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1
Reasoning, Abstraction, 
and the Prejudices of 
20th-century Psychology 

R. E. Nisbett 
University of Michigan 

Twentieth-century psychology has had a strong prejudice against abstrac
tion, that is, against the view that the world is understood by means of rules 
that transcend the perception of a particular physical stimulus or the 
comprehension of a domain of related events. In the United States, the 
prejudice has been bound up with behaviorism and its successor positions. 
Behaviorists were determined to find the equivalent of the reflex arc in 
physiology—stimulus-response linkages that could be described with preci
sion by a physical description of the stimulus, the response, and the 
conditions of their co-occurrence during learning. So complete was their 
dedication to such physical description that they felt confident that the 
study of animals could substitute for the study of humans in building a 
complete theory of behavior. 

Early in the 19th-century, the behaviorist E. L. Thorndike performed a 
series of experiments that satisfied two generations of American psycholo
gists that abstractions were not importantly involved in learning how to 
perform skilled tasks. He asked his subjects to perform a particular task for 
varying amounts of time (e.g., cancelling Os from a sentence, and then 
switched them to another task; cancelling adverbs from a sentence). He 
found that "transfer of training" effects were slight and unstable. Some
times he found that performance of the first task enhanced the second, 
sometimes that it made it more difficult, and, often, that it had no effect at 
all. One would, of course, assume that performance on the second task 
would be improved if subjects learned something general from performance 
of the first task. Since they so often failed to show improved training, 
Thorndike inferred that people don't, in fact, learn much that is general 

1 

Copyrighted Material 



2 NISBETT 

when performing mental tasks. This meant that training was going to be 
very much a bottom-up affair, consisting of little more than slogging 
through countless stimulus-response associations. 

This conclusion has suffused deeply into American psychology, cognitive 
science, and education. Newell (1980), based on some similar failed efforts 
to find training effects for reasoning tasks, has asserted that learned 
problem-solving skills generally are idiosyncratic to the task. Just as the 
earlier behaviorists took the evidence of weak transfer-of-training effects to 
buttress their case for the exclusive role of specific stimulus-response 
linkages, some modern cognitive scientists have used such evidence to 
support connectionism—the modern successor to behaviorism. To the 
connectionist, all learning is just a matter of adding strength values to an 
initially neutral "network" of highly specific elements. The connectionists 
have all the courage of the behaviorists' convictions—asserting that they can 
mimic the important details of learning and cognitive performance without 
the postulation of any rules whatever. 

Other trends of modern psychology are opposed to abstract rules, though 
not necessarily to rules of all kinds. Devotees of case-based reasoning 
approaches to problem solving hold that people do little more when solving 
problems than perceive similarities between old and new problems and 
occasionally apply strategies of analogy construction. Biological and evo
lutionary theories of cognition are sympathetic to the notion that people 
operate using rules of limited generality, but these are usually assumed to be 
limited to relatively tight domains. Thus there are rules, even prewired 
rules, for language, or for physical causality, or for particular types of 
social relations, but these are limited to particular content domains and 
would never be used for understanding events outside those domains. 

European psychology has never been so deeply antiabstractionist as 
American psychology. In fact, Jean Piaget, the European psychologist 
whose influence on world psychology has been greatest, explicitly endorsed 
the notion that there are abstract rules that guide thought and behavior. 
Piaget even thought that the very most abstract rules, those of formal logic, 
have their intuitive counterparts in the human cognitive repertoire. These 
rules, part of the equipment that Piaget called propositional operations, are 
used to acquire other, somewhat less abstract but still domain-independent 
rules in the course of development. These are the formal operations, which 
include the concept of proportionality, the notion that every action has a 
reaction, and what Piaget called the probability schema, but most people 
today would call the law of large numbers. Piaget believed that people 
possessed these highly abstract rules in a form in which they made contact 
with the most ordinary problems in everyday life. Indeed, many common 
problems could not be solved without the use of such rules, and it was the 
press of such requirements that pushed people toward their acquisition, by 
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1. REASONING PREJUDICES OF THE 20TH-CENTURY PSYCHOLOGY 3 

means of inductive procedures operating within the logical constraints of 
the propositional operations. 

Despite his endorsement of abstract rules for reasoning, Piaget was quite 
firm in his opinion that such rules could not be explicitly taught — certainly 
not by abstract or formal means. Such rules are the common equipment of 
every adult, and everyone acquires them by virtue of being the kind of 
organism that each human is and by virtue of living in the kind of world 
that each human does. Given our native equipment and the kind of 
experiences we are going to have, we perforce learn the abstract rules we are 
going to need for purposes of deductive and inductive inference. But such 
rules are learned only by an inductive process of self-discovery; the day of 
their acquisition cannot be hastened either by abstract instruction in the rule 
system or by a forced inductive march through specific problems. Nothing, 
not even an abstract rule, is learned by abstract or top-down training 
procedures. Nor is there any point in trying to fool Mother Nature by 
excessive drilling on concrete problems. No rule will be learned before the 
organism is ready for it and learning is inevitable once the organism is 
ready — so long as it is not kept in a closet. 

You will read Piaget in vain for any evidence for this extraordinarily 
influential theory of how rules for reasoning are learned. It was simply 
obvious to him that you cannot teach abstract rules of reasoning, and it 
became equally obvious to us largely because of his enormous prestige and 
persuasiveness. There are to be sure shreds of evidence available since 
Piaget's time that are consistent with his view: (a) solutions to the 
missionaries and cannibals problem do not generalize to formally identical 
problems; (b) accelerated learning of conservation of mass for clay does not 
seem to generalize to an understanding of conservation in general. And 
there remains Thorndike's work, showing that there can be little transfer of 
training even across tasks that require lower levels of cognitive skill than 
one would want to dignify with the term reasoning. 

But what if Piaget and, even more so, the American psychological 
tradition, were mistaken about abstractions? What if you actually could 
teach people highly abstract rules of reasoning — and even do so by highly 
abstract and therefore efficient means? What if such instruction resulted in 
people being able to apply those rule systems potentially to the full range of 
problems in everyday life for which they are relevant? How would we think 
about the human mind then? How would we think about education? 

This volume tries to answer those questions, coming up with some very 
surprising answers. Ten years ago, I held a version of the received views 
about reasoning. I was dubious that people had any abstract rules for 
reasoning and confident that even if they did, such rules could not be 
taught. Indeed, I had just completed 10 years of work that seemed to me to 
give substantial support to these views. I had worked on questions of 
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4 NISBETT 

reasoning about human social behavior, finding that people often violated 
the requirements of statistical, causal, and even logical rules of inference. 
This work was very much in the tradition of Kahneman and Tversky's 
research showing that people substitute simple judgmental heuristics for the 
more formal inferential rules that are necessary to solve the problems they 
gave their subjects. I believed not only that my subjects did not possess the 
necessary statistical rules, I believed that instruction in statistics resulted 
only in inserting a sterile set of formal rules that could make contact only 
with scientific problems or problems for which there existed some massive 
and probably ecologically uncommon cue triggering their use. 

With Geoffrey Fong and David Krantz, I began what I thought would be 
a swift program of work establishing these points, namely that instruction 
in statistics does very little toward helping people to solve everyday 
problems that require a statistical solution. My very first attempt to look at 
this question showed me that I was wrong (or should have showed me — 
actually I didn't believe the implications at first). Kahneman and Tversky 
(1972) had developed a clever problem to show subjects' statistical weak
nesses called the maternity ward problem. In this problem subjects are told 
that there is a town with two hospitals, one large and one small. At the large 
hospital, about 60 babies a day are born, and at the small hospital about 15. 
Subjects are then asked at which hospital they think there would be more 
days during the year in which 60% or more of the babies born would be 
boys. About one third of the undergraduates they studied believed it would 
be the larger hospital, about one third believed it would be the smaller, and 
about one third believed it would make no difference. The law of large 
numbers, of course, requires that it would be the smaller hospital, because 
deviant sample proportions are likely in inverse proportion to sample size. 
While teaching an upper level undergraduate class at the University of 
Michigan, I tried to duplicate these results in a classroom demonstration. 
To my surprise, most of the students got the problem right. I then asked 
students to indicate how much statistics they had had as well as their 
preferred answer. The results were clear-cut. The students who had had no 
statistics duplicated the pattern of the Kahneman and Tversky subjects, 
those who had had at least one course in statistics were unlikely to get the 
problem wrong. 

Subsequent work showed there was no anomaly here. Problems that 
Kahneman and Tversky had looked at, as well as problems with more social 
content of the kind I had looked at, turned out to be highly influenced by 
statistical training. This was true even for problems without obvious 
statistical clues. For example, one problem we gave subjects asked why 
someone who had an excellent meal in a restaurant might be likely to 
complain about a less good meal the next time around. Untrained under
graduates almost always gave purely deterministic answers such as "maybe 
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restaurants change their chefs a lot." But subjects who had had many 
courses in statistics usually gave statistical answers, such as "there are 
probably more restaurants where you can get an excellent meal some of the 
time than there are restaurants where you can get an excellent meal all the 
time, so a person who gets an excellent meal the first time has to assume it's 
likely that the next one won't be." 

We then began seeing whether you could teach such statistical reasoning 
in short training programs. We found to our surprise that even very brief 
interventions could produce fairly pronounced effects on the sorts of 
answers subjects would give to problems of the Kahneman and Tversky 
type. Indeed, purely abstract training, in which we defined the terms 
sample, population, parameter, and variance, and explained the relations 
among variability, N, and sample–parameter accuracy, even had an effect 
on solution of problems with purely social content. Moreover, training in a 
given domain, for example, training on problems concerning sports 
transferred fully to another domain, for example, problems concerning 
ability tests. In several studies, we found literally no advantage for the 
trained domain over other domains so long as testing was immediate. Such 
results are consistent with the view that people can operate with very 
abstract rules indeed, and that the techniques by which they learn them can 
be very abstract. Abstract improvements to the preexisting intuitive rule 
system are passed along to the full range of content domains where the 
rules are applicable, and improvements in a given domain are sufficiently 
abstracted so they can be applied immediately to a very different content 
domain. 

It is important to note that the sort of instructional effects we discovered 
in these studies are by no means limited to laboratory or academic settings. 
When subjects are contacted outside of such settings (e.g., in the context of 
an opinion poll), the trained subjects answer questions differently from the 
untrained. In one study, male college students who had either just begun or 
just finished their first statistics course were asked to participate in a poll on 
opinions about sports. After answering a number of questions about the 
National Collegiate Athletic Association rules and National Basketball 
Association salaries, they were reminded that the top batters in both 
baseball leagues typically have averages of .450 or higher at the end of the 
first two weeks of play, yet no one has ever finished the season with such a 
high average. The students were asked to explain why they thought this was 
the case. The students just beginning statistics nearly always responded with 
purely deterministic answers such as "the pitchers make the necessary 
adjustments." The students who had taken the course were twice as likely as 
novices to give a statistical answer, such as "two weeks isn't a very long 
time, so you get some atypically high (and low) averages; no one really has 
the ability to hit .450 over the long haul." 
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6 NISBETT 

Over the next 10 years, I pursued the implications of these findings on 
trainability with different sets of colleagues who were expert in particular 
rule systems, including the self-selection concept critical to control proce
dures in the social sciences, "pragmatic reasoning schemas" for contractual 
relations such as permission and obligation, rules for assessing causality, 
and the cost-benefit rules of microeconomic theory. The generalizations 
below hold for these rule systems taken as a group. All of the generaliza
tions have been tested on at least three different abstract rule systems; none 
are contradicted by any evidence I am aware of. 

1. People have intuitive versions of these formal rule systems that they 
apply to at least some problems in everyday life. We know this 
because they solve problems that require use of the rule systems, 
because they articulate the rule systems in justifying their solutions, 
and because instruction in the rule systems increases the correct 
solution of the problems. 

2. People at a given level of education, prior to formal instruction in 
a particular rule system, differ in the degree to which they 
understand the rule system and are able to apply it to solve concrete 
problems. Such individual differences are associated with verbal 
intelligence. 

3. Formal education beyond secondary school produces dramatic dif
ferences in people's use of different rule systems. It is no exagger
ation to say that people who have substantial knowledge of statistics, 
or of economics, view the world very differently from those who do 
not. All sorts of mundane problems are understood differently by 
people with differing levels of education in the relevant rule system. 

4. The rule systems are embodied at a level of abstraction equal to that 
posited by Piaget for the so-called formal operations. The absence 
of domain specificity is a striking observation across training 
studies, as is the ability of investigators to "insert" the rules by 
purely formal and abstract instructional means. 

5. Despite their abstract nature, the rules are not applied across all 
domains equally. The same student who has no trouble applying 
statistical rules to the behavior of random generating devices, such 
as dice, may apply statistical rules rarely or never to problems with 
social content. Problems differ a great deal in how transparent they 
are with respect to a rule system necessary for their solution. 

6. A consequence of people's differential ability to apply rules in 
different domains is that training in coding a given domain in terms 
of the rule can have dramatic effects – making it possible for people 
to apply a rule they already have to a new domain where previously 
it was unlikely for them to use the rule. 
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The upshot of these findings is that modern cognitive science and modern 
educational theory must accommodate themselves to the existence of 
abstract inferential rules. Psychological theories that hold that there are no 
rules, or no domain-independent rules, for problem solving, are not tenable 
in the light of the work presented in this book. Educational positions that 
emphasize self-discovery and maturation must make room for the general
ization that abstract techniques of instruction can be very powerful. 
Psychological and educational positions, as well as philosophical positions, 
that assume a universal adult competence with respect to reasoning must 
give way to the recognition that adult inferential competence is highly 
variable and highly dependent on educational history. 

The rest of the volume presents work making these points in detail. Some 
of the chapters have been published before and some were written especially 
for this volume. (Reference styles are not consistent across the different 
papers. We chose to leave the previously-published material in the same 
form in which it appeared originally, minus their abstracts.) 

Part I documents the existence of abstract, intuitive, and statistical rules. 
Chapter 2, by Nisbett, Krantz, Jepson and Kunda, shows that people 
without formal training in statistics solve problems using the law of large 
numbers and actually articulate the rule in justification of their answers. 
This chapter also shows that the presence of various cues about the partially 
random nature of the events in a given problem can dramatically affect the 
likelihood that people will apply the law of large numbers to the problem. 

Chapter 3, by Thagard and Nisbett, proposes a solution to Hume's riddle 
of induction, namely "Why is a single instance, in some cases, sufficient for 
a complete induction, whereas in others myriads of concurring instances, 
without a single exception known or presumed, go such a very little way 
towards establishing a universal proposition?" The solution lies in the law 
of large numbers, coupled with real world knowledge about the variability 
of kinds of objects with respect to kinds of properties. A "single instance is 
sufficient for a complete induction" when we take it for granted that objects 
of the kind in question are invariant with respect to properties of the kind 
observed. For example, observing the color of a sample of a new chemical 
element leaves us in little doubt about the color of future samples. Myriads 
of concurring instances do not convince when we take it for granted that the 
kind of object is highly variable with respect to the kind of property 
observed. For example, observing a bird in the rain forest that is green does 
not convince us that the next bird we see of the same type will be green 
because we do not assume invariability of color for bird types. 

Chapter 4 directly attacks the notion assumed by many philosophers and 
psychologists that there is a single human inferential competence. Some 
philosophers, notably Jonathan Cohen, have argued that empirical demon
strations of human inferential error are logically impossible since "Ordinary 

Copyrighted Material 



8 NISBETT 

human reasoning – by which I mean the reasoning of adults who have not 
been systematically educated in any branch of logic or probability theory – 
cannot be held to be faultily programmed: It sets its own standards" (1981, 
p. 317). One wonders why it is untutored reasoning that Cohen presumes to 
be correct rather than tutored reasoning, but even if one accepts that 
untutored reasoning gets the normative nod, the position is untenable on 
empirical grounds. Untutored people differ dramatically in their preferred 
solutions for concrete inferential problems and in the abstract rules for 
inference that they endorse. Even within a given culture, people differ so 
much that it is impossible to identify a single competence and establish it as 
a normative standard. 

Part II presents the evidence on alteration of statistical rules. It shows 
that both standard types of statistical training and various experimental 
versions can drastically change people's understanding of events character
ized by random or partially random determination. Both top–down, 
abstract training and bottom–up training within a given domain have 
widespread effects on reasoning. 

Parts III and IV of this volume address the question of whether people 
have abstract rules for deductive reasoning. More than 20 years ago, Wason 
and Johnson-Laird raised the possibility that people do not have deductive 
rules, at least not in a form that makes contact with everyday problems. 
They asked their subjects to perform a simple task. The subjects were 
shown four cards reading A, B, 4 and 7. Subjects were informed that the 
cards had letters on one side and numbers on the other and were directed to 
turn over as many cards, and only as many, as were necessary to find out 
whether the rule, "If a card has an A on one side, then it has a 4 on the 
other" is violated. Interpreting the "if-then" connective as the material 
conditional in standard logic, the correct answer in this example is to turn 
over the cards showing A and 7. The rule used in such problems is a 
conditional statement, "if p then q," and the relevant cases are p (because if 
p is the case it must be established that q is also the case) and not-q (because 
if it is not the case that q it must be established that it is also not the case 
that p). Fewer than 10% of college students can solve such problems. Yet, 
solving it merely requires the application of the material conditional – the 
cornerstone of standard logics. 

Over the past two decades, many people have tried their hand at resolving 
the so-called selection task conundrum. The one favored in this book 
follows the lead of Cheng and Holyoak (1985), who proposed that people 
probably make little if any use of the rules of formal logic, certainly not of 
modus tollens (which states the equivalence of "if p then q" to "if not-q then 
not-p" and which is required to solve the abstract version of the selection 
task problem). What people do have are "pragmatic reasoning schemas" – 
highly generalized, domain-independent, but not purely syntactic rule 
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1. REASONING PREJUDICES OF THE 20TH-CENTURY PSYCHOLOGY 9 

systems. Such schemas include Piaget's formal operations such as the 
probability schema or the law of large numbers and generalized rule systems 
for analyzing causality (Kelley 1972, 1973). Cheng and Holyoak (1985) and 
Cheng and her colleagues in the present volume have argued that similar 
pragmatic reasoning schemas govern contractual relations such as permis
sion and obligation. Thus the obligation schema ("if p occurs, one is obliged 
to do q") implies that one would have a violation in two of four possible 
cases: p occurs but q is not carried out and q is not carried out even though 
p occurred. These authors find that simply invoking the semantic notion of 
obligation allows people to solve with ease problems formally identical to 
the selection task. Moreover, formal instruction in how to solve contractual-
schema problems is highly effective while instruction in formal logic is of no 
use for such problems. 

The two chapters in Part IV try to extend the notion of pragmatic 
reasoning schemas to the case of rules for causality. Though Kelley 
proposed the existence of such schemas and many theorists have taken it for 
granted that they exist, rigorous evidence in support of such schemas has 
not been provided. Cheng and Nisbett (see Chap. 8) find some evidence that 
deductive reasoning about causal relations is influenced by pragmatic 
considerations concerning expectations about the relative probability of an 
effect given that a cause is or is not present. Morris and Nisbett (see chap. 
10) find that graduate instruction in psychology, which emphasizes assess
ment of causality, improves students' ability to reason deductively about 
causal relations. Instruction in other graduate fields has little or no effect on 
students' ability to reason about causal relations. This suggests that 
deductive rules specifically governing causal relations exist and can be 
formally taught. Taken together, the two sets of studies suggest that, when 
deductive reasoning centers on specifically causal relations, specifically 
causal rules are invoked. These rules are highly abstract, in that they are 
completely independent of domain, but they are not as abstract as the rules 
of formal logic which are indifferent not merely to type of entities under 
consideration but to type of relationship. 

Part V of this volume deals with rules for choice. Economists have long 
argued that all choice makes use of cost-benefit rules, which require people 
to assess values of possible outcomes as well as their probabilities, to note 
"opportunity costs" of their behavior (i.e., value lost by continuing a course 
of action rather than switching) and to ignore "sunk costs" (i.e., never to 
carry out some action simply because value has already been expended – 
tickets bought, etc.). Psychologists are of course quite predisposed to doubt 
the existence of such an abstract rule system. Moreover, many clever 
psychologists from Herbert Simon to Kahneman and Tversky have found it 
easy to show that people's choices often depart grossly from those that 
would be dictated by an application of cost-benefit rules. 
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10 NISBETT 

Nevertheless, I present evidence here that people do possess a version of 
cost-benefit rules. It is just that, as with the law of large numbers, the rule 
system they possess merely overlaps with the formal, prescriptive one and is 
not identical to it. Indeed, people can be shown to endorse, and even to 
articulate spontaneously, a choice rule that is diametrically opposed to the 
sunk-cost rule. However, as with the other pragmatically useful rule systems 
discussed in this volume, cost-benefit rules can be taught. When they are, 
people subsequently reason differently about a huge range of choice prob
lems. Economists make different choices than do biologists, undergraduates 
who have taken a course in economics reason differently than do those who 
have not, and even a brief session of teaching the sunk-cost rule causes people 
to make very different choices than those who have not had such training. 

Part V also presents evidence that people are better off using the micro-
economic rules of choice, a claim made from the beginning by economists 
but never tested by them. Professors who are more likely to apply the 
microeconomic rules of choice in their daily lives make more money than 
those who are less likely to apply them. I believe this is the case because sound 
choice principles make people more effective in their work, which is recog
nized by their higher salaries. Similarly, college students who are more likely 
to apply the microeconomic rules of choice have higher grade point averages 
than those who are less likely to apply them. This is not the case simply 
because brighter students are both more likely to know and use the rules and 
to get higher grade point averages. The relation between rule use and Grade 
Point Average is actually higher when intelligence (verbal Scholastic Apti
tude Test) is partialled out of the relationship. Use of the microeconomic 
rules is thus associated with overachievement. 

Part VI spells out the implications of the research for higher education. 
Twenty-five hundred years ago, Plato enunciated the educational doctrine 
that held sway in the west until this century. This was the view that 
instruction in formal rule systems improved people's ability to reason. 
"Even the dull," he said, "if they have had an arithmetical training . . . 
always become much quicker than they would otherwise have been" (cited 
in Jowett, 1875, p. 785). The Romans added the study of grammar to the 
study of arithmetic and geometry; the medieval scholastics added the 
syllogism and the humanists added the study of Latin and Greek, and this 
formed the core of the curriculum until well into the nineteenth century. 
The rationale was Plato's "formal discipline" theory: The study of abstract 
rules improves reasoning. 

The first policy victory of modern psychology was to destroy the 
intellectual basis for the classical curriculum. William James mocked the 
theory as recommending mere exercise for the nonexistent "muscles of the 
mind." Thorndike's transfer-of-training findings provided all the empirical 
evidence that was needed against the notion that teaching one kind of rule 
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in one kind of context with one kind of material could have the slightest 
effect in another context with another kind of material (and probably a 
different rule to boot). 

The critique was entirely successful, and deserved to be. Learning Latin, 
in fact, probably does nothing for reasoning, arithmetic probably does 
nothing for any mental operations except the purely arithmetical, and even 
training in syllogisms probably does little good. Bertrand Russell (1960) had 
this to say of the syllogism: 

The inferences that we actually make in daily life differ from those of 
syllogistic logic in two respects, namely, that they are important and 
precarious, instead of being trivial and safe. The syllogism may be regarded as 
a monument to academic timidity: if an inference might be wrong, it was 
dangerous to draw it. So the medieval monks, in their thinking as in their 
lives, sought safety at the expense of fertility. (p. 83) 

So the behaviorists probably were throwing out bathwater when they 
insisted that there was no general inferential benefit of much consequence 
from study of the classical curriculum. But there was also a baby in that 
bathwater, a baby unknown to pedagogues of yore, from Plato onward, but 
a baby nonetheless. That baby was the set of all pragmatically useful 
inferential rule systems whose use can be increased by explicit instruction. 
What rules are in that set? We don't know them all yet, but we can certainly 
identify some: the law of large numbers, the confounded-variable principle, 
causal schemas, social contract schemas, and cost-benefit rules of choice. 

What we know about this list of rules is fairly impressive and more than 
justifies their inclusion in the curriculum: 

1. People can make better inferences if they know these rules than if 
they don't. 

2. Some people have a better grasp of each of these rules than others. 
3. Everyone's grasp of these rules can be improved by instruction. 

Different graduate courses, and even different undergraduate 
majors, emphasize certain of these rule systems, and change 
students' inferential behavior differentially. 

4. The instruction can be relatively economical. Perhaps precisely 
because of the abstract nature of these rules, abstract instruction is 
effective by itself. 

5. Notwithstanding their abstract nature, the rules can be made more 
accessible by teaching examples of their use, and especially by 
teaching people how to decode the world in ways that make it more 
accessible to the rule system. 

6. We can do a much better job of teaching these rule systems than we 
do. 
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Statistics is taught to most people, in most courses, as if the instructor were 
determined to prevent its escape from the narrow world of formal data 
analysis. Examples are restricted if at all possible to IQ tests and agricultural 
plots. To a greater or lesser extent, the same is true of most of the other 
pragmatically useful rule systems; when they are taught at all they are taught 
with little imagination or sense of conviction about their general relevance. 
I believe that we have only begun to scratch the surface both of the number 
of pragmatically useful rule systems that can be taught and the means by 
which they can be most effectively taught. 

Finally, Part VII brings home the relevance of the work to the field of 
cognitive science. In a word, it is a mistake, at this date, to try to found a 
theory of mental life on mere associations or connections between concretely-
defined elements. Organisms make use of rules of some generality; humans 
at least make use of highly abstract rules that are completely independent of 
any particular domain of events. Beyond that, new rules are incorporated 
gracefully into pre-existing systems of rules, something that is difficult to 
achieve even with most rule-based artificial-intelligence models, especially 
when, as this book shows to be empirically the case, those rules are inserted 
from the top rather than "grown" from the bottom. Holland, Holyoak, 
Nisbett, and Thagard (1986) presented a sketch of a system that gracefully 
accepts new rules. Somewhat ironically, the systems return to old devices of 
reinforcement characteristic of behaviorist models in attempting to account 
for rule modification. Whether this is the best route to go, I don't pretend 
to know. But any artificial intelligence model that purports to rest on a 
realistic theory of mind will have to deal with the facts presented in this 
book: highly general rules exist, and can even be inserted in top–down and 
highly abstract fashion. 
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It can be argued that inductive reasoning is our most important and 
ubiquitous problem-solving activity. Concept formation, generalization 
from instances, and prediction are all examples of inductive reasoning, that 
is, of passing from particular propositions to more general ones or of 
passing from particular propositions to other particular propositions via 
more general ones. 

Inductive reasoning, to be correct, must satisfy certain statistical princi
ples. Concepts should be discerned and applied with more confidence when 
they apply to a narrow range of clearly defined objects than when they apply 
to a broad range of diverse and loosely defined objects that can be confused 
with objects to which the concept does not apply. Generalizations should be 
more confident when they are based on a larger number of instances, when 
the instances are an unbiased sample, and when the instances in question 
concern events of low variability rather than high variability. Predictions 
should be more confident when there is high correlation between the di
mensions for which information is available and the dimensions about which 
the prediction is made, and, failing such a correlation, predictions should rely 
on the base rate or prior distribution for the events to be predicted. 

Because inductive reasoning tasks are so basic, it is disturbing to learn 
that the heuristics people use in such tasks do not respect the required 
statistical principles. The seminal work of Kahneman and Tversky has 
shown that this is so and, also, that people consequently overlook statistical 
variables such as sample size, correlation, and base rate when they solve 
inductive reasoning problems. (See surveys by Einhorn & Hogarth, 1981; 
Hogarth, 1980; Kahneman, Slovic, & Tversky, 1982; Nisbett & Ross, 1980.) 

15 
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The above research on nonstatistical heuristics has been criticized on 
several grounds. Some critics have maintained that evolution should be 
expected to produce highly efficacious and generally correct principles of 
reasoning and that the research may therefore be misleading in some way 
(Cohen, 1979; Dennett, 1978, 1981, Note 1; Lycan, 1981). Others have 
maintained that the research does not demonstrate that people fail to apply 
correct inferential rules but rather that (a) it is the researchers themselves 
who are mistaken about the correct inferential rules (Cohen, 1981), (b) 
subjects have been misled by illusionary circumstances of little general 
significance beyond the laboratory (Cohen, 1981; Lopes, 1982; Dennett, 
Note 1), or (c) people's general inferential goals are such that at least some 
violations of statistical principles should be regarded as a form of satisfi-
cing, or cost-effective inferential shortcuts (Einhorn & Hogarth, 1981; 
Miller & Cantor, 1982; Nisbett & Ross, 1980). 

We offer a different perspective on the incorporation of statistical 
principles into inductive reasoning, one that rejects the preceding criticisms 
but is, at the same time, fairly sanguine about people's statistical reasoning. 
Workers in the Kahneman and Tversky tradition have focused primarily on 
(a) establishing that people fail to respond to important statistical variables 
for a wide range of problems and (b) examining the inferential principles 
that people seem to rely on in solving such problems. There has been no 
comparable systematic effort to determine whether people do respond to 
statistical variables, either for problems that are easier than those examined 
to date or for problems of a different kind than those examined. 

If it could be shown that people sometimes do reason using explicitly 
statistical principles, then the work to date on inductive reasoning, and the 
criticism of that work, would be cast in a different light. Rather than asking 
why the failures occur or whether the failures are real, it would seem more 
fruitful to ask questions such as the following. What factors encourage 
statistical reasoning and what factors discourage it? For what kinds of 
events and for what kinds of problems is statistical reasoning most likely to 
be used? Does purely formal training modify the untutored heuristics of 
everyday inductive reasoning? In addition, accusations that the work to 
date rests on a kind of experimental sleight of hand or that people are 
deliberately and advisedly setting aside statistical principles in favor of 
quicker and generally satisfactory procedures would seem less plausible. 
Instead, it would seem more likely that there are just difficulties – 
surprisingly severe difficulties to be sure, but difficulties merely – in peo
ple's use of statistical principles for inductive reasoning. 

In this article we first summarize the recent work establishing failures to 
reason statistically. We then review anecdotal and experimental evidence 
indicating that people do sometimes reason statistically. Next we present 
original experimental work indicating some of the factors that influence 
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statistical reasoning. Then we summarize research suggesting that people's 
ability to reason statistically about everyday life problems is affected by 
training in formal statistics. Finally, we speculate on the normative 
implications of people's ability and trainability for statistical reasoning. 

STATISTICAL PROBLEMS AND NONSTATISTICAL 
HEURISTICS 

In a succession of studies over the past decade, Kahneman and Tversky 
have shown that much inductive reasoning is nonstatistical. People often 
solve inductive problems by use of a variety of intuitive heuristics – rapid 
and more or less automatic judgmental rules of thumb. These include the 
representativeness heuristic (Kahneman & Tversky, 1972, 1973), the avail
ability heuristic (Tversky & Kahneman, 1973), the anchoring heuristic 
(Tversky & Kahneman, 1974), and the simulation heuristic (Kahneman & 
Tversky, 1982). In problems where these heuristics diverge from the correct 
statistical approach, people commit serious errors of inference. 

The representativeness heuristic is the best studied and probably the most 
important of the heuristics. People often rely on this heuristic when making 
likelihood judgments, for example, the likelihood that Object A belongs to 
Class B or the likelihood that Event A originates from Process B. Use of the 
heuristic entails basing such judgments on "the degree to which A is 
representative of B, that is, by the degree to which A resembles B" (Tversky 
& Kahneman, 1974, p. 1124). In one problem, for example, Kahneman and 
Tversky (1972) asked subjects whether days with 60% or more male births 
would be more common at a hospital with 15 births per day, or at a hospital 
with 45 births per day, or equally common at the two hospitals. Most 
subjects chose the latter alternative, and the remainder divided about evenly 
between 15 and 45. The law of large numbers requires that, with a random 
variable such as sex of infant, deviant sample percentages should be less 
common as sample size increases. The representativeness heuristic, how
ever, leads subjects to compare the similarities of the two sample propor
tions to the presumed population proportion (50%); because the two 
sample proportions equally resemble the population proportion, they are 
deemed equally likely. The data indicate that, for this problem at least, 
most subjects used the representativeness heuristic and very few subjects 
used the law of large numbers. 

In another demonstration, Kahneman and Tversky (1973) studied the 
prediction of an outcome for a target person based on various characteris
tics of that person or based on scores from various predictor tests. Subjects 
used the representativeness heuristic: In general, they predicted whichever 
outcome was most similar to the target person's characteristics or scores. 
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For instance, in predicting the grade point average (GPA) for a target 
person who is in the 90th percentile on a predictor test, about the same 
results are obtained – that is, prediction of a GPA well above average – 
whether the predictor is the score on a test of sense of humor (which 
subjects do not regard as very diagnostic of GPA), the score on a test of 
mental concentration, or the GPA itself (!). Such predictions diverge from 
those that would be obtained from statistical considerations in which the 
average accuracy of prediction would be taken into account. Subjects do 
not seem to realize that if accuracy is very limited, then it is far more 
probable that the target person's outcome will be equal to the modal 
outcome (or near the mean of the unimodal symmetric distribution) than 
that it will take some relatively unusual value that happens to match the 
characteristics on the predictor. This is the statistical principle of regression 
to the mean, or base rate. 

Other investigations have confirmed and expanded the list of statistical 
failings documented by Kahneman and Tversky. The failings seem partic
ularly clear and particularly important in people's reasoning about social 
behavior. Nisbett and Borgida (1975), for example, showed that consensus 
information, that is, base rate information about the behavior of a sample 
of people in a given situation, often has little effect on subjects' attributions 
about the causes of a particular target individual's behavior. When told that 
most people behaved in the same way as the target, subjects shift little or 
not at all in the direction of assuming that it was situational forces, rather 
than the target's personal dispositions or traits, that explain the target's 
behavior. In a typical experiment, Nisbett and Borgida (1975) told subjects 
about a study in which participants heard someone (whom the participants 
believed to be in a nearby room) having what seemed to be an epileptic 
seizure. Subjects' predictions about whether a particular participant would 
quickly help the "victim" were unaffected by the knowledge that most 
participants never helped or helped only after a long delay. Similarly, 
subjects' causal attributions about the behavior of a participant who never 
helped the "victim" were unaffected by consensus information. Subjects 
were just as likely to say that the participant's personality was responsible 
for his behavior when they knew that most other participants were similarly 
unhelpful as when they assumed that most other participants helped with 
alacrity. 

Nisbett and Ross (1980) maintained that people fail to apply necessary 
statistical principles to a very wide range of social judgments. They claimed 
that people often make overconfident judgments about others based on 
small and unreliable amounts of information; they are often insensitive to 
the possibility that their samples of information about people may be highly 
biased; they are often poor at judging covariation between events of 
different classes (e.g., "Are redheads hot-tempered?"); and both their 
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causal explanations for social events and their predictions of social out
comes are often little influenced by regression or base rate considerations. 

STATISTICAL HEURISTICS 

Selective Application of Statistical Reasoning 

The foregoing work indicates that nonstatistical heuristics play an impor
tant role in inductive reasoning. But it does not establish that other 
heuristics, based on statistical concepts, are absent from people's judg
mental repertoire. And indeed, if one begins to look for cases of good 
statistical intuitions in everyday problems, it is not hard to find some 
plausible candidates. 

Even when judgments are based on the representativeness heuristic, there 
may be an underlying stratum of probabilistic thinking. In many of the 
problems studied by Kahneman and Tversky, people probably conceive of 
the underlying process as random, but they lack a means of making use of 
their intuitions about randomness and they fall back on representativeness. 
In the maternity ward problem, for example, people surely believe that the 
number of boys born on any particular day is a matter of chance, even 
though they rely on representativeness to generate their subjective sampling 
distributions. But consider the following thought experiment: If someone 
says, "I can't understand it; I have nine grandchildren and all of them are 
boys," the statement sounds quite sensible. The hearer is likely to agree that 
a causal explanation seems to be called for. On the other hand, imagine that 
the speaker says, "I can't understand it; I have three grandchildren and all 
of them are boys." Such a statement sounds peculiar, to say the least, 
because it seems transparent that such a result could be due just to chance – 
that is, there is nothing to understand. Such an intuition is properly 
regarded as statistical in our view. 

The contrast between the statistical intuition in our anecdote and 
subjects' use of the representativeness heuristic in the maternity ward 
problem illustrates the selectivity with which people apply statistical 
concepts. The failure to do so in the maternity ward problem may be due to 
the use of "60%" in the problem, which evokes comparison between 60% 
and 50% and thence the dependence on the similarity judgment in choosing 
an answer. It may also be due to lack of concrete experience in thinking 
about samples in the range 15–45. As Piaget and Inhelder (1951/1975) put 
it, people seem to have an intuitive grasp of the "law of small large 
numbers," even though they may not generalize the intuition to large 
numbers. 

People also seem to have an ability to use base rates for selected kinds of 
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problems. Consider the concepts of easy and difficult examinations. People 
do not infer that a student is brilliant who received an A + on an exam in 
which no one scored below A – nor that the student is in trouble who 
flunked a test that was also failed by 75% of the class. Rather, they convert 
the base rate information (performance of the class as a whole) into a 
location parameter for the examination (easy, . . ., difficult) and make 
their inference about the particular student in terms of the student's relative 
position compared to the difficulty of the exam. Indeed, laboratory 
evidence has been available for some time that base rates are readily utilized 
for causal attributions for many kinds of abilities and achievements (Weiner 
et al. 1972). 

As Nisbett and Ross (1980) suggested, one suspects that many lay 
concepts and maxims reflect an appreciation of statistical principles. It 
seems possible, for example, that people sometimes overcome sample bias 
by applying proverbs such as "Don't judge a book by its cover" or "All that 
glitters is not gold." Perhaps people sometimes even manage to be regressive 
in everyday predictions by using concepts such as "beginner's luck" or 
"nowhere to go but up/down." 

There is one inductive reasoning task in particular for which there is good 
reason to suspect that statistical intuitions are very frequently applied. This 
is generalization from instances – perhaps the simplest and most pervasive 
of everyday inductive tasks. People surely recognize, in many contexts at 
least, that when moving from particular observations to general proposi
tions, more evidence is better than less. The preference for more evidence 
seems well understood as being due to an intuitive appreciation of the law 
of large numbers. For example, we think that most people would prefer to 
hold a 20-minute interview rather than a 5-minute interview with a 
prospective employee and that if questioned they would justify this 
preference by saying that 5 minutes is too short a period to get an accurate 
idea of what the job candidate is like. That is, they believe that there is a 
greater chance of substantial error with the smaller sample. Similarly, most 
people would believe the result of a survey of 100 people more than they 
would believe that of a survey of 10 people; again, their reason would be 
based on the law of large numbers. 

As we shall see, there is reason to believe that people's statistical 
understanding of the generalization task is deeper still. People understand, 
at least in some contexts, that the law of large numbers must be taken into 
account to the degree that the events in question are uncertain and variable 
in a statistical sense. Thus they realize that some classes of events are very 
heterogeneous; that is, the events differ from one another, or from one 
occasion to another, in ways that are unpredictable, and it is these classes of 
events for which a large sample is particularly essential. 
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Randomizing Devices and the Ontogeny of 
Statistical Reasoning 

Where do people's selective statistical intuitions come from? An extremely 
important series of studies by Piaget and Inhelder (1951/1975) suggests that 
the intuitions may arise in part from people's understanding of the behavior 
of random generating devices. Statistical reasoning is of course very 
commonly applied in our culture to the behavior of such mechanisms. 
Piaget and Inhelder showed that statistical intuitions about random devices 
develop at an early age. They conducted experiments in which children were 
shown various random generating devices and then were asked questions 
about them. The devices included different-colored marbles on a tilt board, 
coin tosses, card draws, a spinner, and balls dropped through a funnel into 
a box with a varying number of slots. Children were shown the operation of 
these devices and then were asked to predict outcomes of the next operation 
or set of operations and to explain why particular outcomes had occurred or 
could or could not occur. The work showed that even children less than 10 
years old used the concept of chance and understood the importance of 
sequences of repeated trials. 

In one study, for example, Piaget and Inhelder (1951/1975) spun a pointer 
that could stop on one of eight different-colored locations. The young 
children they studied (in general, those less than 7 years old) did not initially 
recognize their complete inability to predict the pointer's stopping place. 

He knows quite well that he is not likely to be able to predict the color on 
which the bar will stop, but he does believe in the legitimacy of such a 
prediction and tries to guess the result. . . . The child oscillates quickly 
between two solutions. . . . Either the bar will have the tendency to come 
back to a color on which it has already stopped, or it will, on the contrary, 
stop on the colors not yet touched (p. 61). 

At this stage the children did not recognize the equivalent chances of the 
various stopping places, and when the pointer was made to stop at one color 
repeatedly (by using a magnet) they found nothing unusual in this. A 
satisfactory causal explanation usually was forthcoming: for example, "the 
pointer got tired." 

By around the age of 7, the Piaget and Inhelder subjects began to 
understand the chance nature of the pointer's behavior. After a few 
demonstrations, they quickly came to doubt the predictability of single 
trials and came to see the distribution of possibilities and their equivalence. 
Between the ages of 7 and 10, their subjects came to understand the 
importance of repeated trials and long run outcomes. 
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E: If I spun it ten or twenty times, could there be one color at which it never 
stopped? 

S: (age 7): Yes, that could happen. That would happen more often if we did 
it only ten times rather than twenty (p. 75). 

E: Will it hit all the colors or not? 
S: (age 10 years, 7 months): It depends on how long we spin it. 
E: Why? 
S: Because if we spin it often, it will have more chances of going everywhere 

(p. 89). 

How does the child come to have an understanding of the concept of 
chance during this period? Piaget and Inhelder argue that the child's un
derstanding of uncertainty grows out of the child's understanding of physical 
causality. To the very young child with little understanding of the causal 
mechanisms that produce outcomes in a physical system, every outcome is 
a "miracle"– that is, unanticipated – and, paradoxically, once the outcome 
has occurred, the child believes that it can be explained. As the child comes 
to understand, in terms of concrete operations, the causal mechanisms that 
produce outcomes, the child begins to recognize which sorts of outcomes are 
predictable (and explainable) and which are not. The outcomes that are not 
predictable are gradually understood to obey certain non-causal rules. In 
particular, the child comes to recognize some cases of the law of large 
numbers, for example, that the likelihood of any given outcome occurring 
is greater with a large number of trials than with a smaller number. 

By the age of 11 or so, many children have – in addition to a clear 
conception both of fully deterministic systems and of random generating 
devices – a good understanding of non-uniform probability distributions. 
These are partially random systems in which causal factors are at work 
making some of the possible outcomes more likely than others. The child 
comes to learn that even though individual events are uncertain in such a 
system, aggregate events may be highly predictable. In such a probabilistic 
system, the child grasps the relevance to prediction of the base rate, that is, 
the distribution and relative frequency of the various outcomes. 

This latter point is well illustrated by children's understanding of a device 
that allows balls to be dropped through a hole into one of a number of slots 
or bins beneath. Here the chances of a ball dropping into one slot versus 
another can be made quite unequal by the physical set-up. It is easy to build 
the device, for example, so that most balls drop into middle bins and fewer 
drop in the side bins, generating a crude bell curve. Children under 7 
generally fail to use this distribution as a basis of prediction. Although they 
slowly come to recognize that central positions will collect more balls than 
peripheral ones, they cannot generalize this fact from a box with a 
particular number of slots to another box with a different number; they do 
not expect symmetry between slots that are equidistant from the center; and 
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they do not recognize the role of the law of large numbers in making the 
central slots particularly favored over a long series of trials. All of these 
intuitions, in contrast, come easily to many 12-year-olds. 

We may speculate that the older child's statistical conceptualization of the 
behavior of randomizing devices serves as the basis for a similar concep
tualization of other kinds of events that may be seen as variable and 
uncertain. We discuss later just what characterizes events where an analogy 
to randomizing devices can be seen versus those where it cannot be seen. 

The Intellectual History of Statistical Reasoning 

The cultural history of statistical reasoning appears to parallel in some 
interesting respects the developmental course described by Piaget and 
Inhelder (1951/1975). This history has been traced by Hacking in his book 
The Emergence of Probability (1975). Hacking points out that although 
random generating devices have been used at least since Biblical times, the 
modern concept of probability was invented rather suddenly in the 17th 
century. This was true despite the popularity of games of chance in 
antiquity and the existence of sophisticated mathematics. (Hacking notes 
that someone with only a modest knowledge of modern probability could 
have won all Gaul in a week!) 

Paradoxically, the major factor underlying the sudden emergence of the 
modern concept of probability was the change to a deterministic under
standing of the physical world. In the Renaissance, the task of science was 
understood not primarily as a search for the causal factors influencing 
events but as a search for signs as to the meaning of events. These signs were 
clues and portents strewn about by the benign Author of the Universe. This 
sort of understanding of events encouraged a heavy reliance on the 
representativeness heuristic. The Renaissance physician, for example, ad
hered to the doctrine of signatures. This was the "belief that every natural 
substance which possesses any medicinal virtue indicates by an obvious and 
well-marked external character the disease for which it is a remedy, or the 
object for which it should be employed" (John Paris, cited in Mill, 
1843/1974, p. 766). The representativeness heuristic thus could be derived 
as a rule of inference from the principle that the Author of the Universe 
wanted to be helpful in our attempts to understand the world. 

A quite different way of understanding events became predominant in the 
17th century. This was a new "mechanistic attitude toward causation" 
(Hacking, 1975, p. 3). Just as the development of concrete operations helps 
the child to recognize the irreducible ignorance and uncertainty that is left 
as a residue after causal analysis of a randomizing device, so the new 
attitude toward causation helped 17th century scientists appreciate the 
nature of uncertainty in probabilistic systems. "Far from the 'mechanical' 
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determinism precluding an investigation of chance, it was its accompani
ment . . . this specific mode of determinism is essential to the formation of 
concepts of chance and probability" (Hacking, 1975, p. 3). 

Summary 

In short, there is good reason to believe that people possess statistical heu
ristics – intuitive, rule-of-thumb inferential procedures that resemble formal 
statistical procedures. People apply these heuristics to the behavior of ran
dom generating devices at a fairly early age. The formal understanding of 
statistical principles – that is, of the rules governing the behavior of ran
domizing devices – increases at least until adolescence. The use of such 
heuristics, both individually and culturally, seems related to the growth of 
causal understanding of the physical world and to attempts to extend this 
causal understanding, by analogy, to wider domains. Although we know 
little at present of the growth in the child's or adolescent's ability to apply 
statistical heuristics to events other than those produced by randomizing 
devices, it seems clear that such growth does take place. Adults who are 
untutored in formal statistics seem to reason statistically about a number of 
events other than those produced by randomizing machines – such as per
formance on tests, sports, weather, and accident and death risks. In addition, 
it is hard to imagine that people could conduct the most basic of inferential 
tasks, namely, generalization from instances, without the application of at 
least a rudimentary version of a law-of-large-numbers heuristic. 

FACTORS THAT AFFECT STATISTICAL REASONING 

Despite ontogenetic and historical growth in the ability to reason statisti
cally, contemporary adults do not reason statistically about a wide range of 
problems and event domains that require such reasoning, and they often do 
not do so even if they have substantial training in formal statistics (Tversky 
& Kahneman, 1971). Why is this? What factors make it difficult to apply 
statistical heuristics when these are required, and what factors can make it 
easier? Three factors that seem important are implicit in the preceding 
discussion. 

Clarity of the Sample Space and the 
Sampling Process 

Randomizing devices are usually designed so that the sample space for a 
single trial is obvious and so that the repeatability of trials is salient. The die 
has six faces and can be tossed again and again; the pointer can stop on any 
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of eight sectors and can be spun over and over. Clarity of sample space makes 
it easier to see what knowledge is relevant. For randomizing devices, the most 
relevant knowledge is often just the observation of symmetry of the different 
die faces, spinner sectors, and so forth. The salience of repeatability makes 
it easier to conceptualize one's observations as a sample. 

In the social domain, sample spaces are often obscure, and repeatability 
is hard to imagine. For example, the sample space consisting of different 
degrees of helpfulness that might be displayed by a particular person in a 
particular situation is quite obscure, and the notion of repetition is strained. 
What is it that could be repeated? Placing the same person in different 
situations? Or other people in the same situation? The probability that 
Person P will exhibit Behavior B in Situation S is abstract and not part of 
the inductive repertoire of most people most of the time. Even though 
people recognize the possibility of errors in their judgments of social 
situations, they do not try to construct probability models; rather, they rely 
on the representativeness heuristic. 

Recognition of the Operation of Chance Factors 

A second major factor encouraging the use of statistical heuristics is the 
recognition of the role of chance in producing events in a given domain or 
in a particular situation. We have already seen how Piaget and Inhelder 
(1951/1975) describe the recognition of chance in the operation of random
izing devices. The child comes to recognize the limitations of causal analysis 
for a spinner and the consequent residual uncertainty about the production 
of events. Something like the same transparent indeterminism exists for 
other sorts of events as well, even those involving human beings. For 
example, statistical understanding of some types of sports is undoubtedly 
facilitated by the manifestly random component in the movement of the 
objects employed: "A football can take funny bounces." The random 
component probably does not have to be physical in order for people to 
recognize it. It is possible to recognize the unpredictability of academic test 
performance by repeated observations of one's own outcomes. Even with 
one's own efforts and the group against which one is competing held 
constant, outcomes can vary. One may even recognize that one's perfor
mance on particular occasions was particularly good or poor because of 
accidents: "I just happened to reread that section because Jill never called 
me back"; "It was very noisy in the study area that night so I didn't get a 
chance to review my notes." 

In contrast, cues as to randomness in the production of events are much 
subtler for other kinds of events, especially for many social ones. When we 
interview someone, what signs would let us know that a particular topic got 
explored just by chance or that the person seems dour and lackluster 
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because of an uncharacteristic attempt to appear dignified rather than 
because of a phlegmatic disposition? In addition, as Einhorn and Hogarth 
(1978) have pointed out, the gatekeeping function of the interview may 
serve to prevent us from recognizing the error variance in our judgments: 
The great talent of some people not hired or admitted may never be 
observed. Daniel Kahneman (Note 2) has suggested to us that the "interview 
illusion" exists in part because we expect that brief encounters with a living, 
breathing person ought to provide a "hologram" of that person rather than 
merely a sample of the person's attributes and behaviors. In most situations, 
cues as to the fact that an interview ought to be regarded as a sample from 
a population, rather than a portrait in miniature, are missing. The same 
may be true for visits to a city, country, or university. One of us long 
believed that reports of raininess in England were greatly exaggerated 
because he once stayed in London for 10 days and it only drizzled twice! 

Cultural Prescriptions 

A third factor that may contribute to the use of statistical heuristics is a 
cultural or subcultural prescription to reason statistically about events of a 
given kind. Although Piaget and Inhelder focused on developmental 
changes in the ability to reason statistically about randomizing devices, 
from a historical perspective it is the young child's ability to reason 
statistically at all about such devices that is remarkable. It seems implau
sible that a medieval European child would have reasoned in such a 
sophisticated way as the Piaget and Inhelder subjects. Statistical reasoning 
is the culturally prescribed way to think about randomizing devices in our 
culture, and this general approach undoubtedly trickles down to children. 
Similarly, statistical reasoning has become (or is becoming) the norm for 
experts in many fields – from insurance to medical diagnosis – and is 
rapidly becoming normative for the lay novice as well in such domains as 
sports and the weather. Models of statistical reasoning abound for sports in 
particular, as the two examples below indicate. 

Baseball's law of averages is nothing more than an acknowledgement that 
players level off from season to season to their true ability – reflected by their 
lifetime averages. A .250-hitter may hit .200 or .300 over a given period of 
time but baseball history shows he will eventually level off at his own ability 
("Law of Averages," 1981). 

The musky tends to be a deep water fish. Most fishing success is in shallow 
water, but . . . this misleading statistic [is probably accounted for in part by 
the fact that] sheer statistical chance dictates that fish will come from the 
waters receiving the most man hours of fishing pressure. Shallow water 
fishing for muskies is very popular, and very few fishermen work them deep 
(Hamer, 1981). 
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The statistical spirit embodied in these quotations reaches many fans. 
Thus, it is commonplace to hear lay people endorse the proposition that 
"On a given Sunday any team in the NFL can beat any other team." 
(Compare with "On a given Sunday, any parishioner's altruism can exceed 
that of any other parishioner"!) 

In our view, these three factors – clarity of the sample space and the 
sampling process, recognition of the role of chance in producing events, and 
cultural prescriptions to think statistically – operate individually and, per
haps more often, together to increase people's tendencies to apply statistical 
heuristics to problems that require a statistical approach. If these factors are 
genuinely important determinants of people's ability to reason statistically, 
then it should be possible to find support for the following predictions. 

In cases where the sample space is clear and the possibility of repetition 
is salient, people will respond appropriately to statistical variables. In 
particular, in the task of generalizing from instances, where the sample 
space is a clear dichotomy and the sampling process is just the observation 
of more members of a clearly defined population, (a) people will generalize 
more cautiously when the sample size is small and when they have no strong 
prior belief that the sampled population is homogeneous, and (b) people 
can be influenced to generalize more or less readily by manipulations that 
emphasize the homogeneity or heterogeneity of the sampled population. 

The following predictions should hold both for generalization and for 
other, more complex, inferential tasks: (a) Manipulations designed to 
encourage recognition of the chance factors influencing events should serve 
to increase statistical reasoning. (b) People who are highly knowledgeable 
about events of a given kind should be more inclined than less knowledge
able people to apply statistical reasoning to the events – because both the 
distributions of the events and the chance factors influencing the events 
should be clearer to such people. (c) People should be disinclined to reason 
statistically about certain kinds of events that they recognize to be highly 
variable and uncertain – notably social events – because the sample spaces 
for the events and the chance factors influencing the events are opaque. (d) 
Training in statistics should promote statistical reasoning even about 
mundane events of everyday life because such training should help people to 
construct distributional models for events and help them to recognize 
"error," or the chance factors influencing events. 

Generalizing From Instances 

Generalization from observed cases is the classic concern of philosophers 
and other thinkers who are interested in induction. A number of instances 
of Class A are observed, and each of them turns out to have Property B. 
Possible inferences include the universal generalization all A's have B, or 
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the near universal most A's have B, or at least the relinquishing of the 
contrary generalization, namely, most A's do not have B. 

The untrammeled employment of the representativeness heuristic would 
lead people to make the above inferences from quite small numbers of 
instances, and, indeed, this is often found, both anecdotally and in 
laboratory studies (Nisbett & Ross, 1980, pp. 77–82). On the other hand, 
philosophers since Hume have puzzled about how these generalizations can 
be logically justified, even when very large numbers of instances are 
observed. The puzzle has been compounded by the fact that sometimes it 
seems correct to generalize confidently from a few instances. Hume 
(1748/1955) wrote, "[Often, when] I have found that . . . an object has 
always been attended with . . . an effect . . . I foresee that other objects 
which are in appearance similar will be attended with similar effects" (p. 
48). The problem is that only sometimes do we draw such a conclusion with 
confidence. "Nothing so like as eggs, yet no one, on account of this 
appearing similarity, expects the same taste and relish in all of them" (p. 
50). Mill (1843/1974), a century later, phrased the problem like this: "Why 
is a single instance, in some cases, sufficient for a complete induction, while 
in others myriads of concurring instances, without a single exception known 
or presumed, go such a very little way towards establishing a universal 
proposition?" (p. 314). 

The statistical advances since Mill's time make it clear that a large part of 
the answer to his question has to do with beliefs about the variability or 
homogeneity of certain kinds or classes of events (cf. Thagard & Nisbett, 
1982). Generalization from a large sample is justified in terms of one's 
beliefs that the sampling itself is homogeneous (i.e., that the distribution of 
possible sample statistics is the same as would be predicted by random 
sampling). And generalization from a small sample or resistance to 
generalization, even from a large sample, are justified in terms of prior 
beliefs about the homogeneity or heterogeneity of objects or events of a 
certain kind with respect to a property of a certain kind. If, for example, the 
object is one of the chemical elements and the property is electrical 
conductivity, then one expects homogeneity: All samples of the element 
conduct electricity or none do. But if the object is an animal and the 
property is blueness, one's prior belief does not favor homogeneity so 
strongly; color may or may not vary within a particular species. 

In other words, there are cases where use of the representativeness heuristic 
is justified in terms of beliefs about homogeneity, which in turn may be 
soundly based on individually or culturally acquired experience with kinds 
of objects and kinds of properties. For other cases, simple representativeness 
cannot be justified, and there are indeed cases, as Mill claimed, in which a 
strong prior belief in heterogeneity properly prevents acceptance of a gen
eralization even after quite large numbers of instances have been observed. 
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We attempted to demonstrate, in a laboratory study of judgment, that 
people do in fact temper the use of representativeness to a greater or lesser 
degree depending on beliefs about the variability of a kind of object with 
respect to a kind of property. 

Study 1: Beliefs About Homogeneity and Reliance 
on the Law of Large Numbers 

In this study, we simply guessed at the prevailing beliefs about homogene
ity. We tried to obtain different degrees of heterogeneity by using conduc
tivity of metals, colors of animals, and so on. Subjects were told of one 
instance or of several instances of a sampled object having a particular 
property and were asked to guess what percentage of the population of all 
such objects would have the property. The sample sizes used were 1, 3, or 
20; in the latter cases, all 3 or all 20 of the objects had the property in 
question. We anticipated that subjects would generalize more readily from 
a given number of instances when the kind of object was perceived as 
homogeneous with respect to the kind of property than when the kind of 
object was perceived as heterogeneous with respect to the kind of property. 

Method 

Subjects were 46 University of Michigan students of both sexes who were 
enrolled in introductory psychology. (As sex did not affect any of the 
dependent variables in this or any of the other studies, it will not be 
discussed further.) Eighty-five percent of the subjects had taken no statistics 
courses in college. The questionnaire was presented as one of several in a 
study on judgment. It read as follows for the N = 1 condition: 

Imagine that you are an explorer who has landed on a little known island in 
the Southeastern Pacific. You encounter several new animals, people, and 
objects. You observe the properties of your "samples" and you need to make 
guesses about how common these properties would be in other animals, 
people or objects of the same type. 

Suppose you encounter a new bird, the shreeble. It is blue in color. What 
percent of all shreebles on the island do you expect to be blue? 

(This and the subsequent questions were followed by 

" percent. Why did you guess this percent?") 

Suppose the shreeble you encounter is found to nest in a eucalyptus tree, a 
type of tree which is fairly common on the island. What percent of all 
shreebles on the island do you expect to nest in eucalyptus trees? 
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Suppose you encounter a native, who is a member of a tribe he calls the 
Barratos. He is obese. What percent of the male Barratos do you expect to be 
obese? 

Suppose the Barratos man is brown in color. What percent of male Barratos 
do you expect to be brown (as opposed to red, yellow, black or white)? 

Suppose you encounter what the physicist on your expedition describes as an 
extremely rare element called floridium. Upon being heated to a very high 
temperature, it burns with a green flame. What percent of all samples of 
floridium found on the island do you expect to burn with a green flame? 

Suppose the sample of floridium, when drawn into a filament, is found to 
conduct electricity. What percent of all samples of floridium found on the 
island do you expect to conduct electricity? 

The questionnaires for the N = 3 condition and the N = 20 condition 
were identical except that they specified larger samples of each object. For 
example, the first shreeble item for the N = 3 condition read as follows: 

Suppose you encounter a new bird, the shreeble. You see three such birds. 
They are all blue in color. What percent of all shreebles on the island do you 
expect to be blue? 

The reasons subjects gave for guessing as they did were coded as to their 
content. There were three basic sorts of answers: (a) references to the 
homogeneity of the kind of object with respect to the kind of property, (b) 
references to the heterogeneity of the kind of object with respect to the kind 
of property – due to the different properties of subkinds (e.g., male vs. 
female), to some causal mechanism producing different properties (e.g., 
genetic mistakes), or to purely statistical variability (e.g., "where birds nest 
is sometimes just a matter of chance"), and (c) other sorts of answers that 
were mostly based on representativeness or that were mere tautologies. Two 
independent coders achieved 89% exact agreement on coding category. 

Results 

Any one element is presumed by scientists to be homogeneous with respect 
to most properties. At the other extreme, most human groups are highly 
heterogenous among themselves in many attributes, including body weight. 
If educated lay people share these beliefs and if they reason statistically, 
then (a) they should exercise more caution in generalizing from single cases 
when heterogeneity is expected than when homogeneity is expected and (b) 
large N should be important primarily in the case of populations whom 
subjects believe to be heterogeneous with respect to the property in 
question. 
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Figure 2.1 presents subjects' estimates of the percentage of each popula
tion having the property associated with the sample as a function of sample 
size presented. It may be seen that subjects are quite willing to generalize 
from even a single instance of green-burning or electricity-conducting 
floridium and also from a single, brown, Barratos tribesman. The modal 
estimate for N = 1 (as well as for N = 3 and N = 20) in all of these cases 
is 100%. In contrast, generalizations are less extreme for even 20 instances 
of blue shreebles or eucalyptus-nesting shreebles or 20 obese Barratos. The 
t(31) contrasting N = 1 for floridium attributes and Barratos color with N 
= 20 for shreeble attributes and Barratos obesity is 3.00; p < .01.1 

Subjects' explanations for their estimates fully justify this pattern of 
inferences. It may be seen in Table 2.1 that subjects reported believing that 
elements are homogeneous with respect to color and conductivity and that 
tribes are homogeneous with respect to color. In contrast, subjects rarely 
expressed the belief that there is homogeneity for the other kinds of 
populations and properties and instead expressed belief in heterogeneity of 
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FIG. 2.1 Percentage of each population estimated to have the sample 
property as a function of number of cases in the sample. 
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TABLE 2.1 
Number of Subjects Giving Each Type of Reason and Percentage of 

Population Estimated to Have the Property 

Reason 

Homogeneity 

n % 

Tautology Heterogeneity 

Object and property 

Homogeneity 

n % n % n % 

Shreeble 
Color 6 95 17 83 22 75 
Nests 8 96 19 84 19 78 

Barratos 
Obesity 5 79 10 62 31 53 
Color 31 98 7 94 8 80 

Floridium 
Color 31 97 9 91 6 82 
Conductivity 31 98 7 92 8 82 

one sort or another for these objects and properties. Figure 2.1 shows that 
it is only for these latter cases that subjects reasoned statistically in the sense 
that they were more willing to assume that the population resembles the 
sample when N is larger. N affects the estimates of the obesity of Barratos 
and the color of shreebles (p < .001 and p = .11, respectively). In addition, 
a total of 10 subjects complained on one or more problems that the N was 
too small to give a good estimate. For nine of these subjects, the complaints 
were about one or more of the three problems where populations were 
presumed to be heterogeneous with respect to the property in question, 
whereas for only one subject was the complaint about a problem for which 
subjects in general believed populations to be homogeneous with respect to 
properties (exact p = .02). 

Finally, an internal analysis of the Table 2.1 data for each question 
showed that those subjects who believed the population to be homogeneous 
with respect to the property estimated that a higher percentage of the 
population was like the sample than did those subjects who believed the 
population was heterogeneous with respect to the property. The lowest t 
resulting from the six comparisons yielded p < .05. 

Study 2: Manipulating the Salience of 
Distribution Parameters 

Study 1 established that people can apply statistical reasoning to one of the 
most basic of inferential tasks. It also established that beliefs about 
variability of the class of events in question can mediate the statistical 
reasoning. One other study in the literature made similar points. Quattrone 
and Jones (1980) proposed a version of the present view that beliefs about 
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variability influence inductive generalizations in their important study on 
perception of ingroups versus outgroups. They hypothesized that "an 
observer's tendency to generalize from the behavior of a specific group 
member to the group as a whole is proportional to the observer's perception 
of the group's homogeneity" (p. 141). Because people are more familiar 
with the members of groups to which they happen to belong, they will 
recognize "the group's general variability, the extent to which its members 
. . . differ from one another when viewed over all dimensions" (p. 141). 
Because people are less familiar with outgroups, they are at liberty to 
assume that their members are relatively uniform. Thus people may 
generalize more readily from observations of the behavior of outgroup 
members than from observations of the behavior of ingroup members. 

To test this hypothesis, Quattrone and Jones (1980) showed Princeton 
and Rutgers University undergraduates videotapes of male students who 
were allegedly serving as participants in psychology experiments. These 
students were asked to make choices such as to wait for a few minutes by 
themselves versus in the company of others or to listen to rock music versus 
classical music. Half of the subjects at each campus believed they were 
viewing Princeton men, and half believed they were viewing Rutgers men. 
After seeing the choice of one participant, subjects were asked to predict 
what the 100 participants in the study did. Quattrone and Jones found 
greater generalization from the participants' behavior to outgroup members 
than to ingroup members. Thus, Princeton subjects generalized more 
strongly to the behavior of the Rutgers population after observing the 
choice of the "Rutgers" participant than they did to the Princeton popula
tion after observing the choice of the "Princeton" participant. 

If, as both we and Quattrone and Jones assume, generalizations about 
groups from the behavior of its members are mediated by assumptions 
about variability of group members, then it should be possible to manipu
late those assumptions and therefore to influence the degree of generaliza
tion. People are inclined to think of (their own) university populations as 
being immensely variable – what with caftans here and exotic accents there, 
football players here and budding physicists there. In fact, however, 
university populations are not as heterogeneous as one might casually 
presume. Most students, even at multiversities, are, after all, bright young 
middle-class people of fairly homogeneous geographic and ethnic back
grounds. It seems possible that, if subjects were required to contemplate the 
central tendencies of their university populations before observing choice 
behavior like that presented to Quattrone and Jones's subjects, they might 
generalize more. This possibility was examined in Study 2. 

Method 

The procedure used by Quattrone and Jones (1980) was followed almost 
exactly, except that subjects were told that the videotapes were either of 
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University of Michigan or of Ohio State University students, and half of the 
subjects were exposed to a central-tendency manipulation before viewing 
the videotapes. Subjects were 115 University of Michigan undergraduates of 
both sexes enrolled in introductory psychology. They participated in small 
groups, seated around a table facing a .53-m (21-inch) video monitor. 
Subjects were told that the investigators were "studying how people make 
judgments about people – working from actual information they have 
about people to guesses about other aspects of people. One of our major 
interests is in how students perceive students at (their own/another) 
university." 

At this point the central-tendency manipulation was delivered to experi
mental subjects, who were told that "we will be asking you several questions 
about students at (the University of Michigan/Ohio State University)" and 
were given the appropriate central-tendency questionnaire. Control subjects 
began viewing videotapes immediately. 

The central-tendency questionnaire consisted of three questions that we 
expected would influence subjects' conceptions of the variability of a 
student population. Subjects were asked to "please list what you would 
guess to be the 10 most common majors at (the University of Michigan/ 
Ohio State University)" and next to list the five most common ethnic group 
backgrounds and the five most common religious backgrounds at that 
university. Answering these questions might be expected to prompt subjects 
to recognize that the student body is not all that heterogeneous: Most 
students are, after all, white Protestants concentrated in a limited number 
of relatively popular majors. 

Subjects viewed the Quattrone and Jones videotapes.2 They were intro
duced as having been made during psychology experiments conducted at the 
University of Michigan or at Ohio State University. In each of the three 
tapes a male participant was shown being confronted with a decision, and 
he then chose one of two alternative behaviors offered. In the first scenario, 
a target person had to choose between waiting alone or waiting with other 
subjects while his experimenter fixed a machine. In the second scenario, the 
choice was between listening to classical music or listening to rock music 
during an experiment on auditory perceptual sensitivity. In the third 
scenario, the choice was between solving mathematical problems or solving 
verbal problems during an experiment on the effects of noise on intellectual 
performance. As the order in which scenarios were presented had no effect 
in the Quattrone and Jones study, it was held constant in our study. 

The procedure was the same for each scenario. Subjects watched the 
target person being given instructions and being asked to make his decision. 
At this point the tape was turned off and subjects were asked to predict the 
target person's decision on a 21-point scale that had endpoints labeled with 
the two relevant options. The tape was then turned on again and subjects 
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observed the participant make his decision. Half of the subjects saw the 
participants in the three scenarios make one set of decisions, and half saw 
the complementary set. Thus, subjects in Set A saw the target persons 
choose (a) to wait alone, (b) to listen to classical music, and (c) to solve 
mathematical problems. Subjects in Set B saw targets choose (a) to wait 
with others, (b) to listen to rock music, and (c) to solve verbal problems. 

The dependent variable of interest consisted of the subjects' estimates of 
how many out of 100 participants in each of the three experiments chose 
each of the two options. (For the sole purpose of replication, subjects were 
also asked to indicate what they would have done and who they liked as 
people more – those who would prefer Option A or those who would prefer 
Option B.) 

Results 

Figure 2.2 presents subjects' generalizations about the University of Mich
igan and Ohio State University populations for control subjects and for 
subjects exposed to the central-tendency manipulation. Generalization is 
defined as the difference between population estimates for subjects pre
sented with Set A choices versus those for subjects presented with Set B 
choices. The higher this index is, the more a group of subjects was 
influenced in their estimates by the behavior of the particular subject they 
witnessed. The index sums across all three types of choices, but the trends 
were the same for each of the three problems. 

The difference between the control groups exposed to Ohio State 

FIG. 2.2 Generalization 
from sample to popula
tion as a function of 
campus population and 
central-tendency manipu
lation. (U of M = Univer
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University participants versus those exposed to University of Michigan 
participants provides a replication of the Quattrone and Jones finding. The 
magnitude of the difference is very similar to that found by them, though 
for our smaller sample it is only marginally significant, F(1, 50) = 2.76, .05 
< p < .10). 

The effect of the central-tendency manipulation was to increase the 
degree of generalization from the sample, F(l, 107) = 4.23, p < .05). It 
may be seen that the effect was largely due to the behavior of the University 
of Michigan group. This is not surprising because the judgments about the 
Ohio State students may have already incorporated central tendencies in the 
form of an outgroup stereotype. This explanation should be viewed with 
caution, however, inasmuch as the interaction failed to reach statistical 
significance. 

Both findings provide support for the contention that concurrent repre
sentations of population variability mediate inductive generalizations. 
Familiarity with one's own group results in less willingness to generalize for 
them than for another group, although forced contemplation of central 
tendencies results in more willingness to generalize, at least for the familiar 
ingroup. 

One other study, by Silka (1981), shows the importance for inductive 
reasoning of people's focus on variability versus central tendency. She asked 
subjects to examine a series of numerical values that were said to represent 
the mental health of several individuals. Some subjects were asked to 
remember the average of the values, and some were asked to remember the 
range. When subjects were asked, 1 week later, to assess the degree of 
change represented by a new value, subjects who had been asked to 
remember the average were more likely to infer that there had been a 
genuine change than those who had been asked to remember the range. The 
implication of Silka's finding, together with those of Study 2, is that 
inferences about continuity and change, and inductive reasoning generally, 
may be in part a function of arbitrary encoding and retrieval factors that 
accidentally emphasize either the homogeneity or the heterogeneity of 
events. 

Study 3: Manipulating the Salience of 
Chance Factors 

Study 2 establishes that manipulations of the salience of distributional 
parameters can influence subsequent generalizations. It should also be 
possible to influence generalizations by manipulating the salience of chance 
factors. One potentially interesting way of doing this would be to highlight 
for subjects the degree to which evidence about an object should properly 
be regarded as a sample from the population of the object's attributes. Such 
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a reminder ought to prompt subjects to reason more statistically, deempha-
sizing evidence from smaller samples and placing greater weight on evidence 
from larger samples. 

Borgida and Nisbett (1977) argued that people often ignore the judgments 
of others when choosing between two objects and substitute their own 
initial impressions of the objects as the sole basis of choice. People do this 
in part because they do not recognize the relevance of the law of large 
numbers when reasoning about events of the personal preference kind. 
When the objects are multifaceted and complex, however, the law of large 
numbers is applicable in two ways: (a) The reactions of other people to the 
object, especially if they are based on more extensive contact with the object 
than one has had oneself, generally should be a useful guide to choice 
(though, of course, it is possible to construct cases where other people's 
reactions would not be useful). (b) One's own experience with the object, 
especially if it is brief or superficial, may be a poor guide to choice because 
of the error that plagues any small samples, even those that happen to be 
our own. 

It seemed likely that if people were made explicitly aware of the role of 
chance in determining the impression one may get from a small sample, they 
might place less faith in a small personal sample and more faith in a large 
sample based on other people's reactions. 

Method 

Subjects were 157 University of Michigan students of both sexes who were 
enrolled in introductory psychology classes. Eighty-seven percent had taken 
no statistics courses in college. Subjects participated in small groups. They 
were presented with two versions of the following problem. 

David L. was a senior in high school on the East Coast who was planning to 
go to college. He had compiled an excellent record in high school and had 
been admitted to his two top choices: a small liberal arts college and an Ivy 
League university. David had several older friends who were attending the 
liberal arts college and several who were attending the Ivy League university. 
They were all excellent students like himself and had interests similar to his. 
The friends at the liberal arts college all reported that they liked the place very 
much and that they found it very stimulating. The friends at the Ivy League 
university reported that they had many complaints on both personal and 
social grounds and on educational grounds. 

David initially thought that he would go to the smaller college. However, he 
decided to visit both schools himself for a day. 

He did not like what he saw at the private liberal arts college: Several people 
whom he met seemed cold and unpleasant; a professor he met with briefly 
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