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Preface

The idea of this book grew out of the lecture notes for a first-year postgraduate
module I taught for the MAGIC network of universities in Britain in 2009–
2013. Part One of the book roughly corresponds to what was taught there,
while the second part is new material. The MAGIC network, at the time of the
writing of this book, consists of 21 UK universities and offers postgraduate
courses to students enrolled for a Ph.D. in Mathematics, with the idea of pro-
viding a quick access to a subject to students who specialise in subjects away
from it. The set theory module had ten one-hour lectures. The challenge, for
me, was to start these students from the ground zero in set theory and present
the subject up to and including the method of forcing. The module proved very
popular not only with the students over the remote network but also with some
unexpected listeners, such as Ms Eva Roberts, who was the excellent technol-
ogy assistant responsible for the technical aspects of our video conferencing
system, and who proved to be a very interested and informed member of the
set theory audience! They encouraged me to make the material available to
broader audience.

This book does not really aim to make a set theorist out of you, but it might
happen if you read everything. If you only read the first part, it will not even
make you competent enough to pass a serious first-year graduate module in
set theory in a mathematical logic department. For this you will have to start
by consulting one of the classic references, such as [51], [63] (this one being
my personal favourite), or a more recent [48]. You will have to work through
a large number of exercises and read and reproduce many proofs. There is no
fast track to this. However, this book, which does not have a single exercise
and skips many proofs, will help you inform yourself of this exciting area of
research, unjustly considered too complex to be explained to an interested un-
informed listener. If you are a mathematician, it may be that this knowledge
will influence you to see some foundational aspects in your own work. If you

xi



xii Preface

are a budding set theorist then this book will allow you to plunge into those
more serious references with confidence–they are not a particularly easy read
if you have not seen any of this material before! And if you are not a math-
ematician at all, this book will form part of your general culture, somewhat
different than the usual aspects of it - but if one can learn Marcel Proust by
heart in order to cite him at parties, why not some more esoteric stuff such as
foundations of mathematics!

At some point though, maybe you have read the first part of the book, cited
foundations of mathematics at many parties and started being bored by the
parties. You want to learn more forcing because you fell in love with it! Part
Two is made for you. It will tell you much more about forcing from the time
it was invented to now. It will tell you about the successes and the challenges
and it will tell you about many open questions. It aims to share with you what
only the cognoscenti seem to know: combinatorial set theory did not die with
the invention of forcing. It was reborn. I hope that some of my colleagues in
set theory will find a few interesting sentences in this part of the book, as some
of it is rather new material and some not yet published.

And now for Something Completely Different

Finally, you, the reader who goes to parties and cites Proust, know that there
is another reason I wrote this book. Many years ago, when I was a finishing
undergraduate student in the city of Sarajevo, in what is now Bosnia and Herze-
govina and then was Yugoslavia, I was supposed to produce a 4th year thesis
on a topic of my choice. I chose forcing, obtained a book on forcing (in this
instance, Kunen’s book [63] that I recommended you above) and tried to read
it on my own. It was impenetrable to me, none of my teachers knew forcing
and could not help me, and I got seriously stuck on the exercises in Chapter II.
Although I knew a lot of classical set theory, I did not know any logic and it
was blocking me, but I did not understand that this was what was blocking me.
In fact, probably the most serious problem was that I could follow the argu-
ments line-by-line, but I did not have any intuition. At any rate, I wrote my 4th
year thesis on a different topic (Category Theory) and was fortunate enough to
be accepted as a graduate student at the University of Wisconsin-Madison and
be supervised by Prof. Kenneth Kunen himself. His wonderful graduate course
complemented his book, just as it was intended in his writing, and I finally
broke through to become an insider. Since that time I have lived in New York,
London and Paris and most importantly if one is a set theorist, in Jerusalem,
but I have never forgotten how difficult it is to become an insider of set theory
if one lives in a place where there are no others to talk to about the subject.
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I like to share. I have taught logic and set theory in many places, including
the unforgettable African Institute of Mathematical Sciences in Mbour, Sene-
gal, where I had the privilege to address the students chosen from 17 different
African countries, for many of whom this was the first time they had seen my
subject. Seeing their smiles at the end of every lecture, knowing that we have
shared a previously unknown secret, gives a unique thrill.

I wrote this book as if I were teaching to such an audience. I hope the book
will help you get an intuition for set theory and I hope you will enjoy it.

I would like to gratefully acknowledge the support of the School of Mathe-
matics at the University of East Anglia (UEA) in Norwich, UK, where I was a
Professor of Mathematics at the time of writing this book, and of the scientific
consulting company Logique Consult in Paris, where I am the CEO. All my
thanks are due to my former Ph.D students Dr Omar Selim and Dr Francesco
Parente, in chronological order, for their help with various mathematical and
technical aspects of this book. Friends and students helped me with proof-
reading, among them my student Dr Cristina Criste, UEA Ph.D. student Mark
Kamsma and my colleagues Prof. David Buhagiar from the University of Malta
and Prof. Lorenz Halbeisen from ETH in Zurich. Prof. Uri Abraham from the
Ben-Gurion University of the Negev in Beer Sheva pointed out oversimplifica-
tions in a previous representation of Theorem 7.8.3. The Cambridge University
Press team have been wonderful and I am really grateful to Roger Astley for
his enthusiasm for the concept; Roger, Clare Dennison and Anna Scriven for
various aspects of the editing process and the copy editor Jon Billam for his
informed and interesting comments. Thank you all very much!





PART ONE

LET’S BE INDEPENDENT


