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PREFACE 

This book is concerned with the development, analysis, and application of hy­
brid connectionist-symbolic models in artificial intelligence and cognitive sci­
ence, drawing contributions from an international group of leading experts. It 
describes and compares a variety of models in this area. The types of models 
described in this book cover a wide range of the evolving spectrum of hybrid 
models. Thus, it serves as a well-balanced progress report on the state of the 
art in this area. We hope that it will also stimulate its future development. 

This book is the outgrowth of The IJCAI Workshop on Connectionist-Symbolic 
Integration: From Unified to Hybrid Approaches, which was held for two days 
during August 19-20 in Montreal, Canada, in conjunction with the Fourteenth 
International Joint Conference on Artificial Intelligence (IJCAI'95). The work­
shop was co-chaired by Ron Sun and Frederic Alexandre. It featured 23 pre­
sentations, including two invited talks, and two panel discussions. During the 
two days of the workshop, various presentations and discussions brought to 
light many new ideas, controversies, and syntheses, which lead to the present 
volume. 

We hereby wish to thank all the participants of the workshop for their con­
tributions that lead to the present book. We expecially would like to thank 
the members of the program and organization committees who reviewed pa­
pers or in other ways helped the organization of the workshop: John Barnden, 
Steve Gallant, Larry Medsker, Christian Pellegrini, Noel Sharkey, Lawrence 
Bookman, Michael Dyer, Wolfgang Ertel, LiMin Fu, Jose Gonzalez-Cristobal, 
Ruben Gonzalez-Rubio, Jean-Paul Haton, Melanie Hilario, Abderrahim Labbi, 
and Ronald Yager. We thank the two invited speakers at the workshop: Jim 
Hendler and Noel Sharkey, as well as each of the panelists. We also thank the 
editors at Lawrence Erlbaum Associates for their part in producing this book. 
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1 
AN INTRODUCTION TO HYBRID 

CONNECTIONIST-SYMBOLIC 
MODELS 

1 MOTIVATIONS 

Ron Sun 

Department of Computer Science 
The University of Alabama 

There has been a considerable amount of research in integrating connectionist 
and symbolic processing. While such an approach has clear advantages, it 
also encounters serious difficulties and challenges. Consequently, various ideas 
and models have been proposed to address different problems and different 
aspects in this integration. The need for such models has been slowly but 
steadily growing over the past five years, from many segments of the artificial 
intelligence and cognitive science communities, ranging from expert systems to 
cognitive modeling and to logical reasoning. Some interesting and important 
approaches have been developed. There has been a general consensus that 
hybrid connectionist-symbolic models constitute a promising avenue toward 
developing more robust, more powerful, and more versatile architectures, both 
for cognitive modeling and for intelligent systems. It is definitely worthwhile 
pursuing research in this area further still, which might generate important new 
ideas and significant new applications. 

The basic motivations for research in hybrid connectionist-symbolic models can 
be briefly summarized as follows: . 

• Cognitive processes are not homogeneous; a wide variety of representa­
tions and mechanisms are employed. Some parts of cognitive processes are 
best captured by symbolic models, while others by connectionist models 
(Smolen sky 1988, Sun 1995). Therefore, a need for "pluralism" exists in 
cognitive modeling, which leads to the development of hybrid models as 
tools and frameworks. 

1 
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2 CHAPTER 1 

• The development of intelligent systems for practical applications can bene 
efit greatly from a proper combination of different techniques, since no 
one single technique can do everything, as is the case in many application 
domains, ranging from bank loan approval to industrial process control 
(Medsker 1994). By combining different techniques, intelligent systems 
can explore the synergy of these techniques. 

• To develop a full range of capabilities in autonomous agents, an autonomous 
agent architecture needs to incorporate both symbolic and subsymbolic 
processing for handling declarative and procedural knowledge, respectively, 
in order to effectively deal with a variety of environments in which an agent 
finds itself (Sun and Peterson 1995). Such an agent architecture, incorpo­
rating both conceptual and subconceptual processes, leads naturally to a 
combination of symbolic models (which capture conceptual processes) and 
connectionist models (which capture subconceptual processes) . 

The book tries to bring to light many new ideas, controversies, and syntheses in 
this broad area. The focus is on learning and architectures that feature hybrid 
representations and support hybrid learning. 

2 IMPORTANT ISSUES 

There have been many important and/or crucial issues that have been raised 
with regard to hybrid connectionist-symbolic models. These issues concern ar­
chitectures of these models, learning in these models, and various other aspects. 

Hybrid models involve a variety of different types of processes and represen­
tations, in both learning and performance. Therefore, multiple mechanisms 
interact in complex ways in most of these models. We need to consider seri­
ously ways of structuring these different components; in other words, we need 
to consider architectures, which thus occupy a clearly more prominent place in 
this area of research compared with other areas in AI. Some architecture-related 
issues are as follows: 

• What type of architecture facilitates what type of process? 

• Should hybrid architectures be modular or monolithic? 

Copyrighted Material 



Introduction 3 

• For modular architectures, should we use different representations in dif­
ferent modules of an architecture or should we use the same representation 
throughout? 

• How do we decide if a particular part of an architecture should be symbolic, 
localist, or distributed in its representation? 

• How do we structure different representations in different parts to achieve 
optimal results? 

• How do we incorporate prior knowledge into hybrid architectures? 

Although purely connectionist models, which constitute a part of any hybrid 
model, are known to excel in their learning abilities, hybridization makes it 
more difficult to do learning. Most symbolic models and architectures are not 
specifically designed to perform learning, especially not in a fully autonomous 
and bottom-up fashion, and most of them have difficulties with learning in 
some ways. Therefore, the hybridization of connectionist and symbolic models 
inherits the difficulty of learning from the symbolic side and mitigates to some 
large extent the advantage that the purely connectionist models have in their 
learning abilities. Considering the importance of learning in both modeling 
cognition and building intelligent systems, it is crucial for researchers in this 
area to pay more attention to ways of enhancing hybrid models in this regard 
and to putting learning back into hybrid models. Some of the learning-related 
issues that need to be addressed include: 

• How can learning be incorporated and utilized in each type of architecture? 

• What kinds of learning can be done in each type of architecture, respec­
tively? 

• How do learning and representation interact along the developmental line? 

• What is the relationship between symbolic machine learning methods, 
knowledge acquisition methods, and coimectionist (neural network) learn­
ing algorithms, especially in the context of hybrid models? 

• How can each type of architecture be developed with various combinations 
of the above-mentioned methods? 

• How can learning algorithms be developed for (usually knowledge-based) 
localist connectionist networks? 

Copyrighted Material 



4 CHAPTER 1 

1. single-module 

* representation symbolic, localist, distributed 
* mapping direct translational, transformational 

2. heterogeneous multi-module I 
* components localist+distributed, symbolic+connectionist 
* coupling loosely coupled , tightly coupled 
* granularity coarse-grained, fine-grained 

3. homogeneous multi-module 
* granularity coarse-grained, fine-grained 

Figure 1 Classifications of Hybrid Models 

• How can rules be extracted from, and refined by, (hybrid) connectionist 
models? 

• How can complex symbolic structures besides rules, such as frames and 
semantic networks, be learned in hybrid connectionist models? 

3 ARCHITECTURES 

In terms of architectures of hybrid models, various distinctions, divisions, and 
classifications have been proposed and discussed. (see chapter 2). As a first 
cut, we can divide these models up into two broad categories: single-module 
architectures and multi-module architectures (including both homogeneous and 
heterogeneous multi-module architectures). See Figure 1. 

For single-module architectures, along the representation dimension, there can 
be the following types of representations (see Sun and Bookman 1994): sym­
bolic (as in conventional symbolic models, in which case, the model is no longer 
a hybrid model), localist (with one distinct node for representing each concept; 
for example, Lange and Dyer 1989, Sun 1992, Shastri and Ajjanagadde 1993, 
Barnden 1994), and distributed (with a set of non-exclusive, overlapping nodes 
for representing each concept; for example, Pollack 1990, Sharkey 1991). Usu­
ally, it is easier to incorporate prior knowledge into localist models since their 
structures can be made to directly correspond to that of symbolic knowledge 
(Fu 1991). On the other hand, connectionist learning usually leads to dis­
tributed representation, such as in the case of backpropagation learning. Along 
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a different dimension, in terms of mappings between symbolic and connection­
ist structures (Hilario 1995, Medsker 1994), we see that there are the direct 
translational approach, which creates a network structure that directly cor­
responds to the symbolic structure to be implemented (usually in a localist 
network), such as in the implementation of rules in a backpropagation net­
work by Fu (1991) and Towell and Shavlik (1993), and the transformational 
approach, which creates the equivalent of symbolic structures in connectionist 
networks without actually embedding the structures directly in networks, such 
as the encoding of trees in RAAM (Pollack 1990). The relative advantage of 
each is a still unsettled issue (which is related to the compositionality issue as 
being debated in the theoretical community). Another possible dimension is in 
terms of the dynamics of the models, rather than in terms of the static topology 
(i.e., the static mapping) of the networks used; that is, we can classsify models 
based on whether their internal dynamics is translational or transformational, 
which can be highly correlated with but not necessarily identical to the static 
topology of networks. 

For multi-module models, we can distinguish between homogeneous models and 
heterogeneous models. Homogeneous models may be very much like a single­
module model discussed above, except they contain several replicated copies of 
the same underlying structure, each of which can be used for processing the 
same set of inputs, to provide redundancy for various reasons. For example, we 
can have competing experts (of the same domain), each of which may vote for 
a particular solution. Or, each module (of the same makeup) can be specialized 
(content-wise) for processing a particular type of input or another; for example, 
we can have different experts with the same structure and representation but 
different content/knowledge for dealing with different situations. 

For heterogeneous multi-module models , a variety of distinctions can be made. 
First of all, a distinction can be made in terms of representations of constituent 
modules. In multi-module models, there can be different combinations of differ­
ent types of constituent modules: for example, a model can be a combination 
of localist and distributed modules (for example, CONSYDERR as described 
in Sun 1995, for cognitive modeling of commonsense reasoning and decision 
making), or it can be a combination of symbolic modules and connectionist 
modules (either localist or distributed; for example, SCRUFFY as described in 
Hendler 1991, mainly for practical applications). 

Another distinction that can be made is in terms of the coupling of modules: a 
set of modules can be either loosely coupled or tightly coupled (Medsker 1994). 
In loosely coupled situations, modules communicate with each other, primarily 
through some interfaces as in, for example, SCRUFFY (Hendler 1991). Such 
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6 CHAPTER 1 

loose coupling enables some loose forms of cooperation among modules. One 
form of cooperation is in terms of pre/postprocessing vs. main processing: while 
one or more modules take care of pre/postprocessing, such as transforming in­
put data or rectifying output data, a main module focuses on the main part of 
the processing task. This is probably the simplest and earliest form for hybrid 
systems, in. which, commonly, pre/post processing is done using a connection­
ist network and the main task is accomplished through the use of symbolic 
methods (as in conventional expert systems). Another form of cooperation is 
through master-slave relationships: while one module maintains control of the 
task at hand, it can call upon other modules to handle some specific aspects 
of the task. For example, a symbolic expert system, as part of a rule, may 
invoke a neural network to perform a specific classification or decision making 
or some other processing. A variation of this form is the processor-monitor 
(meta-processor) combination, in which a processing module does the work 
while a monitor module waits for certain events to occur in which case the 
monitor will inform and/or alter the working of the processing module. Yet 
another form of cooperation is the equal partnership of multiple modules. In 
this form, the modules (the equal partners) can consist of (1) complementary 
processes, such as in the SOAR/ECHO combination (see chapter 6), or (2) mul­
tiple functionally equivalent but representationally different processes, such as 
in the CLARION architecture (chapter 7), or (3) they may consist of multiple 
differentially specialized and heterogeneously represented experts each of which 
constitutes an equal partner in accomplishing the task. 1 

In tightly coupled systems, on the other hand, the constituent modules interact 
through multiple channels or may even have node-to-node connections across 
two modules, such as CONSYDERR (Sun 1995) in which each node in one mod­
ule is connected to a corresponding node in the other module. For tightly cou­
pled multi-module systems, there are also a variety of different forms of coop­
eration among modules, in ways quite similar to loosely coupled systems. Such 
forms include master-slave, processor-monitor, and equal partnership, each of 
which is basically the same as in loosely coupled systems, except in this case 
a larger number of connections exist and a lot more interactions are occuring 
among modules. However, another possibility in loosely coupled systems, i.e., 
pre/post-processing, is not one of the possibilities with tightly coupled systems, 
since it entails loose connections between the pre/post-processing module and 
the main processing modules. 

IThese forms have been referred to as subprocessing, metaprocessing, and coprocessing in 
chapter 2. 
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Another distinction that can be made of all multi-module systems is with regard 
to the granularity of modules in such systems: they can be coarse-grained or 
fine-grained. On one end of the spectrum, a multi-module system can be very 
coarse-grained so that it contains only two or three modules. On the other end 
of the spectrum, a system can be so fine-grained that it can contain numerous 
modules, such as the case in DUAL (see Kokinov 1995; see also chapters 11 and 
12). Sometimes, in an extremely fine-grained system, each tiny module may 
contain both a (simple and tiny) symbolic component and a (simple and tiny) 
connectionist component. Such a form is termed "micro-level" integration of 
symbolic and connectionist models (by Kokinov 1995), as opposed to "macro­
level" integration in which each module is much more powerful and complete 
and contains one type of model only. The advantage of such "micro-level" 
integration, computationally speaking, is that we can have a vast number of 
simple "processors" (i .e., fine-grained integrated modules) that constitute a 
uniform and massively parallel system that combines the power of connectionist 
as well as symbolic models. Such a system, in a way, is a homogeneous system 
in the sense discussed earlier. 

4 LEARNING 

One fundamental issue that clearly requires more attention from researchers in 
this area has been highlighted in this book: the issue of learning, which includes 
both learning the content/knowledge of an architecture as well as learning and 
developing the architectures themselves. Learning is necessary, both because it 
is a fundamental process of intelligence/cognition, and because it is practically 
indispensable in scaling up to large-scale systems. 

Looking back to the proceedings of earlier meetings, earlier collections of pa­
pers, and/or earlier special issues of journals dealing with hybrid models, such 
as Hinton (1991), Sun et al. (1992), and Sun and Bookman (1994), the treat­
ment of learning has been sparse. Many models were presented as simply 
representational ones: that is, a framework in which both symbolic and con­
nectionist knowledge can coexist and can be represented in some ways, but not 
necessarily acquired automatically. The earlier workshop on this topic, as re­
ported in Sun et al. (1992), was almost exclusively focused on representational 
issues. Such a focus might be justified at the early stage of development of 
this research area, since before we can learn complex symbolic representation 
in connectionist and hybrid connectionist models, we need to figure out ways 
of representing complex symbolic structures in the first place. 
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8 CHAPTER 1 

In Sun and Bookman (1994), the following question was raised: 

How can more powerful learning algorithms be developed that can 
acquire complex symbolic representation in connectionist systems, in­
cluding localist systems? This is a difficult issue, in that simple learn­
ing algorithms that build up functional mappings in typical neural 
network models are insufficient for symbolic processing connectionist 
networks, because of the discrete and discontinuous nature of symbolic 
processes and because of the systematicity of such processes. Newer 
and more powerful learning algorithms are needed that can extract 
symbolic structures from data and/or through interaction with envi-
ronments. ...... Such algorithms should somehow incorporate some 
symbolic methods, as more powerful learning algorithms will result 
from such incorporation. (see p.9, Sun and Bookman 1994.) 

Now, after a number of years of maturation, the hybrid model area is ready to 
take on the real challenge of learning: not only of simple procedural skills, but 
also of complex symbolic structures, and even of architectures themselves. Such 
learned representations should be linked closely to the context of their use, not 
as a stand-alone showcase of the "power" of a particular learning method. 

A number of chapters in this book deal with the issue of learning, each to a dif­
ferent extent. Chapter 6 presents a model for abductive reasoning that learns 
its internal representation through a combination of symbolic and connectionist 
methods, aimed at cognitive modeling. Chapter 18 shows how RAAM (Pollack 
1990) can be extended to deal with the learning of logical term classification in 
symbolic reasoning. Chapter 7 (also Sun and Peterson 1995) presents a model 
for learning sequential decision making in which symbolic declarative knowl­
edge is extracted online from a reinforcement learning connectionist network 
and is used in turn to speed up learning and to facilitate transfer. Thus, it 
demonstrates not only the synergy between connectionist and symbolic learn­
ing but also the point that symbolic knowledge can be learned autonomously 
in a bottom-up fashion, which is very useful in developing autonomous agents. 

The future advance in this area is dependent on the progress in the development 
of new learning methods in hybrid systems and the integration of learning 
with complex symbolic representations. As was suggested in some chapters 
here, symbolic representation and reasoning may well emerge from subsymbolic 
processes, and a synergistic combination of symbolic and subsymbolic processes 
is thus possible (see chapter 7 and also Giles et al. 1995) . 
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5 SUMMARY 

In summary, a variety of ideas, approaches, and techniques exist, in terms of 
both architectures and learning, and this abundance seems to lead to many ex­
citing possibilities in theoretical advances (for example, in learning and knowl­
edge acquisition) and in application potentials. We need to extend more effort 
to exploit the possibilities and opportunities in this area. 

Despite the apparant diversity, there is clearly an underlying unifying theme: 
architectures that bring together symbolic and connectionist models to achieve 
a synthesis and the synergy of the two different paradigms (and the learning 
and knowledge acquisition methods for developing such architectures) . With 
this book, we hope to provide an information clearinghouse for various proposed 
approaches and models that share the common belief that connectionist and 
symbolic models can be usefully combined and integrated, and such integration 
may lead to significant advances in our understanding of intelligence. 
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2 
AN OVERVIEW OF 
STRATEGIES FOR 

NEUROSYMBOLIC INTEGRATION 

1 INTRODUCTION 

Melanie Hilario 

Computer Science Center 
University of Geneva 

Throughout its brief history, the field of artificial intelligence (AI) has been the 
arena of jousts between two freres ennemis, symbolicism and connectionism. 
No sooner had connectionism recovered from Minsky and Papert's (1988) dev­
astating blows than Fodor and Pylyshyn (1988) charged to the fore in the name 
of symbolic AI. They argued that connectionism cannot be a valid theory of 
cognition since it fails to account for the combinatorial syntactic and semantic 
structure of mental representations; at best, connectionism is just another im­
plementation technology, an alternative means of implementing classical sym­
bolic structures and processes. This implementationalist viewpoint has since 
been the traditional defense of symbolic AI against connectionism's cognitive 
claims. At the other extreme, according to Pinker and Prince's (1988) classi­
fication, eliminativism rejects the symbol level as a valid level of description 
of cognitive phenomena; symbolic theories are no more than crude approxima­
tions of what really takes place in the brain and must give way to connectionist 
or neural theories. 

Between these two radical stances, a number of more subtle philosophies have 
emerged at the interface of connectionist and symbolic AI. Their origins have 
been inextricably linked with the proliferation of attempts at integrating neural 
and symbolic processing. This paper will give an overview of the various ap­
proaches to neurosymbolic integration. Roughly, these can be divided into two 
strategies: unified strategies aim at attaining neural and symbolic capabilities 
using neural networks alone, while hybrid strategies combine neural networks 
with symbolic models such as expert systems, case-based reasoning systems, 

13 
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and decision trees. These two approaches form the main subtrees of the classi­
fication hierarchy depicted in Figure 1. 

Localist Chainprocessing 

Distributed Subprocessin 

-I Combined LID Metaprocessin 

Coprocessin 

Figure 1 Classification of integrated neurosymbolic systems. 

This chapter is organized as follows. Sections 2 and 3 discuss unified and hy­
brid strategies respectively; 1. Section 4 relates these strategies to the various 
philosophical stances that have been observed in the literature vis-a-vis the rela­
tionship between connectionist and symbolic processing. Section 5 explores the 
major computational issues involved in neurosymbolic integration and Section 
6 concludes. 

2 UNIFIED STRATEGIES 

Unified strategies are premised on the claim that there is no need for symbolic 
structures and processes as such; full symbol processing functionalities emerge 
from neural structures and processes alone. They can be subdivided into two 
distinct trends: neuronal symbol processing and connectionist (or neural) sym­
bol processing. This distinction is based on Reeke and Edelman's (1988) ter-

1 This overview does not include fuzzy-neural integration strategies, which are discussed 
in chapter 5 of this volume 
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minological convention, according to which the term neuronal denotes a close 
identification with the properties of actual (biological) neurons whereas neural 
implies only a general similarity to actual neurons. 

2.1 Neuronal Symbol Processing 

The neuronal approach aims at grounding all cognitive processes in biologi­
cal reality. One particular case of this approach is neuronal symbol processing 
(NSP), whose specific objective is to model the brain's high-level functions. The 
neuronal approach is a bottom-up approach: its mandatory starting point is the 
biological neuron. Perhaps the most brilliant example of the neuronal approach 
is the theory of neuronal group selection (TNGS), better known as neural Dar­
winism (Edelman 1987). Built on three fundamental tenets-developmental se­
lection, experiential selection and reentrant mapping-this theory attempts to 
provide a biological account of the full range of cognitive phenomena, from sen­
sorimotor responses all the way up to concept formation, language, and higher 
order consciousness. The consistency of the TNGS has been demonstrated in 
a series of automata which avoid the preestablished categories and program­
ming of standard AI. Constructed as networks of neuronlike units undergoing 
a process of natural selection, these automata carry out categorization and 
association tasks in a dynamic environment. In Darwin III (Edelman 1992), 
for example, recognition and categorization networks are combined with motor 
circuits and effectors that act on the environment. Objects are categorized on 
the basis of internal values like "light is better than no light"; the result of the 
automaton's neuronal activity becomes apparent as motor responses to cate­
gorized objects. The processes demonstrated in these automata-perceptual 
categorization, memory and learning- are precisely the fundamental triad of 
higher order brain functions, according to the TNGS. However, effective emer­
gence of these higher level functions remains to be demonstrated in the Darwin 
Jr its descendant series. Neuronal symbol processing may yet be the ultimate 
proof-of-concept of the neuronal approach; however, the field is as immature as 
lts ambitions are high, and it may take some time before real-world applications 
:an even be envisaged. 

2.2 Connectionist Symbol Processing 

::;onnectionist symbol processing (csp) or neural symbol processing lays no 
:laim to neurobiological plausibility; the neuron in question here is generally 
t formal neuron. Artificial neural networks are used as building blocks to 
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create a cognitive architecture capable of complex symbol processing. Typically, 
model construction starts with an idea of some high-level symbolic function to 
be performed and proceeds with the design of the appropriate connectionist 
infrastructure. In this sense, the neural approach can be thought of as a top­
down strategy, despite the opposite thrust of its claim that complex symbolic 
functions emerge from neural structures and processes. However , cSP is not 
inherently top-down: in principle , nothing precludes it from actually starting 
out with neural networks from which non-predetermined symbolic structures 
and processes can emerge in unforeseen ways. 

Historically, Fodor and Pylyshyn's (1988) critique has been a significant if nega­
tive driving force behind cSP: one of its persistent motivations has been to show 
that neural networks exhibit a combinatorial constituent structure-precisely 
what Fodor and Pylyshyn declared wanting in connectionist architectures. For 
instance, BoltzcONS is a connectionist model that dynamically creates and ma­
nipulates linked lists; according to its author, its aim is not just to implement 
complex symbol structures using neural networks , but rather to show how neu­
ral networks can exhibit compositionality and distal access, two distinguishing 
properties of high-level symbol processing (Touretzky 1990). 

Work in connectionist symbol processing can be classified along two dimensions. 
From the point of view of the underlying representation scheme, cSP architec­
tures can be localist, distributed, or combined localist/distributed. Localist 
architectures use a one-to-one mapping between individual units and symbolic 
structures. Each node in a neural network represents a concept or a combina­
tion of concepts, e.g. , a two-place predicate , a relation , a rule (Shastri 1988, 
Ajjanagadde and Shastri 1991, Sohn and Gaudiot 1991 , Lange 1992, Feldman 
and Ballard 1992). The principal disadvantage of localist architectures is that 
they quickly succumb to combinatorial explosion as the number of individual 
concepts increases. This has motivated the development of distributed archi­
tectures , where the most elementary concepts emerge from the interaction of 
several different nodes. Each knowledge item (e.g. , concept, fact or rule) is 
represented using a combination of several units, and each unit can be used 
in the representation of several items. Dcps (Touretzky and Hinton, 1988), 
for example, is a distributed connectionist production system that uses coarse 
coding to store all entities manipulated by the rule interpreter. Each unit has 
a receptive field that is the cross-product of the six symbols in each of its 
three colums, given 216 triples per field . As a result, this distributed coding 
scheme can be used to construct a working memory that requires far fewer 
units than the number of facts that can potentially be stored. Coarse coding is 
also used in BoltzcoNS (Touretzky 1990) to represent symbolic structures such 
as lists and stacks, whereas recursive distributed representations introduced in 
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Pollack's (1990) RAAM have been used to implement tree-matching (Stokke 
and Wu, 1992). Finally, local/distributed architectures combine systems using 
these two representations as separate modules. The main justification of these 
systems is that they combine the efficiency of distributed representations with 
the power of localist representations. For instance, whereas DCPS is a highly 
constrained system that can represent only two triples in a rule's left-hand 
side, RUBICON (Samad 1992), a connectionist rule-based system that uses a 
combined localist/distributed rule-based system, allows for a variable number 
of expressions in the left and right hand sides of each rule . It also supports 
chain inferencing as well as addition and deletion of working memory elements. 

From the point of view of system tasks, the cSP approach has been actively 
investigated in a variety of task domains, particularly in automated reason­
ing and natural language understanding. CONSYDERR (Sun 1991) implements 
commonsense reasoning using a localist network which performs rule-based rea­
soning and a distributed network which encodes feature similarities. The CHCL 

system (Holldobler and Kurfess 1991) embodies a connectionist inference mech­
anism which uses W . Bibel's well-known connection method (Bibel 1987) to 
perform inferencing on Horn clauses using a matrix representation. An impor­
tant subarea of work on logic and reasoning concerns variable binding (Sun 
1992, Ajjanagadde and Shastri 1991, Touretzky and Hinton 1988, Chen 1992, 
Smolensky 1990, Pinkas 1994, Park and Robertson 1995) . Indeed, this crucial 
problem needs to be solved if neural networks are to equal the expressive power 
of symbolic systems, which perform first-order predicate logic tasks as a matter 
of routine. Techniques experimented in the field of automated reasoning have 
been applied in connectionist expert systems such as MACIE (Gallant 1988, 
Gallant 1993), TheoNet (Bradshaw et al. 1989) and others (Saito and Nakano 
1988, Hayashi 1991) . Examples of studies in natural language processing via 
connectionist symbol processing can be found in (Bookman 1987, Dyer 1991, 
McClelland and Kawamoto 1986, Gasser 1988). 

3 HYBRID STRATEGIES 

The hybrid approach rests on the assumption that only the synergistic com­
bination of neural and symbolic models can attain the full range of cognitive 
and computational powers. Hybrid neurosymbolic models can be either trans­
lational or functional hybrids. 
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3.1 Translational Hybrids 

Translational hybrids-also called transformational models (Medsker 1994)­
can be viewed as an intermediate class between unified models and functional 
hybrids. Like unified models , they rely only on neural networks as processors , 
but they can start from or end with symbolic structures. Typically, their objec­
tive is to translate or transform symbolic structures into neural networks before 
processing, or extract symbolic structures from neural networks after process­
ing. Most often, the symbolic structures used are rules-classical propositional 
rules (Towell and Shavlik 1994, Dillon et al. 1994), fuzzy rules (Romaniuk and 
Hall 1991, Hayashi 1991, Magrez and Rousseau 1992), rules with certainty 
factors or probability ratings (Lacher et al. 1992, Fu 1989, Fu and Fu 1990, 
Mahoney and Mooney 1994, Tresp et al. 1993). Attempts have also been made 
to compile differential equations (Cozzio 1995) or deterministic finite state au­
tomata (Giles and Omlin 1993) into neural networks, and to extract hierar­
chies of concepts or schemata from them (Crucianu and Memmi 1992, Dillon 
et al. 1994). However, the key point is that symbolic structures are not pro­
cessed as such in translational systems; for instance, rules are not applied by 
an inference engine within the system but only serve as source or target repre­
sentations of knowledge built into neural nets. The implicit assumption seems 
to be that, whether purely connectionist systems are capable of full symbol 
processing or not , interaction with other (human or symbolic) systems imposes 
the need for a two-way transformation between neural network structures and 
high-level symbolic representations. 

3.2 Functional Hybrids 

Functional hybrids incorporate complete symbolic and connectionist compo­
nents: in addition to neural networks, they comprise both symbolic structures 
and their corresponding processors- e.g., rule interpreters, parsers, case-based 
reasoners and theorem provers. Functional hybrids are so-called because, con­
trary to translational hybrids , they achieve effective functional interaction and 
synergy among the combined components. In a sense, translational hybrids 
are a degenerate case of functional hybrids; in the rest of this chapter, we 
shall therefore use the term hybrid to designate complete or functional hybrids, 
unless indicated otherwise. 

Hybrid systems can be distinguished along different dimensions such as their 
target problem or task domain , the symbolic (e.g., rule-based reasoning, case­
based reasoning) and neural (e.g., multilayer perceptrons, Kohonen networks) 
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models used, or the role played by the neural (N) and symbolic (8) components 
in relation to each other and to the overall system. Although such dimensions 
allow for more or less clear distinctions between individual systems , they have 
little bearing on the central issues of neurosymbolic integration. We therefore 
propose a taxonomy of hybrid systems based on the degree and the mode of 
integration of the Nand 8 components. 

The degree of integration is a quantitative criterion: one can imagine a spec­
trum going from the simple juxtaposition of symbolic and neural components 
under a common supervisor to systems characterized by strong and repeated, if 
not continuous, interaction between the two components. Although this spec­
trum can be graded numerically to represent progression from one extreme to 
another, we shall simplify by distinguishing two main degrees of integration­
loose and tight coupling. In loosely coupled systems, interaction between the 
two components is clearly localized in space and time: control and data can be 
transferred directly between Nand 8 components (e.g., by function or procedure 
calls), or via some intermediate structure (e.g. , domain or control blackboards 
accessible to both components) or agent (e.g. a supervisor), but interaction is 
always explicitly initiated by one of the components or by an external agent. 
In tightly coupled systems, knowledge and data are not only transferred, they 
can be shared by the Nand 8 components via common internal structures. 
Thus a change in one of the components which affects these common internal 
structures has immediate repercussions on the other component without need 
for explicit interaction initiatives. Within this category, too, coupling is not 
uniformly tight from one system to another: whereas the shared structures 
are often simple links or pointers between the Nand 8 components as in SYN­

HESYS (Giacometti 1992), they can be significantly more important in number 
and function, e.g., nodes shared by a semantic marker-passing network and a 
distributed neural network, as in (Hendler 1989). 

Along the qualitative dimension, the integration mode or scheme refers to 
the way in which the neural and symbolic components are configured in relation 
to each other and to the overall system. Four integration schemes have been 
identified: chainprocessing, subprocessing, metaprocessing and coprocessing 
(Figure 2). To define them, we suppose a system comprising one neural and 
one symbolic module, with the understanding that for more complex systems, 
there can be as many integration schemes as pairs of neural and symbolic 
components. In chain processing mode, one of the (N or 8) modules is the main 
processor whereas the other takes charge of pre and/or postprocessing tasks. In 
subprocessing mode, one of the two modules is embedded in and subordinated 
to the other, which acts as the main problem solver. In metaprocessing mode, 
one module is the base-level problem solver and the other plays a metalevel 
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role (such as monitoring, control, or performance improvement) vis-a.-vis the 
first. In coprocessing, the N and the S modules are equal partners in the 
problem solving process: each can interact directly with the environment, each 
can transmit information to and receive information from the other. The two 
modules can compete under the supervision of a metaprocessor, or they can 
cooperate in various ways, e.g., by performing different subtasks or by doing 
the same task in different ways and/or under different conditions. These four 
integration modes are described in detail below. 

Chain processing Subprocessing Metaprocessing Coprocessing 

11'1 Symbolic or neural 
o Neural if the shaded box is symbolic and vice versa 

Figure 2 Hybrid neurosymbolic integration modes . 

Chainprocessing 

Two main configurations can be distinguished in chainprocessing mode: (1) the 
symbolic module acts as the main problem solver and is assisted by a neural 
preprocessor and/or postprocessor; (2) the neural module is the main processor 
and is assisted by a symbolic preprocessor and/or postprocessor. 

The first configuration is illustrated by a respiratory monitoring system where a 
rule-based expert system is assisted by a connectionist preprocessor (Ciesielski 
et al. 1992, Hayes et al. 1992). The system receives data from a ventilator 
which records a patient's airway pressure and lung pressure every 15 seconds. 
At the outset, the system consisted of a simple PC-Expert rulebase whose task 
was to recommend actions to be taken to avoid breathing complications. Top­
level rules were typically: "If qualitative-state then action," where qualitative­
state is a symbolic representation of a change in a pressure parameter over 
time, e.g., "pressure is constant," "pressure is rising gradually," or "pressure 
is rising rapidly." Determination of these qualitative states on the basis of 
ventilator output turned out to be the knowledge acquisition bottleneck: while 
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domain experts found it relatively straightforward to express top-level rules 
recommending actions on the basis of qualitative states, they had a hard time 
formulating criteria to determine these qualitative states. Hence the idea of 
using a neural preprocessor to accomplish this task (see Figure 3). 

Respiratory monitor 

Neural Preprocessor 

"pressure is constant" 

"pressure is rising gradually" 

"pressure is rising rapidly" 

Rule-based System 

I f pressure is constant 

then ... 

If pressure is rising gradually 

then ... 

Ifpressure is rising rapidly 

then ... 

Figure 3 An example of neural preprocessing. 

A feedforward neural network was trained using backpropagation. It had 20 
inputs (patient data produced by the ventilator), two hidden layers with 10 
and 8 units respectively, and 6 output units, each representing a specific inter­
pretation of pressure variations. Its result, the qualitative state corresponding 
to the output unit with the highest activation, was then stored in the work­
ing memory of the expert system for use in the firing of action rules. After 
training on a set of 54 examples, the accuracy of the systems was measured on 
a test set of 78 cases. With neural preprocessing, development time was cut 
down from 3 to 2 months. Moreover, the hybrid system was considerably more 
accurate (97.5 %) than the rule-only version (74.5 %). It also turned out to 
be more sensitive, i.e., it detected a respiratory problem after examining fewer 
data samples than the rule-only system. Understandably, execution time was 
slightly higher for the hybrid system (1.7 vs 0.5 seconds), though it remained 
well within the 15-second realtime constraint. 

The reverse setup is that of a symbolic preprocessor assisting a connectionist 
main processor. An example is the combination of ITRULE and neural net­
works (Goodman 1989, Greenspan et al. 1992). The preprocessor (ITRULE) 

is a rule induction algorithm which automatically generates probabilistic rules 
from databases. Learned rules are O-order rules of the form If attribute-l value-
1 then attribute-2 value-2 with probability p. All attributes are binary-valued 
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so they can be mapped directly to binary units. These rules are then compiled 
into a neural net: attributes of rule conditions are mapped onto input units , 
attributes of rule conclusions onto output units, and information metrics (such 
as p) onto connection weights. The result can then be loaded into the main 
processor, a neural network simulator. The originality of this approach lies in 
the fact that contrary to the vast majority of hybrid neurosymbolic systems, 
learning is done in the symbolic preprocessing phase; the neural network is used 
for inferential, not for generalization purposes. 

Symbolic preprocessing may also be used as a means of alleviating well-known 
problems related to neural processing. One such problem is the learning time 
taken by feedforward networks before achieving acceptable error rates . Among 
the factors that slow down the generalization process is the presence of noise, 
not only in the feature values , but in the features themselves; more precisely, 
certain features have no significant effect on the network output and their elim­
ination should result in faster convergence. To limit the number of input nodes 
in feedforward neural networks, Piramuthu and Shaw (1994) thought of using 
decision trees as feature selectors. The decision tree algorithm C4.5 (Quinlan 
1993) uses information-theoretic measures to select the most important features 
from a given dataset . The selected features are used as input to a feedforward 
network which is then trained by backpropagation . The impact of this symbolic 
preprocessing method on training time was tested on the PROMOTER database, 
which consists of 106 examples belonging to either class 1 or O. Each example 
consisted of 57 attributes and had no missing values. Without preprocess­
ing, a 57-29-1 feed forward network took 84 seconds to converge (total sum of 
squares of error = 2); its average rate of accuracy over 10 trials was 77 .7% on 
the training set and 55% on the test set. With symbolic preprocessing , the C4 .5 
algorithm generated a decision tree in 2 seconds and reduced the number of 
relevant attributes from 57 to 3. The resulting 3-2-1 network converged in 22 
seconds, attaining a rate of accuracy of 96.4% for the training set and 66% for 
the test set . In short, 2 seconds of symbolic preprocessing accelerated conver­
gence of the backpropagation learning process by a factor of 4 while improving 
accuracy on both the training and the test sets. 

Whereas the preceding system reduces training time, WATTS (Wastewater Treat­
ment System) (Krovvidy and Wee 1992) attempts to reduce the problem-solving 
time taken by a Hopfield network to converge to an optimal solution. WATTS' 

application task is to determine a treatment train, i.e. , a sequence of processes 
aimed at eliminating wastewater contaminants before discharge to the envi­
ronment. Since each contaminant can be eliminated by a variety of treatment 
processes and technologies, selection of the optimal treatment train requires 
combinatorial search. One approach adopted in WATTS is the use of a Hopfield 
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network whose outputs can be decoded into a solution (a treatment train). The 
network uses an energy function which was derived taking into account expert 
knowledge about interactions among these different treatment processes. In 
the simple NN approach, a random initial solution was generated and used to 
search for an optimal solution . In the hybrid CBR/NN approach, a case-based 
reasoner maintains a base of previous solutions and retrieves a relevant solu­
tion given a new problem. This solution is then used to initialize the Hopfield 
network in lieu of a random initial state. In general, the CBR/NN approach was 
found to improve performance both in terms of convergence time and-in a few 
cases-the quality of the solution. 

Subprocessing 

In subprocessing, one of the two components is embedded in and subordinated 
to the other, which acts as the main problem solver. Typically, the S component 
is the main processor and the N component the subprocessor. It is an open 
question whether the reverse setup is at all possible. 

Neural subprocessing is used in two distinct conditions. In the first case, the 
symbolic main processor delegates to neural networks certain phases or sub­
tasks of the application task that it presumably cannot do or does less well 
than NNs. This is illustrated in INNATE/QUALMS: the main processor, an ex­
pert system for fault diagnosis, calls on a set of multilayered perceptrons to 
generate a candidate fault, then either confirms their diagnosis or offers an al­
ternative solution (Becraft et al. 1991). Another example is LAMTM, a system for 
window glazing design (Medsker 1994). Its principal role is to serve as a design 
assistant: relying mainly on rule-based modules, it classifies glass types, checks 
for errors or improbable glass designs, and helps a user take design decisions 
such as choosing the glass type and then determining such properties as glass 
strength, solar specifications or sound control class. Design rules for properties 
such as structural strength of glass were easily constructed from architectural 
manufacturer specifications; however, two design tasks-selecting solar control 
and sound control properties of glass-are difficult to express in the form of 
situation/action rules since they involve estimating complex correlations be­
tween input and output parameters. At the same time, there exists a sizeable 
set of training/test data which accurately correlates known inputs with out­
put predictions. Two three-layer feedforward networks were therefore trained 
to determine the appropriate solar and sound properties on the basis of other 
glass properties; during an interactive consultation, these two specific tasks are 
subcontracted to the neural network modules while a knowledge base of 578 
if-then rules takes charge of all the other design phases. 
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The second case is where the symbolic processor calls on neural networks to 
perform specific internal functions, independently of the application task at 
hand. In Giambasi et al.'s (1989) system, for example, the connectionist com­
ponent is not called explicitly by domain-level rules; it comes into action as 
an automatic subroutine of rule interpretation. When a rule is selected for 
execution, its associated neural net is activated to compute uncertainty factors 
for each of the facts added by the rule. Neural nets playa similar role in a 
hybrid system built on the SETHEO (Letz 1992) theorem prover. The system 's 
default depth-first search strategy can be inefficient due to combinatorial ex­
plosion, thus the need for a heuristic means of detecting the most promising 
direction at each choice point. The prover therefore calls on a backpropagation 
neural network to estimate the probability that a candidate branch will lead to 
a proof. The input of the network is a set of features concerning the current 
formula (e.g., the number of literals or variables) as well as current state of the 
proof (e.g., current inference depth) . Training data are pairs of feature vectors 
and desired estimations obtained from theorems proven by SETHEO using ex­
haustive search. The theorem prover selects the branch to follow on the basis of 
estimation results returned by the connectionist component. Tests have shown 
that the learned evaluation function can decrease search time by an order of 
magnitude in certain cases (Suttner and Ertel 1990). 

M etaprocessing 

Contrary to the widespread belief that metalevel capabilities are a prerogrative 
of symbolic systems, both symbolic and connectionist modules can assume a 
metalevel role in hybrid systems. As in pure symbolic systems, a metalevel 
architecture is said to exist only if metaknowledge is explicitly represented 
(i .e., expressed in the representation language of the symbolic or neural com­
ponent and not in their underlying implementation languages). According to 
this definition, a neural network can be considered a metaprocessor if it rep­
resents both domain and metaknowledge and if its output plays a metalevel 
role in the combined system. We thus distinguish between symbolic and neural 
metaprocessing systems, depending on whether the metaprocessor is symbolic 
or connectionist. 

Symbolic metaprocessing is illustrated in ALVINN , Carnegie-Mellon's system for 
guiding autonomous vehicles (Pomerleau et al. 1991). Multiple networks are 
trained to become experts in specialized aspects of the autonomous vehicle con­
trol task (e.g., single-lane road driving, highway driving, collision avoidance). 
Once these networks are trained, their exploitation in real-world situations re­
quires the ability to integrate their responses in order to ensure effective control 
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in a variety of circumstances. Furthermore, a truly autonomous system needs 
to be capable of planning its itinerary to reach a goal. ALVINN uses a rule-based 
arbitrator for this task: the decisions of the driving neural nets are sent to the 
arbitrator, which decides which network to follow and therefore how to steer. 
To take a decision, the arbitrator relies on an annotated map which stores ge­
ometric information such as the location of roads and landmarks, what type of 
road the vehicle is in, whether there is a dangerous permanent obstacle ahead, 
and so on. The map also contains control information relevant to the current 
driving situation; for instance, a point where a road changes from one lane to 
two is indicated on the map so the arbitrator knows when to start following 
the decision of the two-lane driving neural network. 

Knowledge-Based Execution Monitor 

Selects learning and control strategies 

and monitors system performance 

r'"" Learning Strategies 
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Figure 4 Symbolic metaprocessing for Robotic Skill Acquisition. 

In the Robotic Skill Acquisition Architecture (RSA 2) (Handelman et al. 1989, 
Handelman et al. 1992), the symbolic metaprocessor supervises both symbolic 
and neural baselevel components. The system's goal is to develop robots which 
perform complex tasks using designer-supplied instructions and self-induced 
practice. The approach is patterned after human motor learning, which shifts 
from an explicit to an implicit representation and from controlled, verbally ori­
ented to automatic, reflexive execution. At the base level, a rule-based system 
provides a declarative representation of human expert knowledge, whereas neu-
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ral networks embody reflexive procedural knowledge that comes with practice . 
The symbolic metaprocessor is a rule-based execution monitor which supervises 
the training of the neural network and controls the operation of the system dur­
ing the learning process. 

Robotic skill acquisition can be divided into three distinct phases (Figure 4). 
During the declarative phase, the system executes a given task using explicit 
instructions stored in the knowledge base. During the hybrid phase, neural net­
work components observe and try to duplicate rule-based maneuver commands, 
thus learning by example. Since initial net performance is poor, the knowledge 
base continues to ensure task execution; however, as the networks develop ro­
bust patterns of learned behavior, task execution is increasingly shared by the 
symbolic and connectionist components. Finally, during the reflexive phase, 
network-based control is optimized via reinforcement learning. Transitions be­
tween these three phases are managed by rules of the execution monitor. 

In instances of neural metaprocessing that we are aware of, the connectionist 
component enforces search control over the symbolic baselevel processor. One 
example is a system which solves high school physics problems (Gutknecht 
and Pfeifer 1990). Here, object-level rules encode kinematics equations: for 
instance, v = vO + at is mapped roughly into the rule: "If the goal variable is 
v (final-velocity) and the known variables are vO (initial velocity), a (acceler­
ation) and t (time), then the final velocity is known ." However, if several of 
the needed variables are unknown , the rules say nothing about a crucial con­
trol problem: which subgoal variable to solve for next. This is the task of the 
metalevel connectionist module. A neural network , previously trained by back­
propagation, receives as input the goal variable and the known variables at a 
given stage; it outputs the next variable to solve for in view of finding the value 
of the goal variable. The sequence of subgoal variables selected successively by 
the network in effect serves as a control plan for the problem-solving process. 

Another example of neural metaprocessing is Kwasny and Faisal's (1992) nat­
ural language parser. Classical parsing systems map an input sentence into 
a parse tree by maintaining a lookahead buffer and an internal stack. Tree­
building actions (e.g., creation of a new node) are taken by a set of rules after 
examining both buffer and stack. The main drawback of these systems is that 
they can only parse sentences whose form has been anticipated in the ruleset; 
but natural language is too rich to be encoded in such a set. In the proposed hy­
brid parser, symbolic parsing rules are replaced by a feedforward network which 
has been trained on a set of sentences generated by a deterministic grammar. 
The symbolic module manages the buffer and stack and codes their state as in­
puts for the network, which determines the action to be taken on a best-match 
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basis. With this neural control component, the hybrid system is able to recog­
nize grammatical as well as non-grammatical sentences, whether encountered 
previously or not. 

Cop rocess ing 

In coprocessing, the Nand S components are equal partners in the problem­
solving process: each can interact directly with environment, each can transmit 
information to and receive information from the other. They can compete under 
the supervision of a metaprocessor, or they can cooperate in various ways, e.g., 
by performing different subtasks, or by doing the same task in different ways 
and/or under different conditions. In SYNHESYS (Giacometti 1992), the same 
diagnostic task is executed by a rule-based system and a prototype-based neural 
network that learns incrementally. The neural component is tried first; if it 
comes up with a diagnostic, this output is validated by the rulebase in backward 
chaining mode; otherwise, the rulebase is activated in forward chaining mode 
and its diagnostic is used to train the neural network. 

An example of the alternative setup-cooperative coprocessing by distribution 
of specialized subtasks-is a system where a neural network and a decision 
tree work together to detect arrythmia in heart patients (Jabri et al. 1992). 
Intra-cardial defibrillators (ICOS) are devices implanted in people with heart 
disorders: they sense the electrical activity of the heart and identify abnor­
mal rhythms or "arrhythmias." These dysfunctions can be clustered into three 
main groups depending on the type of action they call for: continue mon­
itoring, pace the heart, or apply high-voltage electric shock. Classification 
accuracy is, of course, crucial in this application. For so-called dual chamber 
classification (based on ventricular and atrial sensing), three architectures were 
tested: a single large multilayer percept ron (MLP), a multmodule NN consist­
ing of three MLPs and two gates, and a hybrid decision tree/MLP model. In 
the hybrid model, the input data-sample signals sent by the ventricular and 
atrial probes- are sent to a decision tree which acts as a timing classifier and to 
a multilayer percept ron which performs morphology-based classification. The 
outputs of both modules are fed into an arbitrator which determines the class 
of the arrhythmia; this classification is then smoothed out by an "X out of 
Y" classifier to yield an "averaged" final classification. The decision tree/MLP 
hybrid attained an accuracy rate of 99% on a multi-patient database, whereas 
the best performance of the multimodule neural net was 96.2% and that of the 
simple MLP 89.3%. 
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