
prerequisite knowledge and skills and by raising the level
of abstraction);

3. to make experts more efficient (e.g., they can reuse tested
building blocks and they do not have to worry about
details);

Copyrighted Material

Constrained Design Processes

4. to guide users in the relevant context so they can choose
the next steps (e .g., WIDES (see Section 6.2) provides in
the code window the corresponding ObjTalk definition of
what users would have to do if the WIDES were not
available);

5. to lead the user from "chaos to order" (e .g., the primitives
of a programming language or the basic elements of a
technical construction kit give little guidance on how to con­
struct a complex artifact to achieve a certain purpose).

4.1 User Modifiability and User Control

11

Why is there a need for user modifiability and user control? The
specification process of what a program should do is more complex and
evolutionary than previously believed. This is especially true for ill­
structured problems like those which arise in areas like Artificial Intel­
ligence and Human-Computer Communication. Computer systems in
these areas are open systems, their requirements cannot be defined in
detail at program writing time but will arise dynamically at program run
time. Programs have to cope with "action at a distance." Many non­
expert users who used the computer mostly to support them in carrying
out routine cognitive skills like text processing are now more and more
requiring individualized support for increasingly demanding cognitive
skills like information retrieval, visualization support in understanding
complex systems, explanations, help, and instruction.

The goal of making tools modifiable by the user does not imply trans­
ferring the responsibility of good tool design to the user. It is probably
safe to assume that normal users will never build tools of the quality a
professional designer WOUld . But this is not the goal of convivial sys­
tems. Only if the tool does not satisfy the needs and the taste of the
users (which they know best themselves) then shouid they carry out a
constrained design process to adapt it. The strongest test of a system
with respect to user modifiability and user control is not how well its fea­
tures conform to anticipated needs but how well it performs when one
wants to do something the designer did not specifically foresee although
it is in the system's global domain of application.

Copyrighted Material

12 Fischer and Lemke

Pre-designed systems are too encapsulated for problems whose nature
and specifications change and evolve. A useful system must accom­
modate these changing needs. The user must have some amount of
control over the system. Suppose we design an expert system to help
lawyers. As a lawyer uses this system, the system should be able to
adjust to his or her particular needs which cannot be foreseen because
they may be almost unique among the user population. Furthermore, in
many cases this adjustment cannot be done by sending in a request for
modification to the original system developers, because they may have
problems understanding the nature of the request. The users should be
able to make the required modifications in the system themselves.

4.2 Support for the Casual and Intermediate Users

The rich functionality of modern computer systems made two classes of
users predominant: casual and intermediate users. The demands made
on users' memory and learning ability are illustrated by a quantitative
analysis of the systems used in our research (Figure 3-1).

Even if users are experts in some systems, there will be many more
systems available to them where they are at best casual users. Casual
users need in many cases more control and more variability than turn­
key systems are able to offer, but at the same time it should not be
necessary to know a system completely before anything can be done.
Another issue is also crucial for casual users: the time to relearn a sys­
tem after not having used it for some time. It seems a safe assumption
that a system which was easy to learn the first time should not be too
difficult to relearn at a later time.

In order to successfully exploit the capabilities of most complex computer
systems, users must have reached an intermediate level of skills and
knowledge. Incremental learning processes (Fischer, 1987), which ex­
tend over months and years, are required to make the transition from a
novice to an expert. One intrinsic conflict in deSigning systems is caused
by the demand that these systems should have no threshold and no
ceiling. There should be entry points which make it easy to get started
and the limitations of the systems should not be reached soon after.
Constrained design processes are one way to partially resolve this

Copyrighted Material

Constrained Design Processes 13

design conflict. Our window design kit (see Section 6.2) has exactly this
goal: to serve as an entry point to the full generality of our user interface
construction kit. The code for various types of windows can be created
automatically by making selections from a suggestion menu . If more
complex windows are desired, one can modify the generated code.
Under this perspective it serves as a transient object if someone knows
the underlying formalisms well enough, then there is no need any more
to use the design kit .

4.3 Support for Rapid Prototyping

Constrained design processes are not only useful to produce transient
objects. Experts can also take advantage of them if the functionality
required is within the scope of the constrained design processes. The
advantages of restricting ourselves to the limits of constrained design
processes are: the human effort is smaller (e .g., less code to write), the
process is less error-prone (because we can reuse tested building
blocks), and users have to know less to succeed (e .g., no worries about
low-level details). These advantages are especially important for a rapid
prototyping methodology where several experimental systems have to be
constructed quickly.

4.4 From Design to Redesign

We argued before that complex systems can never be completely
predesigned, because their applications cannot be precisely foreseen,
and requirements are often modified as the design and the implemen­
tation proceed. Therefore, real systems must be continuously
redesigned (Fischer & Kintsch, 1986). Reuse of existing components is
an important part of this process. Just as one relies on already es­
tablished theorems in a new mathematical proof, new systems should be
built as much as possible using existing parts. In order to do so, the
functioning of these parts must be understood. An important question
concerns the level of understanding that is necessary for successful
redesign : exactly how much does the user have to understand? Our
methodologies (differential programming and programming by specializa­
tion based on our object-oriented language ObjTalk) and our tools are

Copyrighted Material

14 Fischer and Lemke

one step in the direction of making it easier to modify an existing system
than to create a new one .

5. Methodologies and Systems to Support
Constrained Design Processes

Informal experiments (Fischer, 1987) indicate that the following problems
prevent users from successfully exploiting the potential of high
functionality systems:

• users do not know about the existence of tools ,
• users do not know how to access tools,
• users do not know when to use these tools ,
• users do not understand the results which are produced by

the tools,
• users cannot combine, adapt, and modify a tool to their

specific needs.

In this section we describe how constrained design processes, based on
different methods and systems, can overcome some of these problems.

5.1 Selection

Selection of tools from a set of tools seems to be the least demanding
method to carry out a constrained design process. But in realistic situa­
tions , it is far from being trivial. Different from a Swiss army knife, which
has at most 15 different tools (Figure 5-1) , we may have hundreds or
thousands (Figure 3-1) of tools in a high functionality computer system.

The CATALOG , a tool which we recently built to access the many tools and
application systems in our WLiSP system, simplifies the selection process.
The iconic representations help users to see what is there and it provides
clues about systems they might be interested in.

Selection systems can be made more versatile by giving the user the
possibility to make adjustments or set parameters (like specifying options
to commands) . They require that most work be done by the designer in
anticipation of the needs of the user. This strategy leads to systems
containing a large number of tools many of which may never be used
and which are , consequently, unnecessarily complex .

Copyrighted Material

Constrained Design Processes 15

Figure 5-1: Selection of tools : the Swiss army knife

SIMPLE SUPER SUPER
~Itmo~ ~INDO~ SCROLL

~INDO~

gJ~ III CHARACTER
EDITOR

to ~~ -
~INDO~ TRI STAN DIRECTORY CONSTRUCT! 0 DESIGN KIT EDITOR KIT

k ~:
.... -. . ~

.,..,.,.,.,.,.,..,..,..,.
CONSES LI SP GAUGE BRO~SER INSPECTOR GAUGE ,. ,.,.,.,.,.,.,. .,.,

• !!] --
GERHARD'S ~LISP RC SQUASH SYSTEM LINE SHEET PROGRAM

Figure 5-2: The CATALOG : a tool to simplify selection processes

Copyrighted Material

16 Fischer and Lemke

Are selection type systems all that we need? We do not think so and
agree with Alan Kay (1984) who notes:

Does this mean that what might be called a driver-education to com­
puter literacy is all most people will ever need - that one need only
learn how to "drive" applications programs and need never learn to
program? Certainly not. Users must be able to tailor a system to their
wants. Anything less would be as absurd as requiring essays to be
formed out of paragraphs that have already been written.

5.2 Simple Combination

Believing in recursive function theory, we know that we can compute
anything with a set of very simple functions and powerful ways of com­
bination like function definition and recursion. But the more interesting
combinations are too complicated and require too many intermediate
levels to get to the level of abstraction the user can operate at.

A good example of a simple combination process is illustrated with the
electric drill in Figure 5-3 (the basic design of TRIKIT in Section 6.3 is very
similar) .

Figure 5·3: Simple combination of tools : the electric drill

Other simple combination processes allow the user to define keyboard
macros in extensible editors. The combination method, in this case, is
just a simple sequencing operation. Another example is the concept of a
pipe in UNIX which allows to use the output of one tool as the input to
another tool. Direct manipulation styles of human-computer interaction
are also based on a simple combination process: any output which ap­
pears on the screen can be used as an input (a concept called
"interreferentiaII/O" by Norman and Draper (1986)).

Copyrighted Material

Constrained Design Processes 17

Combination processes become more difficult if there are many building
blocks to work with, if the number of links necessary to build a connec­
tion increases and if compatibility between parts is not obvious.

5.3 Instantiation

Instantiation is another methodology to carry out constrained design
processes. The adjustable wrench (Figure 5-4) can be thought of (in the
terminology of object-oriented programming) as being the class of all
wrenches which is instantiated through an adjustment process to fit a
specific bolt. A restricted form of programming, in an object-oriented
formalism like ObjTalk, can be done by creating instances of existing
classes. Classes provide a set of abstract descriptions. If enough
classes exist, we can generate a broad range of behavior. In KBEmacs
(Waters, 1985), instantiation is used to turn abstract cliches into program
code.

t~K~H~------------~ W[?
Figure 5-4: Instantiation: the adjustable end wrench

5.4 Design Kits

Computer-supported design kits, as we try to envIsion and construct
them, should not be restricted to providing the building blocks for a
deSign, but they should support the process of composing interesting
systems within the application domain. The build ing blocks should have
self-knowledge and they should be more like active agents than like pas­
sive objects.

Copyrighted Material

18 Fischer and Lemke

Design kits can be differentiated from:
1. construction kits: the elements of construction kits (e .g.,

the mixins and the general classes in WLiSP (Figures 6-1
and 6-2) ; the parts in a technical construction system) are
not particularly interesting by themselves but serve as
building blocks for larger structures. Examples of excellent
construction kits can be found in the software of Electronic
Arts (e .g., the PinBall and the Music construction kits), in
technical areas (e .g., FischerTechnik (Fischer & Boecker,
1983)), and in the toy world (e.g., LEGO).

2. tool kits: tool kits provide tools which serve specific pur­
poses (e .g. , the more specific classes in WLiSP (Figure 6-1)
or the entries in the catalog (Figure 5-2)); but a tool kit itself
provides no guidance on how to exploit it's power to ach­
ieve a certain task. Contrary to components of construc­
tion kits , tools do not become part of the system con­
structed.

Design kits are intelligent support systems (Figure 3-2), which we see as
integral parts of future computer systems. We believe that each system
which allows user modifiability should have an associated design kit.
Design kits can contribute towards the achievement of the following
goals : to resolve , at least part ially, the basic design conflict of generality
and power versus ease of use ; to make the computer behind a system
invisible ; to allow the users to deal primarily with the abstractions of the
problem domain (human problem-domain communication) ; and, finally, to
protect the user from error messages and from attempting illegal opera­
tions.

Design kits provide prototypical solutions and examples which can be
modified and extended to achieve a new goal instead of starting from
scratch ; they support a "copy&edit" methodology for constructing sys­
tems through reuse and redesign of existing components (Fischer,
Lemke, & Rathke, 1987) .

5.5 Object-Oriented Programming

Objects encapsulate procedures and data and are the basic building
blocks of object-oriented programming. Objects are grouped into
classes and classes are combined in an inheritance hierarchy (Figure

Copyrighted Material

Constrained Design Processes 19

6-2) . This inheritance hierarchy supports differential description (object y
is like object x except for u.v •...). Object-oriented formalisms (Lemke.
1985; Rathke. 1986) support constrained design processes through in­
stantiation of existing classes (see Section 5.3) and through the creation
of subclasses which can inherit large amounts of information from their
superclasses. Many tasks can be achieved before one has to use the
full generality of the formalism by defining new classes. New program­
ming methodologies like differential programming and programming by
specialization are supported.

6. Examples of Design Kits

The design kits described in this section have been implemented within
the WLiSP environment (Fabian & Lemke. 1985). Figure 6-1 shows an
example screen . WLiSP is an object-oriented user interiace toolkit and
programming environment implemented in FranzLisp and objTalk
(Rathke. 1986). an object-oriented extension to Lisp.

The object-oriented nature of the system provides a good framework to
represent the entities of the toolkit (windows. menus. push buttons. etc.) .
Figure 6-2 shows an ObjTalk inheritance hierarchy of some simple win­
dow classes. In the following sections. we will see how design kits can
help build new applications from the building blocks of this hierarchy.

6.1 WLlSPRC1

Characterization of the Problem Situation: Like many large systems.
WLiSP has several configuration parameters that make it adaptable to
various uses :

• A programmer may want to have a debugger immediately
available and see system resource statistics.

1The name WLlSPRC has been chosen because it creates a system initialization file for
wLisp. In Unix jargon the names of these files are commonly composed of the system
name and the letters 're'.

Copyrighted Material

20

bou lder :.:01"
\/\I\lVY
. ./
~dd i't ions
deski1's . l"Iss
draft . "' ••
end fas . ,lUX
end f •• . err
endt •• . il"lp
end fa •. 109
end !'ISS
and ••• . I'I:1S BRK
cndf 01" 1
final.", ••
inh it . b in
OUT 1 ine . PISS
pr inc ip Ie
ru t.s . b in
su iss. I'I.S
ulisp . bin

~ ~ :
·::. I·==~;;;~~~;;~;;~II.·.·.·.·
: : :: : 1 = IUSERS/CSlRNOREAS .

1 ispre . b in
u 1 isprcsh •• T-l . b i

process-\.! indou.: fon1' : 1"1 in i

THE-SCREEN : back9round :

au1:0"'.'t ie break-u indou?

TOP 1 1 ; fon1":

C'UICS-U indou : fonT :

Type of directory editor :

paTt.r-ns/th in

Ho

I''lin i

I'dni

cd-d ired-u indou

100 i1' and .1111\1; configurATion in "''' uli.pre!l

Fischer and Lemke

. it~..".· > •••••. : .. .
. :-:-:-:-:-:.:-:-:-:-:-:-'

. :-:-:-:-;.:-:-:-:-:
some_kaest le-window) 1"01'21':.:0'"

VVI "Hor i zonta l-Sca 1 e" I

Figure 6-1: The WLiSP programming environment

Iw indow icon Mix inl

Figure 6-2: The inheritance hierarchy of windows

Copyrighted Material

Constrained Design Processes

• whereas if the system is used for text processing, a text
editor, a directory editor, and a text formatter should be in
close reach .

21

Many of these parameters are not easy to access; their names are hard
to remember; the user may not even know of their existence . A second
problem is that most of them live in the dynamic environment of the
executing system only and are reset to their default values when the
system is rebooted. For this reason, a mechanism must be provided to
save these parameters for future sessions.

Approach : A system configuration sheet has been built which shows
certain system parameters. It allows their values to be edited in a con­
strained way and to permanently store the state of the system (Figure
6-3) .

Wl i sp RC Sheet 'Q-rn:l'

pr-ocess-w indows : fonT : Min i

THE-SCREEN : backgr-ound : paTTer-ns / Thin

aUTOMaTic br-eak-window? No

TOP leve 1 : fonT : Min i

eMacs-w indow: fonT : Min i

T~pe of dir-ecTor-~ ediTor- : cd-dir-ed-window

100 iT !I IAbor-T ! I
100 iT and save con f igur-aT ion in "/ . W 1 ispr-c! I

Figure 6-3: The WLlSPRC sheet

6.1.1 Description of WLlSPRC

We have considered two basic approaches to customize the WLiSP pro­
gramming environment:

1. Some systems have a configuration file , possibly with a
specific editor which helps to fill in correct parameters, and

Copyrighted Material

22 Fischer and Lemke

2. the user modifies the state of the system while using it
through means provided inside the system (e.g., manipula­
tion of the screen display with the mouse), and the system
stores those settings immediately or at the end of the ses­
sion in permanent memory (disk file).

WLlSPRC is a system configuration sheet with two functions:
1. Setting certain system parameters (e .g., fonts of certain

windows) which are shown in the sheet and which are
otherwise only accessible through the LISP interpreter. At
the same time, it makes sure that only legal values are
entered (constrained editing) . This is done using menu
selection and choice fields which cycle through a set of
values (Yes/No toggles are a special type of them) .

2. Saving the system configuration for later use.

In addition to the parameters shown in the sheet , the configuration in­
cludes the current size and location of system windows on the screen
and some information pertaining to currently loaded applications.

Figure 6-4 shows a system initialization file as generated by WLlSPRC.

Some of its entries have been commented for illustration purposes . The
file contains Lisp and objTalk code.

6.1.2 Evaluation

Although system init ialization files that can contain arbitrary program
code provide the same, basically unbounded functionality, WLlSPRC gives
to most users much more subjective control over screen layout and
many other parameters. Note that WLlSPRC does not exclude the use of
a regular initialization file.

WLlSPRC is an example of the reduce learning principle. It can be easily
seen that considerable knowledge would be necessary to write this file
directly. The user would have to know the names of fonts, the names of
the objects, and the slots where the parameters are to be stored.

In the case of the size and position of a window (sc r een region), the
numeric coordinates do not say much about the overall appearance on

Copyrighted Material

