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1 Introduction

This textbook presents an introduction to a set of mathematical tools that are
extensively used in modern physics, and is mainly aimed at advanced undergraduate,
graduate, and doctoral students in physics, engineering, and mathematics. The
reader is ideally accompanied on a journey through a number of different, albeit
related, topics.

Chapter 2 introduces group theory and related notions, including, in particular,
group homomorphisms and isomorphisms, before discussing in detail the group
of permutations and some other particularly interesting finite groups. Then, the
formalism of Young diagrams is introduced, and an alternative definition of groups in
terms of their presentation is given. The rest of the chapter is devoted to continuous
groups and to groups acting on a set.

The next chapter, Chapter 3, discusses the different representations that groups
can have: After a brief reminder of linear-algebra concepts, the definition of group
representations is formulated. Then, the discussion focuses on the concept of
reducibility of group representations, which leads to a classification of irreducible
representations. Group characters are introduced and their use in the classification of
inequivalent irreducible representations is explained. The chapter also discusses the
properties of the regular representation, which is induced by the action of the group
on itself through a translation. The final part of the chapter introduces dual vectors
and tensors, and an example of application of these notions for a spin-chain system
of relevance in quantum physics and condensed-matter theory.

In Chapter 4 we first introduce the concepts that allow one to endow a generic
set with a topology, then we define manifolds and, finally, differential manifolds.
The chapter discusses in detail calculus on manifolds, differential forms and their
integration, and finally presents a formulation of classical mechanics in terms of
differential forms.

The following chapter, Chapter 5, is devoted to Riemannian geometry: Topics such
as metric tensors, the induced metric, affine connections, connection coefficients,
and their transformation properties under coordinate changes are discussed in detail.
The chapter presents a thorough exposition of the concepts relevant for the general
relativity theory of gravitation and for gauge theories, including parallel transport
and holonomy, covariant derivatives, geodesics, curvature, and torsion. The final
sections of the chapter are devoted to the discussion of isometries and Killing vector
fields.

Chapter 6 presents a discussion of semisimple Lie algebras (highlighting their
relevance for different physical applications, from quantum mechanics to the theory
of elementary particles in and beyond the Standard Model) and their unitary
representations. After defining the Lie algebras of the generators of Lie groups,
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2 1 Introduction

we introduce the concepts of roots, weights, and Cartan generators, and present the
systematic classification of the algebras associated with the classical and exceptional
simple Lie groups with the corresponding Dynkin diagrams. The chapter also
discusses in detail the explicit construction of irreducible representations for Lie
algebras of special unitary groups, using tensor methods and Young diagrams. The
last part of the chapter describes the representations of products of unitary groups
(such as those that describe the gauge interactions between fundamental particles),
and the Lorentz and Lorentz–Poincaré groups relevant for the theory of special
relativity and for quantum field theory.

Finally, Appendix A presents detailed solutions for a subset of the problems
included at the end of each of the previous chapters. Other solutions are made
available to the course instructors through the website of Cambridge University
Press.

The book is ideally suited for a university course on mathematical methods
for physics; the main emphasis is on geometrical and topological concepts, which
are essential for the understanding of the symmetry principles and topological
structures in modern physics. The book is largely self-contained, but some important
mathematical prerequisites are assumed: In particular, it is assumed that the reader
is already familiar with the basics of real and complex analysis and linear algebra.

In writing this book, we put a very strong emphasis on the pedagogical aspects.
The book is primarily targeted at physics and engineering students and, following
M. David Merrill’s application principle in instructional design (which states that
learning is promoted when the learner applies the new knowledge), its goal is
to enable them not only to learn a collection of fundamental notions in different
branches of mathematical physics, but also to directly apply these tools to concrete
problems. To this purpose, the final section of each chapter includes a large collection
of original problems and exercises. As in actual scientific research, some of these
problems stimulate the readers to combine tools which are relevant for the different
subjects presented in the various chapters, and to keep a broad perspective – rather
than adopting a narrow, hyperspecialized approach.

There are numerous sources that we have used in the preparation of this textbook.
Our main inspiration and influence comes from this short list of classic works that
we highly recommend for further reading on the subjects covered herein. We list
them here, mentioning the chapters for which they are most relevant and highly
recommended for further reading on the subjects:

• Important references for Chapters 2 and 3 are the books by Hugh F. Jones [6], by
Michael Tinkham [13], and by Morton Hamermesh [4].

• For further reading about the topics of Chapters 4 and 5, we recommend the
books by Mikio Nakahara [10], by Charles Nash and Siddhartha Sen [11], by
John M. Lee [8], and by Jeffrey M. Lee [7], as well as the books on the theory of
general relativity by Charles W. Misner, Kip S. Thorne, and John A. Wheeler [9],
by Robert M. Wald [14], and by Sean M. Carroll [1].

• Useful references for further reading on the topics discussed in Chapter 6 are the
books by Howard Georgi [2] and by Francesco Iachello [5]. The applications
for elementary particle theory can be found in many excellent textbooks; our
discussion of the symmetry representations of the Standard Model is closest to
that in the book by Mark Srednicki [12].



3 1 Introduction

We conclude this Introduction by thanking all of the students who have taken the
course, on which this textbook is based, for helping us to present the topics of this
book as clearly as we could. We also thank our former teaching assistants and our
colleagues Antti Kupiainen and Jouko Mickelsson, who also taught these subjects,
for additional inspiration, as well as Klaus Larjo and Niko Jokela for assistance
in converting our original handwritten notes into electronic format. We also thank
Jarkko Järvelä and Saga Säppi, who generously shared their solutions to some
of the problems. In addition, we are indebted to many colleagues with whom we
have discussed about and from whom we have learned the topics presented herein.
Finally, we acknowledge with gratitude the careful work and patience of the editorial
staff at Cambridge University Press, especially Sarah Armstrong, Elliot Beck,
Henry Cockburn, Sapphire Duveau, Kuttappan Suresh Kumar, Sarah Lambert,
Beverley Lawrence, Róisín Munnelly, Aparna Nair, Mathew Rohit, and in particular
Nicholas Gibbons, who followed this book project from its beginning to its
completion.



2 Group Theory

The first part of this chapter introduces the basic notions of group theory. Then we
present a detailed discussion of some interesting finite groups. Next, we introduce
Young diagrams and an alternative definition of a generic group in terms of its
presentation. Finally, we discuss continuous groups and groups acting on a set.

2.1 Groups

2.1.1 Definitions: Groups, Abelian Groups, and Related Concepts

Consider an arbitrary set G = {a, b, . . .}, and a composition law that, for every a ∈ G
and for every b ∈ G, assigns to the ordered pair (a, b) an element a · b, which is
also an element of G. Then, we define (G, ·) to be a group if the following conditions
simultaneously hold:

G1 (associativity): for all a, b, c ∈ G, a · (b · c) = (a · b) · c;
G2 (existence of the unit element): there is an element e ∈ G such that for all

a ∈ G: a · e = e · a = a;
G3 (existence of the inverse): for all a ∈ G there is an element a−1 ∈ G such that

a · a−1 = a−1 · a = e.

In that case, the composition law is usually called the group law of multiplication
(or product). We could have added an item G0: the composition law must be well
defined. An attempt to define a product may not be consistent or well defined for all
elements of the set. We will see examples of this later.

Moreover, we define an Abelian group as a group for which an additional condition
holds:

AG4 (commutativity): for all a, b ∈ G: a · b = b · a.

Abelian groups are named after the Norwegian mathematician Niels Henrik Abel.

It is interesting to note that some different mathematical structures that share some

properties with but are more general than groups can also be defined: For example, when the

composition law is such that ∀a ∈ G and ∀b ∈ G, one has a · b ∈ G, but the properties G1–G3

are not necessarily satisfied, then (G, ·) is called a magma. A magma for which the associativity

condition G1 holds is called a semigroup. In addition, a semigroup for which also the condition

G2 is satisfied (i.e., a semigroup in which a unit element exists) is called a monoid. It turns

out that groups have a much richer mathematical structure than magmas, semigroups, and
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5 2.1 Groups

monoids. In addition, groups have many more physics applications than magmas, semigroups,

and monoids; hence, we will not discuss these more general structures in detail in this book,

and we will primarily focus on groups.

Example Consider the set G = {e, a} and the multiplication · defined as follows:
e · e = e, a · e = e · a = a, and a · a = e. This is compatible with the group structure, e
is the unit element, and a is the inverse of itself. The (G, ·) group is called the cyclic
group of order 2. It is an Abelian group, and is usually denoted as Z2. We will present
a more general definition of cyclic groups in Section 2.4.

In the following, we will also use the simpler notation G rather than (G, ·) to denote
the group.

The number of elements in a set X is denoted by |X|. The number of elements |G|
in a group G is called the order of the group. If |G| is finite, then G is said to be a
finite group. We adopt some notations. We often drop the product symbol and write
gh instead of g · h if there is no confusion. We also use the notation gn = g · · · g for
the product where g appears n times. For example, g2 = gg = g · g, g3 = ggg = g · g2,
etc. We then define the order of the element g to be the smallest positive number n
such that gn = e. For example, in Z2 the order of the element e is 1 and the order of
a is 2.

The smallest finite group is called the trivial group: it contains only the unit
element e, and thus has order 1. We denote the trivial group by Z1. The only
multiplication that can be done among elements of this group is e · e = e. There
cannot be a group of order 0, because, in order to satisfy the property G2, a group
must necessarily contain at least the unit element. A possible way to characterize a
generic finite group is by means of its Cayley table (or multiplication table), named
after the British mathematician Arthur Cayley. It is a square table, of size equal to
the order of the group, listing all the products of the group elements. In particular,
the entries of the Cayley table of a finite group are the products p · q, where p is one
of the group elements listed in the column on the left of the table, and q is one of the
group elements listed in the row at the top of the table. Table 2.1 gives the Cayley
table of Z2 as an example.

If |G| is not finite, but G is a discrete set (i.e., a set whose elements can be put in
one-to-one correspondence with the natural numbers), then (G, ·) is called a discrete
group. Conversely, when G is a continuous set, (G, ·) is a called a continuous group.

Comments

1. The unit element of any group is unique. If both e and e′ are unit elements, then
ee′ = e′ (because e is an unit element) and at the same time ee′ = e (because e′ is
an unit element). Therefore e′ = ee′ = e, so e = e′.

Table 2.1. The Cayley table of Z2

e a

e e a
a a e
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2. For a given group, the inverse element of any element is unique. If both b and b′

are inverse elements of a, then ba = e and ab′ = e. But then bab′ = eb′, hence
b = b′.

3. Note that, by definition, the unit element commutes with all elements of the group;
however, the unit element is not necessarily the only element with this property.
The subset of group elements that commute with all elements of the group is
called the center of the group. The center of a group is always an Abelian group;
if it contains only the unit element, then the group is said to have a trivial center.

4. The definition of a group, essentially, is the definition of the group multiplication
among all possible ordered pairs of group elements, while the nature of the
elements in the set G does not necessarily have to be specified.

The latter point means that the definition of a group is abstract. Specifying the
nature of the set of group elements corresponds to defining a particular realization
of the group. More precisely, a realization of an abstract group G is a map from
G to a particular set, on which an internal binary operation exists, that satisfies the
properties defining the group.

Example Consider the cyclic group of order 2 introduced above, Z2, with e as
the unit element and a as the other element. Examples of realizations of Z2 include
the following:

• Take e = 0, a = 1, and addition modulo 2 to be the group multiplication. It is trivial
to show that ({0, 1},+ mod 2) is an explicit realization of the abstract Z2 group
structure defined above; it has the multiplication table as shown in Table 2.1.

• Take e = 1, a = −1, and the ordinary multiplication as the group multiplication.
Also in this case, one can immediately show that ({1,−1}, ·) is a realization of the
Z2 group.

• Consider the set of truth variables of Boolean algebra, {FALSE,TRUE}, and the
binary operator XOR (“exclusive or”) as the group multiplication. Recalling that
p XOR q is TRUE when p is TRUE and q is FALSE, or vice versa, while it is
FALSE when p and q are both TRUE or both FALSE, one can explicitly check that
the Z2 group structure is realized by identifying e = FALSE and a = TRUE.

A particularly important class of realizations of a group are those in which the
group elements are associated with linear transformations among the elements of
a vector space: Such realizations are called representations, and will be discussed
thoroughly in Chapter 3.

It is also interesting to consider groups that are constructed by taking Cartesian
pairs of elements from other groups. Given two groups G1 and G2, their direct
product G1 × G2 is defined as the set of all ordered pairs (g1, g2), with g1 ∈G1 and
g2 ∈ G2, with the multiplication (g1, g2) · (g′1, g′2) = (g1g′1, g2g′2), where g1g′1 is
computed using the group multiplication of G1, while g2g′2 is computed using the
group multiplication of G2.

It is straightforward to prove that G1 × G2 is a group itself; in particular, its unit
element is (e1, e2), where e1 is the unit element of G1 and e2 is the unit element of
G2, and the inverse element of a generic element (g1, g2) is (g−1

1 , g−1
2 ). It is also trivial

to see that, if both G1 and G2 are finite, so is G1 × G2, and its order is |G1 × G2 | =
|G1 | |G2 |.
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Similarly, one can also define the direct product of three or more groups.
Partly for historical reasons, several groups are defined from (and, sometimes,

named after) their explicit realization in sets of numbers or of transformations of
a vector space, by a process of abstraction, i.e., by focusing on the way the group
multiplication acts on ordered pairs of elements, leaving the nature of the group
elements (or, in fact, of the group multiplication itself) unspecified.

2.1.2 Examples of Groups

The definitions introduced above can be easily elucidated by some examples of
groups:

• Z, the set of integers, with + (addition) as the multiplication law, is a discrete
Abelian group. The “unit” element is 0, and, for any element a ∈ Z, the inverse
is −a.

• Similarly, R, the set of real numbers, with the addition as the multiplication law, is
a continuous Abelian group. Again, the “unit” element e is 0.

• R0 = R \ {0}, the set of real, nonzero numbers, with · (multiplication) as the
multiplication law, is a continuous Abelian group. The unit element is e = 1, and
the inverse of a generic element g is 1/g. In this case, the set of group elements was
defined by removing 0, in order to ensure that all elements have an inverse.

• For any positive integers n and m, the set of n × m matrices with real entries, with
the matrix addition as the group multiplication, forms a continuous Abelian group.
The unit element of this group is the n × m matrix whose entries are all equal to 0,
while, for a generic matrix M of elements Mij, the inverse element has entries −Mij.
Note that, in practice, this group consists of nm independent copies of (R,+).

• For any positive integer n, the set of real square matrices of size n and nonvan-
ishing determinant, with the matrix product as the group multiplication, forms a
continuous group denoted by GL(n, R). The unit element is the identity matrix 1
(of elements 1b,c = δb,c), and the fact that the set includes only matrices M with
det M � 0 implies that the inverse matrix M−1 exists for any M in the set. In contrast
to the previous example, this group is not Abelian (except for n = 1).

• Given a regular polygon of n sides, the set of geometric transformations that leave
the polygon invariant forms the dihedral group Dn. This group includes n rotations
and n reflections. For n odd, the reflections leaving the polygon invariant are about
axes going through each of the polygon vertices, the center, and the midpoint of
the opposite side, whereas for n even, there are n

2 reflections about axes going
through opposite vertices and n

2 reflections about axes going through the midpoints
of opposite sides. The dihedral groups Dn are finite groups of order |Dn | = 2n, and
they are non-Abelian for all n > 2.

• Consider linear transformations of an orthonormal reference frame in the two-
dimensional real vector space R2. They can be represented by real matrices of size
2 × 2, having (the components of) the vectors of the transformed reference frame
as columns. If the transformations are required to preserve the orthonormality of
the reference frame, then the columns of the matrix have to be orthogonal to each
other, and normalized to 1. The most general form of the matrix is then



8 2 Group Theory

(
cos α sin α
∓ sin α ± cos α

)
, α ∈ R. (2.1)

In the set of these transformations one can define an internal composition law,
as the operation of applying two such transformations one after the other; it
corresponds to the matrix product and satisfies the requirements of a group
multiplication. The unit element of the group is the 2 × 2 identity matrix, and
the inverse of a generic element of the group is obtained by taking the transpose
of the original matrix. This is the orthogonal group of dimension 2, denoted as
O(2, R) (or, more concisely, as O(2)); it is the group of transformations of the two-
dimensional Euclidean space, that preserve a fixed point and the length of vectors.

2.1.3 Examples of Sets That Are Not Groups

It is also instructive to list some examples of structures (G, ·) that are not groups:

1. N, the set of natural numbers, with addition as the “multiplication” is not a group,
because no element (except for 0) admits an inverse in the group. (N,+) is,
however, a monoid, because the addition is internal in N (the sum of any two
natural numbers is a natural number) and is an associative operation, which admits
the number 0 as the “unit element.”

2. Consider the three-dimensional real vector space R3, and the multiplication
law defined as the cross-product of vectors, namely a · b = a × b, that is,
(a · b)i =

∑3
j,k=1 εijkajbk, where εijk = 1 for i = 1, j = 2, and k = 3, and it

is totally antisymmetric under the interchange of any pair of the indices (which,
in particular, implies that εijk = 0 when at least two indices are equal). Since
this multiplication law is internal in R3, it endows R3 with the structure of a
magma. Given that this multiplication law is not associative, this magma is not
a semigroup.

3. R3 with the multiplication law defined by the scalar product of vectors, namely
(a · b) =

∑3
i=1 aibi, is not even a magma (because the multiplication law is not an

internal operation in R3; the result of a ·b is a real number, not a three-dimensional
real vector).

4. For any positive integer n, the set of real square matrices of size n and nonva-
nishing determinant, with matrix addition as the group multiplication, is not a
magma. For a generic element M (with entries Mb,c) in this set, the matrix N of
entries Nb,c = −Mb,c has determinant (−1)n ·det M, which is nonvanishing because
det M � 0, hence N also belongs to the set. But (M + N) is the zero matrix, which
is not in the set, because its determinant vanishes.

2.2 Subgroups

The concept of subgroup is a particularly important one in the theory of groups (and
in its mathematical and physical applications). In short, a subgroup is a subset H of
a group G, that is itself a group, with the same composition law as G.
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More formally, a subset H of the group G is called a subgroup of G if it is closed
under the group multiplication, i.e., ∀h1, h2 ∈ H one has h1 ·h2 ∈ H, and if the inverse
of each of its elements is also in H, i.e., ∀ h ∈ H also h−1 ∈ H.

Note that every subgroup of G must contain at least the unit element e of G.
A subgroup H of a group G is said to be a trivial subgroup if it contains only the

unit element (H = {e}) or if it coincides with G itself (H = G). Every group admits
at least these two trivial subgroups as subgroups. (For the trivial group Z1 the two
coincide.)

Conversely, a subgroup H of a group G is said to be a proper subgroup if it is
not trivial, i.e., if H � {e} and H � G. If H is a proper subgroup of a finite-order
group G, then 1 < |H| < |G|.

A subgroup H of a group G is said to be a normal subgroup when, for all h ∈ H
and for all g ∈ G, the product g · h · g−1 is also an element of H.

A group G that does not have proper normal Abelian subgroups is said to be a
semisimple group; if it does not have proper normal subgroups, then it is said to be
a simple group. Clearly, every simple group is also semisimple (but the converse is
not true, as there exist semisimple groups which are not simple).

2.3 Group Homomorphisms and Isomorphisms

Two finite groups are “the same” (up to a relabeling of the elements of the groups)
if they have the same Cayley table. We will introduce another technical notion to
decide when two groups can be identified. For the comparison, we define maps
from one group to another that preserve the group structure, mapping products to
products of image elements. These maps are called group homomorphisms and
group isomorphisms. Before defining them and discussing their properties, we
introduce some further notions.

Given an arbitrary non-empty set X, a binary relation (denoted by �) among
elements of X is said to be an equivalence relation when it is simultaneously reflexive
(∀x ∈ X: x�x), symmetric (∀x, y ∈ X: x�y implies y�x), and transitive (∀x, y, z ∈ X:
if x � y and y � z, then x � z).

Given a set X and an equivalence relation � among its elements, the equivalence
class of a generic element a ∈ X is the subset of X containing all elements x such
that x � a holds, and is denoted as [a]. Then, any element belonging to [a] is called
a representative of that equivalence class. Note that, given any element a ∈ X, the
equivalence class [a] is non-empty, because the reflexivity of the equivalence relation
� implies that [a] contains at least a itself. Moreover, the following fact holds:

Theorem 2.1 Any equivalence relation � defined in a set X partitions it into mutually
disjoint equivalence classes.

Proof Consider two distinct equivalence classes [a] and [b]. Then, unless [a] is a
strict subset of [b], there exists at least one element, say c, which belongs to [a] (so
that c � a) but not to [b]. If [a] and [b] are non-disjoint, then [a] ∩ [b] � ∅. Then, let
d be an element of [a] ∩ [b]: Since d ∈ [a], it follows that d � a. Then, the symmetry
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and transitivity of � imply that c � d. On the other hand, since d ∈ [b], it also follows
that d � b. Then, the transitivity of � implies that c � b, i.e., c ∈ [b], in contradiction
with the assumption that c is not in b. Finally, if [a] is a strict subset of [b], the same
argument can be applied by interchanging [a] and [b]. �

Given a set X and an equivalence relation � among the elements of X, the quotient
space induced by � is defined as the set of all equivalence classes into which �
partitions X, and is denoted as X/�.

Given two arbitrary, non-empty sets X and Y, let Map(X, Y) denote the set of
functions (or “mappings”) from X to Y:

Map(X, Y) = { f : X → Y | ∀x ∈ X : ∃! f(x) ∈ Y}. (2.2)

Within Map(X, Y), there exist special types of functions.

• A function f : X → Y is called an injection (or a one-to-one function) if f(x) � f(x′)
∀x � x′.

• A function f : X → Y is called a surjection (or an onto function) if ∀y ∈ Y there
exists at least one x ∈ X, such that f(x) = y.

• A function f : X → Y is called a bijection if it is both an injection and a surjection.

If a function f is a bijection, then it is invertible, namely one can construct the
inverse function f −1 : Y → X, defined by the property that, for any x ∈ X, one
has f −1 (

f(x)
)
= x. In particular, the fact that f is a surjection implies that, for any

y ∈ Y, f −1(y) can be defined, while the fact that f is an injection implies that f −1(y)
is uniquely defined. Furthermore, f −1 is a bijection, too, and the inverse function of
f −1 is f.

Example Consider a set of apples, A= {a1, a2, a3}, and a set of oranges,
O = {o1, o2, o3}. A mapping f(a1) = f(a2) = o1, f(a3) = o2 is not an injection, a
mapping g(a1) = o2, g(a2) = o3, g(a3) = o1 is both an injection and a surjection,
hence a bijection. The inverse map is g−1(o1) = a3, g−1(o2) = a1, g−1(o3) = a2.

In general, a mapping f : X → Y is generally called a homomorphism when
it preserves some structure. A homomorphism that is a bijection is called an
isomorphism. In the following, we will be particularly interested in homomorphisms
and isomorphisms between groups, which can be defined as follows.

Given two groups (G, ·) and (H, •), a homomorphism f : G → H is called a group
homomorphism if it preserves the group multiplication, i.e., if ∀g1, g2 ∈ G one has
f(g1 · g2) = f(g1) • f(g2). When a group homomorphism f is bijective, it is called a
group isomorphism. Two groups G and H are said to be isomorphic (G � H) if there
exists at least a group isomorphism between them.

The relation of isomorphism among groups is an equivalence relation in the set of
groups, because the relation of isomorphism among groups is reflexive (every group
is isomorphic to itself; the identity mapping is the isomorphism that proves this),
symmetric (if f : G → H is a isomorphism, then ∃f −1 : H → G, which is also an
isomorphism), and transitive (given two isomorphism f : G → H and l : H → K, the
composite map l ◦ f is an isomorphism from G to K).
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Isomorphic groups have the same structure, so they can be identified. More
precisely, each abstract group can be identified with an equivalence class defined
by the equivalence relation of group isomorphism.

Example Take the two groups G = (R+, ·) and H = (R,+). Define the mapping

f : G → H, f : x → f(x) = ln x. (2.3)

Note that f is a group homomorphism, because f(xy) = ln(xy) = ln x + ln y = f(x) +
f(y). In fact, f is also a group isomorphism, because it is a bijection, the inverse
mapping being f −1(x) = ex.

2.4 The Smallest Finite Groups

Finite groups have several applications in physics. A classic example is in solid
state physics, where they are used to classify general crystal structures (the so-called
crystallographic point groups). In addition, they also have applications in classical
mechanics, where they can be used to reduce the number of relevant degrees of
freedom in systems with certain symmetries, as well as in many different areas of
modern physics.

For certain (sufficiently small) finite sets, the requirements that a binary operation
on the set elements has to satisfy, in order to be a group multiplication, are so
constraining that they uniquely define the group. In this section, we present the list
of all groups of finite order N ≤ 6. Note that, since every group must contain at least
the unit element, the order of the group is at least 1.

• Order N = 1: This is the trivial group G = {e}, containing only the unit element
(which, by definition, is the inverse of itself).

• Order N = 2: In this case G = {e, a}, with a � e. The definition of the unit
element implies that e2 = e, ea = ae = a. The only remaining multiplication is a2:
To ensure that the multiplication is a closed operation in the group, the result must
be either e or a. However, if a2 = a, then a = ae = a(aa−1) = a2a−1 = aa−1 = e, in
contradiction with the assumption that a and e are distinct. So the only possibility
is a2 = e. Accordingly, the Cayley table of the group of order 2 is uniquely fixed
to be

e a
e e a
a a e

. (2.4)

This is the Z2 group that we already introduced. One of its realizations, in
addition to those already mentioned, is in terms of one the symmetric groups
(that will be defined and discussed in detail in Section 2.5 and that contain
permutations interchanging the group elements), the symmetric group of degree 2,
S2 = Perm({1, 2}). Clearly, S2 contains only two permutations: The identity permu-
tation E, which leaves the order of the elements unchanged, and the permutation
that interchanges them, which can be denoted as A, and which, in cycle notation,
can be written as (1, 2). It is easy to prove that S2 is isomorphic to Z2: For example,
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considering the realization of Z2 in terms of {1,−1} (with the ordinary product as
the group multiplication), one can define the mapping f : Z2 → S2, such that
f(1) = E, f(−1) = A. It is easy to see that f is a group isomorphism, so Z2 � S2.

• Order N = 3: Consider the set G = {e, a, b}, assuming that both a and b are
distinct from the unit element e, and that a � b. It turns out that, again, there is
only one possible abstract group of order 3. This abstract group can be determined
by working out its Cayley table:

e a b
e e a b
a a ? ?
b b ? ?

. (2.5)

Consider ab, and suppose it is equal to b. But then a = a(bb−1) = (ab)b−1 =

bb−1 = e, which contradicts the assumption that e, a, and b are all different.
Similarly, if ab = a, then one would have b = (a−1a)b = a−1(ab) = a−1a = e,
again in contradiction with the assumption that e and b are different. So it must
be ab = e. Analogously, one can prove that ba = e. These two equalities imply
that a is the inverse of b (and vice versa). Then, consider a2: If it were equal to
a, then one would have a = a(aa−1) = a2a−1 = aa−1 = e, in contradiction to the
assumption that a � e. Similarly, if a2 = e, then one would have b = eb = a2b =
a(ab) = ae = a, contradicting the assumption that a � b. Thus, it must necessarily
be a2 = b. Similarly, one can show that b2 = a. The complete Cayley table for the
group of three elements reads as follows:

e a b
e e a b
a a b e
b b e a

. (2.6)

This group is called Z3. Since b = a2, one has Z3 = {e, a, a2}. Z3 and Z2 (and, in
fact, also the trivial group containing only the unit element) are examples of cyclic
groups.

More in general, the cyclic group of order N, denoted as ZN, is defined as a
finite group in which each element can be written as a power of a single generating
element a.

Thus, the generic cyclic group of order N is

ZN = {e, a, a2, . . . , aN−1}, (2.7)

where the unit element is e = a0, while the inverse of a generic element
ap is aN−p. Note that a cyclic group can be defined for any order N ≥ 1.
Since ap · aq = ap+q(mod N) = aq · ap for any p and q, all cyclic groups are
Abelian. One realization of cyclic groups is given by the complex Nth roots
of 1: ZN =

{
exp(2πik/N), for k = 0, 1, . . . , N − 1

}
, with the usual product as

group multiplication. Thinking about the representation of the roots of 1 in the
complex plane, this realization also reveals a geometric interpretation of ZN: It is
the symmetry group of rotations of a regular directed polygon with n sides. It is
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trivial to prove that the set {0, 1, . . . , N − 1}, with the addition modulo N as the
group multiplication, provides another realization of ZN.

• Order N = 4: Since cyclic groups ZN are defined for any positive integer N, we
can immediately construct a finite group of order 4, namely Z4 = {e, a, a2, a3}. Its
Cayley table is

e a a2 a3

e e a a2 a3

a a a2 a3 e
a2 a2 a3 e a
a3 a3 e a a2

. (2.8)

However, there exists also a different group of order 4: the direct product
Z2 × Z2. Denoting Z2 × Z2 = { f, b} × {g, c}, with f and g the unit elements of
the two groups, b2 = f and c2 = g, the set of elements of this group can be written
as {( f, g), ( f, c), (b, g), (b, c)}. Note that Z2 × Z2 is an Abelian group, but it is
different from Z4, because it is not a cyclic group. In particular, the elements ( f, c)
and (b, g) are not powers of the same element. Neither of the two is a power of the
other, and they are not powers of the remaining two elements of the group either
(by definition, any power of the unit element ( f, g) is equal to itself, while all even
powers of (b, c) are equal to the unit element, and all odd powers are equal to (b, c)
itself). The Cayley table of Z2 × Z2 can easily be worked out to be

( f, g) ( f, c) (b, g) (b, c)

( f, g) ( f, g) ( f, c) (b, g) (b, c)
( f, c) ( f, c) ( f, g) (b, c) (b, g)
(b, g) (b, g) (b, c) ( f, g) ( f, c)
(b, c) (b, c) (b, g) ( f, c) ( f, g)

(2.9)

and it is different from that of Z4. The Z2 × Z2 group is also called Vierergruppe
(and denoted by V4) or Klein four-group, after the German mathematician Christian
Felix Klein. Considering that the trivial group can be identified with Z1, the Klein
four-group is the smallest noncyclic finite group. It is possible to show that Z2×Z2

and Z4 are the only two groups of order 4.

• Order N = 5: The only finite group of order N = 5 is the cyclic group
Z5 = {e, a, a2, a3, a4}.

• Order N = 6: At order N = 6, there exist two non-isomorphic finite groups: One
of them is the cyclic group Z6 = {e, a, a2, a3, a4, a5}, whose Cayley table is

e a a2 a3 a4 a5

e e a a2 a3 a4 a5

a a a2 a3 a4 a5 e
a2 a2 a3 a4 a5 e a
a3 a3 a4 a5 e a a2

a4 a4 a5 e a a2 a3

a5 a5 e a a2 a3 a4

. (2.10)
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Interestingly, the Z6 group turns out to be isomorphic to the direct product Z2×Z3.
Denoting Z2 = { f, b} (with f the unit element and b2 = f ) and Z3 = {g, c, c2} (with
g the unit element and c3 = g), the Cayley table of Z2 × Z3 reads

( f, g) ( f, c) ( f, c2) (b, g) (b, c) (b, c2)

( f, g) ( f, g) ( f, c) ( f, c2) (b, g) (b, c) (b, c2)
( f, c) ( f, c) ( f, c2) ( f, g) (b, c) (b, c2) (b, g)
( f, c2) ( f, c2) ( f, g) ( f, c) (b, c2) (b, g) (b, c)
(b, g) (b, g) (b, c) (b, c2) ( f, g) ( f, c) ( f, c2)
(b, c) (b, c) (b, c2) (b, g) ( f, c) ( f, c2) ( f, g)
(b, c2) (b, c2) (b, g) (b, c) ( f, c2) ( f, g) ( f, c)

. (2.11)

An isomorphism relating this group to Z6 is the one mapping the generic element
(bp, cq) ∈ Z2 × Z3 to the element a(3p+4q) mod 6 ∈ Z6: So, for example, ( f, c) =
(b0, c1) corresponds to a4, while (b, c2) = (b1, c2) is mapped to a5. The product
( f, c) · (b, c2) = (b, g) = (b1, c0) is mapped to a3, and this is consistent with the
fact that the isomorphism preserves the group product, as a4 · a5 = a3 in Z6.

In addition to Z6 � Z2 × Z3, there exists another, non-isomorphic, finite group
of order 6: the symmetric group S3, which is the smallest non-Abelian group (and
which coincides with D3, the group of symmetries of an equilateral triangle). Its
elements can be written as: {e, a, b, aba, ab, ba} and they satisfy a2 = b2 = (ab)3 =

(ba)3 = e, with e the unit element. Note that these properties imply aba = bab.
The Cayley table of S3 is

e a b aba ab ba
e e a b aba ab ba
a a e ab ba b aba
b b ba e ab aba a

aba aba ab ba e a b
ab ab aba a b ba e
ba ba b aba a e ab

. (2.12)

Note that the non-Abelian nature of the group is reflected in the fact that the Cayley
table is not symmetric under reflection about the diagonal.

• Order N = 7: The only finite group of order N = 7 is the cyclic group
Z7 = {e, a, a2, a3, a4, a5, a6}.

• Order N = 8: There exist five non-isomorphic finite groups of order 8; three of
them are Abelian: Z8, Z4×Z2 and Z2×Z2×Z2. The remaining two groups of order
8 are non-Abelian. One of them is the dihedral group D4, which can be interpreted
as the symmetry group of a square: It consists of four rotations by angles which are
integer multiples of π/2, two reflections about axes going through the midpoints of
pairs of opposite sides, and two reflections about the diagonals of the square. The
group elements can be written as {e, a, a2, a3, b, ab, a2b, a3b}, where e is the unit
element and a4 = b2 = (ab)2 = e. In terms of transformations that leave a square
invariant, a can be interpreted as a rotation by π/2 and b as a reflection about the
axis going through the midpoints of two opposite sides. The Cayley table of D4 is
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e a a2 a3 b ab a2b a3b
e e a a2 a3 b ab a2b a3b
a a a2 a3 e ab a2b a3b b
a2 a2 a3 e a a2b a3b b ab
a3 a3 e a a2 a3b b ab a2b
b b a3b a2b ab e a3 a2 a

ab ab b a3b a2b a e a3 a2

a2b a2b ab b a3b a2 a e a3

a3b a3b a2b ab b a3 a2 a e

. (2.13)

The last finite group of order 8 is the non-Abelian quaternion group
Q8 = {±e,±i,±j,±k}, where e is the unit element, and i2 = j2 = k2 = ijk = −e. The
Cayley table of Q8 is

e −e i −i j −j k −k
e e −e i −i j −j k −k
−e −e e −i i −j j −k k
i i −i −e e k −k −j j
−i −i i e −e −k k j −j
j j −j −k k −e e i −i
−j −j j k −k e −e −i i
k k −k j −j −i i −e e
−k −k k −j j i −i e −e

. (2.14)

If one identifies i, j, and k with the unit vectors defining a right-handed reference
frame in the three-dimensional real vector space R3, then the group multiplication
between these elements is consistent with the cross-product when they are distinct
(and do not differ simply by a sign): ij = k, and cyclic permutations thereof. Note,
however, that in R3 the cross-product of a vector with itself (or with its opposite)
vanishes, whereas this is not the case for the group multiplication in Q8. Q8 has
four proper subgroups

{e,−e} � Z2, (2.15)

{e, i,−e,−i} � Z4, (2.16)

{e, j,−e,−j} � Z4, (2.17)

{e, k,−e,−k} � Z4, (2.18)

all of which are normal subgroups.

2.5 Permutations, the Symmetric Group, and Cayley’s Theorem

Consider again Map(X, Y), the set of mappings from a generic set X to another
generic set Y. If the two sets coincide, then Map(X, X) can be endowed with a
semigroup structure, by taking the composition of maps as the composition law:



16 2 Group Theory

fg = f ◦ g, ( f ◦ g)(x) = f
(
g(x)

)
for ∀x ∈ X. (2.19)

Note that the composition is well defined only if X = Y, because g is a map from X
to Y, but the domain of f is X.

Given a non-empty set X, a bijective function f : X → X is called a permutation
of X.

Example Let X be the set of 52 cards of a deck. Shuffling the deck executes a
permutation of X.

The set of permutations of X is denoted as Perm(X). In this set one can introduce
the composition of permutations (i.e., the operation consisting in applying one
permutation after the other) as the group multiplication. Composition of maps is
associative. Then, the identity map E : X → X, E : x → E(x) = x for all x ∈ X
is the unit element of Perm(X). Finally, since permutations are bijections, every
f ∈ Perm(X) has an inverse, so Perm(X) is a group.

Note that the group multiplication in the set of permutations is defined according
to the convention that the order in which they are applied is “from right to left,”
meaning that first one performs the rightmost permutation in a given expression,
then continues with the next one to its left, and so on. This convention is inherited
from that of composite mappings, for which, for example, ( fg)(x) means f

(
g(x)

)
. In

general, the result obtained by applying first one permutation, then another, is not the
same that one obtains by multiplying the same permutations in the opposite order.
Therefore, in general, Perm(X) is not an Abelian group.

Example Let X be a set of three elements, say X = {a, b, c}. Let f be the
permutation that interchanges the second and the third element of X, leaving the
first unchanged, i.e., f(a) = a, f(b) = c, f(c) = b, and let g be the permutation
that interchanges the first and the second element, leaving the third unchanged, i.e.,
g(a) = b, g(b) = a, g(c) = c. Then, for instance, ( f · g)(a) = f(g(a)) = c, while
(g · f )(a) = g( f(a)) = b. Hence f · g � g · f, so Perm(X) is not an Abelian group.

When X has a finite number N of elements, its group of permutations is called the
symmetric group (or permutation group) of degree N and is denoted by SN. We leave
it as an exercise (see Problem 2.6) to prove that SN contains N! elements.

The smallest symmetric groups are isomorphic to groups that we already men-
tioned. In particular, S1 = {e} is the trivial group Z1, containing only the unit element,
while S2 is isomorphic to Z2. Both of them are Abelian groups. On the contrary, S3

is a non-Abelian group. It is isomorphic to D3, the dihedral group of order 6, which
describes the symmetries of an equilateral triangle.

A possible way to denote the elements of SN = Perm({1, 2, . . . , N}) is in terms
of matrices of size 2 × N, in which each row contains all the numbers from 1 to N,
and the permutation acts by mapping each number in the first row to the one in the
second row and in the same column. So, for example, the permutations in S2 are

E =
(

1 2
1 2

)
, A =

(
1 2
2 1

)
, (2.20)

so that E leaves the order of the two elements unvaried, while A interchanges them.
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A more compact and more convenient way to denote permutations, however, is the
one in terms of cycles. Given a permutation P ∈ SN, a cycle is defined as an ordered
sequence of labels, which are subsequently mapped one to another by P, with the last
element of the cycle being mapped to the first.

A cycle can be considered as a permutation acting only on its labels (leaving
the others unchanged). They are often written by listing the sequence of labels in
parentheses, e.g., (132). In a given permutation P, any label that is mapped to itself
(i.e., left invariant) by P can be considered as a cycle of unit length, e.g., (4). This
means that N cycles of unit length, which act on only one label, leaving it unchanged,
correspond to the unit element of SN.

Clearly, the order of the labels within a cycle of length larger than one is
relevant: Cycles containing the same labels but in a different order describe different
permutations. So, for instance, (132) and (123) are different. However, cycles which
differ only by a cyclic permutation of their labels are equivalent: Thus, (132) and
(321) describe the same permutation. By virtue of this latter property, one can for
example define the convention that, in each cycle, the smallest label appears in the
leftmost position.

A generic permutation (different from the unit element of SN) can be written as the
product of its disjoint cycles of length larger than 1. Note that, when a permutation
is written as the product of cycles acting on disjoint sets of labels, the order in which
such cycles are multiplied is irrelevant. Thus, for example,

(132)(45) and (45)(132) (2.21)

describe the same permutation in S5. (Thus, one can uniquely fix the expression of a
permutation as a product of cycles, for example by imposing the convention that the
cycles are ordered so that the smallest label in each cycle is always increasing, when
going from the leftmost to the rightmost cycle factor.)

Given two permutations in cycle notation, the cycle notation of their product can
be expressed as follows.

1. Write the first label (say, x) appearing in the first cycle of the permutation that is
applied first.

2. Starting from x, read the label that follows it (say, y) in the permutation that is
applied first.

3. Read the label (say, z) that follows y in the permutation that is applied as second,
and write it in the cycle notation of the permutation product.

4. Iterate the procedure, starting from z in the permutation that is applied first, until
a cycle is completed.

5. Repeat the procedure for the other labels in the cycles of the permutation that is
applied first.

If a generic permutation P is written as the product of nonoverlapping cycles, the
inverse permutation P−1 can be expressed by reversing the order of the labels within
each cycle of P (up to cyclic permutations of the labels within each cycle).

The cycle notation for permutations is best illustrated by examples. For instance,
the permutation of six labels

P =
(

1 2 3 4 5 6
2 5 6 4 1 3

)
(2.22)
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decomposes into the product of three disjoint cycles 1 → 2 → 5 → 1, 3 → 6 → 3
and 4 → 4. Thus it can be written as (125)(36)(4), or, omitting cycles of unit
length, as

P = (125)(36). (2.23)

As an example of product of permutations, the algorithm described leads to

(146)(253) · (13)(26)(45) = (12)(34)(56). (2.24)

Note that, in the product appearing on the left-hand side of this equation, the
permutation that is applied first is the rightmost one, i.e., (13)(26)(45).

Finally,

(142)(35) and (124)(35) (2.25)

are an example of permutations that are the inverse of each other. (Note that the
labels in the cycles of the permutation on the right-hand side have been written in the
opposite order with respect to those of the permutation on the left-hand side, then –
for notational convenience – they have been reordered by a cyclic label permutation
within each cycle, in order to have each cycle start with the smallest label it contains.)

The cycle notation provides a convenient way to list the elements of SN, according
to their cycle structure, i.e., by the number and length of cycles they contain (and
denoting the trivial permutation, i.e., the unit element, of SN as E). For illustration,
we list the first permutation groups SN, for 1 ≤ N ≤ 4:

S2 = {E, (12)} (2.26)

S3 = {E, (12), (13), (23), (123), (132)} (2.27)

S4 = {E, (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23),
(123), (132), (124), (142), (134), (143), (234), (243),
(1234), (1243), (1324), (1342), (1423), (1432)}. (2.28)

The cycle notation makes it easy to write down all the permutations in a concise
and systematic way (one which, if necessary, can be readily automated in numerical
implementations).

The simplest nontrivial permutations are the 2-cycles, which interchange two
labels. In fact, it is possible to show that any permutation can be built from products
of overlapping 2-cycles; a generic cycle of length r can be written as the product of
r − 1 overlapping 2-cycles:

(n1n2 . . . nr) = (n1n2)(n2n3) . . . (nr−1nr). (2.29)

Then, since any permutation is a product of cycles, it can always be written as a
product of 2-cycles. According to the number of 2-cycles they can be decomposed
into, a generic permutation can be classified as “even” or “odd”: More precisely, a
permutation is said to be an even permutation if it can be factored into a product of
an even number of 2-cycles. Conversely, an odd permutation is one that factorizes
into the product of an odd number of 2-cycles. The signature of a permutation P,
denoted as sgn(P), is defined as

sgn(P) =

{
1 if P is an even permutation
−1 if P is an odd permutation

. (2.30)
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Note that a generic r-cycle is even if r is odd (and vice versa), because it can be
decomposed into the product of r − 1 overlapping 2-cycles.

Also, note that the unit element of SN, i.e., the identity permutation E, is even (it
contains no 2-cycles).

The alternating group AN is defined as the subgroup of even permutations of SN.
Its order is |AN | = |SN |/2 = (N! )/2, thus for any N > 2 the alternating group is a
proper subgroup of SN.

Note that the set of odd permutations is not a subgroup of SN: In fact, the
multiplication of two odd permutations is an even permutation, so the multiplication
is not a closed operation in the set of odd permutations. This implies that the set of
odd permutations is not even a magma.

The reason why groups of permutations have a special status among finite groups
is because of the following theorem, named after Arthur Cayley and first proven by
the French mathematician Marie Ennemond Camille Jordan.

Theorem 2.2 (Cayley’s theorem) Every finite group of order N is isomorphic to a
subgroup of SN.

Proof Let (G, ·) be a generic finite group, with |G| = N. For any element g ∈ G,
consider the function fg ∈ Map(G, G) defined as “multiplication by g on the left”:

fg : x → fg(x) = g · x. (2.31)

Note that fg is an injection, because fg(x1) = fg(x2) means g · x1 = g · x2; multiplying
both sides of this equation by g−1 on the left, this implies x1 = x2. Furthermore,
fg is also a surjection, because, for any y ∈ G, there exists an element x ∈ G such
that fg(x) = y: such x is simply g−1 · y. Thus, fg : G → G is a bijection, so it is a
permutation of G. Now, consider the set of functions

K =
{

fg : g ∈ G
}

. (2.32)

Defining the composition of functions as the group multiplication, K is endowed
with group structure. Indeed, K is closed under the composition of functions (for
any g1 and g2 ∈ G, the action of the composite map fg2 fg1 on a generic x ∈ G is
defined as fg2 (fg1 (x)) = fg2

(
g1 · x

)
= g2 · g1 · x = fg2 ·g1 (x), hence fg2 fg1 = fg2 ·g1 ∈ K,

because g2 · g1 ∈ G), which is an associative operation, fe (with e the unit element
of G) is the unit element of K, and the inverse of a generic fg ∈ K is fg−1 . Note that
this definition of group multiplication in K is the same as the definition of group
multiplication in Perm(G), since the operation of multiplying two permutations has
been defined as applying one after the other (in particular, applying the one on the
right first – in agreement with the rule of composition of functions). Thus, K is a set
containing permutations of G, i.e., a subset of Perm(G), and a group with the same
group multiplication as Perm(G). This means that K is a subgroup of Perm(G). Also,
note that, since G is completely generic, apart from being a finite group of order N,
Perm(G) is simply the group of permutations of a set with N elements, i.e., SN. Next,
it is trivial to show that there exists a group homomorphism H between G and K:
Such homomorphism is just the function

H : G → K, g → H(g) = fg, (2.33)
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on which the definition of K is based. H is a group homomorphism because, as
we showed previously, the product H(g2)H(g1) = fg2 fg1 in K is equal to fg2 ·g1 =

H(g2 · g1), hence H preserves the group product. Furthermore, H is an injection:
H(g1) = H(g2) means that the two functions fg1 and fg2 are equal, i.e., that, for any
x ∈ G, one has fg1 (x) = fg2 (x), that is g1 · x = g2 · x. Multiplying both sides of this
equality by x−1 on the right, one gets g1 = g2. Finally, H is also a surjection, because
K is defined as the set of functions fg, that is, H(g), for all g ∈ G. This implies that the
group homomorphism H is a bijection, i.e., it is a group isomorphism. We conclude
that any generic finite group G of order N is isomorphic to a subgroup K of SN. �

2.6 Partitions, Young Diagrams, and Multisets

2.6.1 Partitions

We noticed that the elements of SN fall into subsets where the permutations have a
similar cycle structure (or they are of similar cycle type).1 For example, in S4 we had
the following types:

(1234), etc. one 4-cycle 4
(123)(4), etc. one 3-cycle, one 1-cycle 3 + 1
(12)(34), etc. two 2-cycles 2 + 2
(12)(3)(4), etc. one 2-cycle, two 1-cycles 2 + 1 + 1
(1)(2)(3)(4), etc. four 1-cycles 1 + 1 + 1 + 1.

The right-hand column above lists the lengths of all cycles, including 1-cycles, for
permutations of four elements. We notice that adding up the lengths always gives 4.
More in general, in permuting N elements, the sum of lengths of all cycles must be
N for the permutation to map all of the N elements. In the above, the different sums
are different partitions of 4.

A partition of N is defined as a sum

N =
∑

i
ni, (2.34)

where all ni ∈ Z+. The number of different partitions of N (different ways of breaking
N into a sum of type (2.34)), denoted p(N), is called the partition function.

For example, p(4) = 5. One way to compute p(N) is to use a generating function.
One can show that the following identity holds:

∞∑
N=0

p(N)xN =

∞∏
k=1

(
1

1 − xk

)
. (2.35)

Now, expanding all factors on the right-hand side as Taylor series:

(1 − x)−1 = 1 + x + x2 + x3 + · · ·
(1 − x2)−1 = 1 + x2 + x4 + x6 + · · ·

1 We will learn later that the subsets are the so-called conjugacy classes of SN.
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(1 − x3)−1 = 1 + x3 + x6 + x9 + · · · ,
etc., (2.36)

then

∞∏
k=1

(
1

1 − xk

)
= (1 + x + x2 + · · · )(1 + x2 + x4 + · · · )(1 + x3 + · · · ) · · ·

= 1 + x + 2x2 + 3x3 + · · · . (2.37)

Matching the coefficients of xN on both sides of (2.35) gives the values of p(N):
p(0) = 1, p(1) = 1, p(2) = 2, p(3) = 3, . . .. For large values of N, Godfrey Harold
Hardy and Srinivasa Ramanujan derived the asymptotic formula

p(N) ∼ 1
4N
√

3
exp ��π

√
2N
3

�� , N → ∞. (2.38)

2.6.2 Young Diagrams

The different partitions can be represented graphically with Young diagrams (some-
times also called Young tableaux), which are named after the British mathematician
Alfred Young. Recall the partition sum (2.34). Assume that the summands have been
indexed in descending order: n1 ≥ n2 ≥ n3 ≥ · · · . Then draw a figure with n1

adjacent boxes on the first row, n2 boxes in the second row, and so on.

1 2 · · · n1 − 2 n1 − 1 n1

1 2 · · · n2 − 1 n2

1 2 · · · n3
...

...
. . .

The resulting figure is the Young diagram corresponding to the partition (2.34). For
example, for N = 4 we have the following partitions and Young diagrams.

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1

The Young diagrams then also represent graphically the different types of permuta-
tions (different conjugacy classes) of SN.
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2.6.3 Multisets

Permutations reorder the elements of a set X with distinct elements. If we represent
the elements by alphabetic letters and each ordering as a word, then each permutation
generates an anagram. For instance, for a set of four elements T, E, A, and M we get
4!= 24 different anagrams:

TEAM
MEAT
MATE
ATEM

...

What about words where the same letter appears more than once, such as

ABRACADABRA

How many different anagrams would we generate now? Let us first define a multiset
as a set where an element xi can appear multiple times, specified by its multiplicity
mi. For example, in

X = {x1, x2, x2, x2, x3, x3} (2.39)

the element x1 has multiplicity m1 = 1, x2 has m2 = 3, x3 has m3 = 2. The total
number of elements of X is N =

∑
i mi (N = 6 in the above example), when we do not

require that all the elements are distinct. The letters of the word ABRACADABRA
form the multiset

X = {A, A, A, A, A, B, B, R, R, C, D} (2.40)

with mA = 5, mB = 2, mR = 2, mC = mD = 1, and N = 11. Different words formed
by the letters are the different permutations (reorderings) of the multiset. A priori, N
elements can be reordered N! times. But there are m1! ways to reorder the elements x1

with no effect, m2! ways to reorder the elements x2, and so on. Thus the total number
of distinct reorderings of the elements of X is(

N
m1, m2, . . . , mk

)
≡ N!

m1! m2! · · ·mk!
, (2.41)

where k is the number of distinct elements of X, and
∑k

i=1 mi = N is a partition of
N. Equation (2.41) defines a multinomial coefficient, which is a generalization of
the binomial coefficient. The name comes from the generalization of the binomial
theorem to k variables, the multinomial theorem

(x1 + · · · + xk)N =
∑
{mi }

(
N

m1, m2, . . . , mk

)
xm1

1 xm2
2 · · · xmk

k , (2.42)

where the sum is over all partitions {mi} of N.
Now we can compute how many different anagrams of ABRACADABRA there

are. The answer is

11!
5! 2! 2! 1! 1!

= 83160. (2.43)
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2.7 Free Groups, Presentations of Groups, and Braid Groups

This section introduces a new way to construct groups.

2.7.1 Free Groups and Presentations

We begin by defining free groups.
Let G be a group and X = {g1, g2, . . . , gn} a subset of elements of G. If every

element g ∈ G \ {e} (excluding the unit element e) can be uniquely written as a
product

g = gi1
j1 gi2

j2 · · · g
im
jm (2.44)

of elements gjk taken only from the set X with exponents ik ∈ Z \ {0} such that no
two adjacent elements are equal (i.e., gji � gji+1 ), we say that G is a free group and X
is a free set of generators (of G).

The elements of X are called letters. An arbitrary product of letters

g = gi1
j1 gi2

j2 · · · g
im
jm , (2.45)

where the exponents ik ∈ Z (note: ik = 0 is allowed) is called a word. If it satisfies
the additional conditions of the previous definition, ik � 0 and gji � gji+1 , the word is
called a reduced word.

Note that this is otherwise like the familiar construction of words with letters
(with a3b2 = aaabb, etc.), except that group elements also have inverses. When
all exponents are zero, the product is assumed to yield the unit element e. If a
word is not a reduced word, one can perform a reduction to rewrite it in a reduced
form (combining adjacent elements and removing unit elements). Note also that the
product is in general not commutative: ab � ba.

Example Let X = {a, b, c} be a collection of elements of a group G (excluding
the unit element). For example, g = a3b−1c2b4c is a reduced word, while h =
c−1b3b−2a0 is a word, but not a reduced one. The reduction of h produces the reduced
word h′ = c−1b.

Words can be joined together by forming a product. For example,

gh = a3b−1c2b4cc−1b3b−2a0. (2.46)

The reduction of this gives the reduced word (gh)′ = a3b−1c2b5. If we replace in the
product the word h by its reduced form h′ and then perform a reduction, we obtain
the same reduced form: (bh′)′ = (bh)′. We can now define a free group G in an
alternative way.

A free group generated by X is the set of of all reduced words formed from the
letters of X and the empty word e, with products of words (joining of words) followed
by reduction as the multiplication rule. To emphasize the generators X, we denote the
free group generated by X by F(X).

Example Let X = {a}. It generates the free group F(X) = {an |n ∈ Z}, which is
isomorphic to (Z,+). The isomorphism is an ↔ n, with anam ↔ n + m.
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Example Let X = {a, b}. In this case the free group generated by X is

F(X) = {e, an, bn, anbm, bnam, anbmak, bnambk, . . .}, (2.47)

where n, m, k, . . . are integer numbers.

We can define a constraint by setting a reduced word to be equal to the unit element
by an equation

r ≡ gi1
j2 gi2

j2 · · · g
im
jm = e. (2.48)

Such a constraint is called a relation. There can be several independent relations r1,
r2, . . . , rn.

Example Let X = {a}, set r ≡ an = e. With this relation, the set X generates the
cyclic group {e, a, a2, . . . , an} � Zn.

A definition of a group now consists of the set of generators X = {g1, g2, . . . , gn}
and the complete list of independent relations r1, r2, . . . , rm. We use the notation
〈g1, g2, . . . , gn |r1, r2, . . . , rm〉 to denote this group, called the presentation of the
group. For the previous example, the presentation of the group is

〈a|an〉 � Zn. (2.49)

Additional Examples

1. Let X = {a, b}, r = aba−1b−1 = e, and define the group 〈a, b|aba−1b−1〉. Note that
the relation is equivalent to the equation ab = ba, meaning that the generators
commute. Thus

〈a, b, |aba−1b−1〉 = {anbm |ab = ba; n, m ∈ Z} � (Z × Z,+). (2.50)

2. The dihedral group D4 is the group of symmetries of a square. Consider the
operations r = rotate the square by π/2 and f = reflect the square about the
symmetry axis passing through the midpoints of opposite sides. The following
relations are easy to see: r4 = e (rotation by 2π) and f 2 = e (reflecting twice).
A bit less obvious is rfrf = e, which is illustrated in Fig. 2.1. One can check that
there are only these three independent relations. The dihedral group has then the
presentation D4 = 〈r, f |r4, f 2, rfrf 〉. More in general, dihedral groups Dn describe
the symmetries of regular polygons with n sides, and can be defined via the
presentation Dn = 〈r, f |rn, f 2, rfrf 〉.

r fr f

1

1 11

2 3

4

1 2

34

2

3 4

3 2

44

32

Fig. 2.1 Illustration of the relation rfrf = e, characterizing the dihedral group D4.
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Fig. 2.2 Worldlines of four particles moving on a two-dimensional plane. Time runs from the top to the bottom,
and the locations of the particles at the initial, at the final, as well as at a generic intermediate time
(represented by the dotted plane) are shown by the black bullets.

3. The Pauli group G1 is a finite group of order 16, consisting of the three Pauli
matrices σ1, σ2, σ3, and the identity matrix 12 multiplied by the factors ±1,±i:

G1 = {±12,±i12,±σ1,±iσ1,±σ2,±iσ2,±σ3,±iσ3}. (2.51)

Recalling the relations

σ2
a = 12 , σaσb = iεabcσc, (2.52)

the Pauli group can be defined through the presentation

G1 = 〈σ1, σ2, σ3 |σ2
a = 12, σaσb = iεabcσc,∀a � b, a, b ∈ {1, 2, 3}〉. (2.53)

2.7.2 Braids

Next, we turn to consider something familiar from knitting. A braid consists of
strands which run forward and can pass under or over each other. In a physics context,
an important related situation is met when one considers worldlines of point particles
moving in two space dimensions, as in Fig. 2.2. The particle worldlines then form
strands that become entangled, just like knitting strands. This phenomenon gives rise
to exotic quantum statistics for quantum particles in two dimensions,2 in addition
to the usual bosonic and fermionic statistics. Here we adopt a convention where
the braid is drawn upright (another alternative would be to draw it sideways), with
braiding of strands beginning from the top and proceeding downwards, as shown in
Fig. 2.2. Braids are usually represented in a “flattened” form, as shown in Fig. 2.3.

One can imagine that the strands are like pieces of string or cord, and thus they
can be moved and deformed continuously as shown in Fig. 2.4, or as in the example
in Fig. 2.5.

In a braid of n strands, the strands can be labeled by an index i running from 1 to
n, from left to right. A possible way to move strands in a braid, shown in Fig. 2.5,
is known as the Reidemeister move of the second type.3 To form braids, another

2 The reason why this is not true in three or more space dimensions is that there the strands can then be
disentangled. Likewise, all one-dimensional knots in higher dimensions become trivial.

3 There exists also a move called the Reidemeister move of the first type, which is simply defined as
untwisting a strand passing over itself.


