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Preface to the 
Instructor 

For most undergraduates in the behavioral sciences the required course in sta
tistics is both introductory and terminal. Any text for such a course should 
accomplish several purposes that are unfortunately, almost mutually exclusive. 
First, the text should be easy to understand for students with little or no college
level mathematics. It must dispense with mathematical precision when precision 
unnecessarily increases complexity and reduces "leachability." Second, the text 
should provide sufficient statistical sophistication to enable the student to read 
the research literature critically and conduct experiments that are complex enough 
to be interesting. Finally, the text should provide a foundation for additional 
work in statistics for students who continue their education in graduate school. 
Unfortunately, if the first two purposes have not been met, if the student is 
forced to plod through an unnecessarily rigorous development of concepts, or 
if the student is presented with procedures rarely encountered in professional 
journals, enthusiasm for research will not develop and additional courses in 
statistics will not be needed. 

While the text is written for the introductory course, it includes some difficult 
material. It reflects the changing trends in the kinds of statistical analysis used 
by investigators in the behavioral sciences. The available evidence has suggested 
for some time that the introductory semester of statistics must go beyond the t 
test, the correlation coefficient, chi square, and elementary ANOV A if it is to 
help undergraduates understand contemporary research literature. Edgington 1 

writing a decade ago noted substantial increases in the use of ANOV A in the 

'E. S. Edgington. ''A New Tabulation of Statistical Proceduress Used in APA Journals."' American 
Psychologist, 1974, 29, 25-26. 

XV 



xvi PREFACE 

results section of APA journals. He concluded that if undergraduates were to 
read professional journals with understanding the introductory statistics course 
would have to cover fairly complex factorial and repeated measures ANOV A. 
The first two editions of this text have done exactly that. 

This, the third edition, will be published almost exactly 20 years after the 
first edition received its initial classroom tryout, and includes still more AN OVA 
material. As with the first two editions the student is "talked through" the logic 
of the process. Mathematical models are not developed rigorously although they 
are described and the issues involved in their use receive more attention in this 
edition than in previous ones. I have separated the material on correlation and 
regression, expanded each topic considerably so that each now constitutes a 
separate chapter. Multiple regression, an increasingly used procedure, is pre
sented in detail and later its relationship to ANOV A is described by analyzing 
the same data with both procedures. Much more time has been devoted to the 
distinction between planned and post hoc tests. Orthogonal contrasts are thor
oughly described. I have also included much more material on interpretation and 
research design and deemphasized routine computations. 

Instructors teaching at selective colleges should be able to include most of 
these topics in their courses. Those sections which go beyond the usual content 
of a rigorous introductory course have been marked by an asterisk in the Table 
of Contents. Some, or all, of these sections can be assigned as honors work or 
used as the statistical portion of a later methods course. 

In summary. this edition like its predecessors is designed to teach in a narrative 
style those statistical techniques most often encountered in the behavioral sciences 
to above average undergraduates. 

H. E. Klugh 
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Introduction 

1.1 ADVICE TO THE STUDENT 

Many students in the behavioral sciences approach their first course in statistics 
wishing they had majored in some other discipline-any other discipline not 
requiring them to study statistics. They are convinced that their "aptitude for 
math" is low, and they are prepared to find statistics difficult. Statistics is difficult 
for many students but not, as a rule, because they have a low aptitude for 
mathematics. Students who have little or no college work in mathematics suffer 
from a serious misconception about the rate at which they should be able to read 
mathematical material. Accustomed to reading a 50-page assignment for other 
courses in two or three hours, they discover that they have spent that much time 
before they understand six pages of statistics. When this happens, they become 
absolutely convinced that they have no aptitude for mathematics and, in despair, 
they drop statistics and change their majors! If you have had similar thoughts, 
the following paragraphs are especially for you. 

Not even mathematicians read mathematics as rapidly as they read other 
material. Of course, this depends on the material and on the individual, but even 
professional mathematicians read unfamiliar mathematics at a considerably slower 
pace than they read anything else. When you require a great deal of time to 
understand a page of mathematics, it does not reflect unfavorably on your intel
ligence or mathematical aptitude. You should expect to read a statistics textbook 
much more slowly than you read other textbooks, and you should expect to 
reread some sections a number of times before the relationships discussed become 
clear. 

1 
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2 INTRODUCTION 

One reason for slower reading in a statistics course is that complex ideas are 
communicated by the use of unfamiliar symbols. In most other courses, you 
already know the meaning of the words by which any new ideas are commu
nicated. Your problem is to understand and then to remember a novel thought 
communicated by a new arrangement of largely familiar symbols. In statistics, 
however, many of the symbols and most of the concepts are entirely new! You 
must begin by learning this new and fairly complex vocabulary of symbols before 
you can understand the concepts communicated by that vocabulary. For this 
reason you should make sure you know the meaning of each new symbol or 
term before you read beyond the section in which it is introduced. And you 
should expect the study of statistics to take more time, page for page, than you 
must devote to your other courses. It is very important that you see this process 
as a challenge which you can meet. The material is much like a crossword 
puzzle, a chess problem, or a challenging bridge hand. Certainly a portion of 
your task is to remember, but in this course, that is far less important than to 
understand, to comprehend. In many college courses understanding and com
prehension are automatic. The tough task is remembering specific facts. In 
statistics the tables are turned; understanding is the primary task. When that is 
accomplished, retention will be almost automatic! 

You can check your comprehension by answering the questions at the end of 
the chapters, and by reviewing the adequacy of your answers in the answer 
section before going on to the next question. Answers for most of the problems 
are supplied, and the procedures by which certain answers are obtained have 
also been included in the answer section. If you cannot answer one of the 
questions you should go back and reread the appropriate section of that chapter. 
Above all you must study the material regularly, but preferably not for more 
than a few hours at a time. Finding yourself a chapter behind on the day before 
the test is not a position from which you can recover by an all-night study 
session. If you are willing to exert consistent effort, you will probably finish the 
course with much more respect for your "mathematical aptitude" than you had 
when you began. 

1.2 ON CALCULATORS 

One piece of equipment that will make your statistics course much easier is the 
pocket calculator, which sells for as little as $15.00, and is really indispensable 
for much of the homework you will be assigned. There are, of course, many 
excellent models and more are appearing all the time so we will not make any 
recommendations here. Your instructor will have some advice about calculators. 

Of course if you have access to a small computer with an appropriate statistical 
software package, life will be even more pleasant. If this isn't available, don't 
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worry. All calculations can be completed within a reasonable time on a good 
electronic calculator. 

1.3 WHY STATISTICS? 

All sciences, including psychology, try to describe and ultimately understand 
relationships between the empirical events (observations) in their disciplines. In 
some areas of science (notably physics and chemistry), but also in some sections 
of psychology, the relationships between these events may be clear cut and easy 
to demonstrate. For example, the length of time it will take a 1-cubic-inch marble 
to fall 4 feet can be determined with a fairly high degree of accuracy. If air 
density is kept constant, and our instruments are in order, we can probably obtain 
almost exactly the same result with all marbles of similar dimensions. In this 
example from physics one must consider the density of the medium and the 
shape of the marble, but for all practical purposes that ends the list of variables 
that might affect the outcome. 

On the other hand, we might wish to know the speed with which a rat will 
traverse a 4-foot alley for food reward. We can set up instruments for measuring 
elapsed time which are just as sophisticated as those used in the physics exper
iment, but it is quite unlikely that the psychologist's rats will produce the con
sistent speeds produced by the physicist's marbles. The behavioral scientist has 
a great many more variables to control. Of course, the rats to be compared should 
all be equally deprived of food, all of the same sex, age, and weight, all receive 
the same amount and type of food reward on earlier trials, and all be housed 
under identical conditions. If we carefully observe all of these controls, and then 
compare the running times of two rats chosen by lot, we shall almost certainly 
find the times to be different; not quite as different as they would have been 
without the controls, but different nevertheless. 

In Table 1.1, in the theoretical column, we have recorded the running times 
one might expect for a group of "identical" rats, if these were obtainable and, 
in the observed column, the running time of real rats as they might be recorded 
in a real experiment. 

TABLE 1.1 
Time to Traverse an Alley Maze 

Rat Theoretical Rats Observed Rats 

4 sec. 6 sec 
2 4 8 
3 4 4 
4 4 3 
5 4 2 

1



4 INTRODUCTION 

Even if we have exerted every effort to hold constant the unwanted influences 
on running time, it is still quite safe to assume that we have not controlled them 
all. Some rats may have been handled a bit more roughly than others; some may 
have had a fight with their cage mate just before running the alley; one may 
have noticed an attractive (or repulsive) odor left by the previous occupant of 
the start box and adjusted his time accordingly. In short, the study of behavior 
often involves a host of variables, not all of which can be controlled, that act 
to disguise the relationships between the variables under investigation. 

All scientific observations, even those of physicists, contain a true component 
and an error component. The true component is equivalent to the theoretical 
running times of Table 1.1, and the error component is the sum of all the chance, 
or randomly operating uncontrolled variables that, when added to the true com
ponent, give rise to each entry in the observed column. This error component 
often tends to disguise relationships between events just as static tends to disguise 
intelligible sound from a radio. 

There are two ways to reduce the effect of error: experimentally, by careful 
laboratory procedures; and statistically, by increasing the number of observations 
and manipulating the data so that the relationships will be apparent in spite of 
the random or chance error. Statistics, as a discipline, is concerned with this 
latter process. In its applied form, as we shall study it in this text, it is concerned 
with describing and drawing inferences from many observations; observations 
that are ordinarily translated into measurements or counts. 

The study of statistics may be divided into two broad areas. One of these 
areas is called inferential statistics because it deals with inferences about the true 
nature of the relationships between variables in spite of the ever present chance 
or error component in their measurement. Most of this book is devoted to 
inferential statistics. Before we can infer anything from observations, however, 
they must be described in a systematic fashion. This branch, called descriptive 
statistics, shows us efficient ways to describe and summarize data, and conse
quently how to present it in the most usable form. It is this aspect of statistics 
that we now discuss. 



Graphing Distributions 

In this chapter we discuss the graphical presentation of data, but first we comment 
briefly on the nature of the data with which the scientist works. 

2.1 OPERATIONAL DEFINITIONS 

An experiment, in its simplest form, is designed to investigate the effect of one 
variable upon another. A variable may be defined as any property on which 
events or objects can take different values. For example, although they represent 
rather different kinds of variables, IQ, height, sex, and family size are all 
variables. Scientific convention uses the term "independent variable" to designate 
any variable presumed to exert the effect, and the term "dependent variable" to 
designate the variable presumably affected. If we investigate the effect of hunger 
on activity, hunger is the independent variable and activity is the dependent 
variable. 

If you keep your subjects away from food and observe any systematic changes 
in their tendency to be active, you have some of the elements of an experiment. 
You might take notes on the behavior of your subjects, and then summarize your 
observations in a written description of their behavior. Unfortunately, another 
investigator conducting the same experiment might write a different report, not 
necessarily because of differences in the behavior of the animals but, perhaps, 
because of differences between you and the other investigator regarding the kinds 
of behavior each considered to be indicative of "activity." 

We can increase the objectivity and hence the reliability of such an experiment 
if we define hunger and activity in a way that permits their measurement. If we 
define hunger by specifying the operations used to produce or measure it, the 
definition is called an operational definition. We can define the degree of hunger 

5 
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6 GRAPHING DISTRIBUTIONS 

operationally in terms of the number of hours since food was last available to 
the animal. Thus, by definition, an animal deprived of food for 24 hours is 
"hungrier" than one which has been deprived of food for 6 hours. Notice that 
such a definition does not describe the internal stimuli produced by the absence 
of food, nor does it describe the sensations presumably endured by a hungry 
animal. In fact, there are a number of ways in which such a definition is deficient, 
but it is an operational definition; it specifies the operations by which "hunger" 
is produced. If we accept this operational definition of the independent variable 
we can form different "hunger" subgroups by depriving some animals of food 
for 6 hours, some for 12 hours, and some for 24 hours. 

Similarly, activity can be operationally defined as the number of rotations of 
an activity wheel made by the animal during a 5-minute test period. Each subject 
in the different "hunger" subgroups can then be given an activity score, and 
average activity scores can be compared among the hunger subgroups. If different 
experimenters repeat this experiment using the same operational definitions of 
the variables under investigation, and the same procedures and apparatus, they 
should arrive at essentially the same description of the relationship between these 
variables. The operational definition is thus an extremely valuable scientific tool; 
it helps investigators to know if they are really discussing the same phenomena. 

Operational definitions increase the objectivity and consequently the reliability 
or consistency of our experimental results. Unfortunately we achieve this pre
cision at a substantial price-a severe limitation on our ability to generalize our 
findings. We cannot, without additional research, generalize our findings to the 
same variables operationally defined in other ways. For example, we might just 
as well define hunger as the force with which an animal will pull against a tension 
device in an attempt to reach food placed I 0 em away, and activity as the amount 
of movement the animal produces in a balance cage or stabilimeter. Also perfectly 
valid operational definitions, the relationship between this "hunger" and this 
"activity" may or may not be the same as we might have found with our original 
operational definitions. 

It is probably evident that we can produce many different operational defi
nitions of "hunger" and many different operational definitions of"activity." These 
groups of definitions determine what we shall call a construct. Thus "hunger" 
and "activity" are constructs, abstractions subject to a variety of definitions. No 
one definition is "right" but if one investigator uses one definition and another 
uses a different definition they should not necessarily expect the same results. 

If we read that intelligence is related to achievement we must know how each 
of these constructs was operationally defined or we cannot evaluate the claim. 
If we read that punishment produces hostility we must know the operations by 
which punishment was produced and hostility measured or we will not be exactly 
sure of the statement's meaning. Indeed, if a construct (abstraction) cannot be 
operationalized, we cannot investigate it scientifically. 
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2.2 SCALES OF MEASUREMENT 

For variables to be operationally defined, the methods by which they are measured 
must be specified. Consequently, the process of measurement and the various 
kinds of measurement scales are of considerable importance to the behavioral 
scientist. 

There are four principal types of measurement scales, and we shall discuss 
each one briefly. The nominal scale consists simply of the specification of attri
butes so that the variable in question can be divided into mutually exclusive 
categories. For example, political parties constitute a nominal scale. To use such 
a scale we specify the membership requirements of Republican, Democratic, 
Socialist, and other parties, so that an individual belonging to one of these groups 
can be identified and counted. The categories composing the elements of a 
nominal scale must be exhaustive and mutually exclusive; every individual must 
fall into one, but only one category. Examples of other nominal scales are martial 
status, college major, and sex. Nominal scales are sometimes referred to as 
nonorderable countables. In a nominal scale, such as "marital status," we can 
only count or enumerate the individuals in each of the following categories. 

Marital Status Frequency 

I. Single, never married 65 
2. Presently married 330 
3. Divorced-not remarried 29 
4. Widowed-not remarried 10 

Total 434 

Although we can assign the numerals to 4 to assist in the designation of 
the various marital statuses, it is clear that the categories are not intrinsically 
orderable; the numerals used to designate the categories have no quantitative 
significance. Four single individuals are not equivalent to one widowed person 
simply because the numeral "I" designates single and "4" designates widowed. 
Thus, in a nominal scale, where numbers may be used to designate nonorderable 
categories, the numbers simply take the place of names; they have no other 
significance. Standard arithmetical operations with these numbers would yield 
quite meaningless results. 

The ordinal scale is a somewhat more sophisticated measuring device. The 
categories in an ordinal scale do imply order. For example, if we wished to 
measure "friendliness," we could develop a scale consisting of the categories: 
extremely friendly, very friendly, friendly, slightly friendly, and acquainted. 
While such a scale has a variety of shortcomings, it does have a definite order 
such that the categories, from left to right, represent decreasing amounts of 
friendliness. Numbers can also represent decreasing amounts of a quantity, so 

1



8 GRAPHING DISTRIBUTIONS 

we can use numbers to represent this property of the scale. Thus we might have~ 
(5) extremely friendly, (4) very friendly, (3) friendly, (2) slightly friendly, and 
(I) acquainted. Notice that in the nominal scale, which we discussed previously, 
numbers were used only as numerals, as names for categories. In the ordinal 
scale we also let the order of the numbers represent the order in the categories. 

A difficulty now arises because when numbers represent the categories of an 
ordinal scale, the numbers have other properties not possessed by the scale itself. 
For example, the intervals between the numbers I, 2, 3, etc. are all the same. 
There is exactly one unit between each number. However, we do not know the 
size of the "friendliness" intervals. We do not now know if it requires as much 
"friendliness" to move from "acquainted" to "slightly friendly" as it does to 
move from "friendly" to "very friendly." The intervals between the numbers 
designating these scale categories are the same of course, but that does not mean 
that there are equal intervals between the actual scale categories represented by 
the chosen numbers. An ordinal scale implies only order. It does not imply that 
there are equal intervals between the scale categories, or that the scale numbering 
begins with a true zero point. The scale intervals may not be equal so we cannot 
meaningfully add or subtract the numbers representing ordinal scale categories 
unless we arbitrarily assume that the intervals between them are equal. 

Psychologists make frequent use of ordinal scales. For example, any rank 
ordering of individuals or objects produces an ordinal scale. A painting ranked 
first in an art contest is presumably better than a painting ranked second, and it 
in tum is presumably better than a painting ranked third. But such a scale cannot 
tell us if the difference in artistic value between the first and second ranked 
paintings is the same as the difference in artistic value between the second and 
third ranked paintings. The second ranked painting could be very close to the 
painting ranked first, or very close to the painting ranked third; either way it 
receives the rank of second. And, of course, the painting in last place cannot 
be assumed to have zero artistic merit! 

Equal intervals between scale values first emerge in the interval scale. Tem
perature measured by degrees Centigrade or Fahrenheit is measured by an interval 
scale. The difference in temperature between 18° and l9°F is the same as the 
difference between 180° and 181 oF. Similarly, the difference between I o and 
2°C is exactly the same as the difference between any other two consecutive 
degree marks on a centigrade thermometer. 

We have defined an interval scale as one that has equal amounts of the 
measured variable within consecutive units of the measuring scale. It follows 
that such scale values can be added and subtracted meaningfully; thus, 6°C -
3°C = 2°C + I°C. 

Psychologists have not been entirely successful with their efforts to develop 
interval scales. The earliest attempts were made in the field of psychophysics 
by using the concept of the "just noticeable difference" (jnd) to provide a constant 
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unit of sensation. More recent attempts have been made to develop interval scales 
in the measurement of attitudes and intelligence. 

While an interval scale permits the operations of addition and subtraction, it 
does not permit the formation of ratios. This is because the interval scale does 
not have a true zero point. For example, ooc does not represent the absence of 
temperature. It is simply the point at which water freezes. As a result, 4°C, 
while four times as large a number as I°C, does not represent four times as 
much temperature. Look at Figure 2.1. Note that the absence of temperature is 
at - 273°C orOo Kelvin. The units in the Kelvin scale are equivalent to Centigrade 
units, but the Kelvin zero point is, approximately, the absence of temperature. 
As we can see from Figure 2. I, I oc is not I o of temperature but 273° + I o of 
temperature; similarly 4°C is not 4° of temperature but 273° + 4° of temperature. 
Therefore 4°C is, in fact, 277/274 or 1.01 times as much temperature as l°C. 
In the Kelvin scale the numerical zero coincides with temperature zero; thus, 
numerical ratios of degrees Kelvin correspond to ratios of measured temperature. 

Consider another example. Look at Figure 2.2. Suppose we have three sticks 
of different and unknown lengths, and arrange them all so that they stand on 
end on some flat surface. We might find that stick S is the shortest stick, stick 
A is equal to stick S plus I inch, and stick B is equal to stickS plus 4 inches. 
Accordingly, we may let stick A = S + I in. and B = S + 4 in. Stick A is 
clearly one unit longer than standard, and B is four units longer than standard. 
However, B is not four times as long as A unless the standard is zero. Note that 
4(S + I in.) = S + 4 in. only when S = 0. 

When measurements begin at a true zero point and the scale also has equal 
intervals we have a ratio scale. Length, mass, and time are ordinarily measured 
with ratio scales, but temperature can also be measured with a ratio scale when 
we record it in degrees Kelvin. 

Some of the measurement scales we have just discussed should only be 
subjected to limited forms of statistical analyses. For example, finding the average 
of a nominal scale will result in a totally meaningless figure because the individual 
numbers are only used to stand for names; they have no quantitative referent. 
In fact, averaging ordinally scaled data is not really appropriate either. It would 
be much like averaging the lengths of a group of objects measured with a ruler 
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R 4" 

Fi!tt~re 2.2 Length measured from an arbitrary origin instead of a true origin. 

having "inches" of varying and unknown size. We can only be certain that 
averaging data will result in meaningful numbers when we have interval or ratio 
scales. 

To illustrate this we consider the data in Table 2.1. There we have shown 
the hypothetical outcome of the judging for a foot race where performances are 
measured by both ordinal and ratio scales. There are three races- I, 2, and 3-
and there are four contestants-A, B, C. and D. Assume that each contestant is 
timed and, in addition, that the contestant's rank order at the finish is recorded. 
These data appear in the appropriate columns of the table. 

First let us determine the overall winner by finding the runner with the lowest 
overall running time. The summed running times appear in the lower right of 
the table. Note the order: B is fastest with a total time of 30.3 seconds; B is 
followed rather closely by A; D is considerably slower and is followed closely 
by C. Now suppose the running times are lost, and we must decide the winner 
on the basis of the rank ordering in each race. If we sum the ranks (lower left 
corner of the table) instead of running times we find that A is now the overall 
winner followed closely by B; C is some distance behind followed closely by 
D. Why the discrepancy? When we summed the ranks and ignored the times we 
lost our measure of the magnitude of the differences between the contestants. 
Ranks do not take these magnitudes into account. Each difference in rank is 
treated the same as every other difference in rank in spite of the fact that, as in 
this example, the equivalent differences in rank may represent very unequal 
differences in the variable upon which ranking is based. It is not, therefore, 
logically defensible to add ordinal measurements. 

In spite of these logical restrictions, it is quite common to average achievement 
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TABLE 2.1 
A Comparison of Ordinal and Ratio Seales 

Race I Race 2 Race 3 

Times Rank Times Rank Times Rank 

10.0 B (I st) 10.0 A (1st) 10.0 
10.1 10.1 B (2nd) 10.1 A (1st) 
10.2 10.2 D (3rd) 10.2 B (2nd) 
10.3 10.3 10.3 
10.4 10.4 10.4 
10.5 A (2nd) 10.5 10.5 
10.6 C (3rd) 10.6 10.6 C (3rd) 
10.7 D (4th) 10.7 c (4th) 10.7 D (4th) 

Sum of ranks A=4 Sum of times B = 30.3 
B = 5 A = 30.6 
c = 10 D = 31.6 
D =II c = 31.9 

test scores and even to average the results of rating scales. In such instances we 
simply assume that no serious errors will be incurred and, in most cases, the 
assumption is probably safe. The ever-present grade point average, or honor 
point ratio, with which most college students are familiar and which decides 
probation or graduation with honor, is the result of averaging course grades 
which were probably based on the use of ordinal scales (course tests). Similar 
situations may be found when ordinal scaling techniques are used to measure 
personality characteristics and other psychological dimensions. 

One additional point must be made about measurement scales. Do not confuse 
the scale with the construct. The construct is an abstraction which is measured 
by the scale. The scale may well be a "sophisticated" ratio scale but that doesn't 
mean the construct follows the scale. For example, suppose we reconsider the 
operational definition of hunger which we said earlier was "hours since food 
was last available." Time is clearly a ratio scale. One hour is half as long as 
two hours which is half as long as four hours. Unfortunately, time since eating 
is not a ratio scale of the construct "hunger." It does not seem reasonable to 
insist that you are six times as hungry one hour after eating as you were ten 
minutes after eating. We can, of course, form ratios of time, but those ratios do 
not necessarily correspond linearly to the ratios of other sequential events, e.g. 
phenomenological increases in hunger. 

Similarly, jail terms are a ratio scale, but not necessarily a ratio scale of 
"punishment." Is a three year sentence three times as much "punishment" as a 
one year sentence? The matter is not settled simply by reference to time as a 
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measurement scale, but by psychophysical procedures which require other inde
pendent definitions of the constructs. 

2.3 DISCRETE AND CONTINUOUS VARIABLES 

Finally, a distinction of considerable importance to mathematical statisticians is 
that between continuous and discrete measurement. Continuous measurement 
occurs when we can infinitely subdivide the units of our measurement "scale." 
Height, time, and weight are such continuous variables. When we can only count 
events, such that only whole numbers result, we have a discrete scale. Family 
size, number of parking tickets, and number of siblings are discrete variables. 
Unfortunately this distinction can become a bit blurred when we apply it to 
achievement test scores. If a test has 50 items, it would appear that we have a 
discrete variable; you can get 39 right or 40 right but not 39. 126 right. However, 
we usually treat test scores as if they were continuous variables. We assume 
that instead of measuring achievement with a 50-item test we could have used 
a 500-item test or a 5000-item test so that we could, in theory, have an infinitely 
dividable continuous scale. We will say more about this issue a bit later. 

2.4 FREQUENCY DISTRIBUTIONS 

Regardless of the scale of measurement used, the data from an experiment must 
be presented in an orderly fashion. Suppose we wish to compare the effectiveness 
of two different methods of instruction. We may have test scores from one group 
of students taught by the lecture method and another group taught by the dis
cussion method, and we may wish to compare the two sets of scores. The data 
may be compared more easily if we first tabulate the scores into two frequency 
distributions. A frequency distribution is a listing of all the different score values 
in order of magnitude with a tally or count of the number of scores at each 
value. Table 2.2 shows two frequency distributions that might result if our data 
were presented in this form. 

With the scores pictured as they are in Table 2.2 we can see some differences 
between the distributions. The lecture method seems to produce higher achieve
ment, but the range of scores is about the same. We can also observe that the 
scores of the lecture students tend to be concentrated toward the top of the 
distribution, while the scores of the discussion group seem to be more sym
metrically distributed about a central value. These differences, rather easily seen 
in Table 2.2, would be completely obscured if the scores were simply presented 
in haphazard order. 
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TABLE 2.2 
Frequeney Distributions of Examination Scores for Students Tau~~:ht by 

Leeture and by Discussion Methods 

Lecture Method Discussion Method 

Score Tally Frequency Score Tally Frequency 

54 II 2 54 0 
53 II! I 4 53 0 
52 fHJ Ill 8 52 I 
51 fHJfHJfHJ 15 51 II 2 
50 fHJ fHJ fHJ II 17 50 Ill 3 
49 fHJ fHJ fHJ tHJ II 22 49 fHJ 5 
48 !H./ fHJ f'H/ I I I 18 48 !HJII 7 
47 f'HjfHJ 10 47 fHJ!WtHJ 15 
46 mJ ///1 9 46 tHJ!W!W/11 18 
45 fH.I/1 7 45 !HJ!HJM!W!W 25 
44 fHJ 5 44 fHJfHJfHJ 15 
43 II! 3 43 !HJ!W/1! 13 
42 !II 3 42 !HJ/11 8 
41 II 2 41 fHJ 5 
40 I I 40 /Ill 4 
39 II 2 39 II 2 

2.5 FREQUENCY POLYGONS 

The data presented in Table 2.2 as a frequency distribution can also be presented 
as a graph. Two kinds of graphs are commonly used to illustrate data derived 
from orderable scales. One of these graphs is called a frequency polygon and 
the other is called a histogram. When data are based on non-orderable countables 
(nominal scales), the preferred graph is a bar chart. Thus we might represent 
intelligence test scores by a frequency polygon or a histogram, but if we have 
tallied membership in several different political parties the data should be pre
sented in the form of a bar chart. 

The frequency polygons shown in Figures 2.3 and 2.3a, are based on the 
data in Table 2.2. In these polygons frequency is graphed as a function' of score. 
The value of each score is recorded on the horizontal axis, or abscissa, and the 
frequency of these values is recorded on the vertical axis, or ordinate. The points 
on the graphs are plotted directly above the midpoints of the intervals on the 
horizontal axis which represent the scores. You should also remember that the 
polygon is a closed figure; the ends meet the abscissa one full score unit above 

'A function in mathematics implies a unique correspondence between x and y such as when y = 
x~. One and only one value of y occurs for each value of x. For many behavioral scientists this term 
is used more loosely as when we say intelligence is a function of environment and heredity. This 
latter usage is most inclusive and is the meaning of the word "function" in this text. 
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the highest tabulated score and one full score unit below the lowest tabulated 
score. 

2.6 HISTOGRAMS 

Figures 2.4 and 2.4a illustrate the histogram. These are also plotted from the 
data of Table 2.2. The histogram consists of a series of adjacent bars whose 
heights represent the number of subjects obtaining a score and whose location 
on the abscissa represents the value of the score. Notice that the vertical lines 
marking off the bars do not originate from the center of the score interval but 
from its edges. The edges of the individual bars mark the theoretical limits of 
the score intervals along the abscissa. 

Sometimes frequency polygons, or histograms of two different distributions, 
will both be plotted on the same set of coordinates. If the differences between 
the distributions are subtle, this procedure may highlight them. Whether one 
uses a frequency polygon or a histogram to represent data is largely a matter of 
personal preference. 

2. 7 BAR CHARTS 

Bar charts are the preferred graphs when data are discrete, that is, when they 
result from the process of counting. This convention is somewhat fluid in psy
chology, where ordinal scales are concerned, but it should be followed without 
exception for nominally scaled data, that is, for nonorderable countables. The 
bar chart is very much like the histogram except that spaces are left between the 
bars in the bar chart. Bar charts sometimes use the vertical axis to represent 
categories and the horizontal axis to represent frequency of occurrence. Study 
the bar chart in Figure 2.5 where we have graphed the enrollment in introductory 
courses for science departmennts at a typical college. 

2.8 GROUPED FREQUENCY DISTRIBUTIONS 

We now consider a more complex kind of frequency distribution called a grouped 
frequency distribution, but first we call your attention to the approximate nature 
of all continuous measurements. A length may be measured to the nearest inch, 
the nearest tenth inch, or the nearest hundredth inch. Each of these measurements 
is considered to be accurate only within certain limits. The limits are one half 
of the unit of measure above and below the unit in question. 

If we are measuring with a ruler on which an inch is the smallest subdivision, 
a measurement will be recorded only to the nearest inch. If an object is actually 
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F~re 2.5 A bar chart of enrollment in introductory science courses. 

7.25 inches long and another object 6.57 inches long, they will both be classified 
as 7 inches long because they are seen as closer to 7 than to either 6 or 8. That 
is the most accurate measurement we can make if we can read only to the nearest 
inch. Therefore, the measurements labeled "7 inches" really include all those 
from 6.5 to 7.5 inches. We may say that a measurement of7 inches could really 
extend from 6.5 to (but not including) 7.5 inches, and that 6.5 and 7.5 are the 
theoretical limits of that unit, or measurement interval. This is the situation when 
the unit of measurement is an inch; the measuring device is presumed accurate 
only to within a half unit above and below the unit of measurement. 

Similarly if the ruler is marked off in tenths of inches, a measurement of 6.8 
inches will include measurements from 6.75 to 6.85 inches. If we can read 
hundredths of inches on our ruler, a measurement of 6.88 will include all lengths 
from 6.875 to 6.885. Even when we can measure to the hundredth of an inch, 
our accuracy is within plus or minus half the unit of measurement. In each case 
we think of the measurement as extending one-half unit above and below the 
recorded value, from one theoretical limit to the next. 

This situation is assumed to exist whether we are measuring inches, seconds, 
or achievement. A score of 176 on an achievement test is assumed to have an 
accuracy extending one half unit to either side of the obtained score, from 175.5 
to 176.5. A score of 176 is thought of occupying an interval from 175.5 to 176.5 
just as a measure of 8 inches occupies the interval from 7.5 to 8.5 inches. Scores, 
then, are thought of as occupying intervals, and these intervals have theoretical 
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Figure 2.5 A bar chart of enrollment in introductory science courses.

7.25 inches long and another object 6.57 inches long, they will both be classified 
as 7 inches long because they are seen as closer to 7 than to either 6 or 8. That 
is the most accurate measurement we can make if we can read only to the nearest 
inch. Therefore, the measurements labeled “7 inches” really include all those 
from 6.5 to 7.5 inches. We may say that a measurement of 7 inches could really 
extend from 6.5 to (but not including) 7.5 inches, and that 6.5 and 7.5 are the 
theoretical limits of that unit, or measurement interval. This is the situation when 
the unit of measurement is an inch; the measuring device is presumed accurate 
only to within a half unit above and below the unit of measurement.

Similarly if the ruler is marked off in tenths of inches, a measurement of 6.8 
inches will include measurements from 6.75 to 6.85 inches. If we can read 
hundredths of inches on our ruler, a measurement of 6.88 will include all lengths 
from 6.875 to 6.885. Even when we can measure to the hundredth of an inch, 
our accuracy is within plus or minus half the unit of measurement. In each case 
we think of the measurement as extending one-half unit above and below the 
recorded value, from one theoretical limit to the next.

This situation is assumed to exist whether we are measuring inches, seconds, 
or achievement. A score of 176 on an achievement test is assumed to have an 
accuracy extending one half unit to either side of the obtained score, from 175.5 
to 176.5. A score of 176 is thought of occupying an interval from 175.5 to 176.5 
just as a measure of 8 inches occupies the interval from 7.5 to 8.5 inches. Scores, 
then, are thought of as occupying intervals, and these intervals have theoretical
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limits. A score of 77 occupies the interval 76.5 to 77.5, and 76.5 is the lower 
theoretical limit of the interval while 77.5 is the upper theoretical limit of the 
interval. A score of 78 has a lower theoretical limit of 77.5 (the same as the 
upper limit of the next lower score interval) and an upper theoretical limit of 
78.5. The midpoint of the score interval is the recorded value of the score itself. 
When we constructed a frequency polygon we made use of these ideas. Notice 
that the scale on the abscissa in Figure 2.3 is continuous, the upper theoretical 
limit of one interval coinciding with the lower theoretical limit of the next. The 
points forming the outline of the polygon were plotted above the midpoints of 
the intervals. 

Let's return for a moment to Table 2.2 and apply these ideas to the data in 
just one interval of the frequency distribution for the lecture class. We shall 
assume that the 22 students in the lecture class who had scores of 49, might 
have had, with a more accurate measuring device, scores spread over the interval 
from 48.5 to 49.5. We will, therefore, assume that a score of 49 encompasses 
that distance, that it includes those hypothetically finer measurements from 48.5 
to 49.5. We have assumed that the achievement measured is continuous even 
though our measuring device (the number of right answers) is not. 

One should notice that the size of the unit of measurement is quite arbitrary 
and depends on the measuring device at hand. For example, we could transform 
the data of Table 2.2 by using a coarser grouping; this is analogous to the use 
of a less accurate scale of measurement. We could group together scores of 39, 
40, and 41; scores of 42, 43, and 44; scores of 45, 46, and 47, etc., throughout 
the distribution. This is a grouped frequency distribution. If we were to group 
together scores of 39, 40, and 41 into a new expanded· interval, the new interval 
would extend from 38.5 to 41.5, and the midpoint of the interval would be 40. 

We shall now distinguish between the score limits of a grouped interval and 
the theoretical limits of a grouped interval. The score limits of an interval are 
the highest and lowest scores within it which can actually be obtained. In the 
interval consisting of scores of 39, 40, and 41, the score limits are 39 and 41. 
The theoretical limits of the interval extend a half unit of measurement above 
the upper score limit and below the lower score limit. Thus, in the interval 
consisting of scores of 39, 40, and 41 , the theoretical limits of the interval are 
38.5 and 41.5. In the interval formed by grouping together scores of 42, 43, 
and 44, the score limits are 42 and 44; the theoretical limits are 41.5 and 44.5. 
If the lower theoretical limit is subtracted from the upper theoretical limit of 
any interval the grouping interval size (i) is obtained, which in this example is 
three. Three original intervals of one unit each are used to form each grouped 
interval. In any distribution, i is usually a constant; the grouping interval is the 
same size throughout the distribution. 

The utility of a grouped frequency distribution is not apparent from the data 
in Table 2.2, but look at Table 2.3, which includes all of the scores from a real 
examination in introductory psychology. Suppose we had to make up a frequency 
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TABLE 2.3 
Te-st Scores from a Final Examination in 

Introductory Psychology 

86 74 66 63 58 54 51 45 
85 74 66 62 58 54 51 45 
84 73 66 62 57 53 50 45 
84 73 66 62 57 53 50 45 
84 73 66 62 57 53 50 45 
84 72 66 61 57 53 49 43 
83 72 66 61 56 53 49 43 
82 72 65 61 56 53 49 43 
82 71 65 61 56 53 49 43 
80 71 65 61 56 53 49 42 
79 71 64 61 56 53 48 41 
79 70 64 61 55 53 48 41 
78 70 64 61 55 53 48 41 
78 70 64 60 55 53 47 41 
78 67 64 60 55 52 47 39 
77 67 64 60 55 52 47 38 
76 67 64 58 55 52 47 38 
76 67 64 58 54 52 46 37 
76 67 63 58 54 52 46 
75 67 63 58 54 52 46 
75 67 63 58 54 51 46 
75 67 63 58 54 51 46 

distribution for these scores. Notice that the range of scores covers 50 different 
score magnitudes. An ungrouped frequency distribution would require tallies for 
50 different intervals and, obviously, would be rather clumsy. We simplify our 
task considerably if we construct a grouped frequency distribution. The first 
decision involves a choice of size for the grouping interval. How many of the 
single unit intervals should be grouped together to form each new grouped 
interval? 

You must decide how much grouped intervals will reduce work but at the 
same time preserve the essential configurations of the distribution. Statisticians 
normally use about I 0 intervals when constructing frequency distributions, and 
i, the size of the group interval, should be chosen to obtain about that number. 
If we have 50 original intervals, grouping by fours or by fives (i = 4 or i = 

5) will result in either 10 or 13 grouped intervals. It seems that either of these 
values for i will do, but a second consideration is to try to use an interval size 
that is either five or a multiple of ten. This is common practice because of our 
use of a decimal notation, but is by no means a requirement. Therefore we will 
let i = 5 and group together scores of 35, 36, 37, 38 and 39, and so on through 
85, 86, 87, 88, 89. Note that we began grouping with a score which is a multiple 
of i. This is also simply a convenience for the reader. 
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One more important note about i, the size of the grouping interval: if we 
group together scores of 40--43, 44--47 etc. you may mistakenly calculate i = 
3 by subtracting 40 from 43 or 44 from 47. To obtain i you must subtract the 
lower theoretical limit from the upper theoretical limit. Thus we have i = 
43.5 - 39.4 = 4! Be careful. When you are calculating i from a grouped 
frequency distribution, use theoretical score limits. 

Table 2.4 illustrates a grouped frequency distribution (and some other things 
to be discussed in the next section) based on the data in Table 2.3. This is 
certainly a clearer picture of the class performance than one can get from a 
listing of scores. Note that the length of the string of tallies in each interval is 
proportional to the frequency in that interval and an indication of what a histogram 
based on these data would look like. 

Grouped frequency distributions are a convenient way of summarizing data. 
There are few firm rules for constructing them but one of these is that the adjacent 
grouping intervals cannot overlap. Intervals of 35-40, 40--45, 45-50 will not do 
because the interval into which scores of 40, 45 and so on are to be tallied is 
ambiguous. Grouping intervals must be mutually exclusive. They must be so 

TABLE 2.4 
Grouped Frequency, Cumulative Frequency, and Cumulative Proportion 

Distributions Based on Data of Table 2.3 

Score 
Limits Theoretical Cumulative Cumulative 

(i = 5) Tally Limits Frequency Frequency Proportion 

89.5 172 1.000 
85-89 II 2 

84.5 170 .988 
80--84 IN.J Ill 8 

79.5 152 .942 
75-79 IN.J IN.J II 12 

74.5 150 .872 
70--74 IHJ IN.J IN.J 14 

69.5 136 .791 
65-69 IN.J IN.J IN.J Ill 18 

64.5 118 .686 
60--64 IN.J IN.J IN.J IN.J IN.J Ill 28 

59.5 90 .523 
55-59 IN.J IN.J IN.J IN.J Ill 23 

54.5 67 .390 
50--54 INJ NiJ IN.J NiJ IN.J IN.J II 32 

49.5 35 .203 
45-49 IN.J IN.J NiJ IN.J II 22 

44.5 13 .076 
40-44 I'N-J Ill 9 

39.5 4 .023 
35-39 IN.J 4 
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constructed that a score can be tallied in only one interval. This rule is rigid. 
Beyond that you have considerable leeway to group the data so that the shape 
of the distribution will be clear to your reader. 

Once data have been cast into a grouped frequency distribution one can then 
construct frequency polygons or histograms using the procedures described ear
lier. The abscissa is formed from the grouping intervals instead of from individual 
scores; otherwise the procedures are exactly the same. 

2.9 CUMULATIVE DISTRIBUTIONS 

Psychological data are sometimes usefully presented in the form of cumulative 
proportion graphs. Table 2.4 contains columns headed "Cumulative Frequency" 
and "Cumulative Proportion." The cumulative frequency column lists, opposite 
the upper theoretical limit of each interval, the cumulative frequency, or total, 
of all scores below that point. Consider the interval whose score limits are 45-
49. Opposite the upper theoretical limit of that interval, 49.5, we have recorded 
a cumulative frequency of 35. The 35 was obtained by adding (cumulating) the 
frequency of all measurements below this upper theoretical limit; that is 22, 9, 
and 4. Opposite the upper theoretical limit 64.5 we have a cumulative total of 
118. This total results from adding the frequencies in all of the intervals up to 
and including 60-64. At the top of the cumulative frequency column, opposite 
the upper theoretical limit of the highest interval, we will alwa~'S find the total 
number of cases in the distribution (N). 

The entries in the column headed cumulative proportion are obtained by 
dividing each cumulative frequency entry by N (the total number of measures) 
and listing this figure as a decimal. Thus the highest entry is 172/172 or 1.000. 
The entry opposite the upper theoretical limit of the interval whose score limits 
are 65-69 is . 791 . This means that the proportion of scores below 69.5 is . 791 
or about 79 percent. This proportion as obtained by adding the frequencies in 
all the intervals below this theoretical limit and then dividing the sum by N. 

A cumulative frequency and cumulative proportion polygon is sHown in Figure 
2.6. This is constructed by plotting the cumulative frequency and cumulative 
proportion opposite the upper theoretical limit of the intervals listed along the 
abscissa. Note this subtle but critical difference between noncumulative and 
cumulative polygons; the plot of points for noncumulative polygons are always 
above the midpoints of intervals, for cumulative polygons they are always above 
the upper theoretical limits of the intervals. 

Once the cumulative proportion graph has been drawn we can determine the 
score values which separate different proportions of the distribution. For exam
ple, if we want to obtain the score point which just separates the distribution 
into two equal halves, we locate the .50 point on the ordinate, construct a 
horizontal line until it intersects the graph, then drop a vertical line and read the 
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Figure 2.6 Cumulative frequency and cumulative proportion graph of data in 
Table 2.4. 

score point from the abscissa. These lines have been drawn in Figure 2.6 and 
the score point is approximately 58. To check this answer, count up 172/2 (or 
86 scores) from the lowest score recorded in Table 2.3; the value should be 58. 
An analagous procedure allows us to estimate the percentage of cases falling 
below any score value. 

This discussion has not included enough material to make you an expert on 
tabulating and graphing data, but it should enable you to present a group of 
measurements in the form of a grouped frequency distribution, frequency pol
ygon, histogram, cumulative frequency, or cumulative proportion graph. 

2.10 REVIEW 

Constructs are most usefully defined scientifically by specifying the procedures 
for their measurement. These operational definitions may result in nominal scales 
in which numerals are substituted for names and have no other quantitative 
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significance; ordinal scales in which numerical increases signify increasing amounts 
of the construct but difference between consecutive numbers do not necessarily 
represent equal amounts of the variable; interval scales in which differences 
between consecutive numbers do represent equal amounts of the variable; ratio 
scales which, in addition to equal intervals between consecutive scale numbers, 
have a true zero point so that meaningful ratios can be formed. 

When a fairly large number of observations have been recorded, the char
acteristics of the data are often made clearer if they are cast into a frequency 
distribution (Tables 2.2 and 2.4). In this form the different values are arranged 
from highest to lowest, and a tally (or count) of each value is recorded. Once 
this has been accomplished, graphs can be constructed. Graphs are typically 
constructed with the abscissa or horizontal axis, representing the values of the 
scores or measurements, and the ordinate representing their frequency. The 
histogram (Figure 2.4) is a type of graph constructed of adjacent vertical bars; 
the height of the bar represents the frequency with which the score occurred. 
The frequency polygon is a closed figure drawn by connecting points plotted 
above the midpoints of the score intervals which are located along the abscissa. 
The distance of the points above the abscissa represents the frequency of the 
score's occurrence. 

A measurement is assumed to occupy an interval and this interval extends 
one-half unit of measurement above and below the score. These are called the 
theoretical limits of the score interval. When many different measurements are 
obtained, it is often convenient to group several adjacent score intervals together. 
Such grouping intervals have score limits determined by the highest and lowest 
scores in them, and theoretical limits determined by the theoretical limits of 
these same scores. The grouped intervals must be mutually exclusive. The pref
erence is to use 5 or I 0 of the original score intervals to form the new grouped 
intervals, and to choose a value for this interval size (i) which will result in 
enough new grouped intervals to accurately depict the distribution. Grouping 
should proceed so that the lowest score in an interval is an even multiple of i. 
Such a grouping of score units into intervals, and the tally of measurements 
within these separate intervals, yields a grouped frequency distribution. 

Data may also be graphed in the form of a cumulative frequency curve or a 
cumulative proportion curve (Figure 2.6). These curves are obtained by repre
senting the cumulative frequency of measurements below the upper theoretical 
limit of each interval on the ordinate, and representing the intervals on the 
abscissa. The maximum value on the ordinate of a cumulative frequency distri
bution will always equal N, the total number of observations. A cumulative 
proportion graph is the same as a cumulative frequency graph, except that each 
cumulative frequency is divided by N to obtain a proportion. These cumulative 
proportions are then plotted opposite the upper theoretical limit of the appropriate 
intervals. 
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2.11 EXERCISES 

*I. Draw cumulative proportion graphs of the data in Table 2.2, and by means 
of a graphical solution find the score value at the midpoint of each 
distribution. 2 

2. (a) Using the conventions for grouped frequency distributions, construct a 
grouped frequency distribution for the data below. 

II 17 22 26 30 33 36 40 48 57 
12 18 23 27 30 33 37 41 49 58 
13 18 23 27 30 34 37 43 50 58 
14 19 24 28 31 34 38 44 51 59 
15 20 25 29 31 35 38 46 53 60 
16 21 25 29 31 35 39 46 55 61 
16 21 25 30 32 36 39 47 56 61 

(b) Construct a cumulative frequency polygon and by a graphical solution 
estimate the score below which 25%, 50%, and 75% of the data fall. 

3. Give two operational definitions of each of the following. 
(a) Sociability 
(b) Creativity 
(c) Leadership 

4. Using i = .005, construct a grouped frequency distribution for the data 
below. 

1.699 1.695 1.693 1.686 1.678 1.671 
1.699 1.694 1.692 1.685 1.678 1.671 
1.697 1.694 1.692 1.683 1.677 1.670 
1.697 1.694 1.689 1.681 1.675 1.669 
1.696 1.694 1.687 1.679 1.674 1.668 
1.695 1.693 1.687 1.679 1.671 1.667 

*5. What are the theoretical limits of each of the two lowest intervals in Exercise 
3? 

6. What scale of measurement is represented by the following: 
(a) Numbers on football players' jerseys. 
(b) Rank of naval officers. 

*(c) Jail sentences given by a criminal court. 

'Questions preceded by an asterisk are answered in the answer section at the end of the text. 



(d) Scores on a statistics test. 
*(e) Typing errors. 
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Measures of Central Tendency 

Up to this point our concern has been with the use of graphs that picture the 
characteristics of a distribution of measurements. We can also use more exact 
methods and actually measure the characteristics of a distribution just as a score 
within a distribution measures some characteristic of an individual. 

One characteristic of a distribution is its size. This is symbolized by N, the 
number of measurements that make up the distribution. If we have recorded the 
IQ scores of 100 students, N = 100. Figure 3.1 shows two distributions based 
on the intelligence test scores of students majoring in fields A and B. The two 
distributions pictured are based one equal numbers of subjects; therefore, NA = 

N8 • This equality is reflected in the equal areas under the two curves. The area 
enclosed by a frequency polygon or histogram is directly proportional to the 
number of cases on which it is based. When frequency polygons and histograms 
are constructed, each case contributes an increase in the height of the figure 
opposite the appropriate score interval on the abscissa. Consequently, each meas
urement that goes into the distribution adds an increment to the area encompassed 
by the figure. 

While theN's are equal and the areas are therefore the same, the distributions 
in Figure 3.1 differ in several ways. Although the scores overlap, there seems 
to be a tendency for students majoring in A to have lower IQ scores than students 
majoring in B. This difference between the distributions is reflected in their relative 
location on the abscissa or score continuum. Notice that the majority of scores 
in each distribution cluster, or "pile up," in a particular region. The location of 
this clustering or central tendency provides a useful method for comparing dis
tributions. Central tendency can be measured in several ways. 

26 
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Scores 

Fi!(Ure 3.1 Distribution of intelligence test scores of students majoring in depart
ments A and B. 

3.1 MODE 

One measure of central tendency is called the mode. The mode is the most 
frequent score in a distribution. In Table 2.2 the mode for the "Lecture Method" 
is 49, because that score occurs more often than any other. Similarly, the mode 
for the "Discussion Method" is 45. Notice that the mode is the value of the score 
with the highest frequency; it is not the frequency of that score. 

When measures have been grouped into intervals, we call the interval with 
the highest frequency the modal interval. In Figure 3. I the abscissa is labeled 
with the midpoints of the grouping intervals. The modal interval for each dis
tribution can be determined from inspection. Frequency is represented on the 
ordinate, so the modal interval will fall directly below the highest point of the 
curve. The modal interval of distribution A is 109-111, with a midpoint of I 10; 
the modal interval of distribution B is 121-123, with a midpoint of 122. 

Some distributions have two modes, which are not necessarily intervals with 
equal frequencies (/), but separated intervals, each with higher frequencies than 
the intervals adjacent to them. These are called bimodal distributions. When a 
distribution is bimodal the measurement (or measurement interval) with the 
greater frequency is called the major mode or major modal interval, and the 
measurement (or measurement interval) with the second greatest frequency is 
called the minor mode or minor modal interval. 

Bimodal distributions usually result from including two different kinds of 
subjects in the same distribution. If we make up a single frequency distribution 
from the intelligence test scores of freshmen and first year medical students at 
a university, we will probably obtain a bimodal distribution such as that in 

98 101 104 107 110 113 116
Scores
119 122 125 128 131 134 137 140 143
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Figure 3.2. The major mode, contributed by the large number of freshmen, is 
lower on the score continuum than the minor mode contributed by the smaller 
number of generally brighter medical students. 

3.2 RULES OF SUMMATION 

This section, rules of summation, reviews some basic algebra and introduces 
some statistical notation, both necessary for your understanding of the concepts 
to follow. 

Four different rules of summation are applied when we sum, or add, a series 
of terms. These rules all follow directly from elementary algebra, but they involve 
a new symbol for addition: the summation sign (~). which is a capital Greek 
sigma. This sign directs us to sum all the measures X,, X2 , X3 , X4 ••• XN. Each 
of these measures is called a variate, and the dimension measured is called a 
variable. If X stands for the variable IQ, and if we have five variates, the IQ 
scores of five individuals, so that X, = 100, X2 = 100, X3 = 105, X4 = 110, 
and X5 = 120, then ~X = X, + X2 + X3 + X4 + X5 = 535. If Y represents 
running time in a maze for N rats, then ~y = Y1 + Y2 + Y3 + ... + YN. 

There are occasions when we may wish to sum only a part of a series, for 
example, the first 10 members. If this is the case, we can place limits on the 

i=IO 

summation sign thus 2: X,. This means that we are to sum the first ten values 
i=l 

of X, from X,~ 1 to X;= 10• If we wished to be very formal about it we should 
show the limits of summation even when all N members of a series are to be 

N 

summed. Thus, l:x, instructs us to sum all N variates of the series from X;= 1 
i= I 

to XN. In this text we will ordinarily require the summation of all members of 

Figure 3.2 A bimodal distribution. 
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any series, so it will be understood that when LX or LY appear they require the 
summation of all variates, unless otherwise noted. 

The first rule of summation we shall discuss concerns the summation of a 
constant. A constant, by definition, can have only one value. In the formula for 
the area of a circle, A = 7rr2 , A and r symbolize variables while 71' symbolizes 
a constant. If we have a constant, C, repeated N times, and we wish to sum 
these N instances of the constant, we can find the sum two ways; by adding the 
N instances of C, or by multiplying N times C. If these equivalent methods are 
stated in statistical notation we have C + C + C + . . . + C = LC = NC. 
The sum of a constant equals N times the constant. 

The second rule of summation is used when we sum a series in which each 
term consists of a constant multiplied by a variate. The series might consist of 
the terms ex, + cx2 + ex) + 0 0 0 + CXN. Of course we can replace the 
plus signs by rewriting the series as LCX, but a further simplification is possible. 
By factoring the constant C from the series we have C(X, + X2 + X3 + ... XN). 
The terms within the parenthesis can now be replaced by LX and the entire 
expression becomes c LX. Thus, ex, + cx2 +ex) + 0 0 0 + CXN = LCX = 
CLX. The sum of a constant times a variable equals the constant times the sum 
of the variable. 

The third rule applies to the situation in which the series is composed of terms 
which are themselves the sum of scores on two or more variables. The series 
might consist of the terms (X, + Y,) + (X2 + Y2) + (X3 + Y3) + ... + (XN + 
YN). This series of terms could be regrouped so that it would appear as (X, + 
X2 + X3 + ... + XN) + (Y, + Y2 + Y3 + ... + YN). The summed series 
within the first parenthesis may be symbolized by LX, and the summed series 
within the second parenthesis by LY, so the sum of these two series may be 
given as LX + LY. Therefore, L(X + Y) = LX + LY. All this means is that 
we can sum or add numbers in any order we please and the result will be the 
same. 

The fourth rule concerns the summation of a series in which each term is 
composed of a variate plus a constant. Such a series might consist of (X, + 
C) + (X2 + C) + (X3 + C) + ... + (XN + C). We can regroup these 
additions in the form (X, + X2 + X3 + ... + XN) + (C + C + C + ... 
+ C). The terms in the first parenthesis are given by LX and those in the second 
as LC, or NC. Consequently, the sum of the entire series may be written as 
LX + NC. Thus, (X, + C) + (X2 + C) + (X3 + C) + ... + (XN + C) = 
LX + LC = LX + NC. The sum of a variable plus a constant is equal to the 
sum of the variable plus N times the constant. 

In each of the six examples below be sure you understand why the terms to 
the left of the equality are equivalent to the terms on the right. Each example 
illustrates one or more of the rules we have just discussed and in each example 
Nand Care constants. 
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I. ~(X + 6C) = ~X + 6NC 
2. ~(X + Y + C) = ~X + ~y + NC 
3. ~(XIC + Y/C) = 1/C(~X + ~Y) 
4. ~(X+ C)(X - C) = ~(X2 - C2) 

= ~X2 - NC2 

5. ~(X + Y)2 = ~(X2 + 2XY + Y2) 

~X2 + 2~XY + ~Y2 

6. ~(X + C)2 = ~(X2 + 2CX + C2) 

= ~X2 + 2C~X + NC2 

7. ~(X + CY)2 = ~X2 + 2C~XY + C2~Y2 

3.3 THE MEAN 

Now that you are familiar with these rules of summation we can discuss the 
mean, another very widely used measure of central tendency. The mean is 
determined by summing all of the measures in a distribution and then dividing 
this sum by the number of measures. 

If we let X1, X2 , ••• XN symbolize the various IQ scores in a distribution, 
then the formula for the mean of this distribution of IQs becomes: 

~X 

~..~.=N 

Formula 3.1 
The mean 1 

This is a general formula; it will give us the mean of a distribution regardless 
of the kinds of measures represented by the Xs. If we calculate the mean of a 
distribution consisting of the scores 8, 7, 6, and 5, the mean will be 6.5, that 
is: ~X = 26, N = 4, and 1.1 = 26/4 = 6.5. 

If data are in the form of a frequency distribution, some short cuts are possible. 
Remember that a frequency distribution consists of a list of scores with their 
frequencies. We can find the sum of the scores by finding ~(j1X 1 + fzX2 + 
f 1X3 + ... + JNXN) where f is the frequency of each score and X is the mag
nitude of the score. We can rewrite this expression ~JX. Note that it is not 
equivalent to ~X because f is not a constant; f will probably have a different 
value for each different score magnitude. When ~fX is divided by N we have 
a formula for the mean of the data which have been cast in a frequency distri
bution. This formula allows us to make fewer calculator entries by doing a little 
multiplying. The formulas 1.1 = ~X/N and 1.1 = ~fXIN are exactly equivalent. 

'When statisticians refer to the mean of a population they ordinarily designate it by the Greek 
letter 11. (pronounced mu), or perhaps M. Sample means, however, are usually symbolized by X. 
The methods we describe in this chapter and the next for determining central tendency and variability 
assume that we are dealing with populations. In Chapter 7 we distinguish between samples and 
populations, and discuss the estimation of population parameters. 


