

Adaptive Reasoning for
Real-World Problems:

A Schema-Based
Approach

1m
1994

Adaptive Reasoning for
Real-World Problems:

A Schema-Based Approach

Roy M. Turner
University of New Hampshire

LAWRENCE ERLBAUM ASSOOATES, PUBLISHERS
Hillsdale, New Jersey Hove, UK

Copyright@ 1994 by Lawrence Erlbaum Associates, Inc.
All rights reserved. No part of this book may be reproduced in
any fonn, by photostat, microfJbn, retrieval system, or any other
means, without the prior written permission of the publisher.

Lawrence Erlbaum Associates, lnc., Publishers
36S Broadway
Hillsdale, New Jersey 07642

I Cover design by Kate Dusza I

Library of Congress Cataloging-In-Publication Data

Turner, Roy M.
Adaptive reasoning for real-world problems : a schema-based

approach I Roy M. Turner
p. em.

Includes bibliographical references (p.) and index.
ISBN 0.8058-1298-9.

1. Artificial intelligence. 2. Reasoning. 3. Schemas (Psychol
ogy) 4. Adaptive control systems. I. Title.
Q33S.T88 1994
006.3-dc20 93-39128

CIP

Books published by Lawrence Erlbaum Associates are printed on
acid-free paper, and their bindings are chosen for strength and dura
bility

Printed in the United States of America
10 9 8 7 6 s 4 3 2 1

To Elise

Contents
List of Figures

Preface

1 Introduction
1.1 Adaptive Reasoning Requirements .
1.2 Schema-Based Reasoning .
1.:3 Overview of the Book

2 Schema-Based Reasoning
2.1 Schemas
2.2 The Schema-Based Reasoning Process
2.:3 Implementations of SBR

3 Schemas
:3.1 Properties of Schemas
:3.2 Procedural Schemas .
:3.3 Contextual Schemas .
:3.4 Strategic Schemas . . .
:3.5 Origin of Schemas . . .

4 Deciding What to Work on
4.1 Attention-Focusing Issues
4.2 Focusing Attention in SBR
4.:3 Deciding If a Goal Can Be Pursued
4.4 Estimating Goal Priority
4.5 Estimating the Cost of Achieving a Goal
4.6 Estimating a Goal's Overall Priority
4. 7 Examples

5 Taking Action
5.1 Finding the Right Schema
5.2 Partially Instantiating a P-schema .
5.3 Checking Application Conditions .
5.4 Selecting Steps
5.5 Step Application
5.6 Interrupting and Resuming Schema Application
5.7 Handling Novel Situations ...
5.8 Examples .

6 Handling Unanticipated Events
6.1 Issues
6.2 Event Handling in SBR

ix

xiii
1
4
6
7

9
10
10
15

22
23
25
35
46
49

52
52
55
56
59
72
72
7:3

79
80
81
81
85
88
90
94
95

102
103
106

vii

viii Contents

6.3 Noticing an Event
6.4 Diagnosing an Event
6.5 Assessing Event Importance
6.6 Deciding to Respond
6. 7 Selecting a Response
6.8 Failures
6.9 Examples

7 Memory for Schema-Based Reasoning
7.1 Dynamic Memory
7.2 Memory Organization for Schema-Based Reasoning
7.3 Retrieving Schemas
7.4 Updating Memory
7.5 Domain Knowledge
7.6 Spontaneous Remindings .

8 Implementations
8.1 MEDIC

8.1.1 The Domain
8.1.2 The Program
8.1.3 Pieces of SBR Not Implemented in MEDIC
8.1.4 Diagnosis in MEDIC

8.2 Orca
8.2.1 The Domain
8.2.2 The EAVE Software Architecture
8.2.3 The Program

9 Evaluation and Related Work
9.1 Evaluation
9.2 Comparison with Related Work
9.3 Summary

10 Conclusion
10.1 Contributions
10.2 Future Directions
10.3 Conclusion

Appendix A: A Diagnostic Session with MEDIC

Appendix B: Glossary of Medical Terms

References

Author Index

Subject Index

108
110
110
117
117
119
125

130
131
133
137
141
142
143

145
145
145
152
162
162
166
167
169
170

174
175
182
194

195
195
203
211

212

233

236

244

247

List of Figures

2.1 Examples of schemas: (A) a procedural schema; (B) a contex-
tual schema; and (C) a strategic schema. 11

2.2 The schema-based reasoning process. 12
2.3 A portion of MEDIC's memory. 16

3.1 ?-consult, a procedural schema for controlling a consultation.
Only some of the internal representation is shown. 28

3.2 P-takePicturesCoop, a procedural schema for cooperatively tak-
ing a picture underwater; the actor is assumed to be the agent
with the camera. 29

3.3 Procedural schema for interpreting findings. Also shown is one
of its subschemas. 30

3.4 Procedural schema for interpreting dyspnea and some of its sub-
scheinas. 31

3.5 One of the preconditions of p-consult, a procedural schema for
conducting medical consultations. 32

3.6 An advisory precondition from one of an AUV's data collection
p-schen1as. 32

3. 7 Contextual schema c-consult, representing consultations. . . . 38
3.8 Overview of c-harbor, a c-schema from Orca's domain repre-

senting the context of being in a harbor. 39
3.9 Some of the information contained in c-cardiopulmConsult per-

taining to changes to the situation. 41
3.10 An event description from Orca's c-schema representing being

in a harbor. 42
3.11 Some of the information contained in c-consult about goals and

how to achieve them. 43
3.12 s-HDreas, a strategic schema representing hypothetico-deduc-

tive reasoning (tailored slightly to medical diagnosis). 48

4.1 The attention-focusing process. 56
4.2 Contextual schema c-cardiopulmConsult, representing cardio-

pulmonary consultations. 58
4.3 s-HDreas, a strategic schema representing hypothetico-deduc-

tive reasoning (tailored slightly to medical diagnosis). 59
4.4 Goal description for "interpret finding of dyspnea" in c-cardio-

pulmConsult. 61
4.5 Goal description for "evaluate hypothesis" in c-consult and c-

cardiopulmConsult. 62

ix

x List of Figures

4.6

4.7

4.8

4.9

4.10
4.11

5.1

5.2

5.3

5.4
5.5

5.6

5.7

6.1
6.2

6.3
6.4

6.5

6.6

6.7

6.8

7.1
7.2
7.3
7.4

Goal description for "diagnose patient" in c-consult and c-car
diopulmConsult.
Goal description for "interpret finding of anemia" in c-cardio
pulmConsultAlc, the contextual schema representing cardiopul
monary consultations about alcoholics.
Goal description for "perform exercise tolerance test" in hypo
thetical c-schema representing examining a patient.
Formula for computing the contribution to a goal's importance
of effecting another goal.
Formula governing how states impact the importance of a goal.
Formula for computing the priority of a goal. {If P1·im·ity > 5
or < -5, it is set to 5 or -5, respectively.)

A portion of c-consult, showing the specification of a p-schema
to handle goal "interpret finding."
Example of using an application condition's "fix" information
in a p-schema to interpret a finding of high blood pressure. (A)
The "fix" information; (B) Initial order of p-schema's steps; {C)
P-schema after using the information.
Two ways of determining the severity of dyspnea: on the right,
p-findDyspneaSeverity; on the left, p-findDyspneaSeverityN A,
for use when the patient is non-ambulatory.
Examples of "next" information
{A) A p-schema step suggesting the executable action "ASK."
(B) The frame representing the xact.
P-dyspnea, a p-schema that interprets dyspnea, and a partial
expansion of one of its steps. Heavy arrows indicate links from
p-schemas to their steps; lighter arrows indicate ordering infor
mation. More than one light arrow leaving a step indicates a
branch
Schema application stack for p-dyspnea, just prior to asking a
question

The event-handling process.
The EAVE software architecture for autonomous vehicle con
trol, whose top level is Orca.
The process of estimating an event's importance.
Event description from c-cardiopulmConsult for a finding of dys-
pnea
MEDIC's formula for using information from current context to
estimate importance of event.
A goal record representing the pursuit of the goal "interpret
finding of dyspnea."
Example of "next" information for handling failure of an xact.
A step from p-hypothesis is shown.
Algorithm implemented by failure-handling p-schema p-failure.

A portion of a contextual schema specialization hierarchy.
A portion of a procedural schema specialization hierarchy.
A portion of a strategic schema specialization hierarchy ..
Compound index representation in MEDIC.

63

64

65

66
67

73

82

84

87
88

89

96

100

107

109
111

112

112

120

121
123

135
136
136
137

List of Figures xi

7.5 Links between hierarchies in MEDIC's memory. 138
7.6 Some predictive features and indices of c-consult. The indices

are shown as they would be represented in a schema, grouped
by features that are the same. 139

7. 7 Relationships of frame representing pulmonary disease to other
frames. 142

8.1 Structure of MEDIC's reasoner. 153
8.2 Algorithm of the Scheduler, one of the processes associated with

MEDIC's reasoner module. 155
8.3 A view of the Schema Applier as a finite state machine. 156
8.4 Top-level procedural schema-application finite state machine

(used by "applying" state of the Schema Applier). 156
8.5 MEDIC's user interface window. 158
8.6 MEDIC's representation of pulmonary disease. 160
8. 7 MEDIC's representation of dyspnea. 161
8.8 MEDIC's representation of anemia, shown partially instantiated

to represent mild anemia. 164
8.9 P-formDx, a p-schema that forms a diagnosis, shown as a flow-

chart. 166
8.10 The EAVE-III AUV. 169
8.11 The MSEL long-range AUV. 170
8.12 The EAVE software architecture for A UV control. 171

10.1 (A) The action-perception cycle. (B) The action-perception
cycle of schema-based reasoning. 196

Preface

This book is an outgrowth of my dissertation work on adaptive problem
solving for medical diagnostic reasoning, which was done at the Georgia In
stitute of Technology. As that work progressed, it became clear that schema
based reasoning is applicable to any problem-solving task in which an agent
must cope with incomplete information, uncertainty, and unanticipated events.
A particularly fruitful opportunity to expand the work presented itself at the
University of New Hampshire, which until recently had one of the premier
autonomous underwater vehicle (AUV) laboratories in the world. (The Ma
rine Systems Engineering Laboratory, MSEL, has since moved to Northeastern
University.) It seemed natural to move from the fairly unreactive medical di
agnostic domain toward the challenges to be faced in the real-world task of
controlling A UV s as they perform useful scientific missions, such as global
change monitoring. Based on my experience so far, I believe that schema
based reasoning will prove useful for solving problems in this and most other
complex real-world domains.

The book discusses schema-based reasoning and two implementations of
it. MEDIC is a medical diagnostic consultant for pulmonology that was devel
oped several years ago. Orca, a robust intelligent controller for ocean science
AUVs, is currently being implemented by me and other members of the UNH
Cooperative Distributed Problem Solving (CDPS) research group. It is hoped
that Orca will see application on MSEL's AUVs within two or three years.

I am indebted to colleagues at UNH and Northeastern, particularly Elise
Turner and the other members of the CDPS research group, as well as Dick
Blidberg and the staff of MSEL, for their insights and discussions throughout
this work. I am also indebted to colleagues at Georgia Tech, including my
advisor, Janet Kolodner, for their helpful discussions during my dissertation
work. I would also like to thank my editors at Lawrence Erlbaum Associates,
Amy Pierce and Teresa Faella, for their help and patience.

The work reported here was generously funded by several agencies, to whom
I am grateful. For funding work on MEDIC, I thank the Army Research Of
fice (contract number DAAG29-83-G-0016), the National Science Foundation
(grants 1ST -831771 and 1ST -8608362), and the Lockheed AI Center (grant
DTD 09-25-87). For funding work on Orca., I thank the National Science
Foundation (grant number BCS-9211914).

The writing process would have been painful without excellent software
tools such as the Free Software Foundation's GNU Emacs editor, TGIF, dvips,

xiii

xiv Preface

and Leslie Lamport's U.TEX document preparation system (and Donald Knuth's
'fEX), with which the camera-ready copy was prepared; I thank their authors
for making such high quality tools freely available.

Finally, I would like to thank Elise as wife as well as valued colleague. In
both roles, her support, advice, and understanding are much appreciated.

Roy M. Turner

Chapter 1

Introduction

The real world is not a nice place, at least for intelligent artificial agents.
Consider an autonomous factory robot whose job is loading trucks. A foreman
tells it "Put the box of widgets on the Acme truck, then meet me back here at
3 o'clock." The robot dutifully begins considering how to do this. Two things
are immediately obvious. First, some partial commitment to future actions
is needed, or else the sequence of the two events will not be guaranteed to
be correct. Consequently, a plan should be formulated. Second, the robot
probably has not been given enough information-there may be several boxes
of widgets and more than one Acme truck at the loading dock. Consequently,
the robot must ask the foreman for additional information.

The plan the robot formulates might be something like: go to the loading
dock; pick up the box; go to the rear of the truck; put the box in the truck;
return to the starting position by 3 o'clock. This is a sketchy plan, of course,
but any further commitment to details would risk plan failure as the world
changes during the plan's execution. Then, too, some details cannot be filled
in yet; for example, the robot may not know the exact location of the Acme
truck or of the box until it can sense them itself. Instead, it makes more sense
to refine and expand the sketchy plan as necessary and possible.

While on the way to the box, the robot may notice that the path it has
chosen is blocked by construction. It must change its plan slightly to select
a path around the area. While following the new path, a person may step in
front of it; the robot must pause to let the human past. This, however, is not
really a change of its plan, but only a momentary interruption. Perhaps later,
it notices a recharging station it did not know was on the path; provided it
has time, it may choose to again interrupt its plan to take the opportunity to
recharge its batteries. Further along, it may notice that the motor controlling
one of its wheels appears to be malfunctioning slightly; without changing or
interrupting its ongoing plan, it changes its motion parameters to compensate
and makes a note to have the motor repaired later.

2 Adaptive Reasoni11g for Real-World Problems

When it reaches the loading dock, the robot might notice that someone
(or something) has stacked another box on top of the one it is to move. This
would lead it either to change its plan by inserting a step to clear the top of
the box or to suspend its plan while pursuing another goal to clear the box;
either way, the effect is the same. When it tries to pick up the box, though, it
might notice that it cannot-the box is heavier than it anticipated. This may
lead it to look inside to make sure that the box really does contain widgets.
It may also lead to a change in its plan (assuming that it is the right box) to
push the box rather than lift it.

At the truck, the robot might notice another flaw in its evolving plan when
it cannot lift the box to place it in the truck. This again leads to changing
the plan, this time to insert a step to find something to use as a ramp. This
done, it finishes its plan by pushing the box into the truck, placing the ramp
back where it found it, and keeping its appointment with the foreman.

If in the future the robot is given a similar goal, its job will be easier. It
can make use of what it has learned from solving the first problem to avoid
many of the pitfalls it previously encountered. Perhaps, after solving many
similar problems, it will create a general plan or schema for how such problems
should be solved.

Problem solving in the real world is complicated by several factors, most
of which are interrelated to some degree. First is the problem of incomplete
knowledge and uncertainty. An agent will seldom have complete knowledge, or
even all it needs, about the problem at hand, the world it operates in, or even
itself. Part of this is unavoidable in almost all interesting domains, because
humans will likely not have all the knowledge to give the agent. This is the
case in domains such as controlling autonomous underwater vehicles (AUVs),
diagnosing medical problems, maneuvering around factory floors, and so forth.
Even when the knowledge might be available, using or storing all of it would
likely tax the (usually extremely) limited rationality of the agent. Part of
the problem also occurs because some knowledge may not be available when
the agent would like to create its plan; for example, when told to "find the
sunken ship and photograph it," an AUV will not know the location of the ship
ahead of time-finding it is part of its task. Uncertainty arises in part from
incomplete knowledge, since predictions or inferences made on the basis of
incomplete knowledge will lack precision and certainty. Uncertainty may also
arise due to inherent limitations of the agent's sensors (e.g., an A UV's sonar is
limited with respect to resolution and noiselessness) or conflicting information
it is given or receives from its sensors over time.

Second, unpredictable changes in the world will occur during the solution
of the agent's problem, forcing it to respond. This is partly due to incomplete
and uncertain knowledge, perhaps about processes and agents it knows exist.

Introduction :3

For example, any autonomous vehicle is a real rather than ideal object; failures,
imprecise responses of the "plant" (as roboticists often refer to the vehicle),
and unpredictable interactions with the world in which the vehicle moves (e.g.,
currents for AUVs, rough sidewalks for autonomous land vehicles, etc.) will
all lead to unpredicted consequences of the agent's actions. Some unpredicted
changes to the world will also occur due to unknown processes (again arising
from incomplete knowledge) and other agents present in the world. Other
agents can affect the agent by their actions, by telling the agent information
(which may be false or conflicting with its own knowledge), or by giving it
new goals (e.g., when the agent is part of a cooperative distributed problem
solving system).

A third problem is that deciding what to do is complicated by the context
dependent nature of responses to unexpected events, which goal to work on and
which actions take to achieve it, and other behavior. When an AUV's forward
motion across the bottom unexpectedly stops, it could be due to a current,
entanglement in a net, thruster failure, or any of myriad other causes; the
correct interpretation depends on the context (e.g., when moving upstream in
a tidal river during ebb tide, the AUV may reasonably expect strong currents).
When a fire alarm goes off, the response differs depending on whether you were
sitting at your desk working or whether you were testing the alarm. When an
ambulance driver has a goal to pick up his or her laundry, whether or not the
goal is pursued depends on if he or she is driving home or taking a patient
to the hospital. When needing to determine its position, an AUV's action
will depend on whether it is in the open ocean (surface and obtain a global
positioning system (GPS) fix), in a test range (query an acoustic transponder
net), or operating under ice (rely on inertial guidance). When deciding what
its depth envelope or other behavioral parameters should be, an AUV will also
need to consider its context (e.g., it should tighten its depth envelope when in
a harbor to avoid bottom clutter and surface traffic).

Unfortunately, many of the techniques which have stood artificial intelli
gence (AI) in good stead for most of its history fail miserably when the task
is complex and must be carried out in the real world. A detailed plan, such
as all early and even most current planning systems produce (e.g., Fikes &
Nilsson, 1971; Newell & Simon, 1963; Wilkins, 1984), is essentially useless un
der these circumstances, since the plan's details will need to be changed over
and over during problem solving. Flexibility and adaptiveness, not provably
correct behavior, are the important characteristics of real-world agents.

What is required is adaptive reasoning: the ability of an agent to intelli
gently change its behavior, both short-term and long-term, in response to the
changing needs of its problem-solving situation. I say "intelligently" think
ing about some of the recent reactive planning research of the more extreme

..

4 Adaptive Reasoning for Real-World Problems

variety (e.g., Agre & Chapman, 1987; Brooks, 1986). Although reactivity is
important, an intelligent agent must retain the ability to create plans of some
level of detail, or at least the ability to commit to some future actions. It must
be able not only to react, but to react appropriately, where what is appropri
ate is always conditioned by the context in which the agent finds itself and
possibly also by the strategy the agent is following.

This book describes one approach to adaptive reasoning called schema
based reasoning that has been implemented in the medical diagnostic consul
tant MEDIC (Turner, 1988, 1989a, 1989b, 1989c, 1992) and is being imple
mented in Orca, an intelligent controller for autonomous underwater vehicles
(Turner & Stevenson, 1991). The rest of this chapter first describes some of
the requirements for adaptive reasoning, gives a brief introduction to schema
based reasoning, and then provides an overview of the rest of the book.

1.1 Adaptive Reasoning Requirements

An adaptive reasoner needs to respond to changes occurring on two dif
ferent time scales. Short-term adaptation involves responding to changes oc
curring during a single problem-solving session. For example, a person might
walk in front of a robot, forcing it to pause or to modify its plan to go around
the person. A doctor treating a patient for pneumonia might find out late
in the diagnostic session that the patient has AIDS, causing him or her to
change the diagnostic plan he or she was considering. Long-term adaptation
involves adapting over a longer time scale as the domain knowledge and envi
ronment changes over time. For example, a person used to getting on to an
interstate from an entrance on a particular street will have to change his or
her schema (plan, script, etc.) if the ramp is permanently closed. In a domain
such as medical diagnosis where the existing knowledge changes rapidly, a new
test or procedure might be developed, forcing doctors to change the way they
diagnose some of their patients.

So far, work on schema-based reasoning has concentrated almost solely
on short-term adaptation, but with an eye toward facilitating later work on
long-term adaptation; future work will focus on how to adapt a reasoner's
behavioral repertoire over time to fit its domain and environment. Some of
the most important requirements for short-term adaptation are described in
the following paragraphs.

Paying attention to the current context. To a large extent, this is the
most important requirement for an adaptive reasoner because it colors all of
its other behavior. As discussed above, real-world agents must pay attention
to their context in order to make reasonable inferences, appropriately select
goals to work on, react intelligently to unanticipated events, select actions to

Introduction .5

achieve goals, and modulate their behavior.
An adaptive reasoner must always have firmly in mind what its current

context is. It is best if it explicitly recognizes the context, because this saves
time. Once the context is recognized, then until it changes, information about
the context can quickly and efficiently be used to control the agent's behavior.
The alternative is to reason about the context each time the agent is deciding
what to do. This would be analogous to a human thinking each time he or she
decides to say something, "Am I in a library? Am I outdoors in the wind? Am
I addressing an audience?" and so forth. Recognizing the context explicitly is
analogous to a human realizing that he or she is in a library; actions usually
taken in that context, such as speaking, can then be automatically modulated
accordingly. This argues for a "context-centric" organization of an adaptive
reasoner's knowledge.

Maintaining an appropriate focus of attention. At any time, an
agent will likely have more goals to achieve than it has resources with which
to achieve them, thus some of them must wait until others have been achieved.
Consequently, an adaptive reasoner needs to know which of its goals it makes
sense to focus its attention on at each point during problem solving.

This is complicated by changes in the agent's world and in its knowledge.
The agent must be ready to change its focus of attention when its problem
solving context demands it.

Choosing appropriate actions: A voiding detailed planning, but
also avoiding purely reactive planning. Obviously, any reasoner needs to
choose appropriate actions to take to achieve its goals. The actions must be
as specific as possible not only to the goal but also to the current context. An
adaptive reasoner must also walk the thin line between over- and undercom
mitment to its actions. It makes a great deal of sense to commit to some future
actions rather than simply reacting, as argued above. However, the actions
selected cannot be completely detailed, or the inevitable changes in the world
will cause the agent to have to replan its actions.

Ability to interrupt or change ongoing actions. Actions taken to
achieve goals must be interruptible if they take significant time to complete,
since the world may change during their execution. If the "actions" are plans
or plan-like entities, then they should perhaps be interruptible between steps.
Interruptibility argues for explicit representation of the actions/plans as well,
since not only must plans be interrupted, but they must also be resumed.
Consequently, the internal state of their execution must be accessible to the
reasoner so it can decide how (or whether) to resume them. Explicit represen
tation is also argued for by the need to change a particular course of action
based on changes to the world, for example, by adding, deleting, or changing
plan steps.

6 Adaptive Reasoning for Real-World Problems

Reacting appropriately to unanticipated events. Unanticipated e
vents are the hallmark of real-world domains. By "unanticipated," I do not
mean that the event is totally unexpected, but rather that its exact character
or occurrence cannot be predicted. For example, an AUV controller may know
that a leak is one of the possible malfunctions of its hardware, yet not expect
in any real sense a particular occurrence of a leak.

Unanticipated events must be first recognized, that is, they must be di
agnosed to the level necessary to handle them. "Motion stopped" may be an
unanticipated event for an AUV, but simply noticing it does not go far enough;
instead, the A UV controller must diagnose the cause of the event-that is, the
real event. Once diagnosed, the event's importance must be assessed to de
cide if a response is warranted. If so, then an appropriate response should be
selected, perhaps as a new goal to be achieved (e.g., "surface and signal for
help"). Unanticipated events should sometimes cause the agent immediately
to change what it is doing. This means that the agent must sometimes inter
rupt its current plan and refocus its attention on the new goal activated by
the event. All phases of event-handling are dependent on the current context
and should be guided by information the agent associates with its knowledge
of the context.

Seizing opportunities and recovering from failures. Opportunistic
reasoning, in the sense of seizing opportunities as they arise (cf. Hayes-Roth,
1985), is one kind of event-handling behavior. As with other unanticipated
events, an opportunity must be recognized, assessed, and possibly responded
to. Similarly, failures can be viewed as just another kind of unanticipated
event. Only their consequences and the actions the agent must take in response
differ.

1.2 Schema-Based Reasoning

Schema-based reasoning uses knowledge structures called schemas to cap
ture all of an adaptive reasoner's knowledge. Schemas capture patterns exist
ing in a domain or in an agent's procedural knowledge. They not only guide
all facets of the agent's behavior, but also organize almost all of its knowledge.
Procedural schemas are similar to hierarchical plans, though more general than
usual. They are interpreted by the agent's reasoning mechanism to carry out
actions to achieve goals. They are only expanded as much as necessary, can
be specialized both before and during execution, and are interruptible and
resumable. Contextual schemas represent contexts the agent may encounter,
as well as store information to guide the agent in that context. In particular,
a contextual schema holds information about responding to events, focusing
attention, setting behavioral parameters, and selecting actions {procedural

Introduction 7

schemas) to use to achieve goals. Strategic schemas hold information that
defines the agent's problem-solving strategies for various kinds of problems.
They can be thought of as a kind of domain-independent contextual schemas.
Knowledge from strategic schemas is used to control the agent's reactivity and
to help determine the focus of attention.

The schema-based reasoning mechanism will be described more thoroughly
in the next chapter and the rest of the book. Essentially, though, a schema
based reasoner uses its schemas to:

• react appropriately to unanticipated events, including opportuni-
ties and failures;

• focus attention on appropriate goals to achieve;
• select appropriate actions to take to achieve goals;
• ~et parameters that modulate the character of the agent's behav

IOr;
• allow commitment to some future actions while retaining the flex

ibility to change the details and to interrupt the plan;
• integrate the use of stereotypical ("canned") procedures, general

procedures, and "from-scratch" problem-solving methods;
• use memories of previous cases to help solve new problems (i.e.,

case-based reasoning); and
• learn from experience by adapting problem-solving knowledge to

meet the overall demands of its task and domain.

Schema-based reasoning is a computer model of adaptive reasoning. It is
not a cognitive model, although many of the insights which led to the model
and guided its development came from cognitive psychology. So far, work
has concentrated on developing that portion of the model concerning short
term adaptation, though long-term adaptation has been kept in mind and has
heavily impacted the way short-term adaptation is done.

1.3 Overview of the Book

The rest of the book presents schema-based reasoning (SBR) in much more
detail. Chapter 2 gives an overview of the schema-based reasoning process.
The next few chapters delve into aspects of the process in more detail: Chap
ter 3 looks at the knowledge representation needed to support SBR; Chapter 4
describes the attention-focusing process, which relies heavily on information
from contextual and strategic knowledge; Chapter 5 discusses how procedu
ral schemas are used to achieve goals; Chapter 6 looks at how contextual
and strategic knowledge is used to guide the agent as it responds to unantici
pated events; and Chapter 7 discusses a memory mechanism to support SBR.
Chapter 8 describes two implementations of SBR, MEDIC and Orca. Chap
ter 9 presents what is hopefully an objective evaluation of SBR and includes

8 Adaptive Reasoning for Real-World Problems

a. discussion of how our research fits in with related work in the AI literature.
Chapter 10 presents our conclusions and directions for future work.

Chapter 2

Schema-Based Reasoning

The basic idea of schema-based reasoning (SBR) is very simple: repre
sent most or all of an agent's problem-solving knowledge explicitly as declara
tive knowledge structures called schemas, then use those schemas to guide all
facets of the agent's behavior. The motivation is to allow a reasoning system
to capitalize on patterns existing in its world to quickly, automatically, and
appropriately tailor its behavior to its problem-solving situation.

Patterns exist both in the world around the agent and in problem solving
itself. An autonomous underwater vehicle, for example, will likely operate in
many similar environments: similar harbors, coastlines, and so on. Likewise,
it will again and again find itself in similar circumstances: on similar search or
exploration missions, operating when power is low, when there is time pressure,
and so on. Patterns in the agent's own problem solving develop over time as
the agent performs similar actions to accomplish similar goals; such patterns
have long been at least implicitly recognized in AI and represented as plans,
scripts, and rules.

We use schemas to represent patterns appearing (or potentially appear
ing) in the world as well as those that have been or that are projected to
be useful during problem solving. Currently, and realistically for the near
future, schemas are given to the agent by humans based on their expertise
or experience. Ultimately, however, schemas will be created and modified
by the agent using them based on its own experience and evolving expertise.
Schema-based reasoning is, then, a kind of generalized case-based reasoning
(e.g., Hammond, 1989a; Kolodner, 1987; Kolodner et a!., 1985) where gener
alized knowledge contained in schemas mostly supplants the records of single
cases of past problem solving used in more "mainstream" CBR.

Schema-based reasoning combines explicitly represented schemas with a
flexible reasoning mechanism to produce an adaptive, context-sensitive ap
proach to real-world problem solving. This chapter gives an overview of the
schema-based reasoning process. In the following chapters, aspects of the pro
cess are presented in more detail.

10 Adaptive Reasoning for Real-World Problems

2.1 Schemas

Schema-based reasoning uses three kinds of schemas, corresponding to
the three types of knowledge necessary for adaptive reasoning. A procedu
ral schema, or p-schema, is used for taking action, usually to achieve a goal.
P-schemas are in many ways similar to hierarchical plans or scripts (Culling
ford, 1981; Schank & Abelson, 1977) they are more general than either in
some respects. A p-schema specifies steps to take, each of which can be either
a primitive action (i.e., one the agent can directly carry out), a subgoal to be
achieved, or another p-schema. In the latter case, the p-schema (subschema)
can be specialized at run-time if needed to one that is more specific for the
current problem-solving situation. A contextual schema, or c-schema, repre
sents a problem-solving context or a portion of a context; c-schemas can be
viewed as representing generalized problem-solving episodes. They are used to
modulate an agent's behavior appropriately for its current situation, includ
ing its event-handling and attention-focusing behavior. A strategic schema,
or s-schema, represents a problem-solving strategy; whereas a c-schema rep
resents the domain-dependent aspects of a situation, an s-schema represents
the domain-independent aspects having to do with strategic behavior.

Figure 2.1 shows an example of each type of schema. The contextual
schema, c-harbor, is from the domain of Orca and represents the context of
being in a harbor. Note that in addition to describing the context, c-harbor
also provides information about how the agent should handle unanticipated
events, focus its attention, and select ways to achieve goals. Both the proce
dural schema, p-consult, and the strategic schema, s-HDreas, are from MEDIC.

P-consult is a very high-level p-schema that guides MEDIC during a consulta
tion. S-HDreas represents the hypothetico-deductive reasoning strategy used
by expert clinicians.

2.2 The Schema-Based Reasoning Process

Schema-based reasoning uses at its core a process that interprets, or ap
plies, p-schemas to take action, but that remains ready to respond to the
needs of the changing problem-solving situation. Added to this is functional
ity to take into account the agent's current context and strategy when handling
unanticipated events and focusing its attention so that its behavior is auto
matically appropriate for its problem-solving situation at all times. Figure 2.2
shows the SBR process.

Information from the current contextual and strategic schemas is used to
focus the reasoner's attention on one of its active goals, which is then pur
sued. A procedural schema is selected, using any information present in the

p-coosult: I
Actor: consultant
Goal: diagnose patient

Steps: initialize

c-barbor: I
Features:

actor: AUV

Schema-Based Reasoning 11

descriptor: "harbor" (.I)
water column depth: shallow (.7)

acoustic noise level: high (.S)
surface traffic: present (.7)
bottojn character: sloping (.3)

Standing orders:

get initial infonnation
check context & strategy
get infonnation

decrease top of depth envelope
decrease hoUom of depth envelope
obstacle avoidance active

Event informalioo:

catastrophic failure ==> land & release buoy
obstacle => 1ry going IUlder first

form diagnosis
accept feedback
update memory
present diagnosis

(A)

s-HDreas: I
Actors:

Attention focusing information:
don't pursue survival goals at expense of other vessels

don't prefer goals requiring surfacing

Action selection information:

goal=surface => schema to check for surface lraffic
goal=find-position => schema to use lransponder net,

other mechanisms aside from GPS (global pos. sys.)

(B)

consultant, experienced with this kind of problem

Event importance threshold: slight

Goal importances:

interpret-finding> evaluate hypothesis>
diagnose patient > ...

(C)

Figure 2.1: Examples of schemas: (A) a procedural schema; (B) a
contextual schema; and (C) a strategic schema.

contextual schema about appropriate ways to achieve the goal in the current
situation. The procedural schema is then applied, achieving the goal. The
process repeats until there are no more unsatisfied goals.

A schema-based medical consultant, for example, would proceed as follows.
After the client presents a sketch of the problem ("diagnose a patient"), the
consultant finds in its memory c-consult, a contextual schema representing the
context of "a consultation"; this c-schema is relevant because it is in such
contexts that one encounters the goal of diagnosing a patient's problem. Since
there are no abstract features (yet) in this problem-solving session to cause the
consultant to favor one strategy over another, a default strategy, perhaps sug
gested by c-consult, would be used. For an experienced consultant, this would
likely be s-HDreas (Figure 2.1c), hypothetico-deductive reasoning. There is

12 Adaptive Reasoning for Real-World Problems

done

Diagnose
Change

Event
Handler

Apply
P-schema ·-------------------------------

ENVIRONMENT

Figure 2.2: The schema-based reasoning process.

only one goal ("diagnose patient"), so that is selected. The consultant then
finds an appropriate p-schema using information from its current c-schema
along with its schema memory. In this case, it would likely find p-consult
(Figure 2.1a), a high-level p-schema that encodes knowledge of how to do con
sultations. This p-schema would then be applied by interpreting its steps to
take actions such as asking questions, making hypotheses, and presenting the
diagnosis.

Handling Changes

Since a schema-based reasoner is designed to operate in the real world, very
rarely if ever will it be able to apply a p-schema from start to finish without
some change occurring in the world that needs to be addressed. If nothing else,
the process of applying the schema will itself change the world sufficiently to
impact its further application. When a change occurs, the agent may need to
interrupt the application of the current p-schema while it decides what to do.
If the change is unimportant, it can resume application of the interrupted p
schema. If not, it may decide to respond to the change, possibly by activating
a new goal. In this case, or if the situation has otherwise changed sufficiently
due to the change, it must refocus its attention. The goal selected to pursue as

Schema-Based Reasoning 1:3

a result may be the same one, in which case the application of its associated
p-schema can be resumed (possibly after taking some additional actions to
compensate for the changed situation). Alternatively, the changed situation
may dictate selecting a different goal, either the newly activated one or one of
the others the agent needs to achieve. In this case, work on the original goal
is delayed until the situation changes to again warrant it.

As with everything else, when a change occurs, a schema-based reasoner
uses its schemas to decide what to do. Included in a c-schema is information
about events (changes) that may occur in the context represented. For ex
ample, c-harbor (Figure 2.1 b) describes the event of encountering an obstacle.
Some of this information can be used by the agent to diagnose the cause of
the event. For example, "motion stopped" is an unanticipated event, but one
that is symptomatic of other events; the agent must determine which of these
caused motion to be stopped in order to do the right thing in response.

Other information stored with the event description in the current c-schema
helps the agent decide whether or not the event is important and, if so, how to
respond. By storing the information here, the agent can automatically make
context-specific decisions about events, since the information is already avail
able for use without extensive search. For example, in the context of exploring
an area, the event of detecting an object is important (the agent may wish to
photograph the object or avoid it). In the context of docking with its support
vehicle, however, detecting an object is not as important (the object may be
the support vehicle, which obviously should not be avoided). The current s
schema also participates in deciding whether or not to respond to an event. An
s-schema has information about how reactive the agent should be when using
a particular strategy; for example, s-HDreas (Figure 2.1c) suggests that the
reasoner be very reactive by specifying a low "event importance threshold."

Once the agent has decided that an event is important in the current con
text and under the current strategy, it uses other information in its current
c-schema to help it decide how to respond. This information is in the form
of links between goals expected to arise in the context and actions that are
appropriate for them. For example, in the context of an A UV being in a
harbor (represented by c-harbor), an appropriate response for a catastrophic
failure is to land and release a buoy; surfacing here would risk getting run over
by surface traffic. In a different context, for example, operating in the open
ocean, surfacing may be the preferred response; in still other contexts, such
as operating under ice, still other responses would be needed. By using the
current c-schema to help it decide what to do, the agent can very quickly make
the right decision. This can be important in real-world problem solvers, since
delay can jeopardize the mission and possibly even the survival of the agent.

14 Adaptive Reasoning for Real-World Problems

Conditioning Behavior to the Context

Decisions take two forms: large ones having to do with such things as
deciding how to achieve goals and respond to unanticipated events, and small
ones having to do with modulating behavior. It is important that both kinds
of decisions be made as quickly and as appropriately as possible. A schema
based reasoner makes use of its knowledge of the current context and its current
strategy to automatically make the appropriate decisions.

We can think of contextual and strategic knowledge as conditioning the
reasoner's behavior for its current situation. One way the current c-schema
does this is by providing parameter settings, called "standing orders," that
affect aspects of the agent's behavior. For example, the standing orders in
the context of being in a harbor (c-harbor, Figure 2.1 b) specify tightening the
AUV's depth envelope to prevent hitting bottom clutter or being hit by surface
traffic. No deep reasoning needs to be done; instead, when the AUV enters the
context, it automatically tightens its depth envelope. The other way that the
current c-schema and s-schema condition behavior is by providing information
about how to focus attention, handle unanticipated events, and select actions
to use to achieve goals.

Along with the process described previously, a schema-based reasoner must
also ensure that its current view of its context and its current strategy are
appropriate for its problem-solving situation. The reasoner does this by con
stantly examining the current situation and using inforniation about it to
"probe" its schema memory to find the best c-schema(s) and s-schema-that
is, the ones that most closely match the current situation.

Generally, a reasoner will have only one strategy in use at a time. However,
it may find more than one c-schema that matches the current situation. This
is intentional. If the reasoner were to try to represent every possible context in
which it might find itself, the number of c-schemas needed would be too great
to store or retrieve. Instead, our approach is to represent views of contexts
as c-schemas, then allow these views to be combined into coherent pictures
of the reasoner's current context at run-time. (This is how Orca will work;
MEDIC uses a simpler scheme that will be described later.) For example, when
an AUV finds itself operating with low power on a search mission under ice, it
would retrieve from its memory c-schemas representing "low power," "search
mission," and "operating under ice." These would then be merged into its
current "c-schema," which is really a composite structure composed of several
component c-schemas. As the situation changes, some of these component c
schemas may no longer be apropos (e.g., the AUV may emerge from beneath
the ice), while new ones will be found (e.g., "operating in the open ocean");
when this happens, the reasoner's view of the current situation will change as
its context manager updates the current c-schema appropriately.

Schema-Based Reasoning 15

Schema Memory

A schema-based reasoner must store its schemas in such a way that they
can easily be retrieved based on features of the situation. To facilitate long
term adaptation, the schema repertoire must be capable of change, in terms
of both adding and changing schemas as well as changing the way they are
organized. Any schema memory that meets these requirements can be used
for a schema-based reasoner. The memory we use is a dynamic conceptual
memory (Schank, 1982) patterned after the CYRUS program (Kolodner, 1984).
This kind of memory will be discussed in more detail in Chapter 7.

2.3 Implementations of SBR

Throughout this book, we will use examples drawn from our two primary
implementations of schema-based reasoning, MEDIC and Orca. MEDIC is a
pulmonary consultant that was constructed at the Georgia Institute of Tech
nology. Orca is an A UV controller that is currently being designed and built at
the University of New Hampshire; Orca will ultimately be fielded on the North
eastern University Marine Systems Engineering Laboratory's EAVE AUVs.
The two programs are different in many respects, caused both by the differing
needs of their domains as well as by the fact that work on Orca is benefiting
from the lessons learned from MEDIC.

Both programs are more thoroughly discussed in Chapter 8. Here, we give
an example session with MEDIC to give the reader the flavor of what schema
based reasoning is like. A complete session with MEDIC is given in Appendix A.

MEDIC's behavior is constantly under the control of schemas. If no problem
is being solved, a procedural schema called p-resting is in control. Its purpose
is to gather enough information about a problem to allow MEDIC to begin
solving the problem. We see this p-schema being applied below:

[1]: Hi, I'm Medic.
[2]: What can I do for you?
[3]: (DIAGNOSE-PATIENT)
[4]: Looking for a c-schema containing '(-DIAGNOSE-PATIENT)' ...
[5]: ... found -c-CONSULT.
[6] : Selecting strategy ...
[7]: ... setting strategy from current c-schema to be -s-HDREAS.

Once a problem is presented (in the example by the client telling MEDIC to
diagnose a patient),1 MEDIC puts the particulars of the problem in its short
term memory (STM). It then tries to find a contextual schema representing

1 MEDIC has no natural language capabilities; the input to MEDIC is in a form close to
its internal representation scheme.

