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Introduction

In the theory of dynamical systems, normal form theory is a strategy for
producing simplified models near particular parameter values of ordinary dif-
ferential equations (ODEs). In the theory of nonlinear waves, where partial
differential equations (PDEs) are considered on the real line or the plane, a
generalization of normal forms is modulation equations.

“Modulation” is one of the most widely used words in the theory of linear
and nonlinear waves, and can refer to a range of concepts. In linear wave the-
ory modulation is normally the process of varying the envelope of a signal. In
electronics this concept is expanded further to include digital modulation, ana-
logue modulation, pulse modulation, frequency modulation, phase modulation,
and so on. In the theory of nonlinear waves it is used to describe “modulation
equations” which typically are nonlinear PDEs governing the envelope of a
wave, although the term is much more widely used now, with any equation on
a slow time and space scale called a modulation equation. The interest in this
book is in phase modulation of nonlinear waves in conservative systems.

In conservative systems, phase modulation of nonlinear waves is most
closely associated with Whitham modulation theory. Within this theory, a
given basic state, dependent on a phase and a parameter or parameters, is
treated as a slowly varying function of space and time, and governing equa-
tions are derived for the slowly varying parameters. The backbone of Whitham
modulation theory is conservation of wave action and conservation of waves.

In this book Whitham theory will be reformulated by allowing greater flexi-
bility in the phase, scaling and use of singularities, generating new modulation
equations with nonlinearity and dispersion. A central example is a new theory
for the emergence of the Korteweg–de Vries (KdV) equation in the form

(Ak + Bω)qT + BkkqqX + K qXXX = 0 , (1.1)

obtained by morphing the conservation of wave action in the presence of
singularity, with q a wavenumber modulation. Further details of the origin
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2 Introduction

and derivation of this form of KdV will unfold. The important features at
this point are that the coefficients are universal, they do not depend on par-
ticular PDEs but on a general class, and that the KdV equation arises in
general via modulation in the universal form (1.1), connected explicitly with a
conservation law.

Phase modulation applies equally well to ODEs, PDEs in 1+1, or PDEs in
2+1, or indeed any number of space dimensions, but it is the case of 1+1 (one
space dimension and time) which will feature most prominently in this book.
The starting point for phase modulation is an underlying phase symmetry of
the governing equations, which naturally arises in the case of periodic orbits of
ODEs, and periodic travelling waves of PDEs, but this class will be enlarged
in this book to include relative equilibria.

A canonical example illustrating phase modulation in conservative sys-
tems is perturbation of periodic orbits of finite-dimensional autonomous
Hamiltonian systems. Consider a Hamiltonian system

JZt = ∇H(Z) , Z ∈ R
2n , (1.2)

where J is a unit symplectic operator, H : R
2n → R is a given smooth Hamil-

tonian function, and ∇H(Z) is the gradient with respect to the standard inner
product on R

2n. Suppose there exists a periodic orbit satisfying (1.2) with
frequency ω,

Ẑ(θ, ω) , with θ = ωt+ θ0 and Ẑ(θ + 2π, ω) = Ẑ(θ, ω) .

Since the system (1.2) is autonomous, for all φ ∈ S1,

Ẑ(θ + φ, ω) is a solution of (1.2) whenever Ẑ(θ, ω) is a solution. (1.3)

This does not mean that Ẑ(θ + φ, ω) = Ẑ(θ, ω) for all φ, since that is true
for φ = 2π only. It means that initial data of (1.2) Ẑ(θ + φ, ω)

∣∣
t=0

leads to
the same periodic solution for any φ, but with a different starting value of the
periodic orbit; the starting value is shifted by a phase. This symmetry is just a
recognition that a periodic solution is a closed orbit in the phase space with no
natural origin.

The phase shift in the choice of initial data in (1.3) is a constant. The theory
of phase modulation starts by allowing the phase shift to depend on a slow
time variable, say φ(T, ε) with T = εαt, for some rational number α, with
ε a small parameter measuring the distance of the perturbation field from the
periodic orbit.

To study the perturbation of a periodic orbit the strategy is to insert φ(T, ε)
into the solution to capture changes tangent to the periodic orbit as well as
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normal perturbations. This strategy is based on an ansatz of the following form
for the perturbed periodic orbit:

Z(t) = Ẑ(θ + εaφ(T, ε), ω) + εbW (θ, T, ε) , T = εαt , (1.4)

with a, b rational numbers to be determined or imposed, with b ≥ 1. The
remainder W accounts for the fact that the modulated Ẑ, with T-dependent φ,
will not in general be an exact solution of (1.2). The strategy in phase modu-
lation is to substitute the ansatz into the governing equation, expand all terms
in power series in ε, and solve order by order. This ansatz approach to mod-
ulation is very effective, and applies equally well to both conservative and
non-conservative ODEs and PDEs. On the other hand, conservative systems
have the additional property that the period and energy, or frequency and
action, have a dual relationship and so modulating the frequency brings in a
connection with conserved quantities. This connection will be important in the
theory as it is used to generate coefficients in the resulting modulation equa-
tions. Including frequency modulation, the revised ansatz for solutions in a
neighbourhood of a periodic orbit is

Z(t) = Ẑ(θ+ εaφ(T, ε), ω+ εcΩ(T, ε))+ εbW (θ, T, ε) , T = εαt . (1.5)

The rational numbers a, b, c and α are problem dependent, and different
choices will produce different modulation equations in general. The frequency
modulation, Ω(T, ε), and phase modulation, φ(T, ε), can be solved indepen-
dently or they can be related by Ω = φT , which puts a constraint, a + α = c,
on the exponents.

Once the exponents are fixed in (1.5) the ansatz is substituted into the gov-
erning equation (1.2), all terms are expanded in a Taylor series in ε resulting
in a sequence of inhomogeneous ODEs at each order. Taking into account that
Ẑ(θ, ω) is an exact solution, a solvability condition arises, and the outcome is
an ODE for the perturbation frequency Ω(T, ε).

An example of an equation for Ω(T, ε), resulting from the modulation ansatz
(1.5) with a = 1, α = 1, b = 3 and c = 2, is the following modulation
equation, which is derived in Chapter 4, starting with the abstract Hamiltonian
system (1.2),

κΩΩT + K ΩTTT = 0 , Ω = φT , and T = εt . (1.6)

A theory for the coefficients κ, which is a curvature, and K , which is deduced
from a symplectic Jordan chain, is developed in Chapter 4. The equation (1.6)
is a derivation via modulation of a normal form that is well known in dynami-
cal systems theory, but a curiosity is that by replacing T withX in (1.6) it is the
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steady KdV equation, and moreover the coefficient κ has a geometric interpre-
tation in terms of the curvature of a conserved quantity. This ODE modulation
will feed into the travelling wave modulation leading to the KdV equation (1.1)
in Chapter 8.

Relative equilibria, which are more general than periodic solutions, will be
the class of candidate solutions for phase modulation. Relative equilibria arise
as natural solutions of symmetric Hamiltonian systems (see MONTALDI [147]
and references therein). The system (1.2) is symmetric when it is equivariant
with respect to the action of a Lie group, and relative equilibria are solutions
which are aligned with a group orbit. The group orbit can be interpreted as
a phase and so these solutions can be phase modulated. Moreover, periodic
orbits of non-symmetric but autonomous Hamiltonian systems can also be
characterized as relative equilibria, and so relative equilibria are abundant in
both symmetric and non-symmetric Hamiltonian ODEs. The theory of relative
equilibria of Hamiltonian ODEs is developed in Chapter 2. The combination
of symmetric Hamiltonian systems, one-parameter Lie groups, conservation
laws and relative equilibria will form the backbone of the theory of phase
modulation for ODEs.

The theory of phase modulation extends in a natural way to Hamiltonian
PDEs. Hamiltonian PDEs, equivariant with respect to a one-parameter Lie
group, can have familes of relative equilibria and the phase shift associ-
ated with the relative equilibria is a starting point for modulation. Similarly,
any periodic travelling wave of a non-symmetric Hamiltonian system can be
characterized as a relative equilibrium, and concomitantly modulated. There
are three new features in going from ODEs to PDEs. The phase-dependent
basic states, Ẑ(θ, k, ω), depend on both a frequency and a wavenumber, θ =
kx+ωt+θ0, conservation laws replace conserved quantities, and phase modu-
lation will depend on a slow time and space scale: φ(X,T, ε), where T = εαt

and X = εβx, thereby generating a modulation wavenumber, q = φX , in
addition to the modulation frequency, Ω = φT . The generalization of the
modulation ansatz (1.5) to PDEs in one space dimension and time is

Z(x, t) = Ẑ(θ + εaφ, k + εdq, ω + εcΩ) + εbW (θ,X, T, ε) , (1.7)

with φ, q,Ω dependent on X,T, ε. When the constraints Ω = φT and q = φX

are imposed, conservation of waves arises naturally by cross-differentiation

Ω = φT and q = φX ⇒ qT − ΩX = 0 . (1.8)

To implement the ansatz (1.7) a class of Hamiltonian PDEs needs to be iden-
tified. The natural starting point for conservative PDEs is a Lagrangian func-
tional, but there is insufficient geometric structure for a complete modulation



Introduction 5

theory, and so transformation to symplectic and multisymplectic Hamiltonian
structure is of interest.

On the other hand, many of the key features of conservative PDEs, like
conservation of waves and conservation of wave action, can be seen in the
Lagrangian formulation. In Chapter 5 Whitham theory is re-appraised, starting
with a Lagrangian

L(u) =
∫ t2

t1

∫ x2

x1

L(ut, ux, u) dxdt , (1.9)

for a scalar field, say u(x, t), on [x1, x2]×[t1, t2]. Instead of using the Whitham
strategy, the modulation equations are derived starting with an ansatz of the
form (1.7) in a pure Lagrangian setting. The outcome is conservation of waves
(1.8) coupled to conservation of wave action:

∂

∂T
(A (ω + Ω, k + q)) +

∂

∂X
(B(ω + Ω, k + q)) = 0 , (1.10)

for the two unknowns Ω and q, with ω, k considered fixed. The time and
space scales are X = εx, T = εt, and A ,B are the components of the
conservation of wave action evaluated on a family of basic states (relative
equilibria, periodic travelling waves, etc.). The Whitham modulation equa-
tions in one space dimension and time consist of conservation of waves (1.8)
coupled to conservation of wave action (1.10). The Whitham equations are a
dispersionless nonlinear first-order system of PDEs which may be hyperbolic,
elliptic or degenerate. There is now a large literature on the nonlinear Whitham
modulation equations and a review is given in Chapter 7.

Expand (1.10) in a Taylor series in Ω and q to leading order:

AωΩT + (Ak + Bω)qT + BkqX + · · · .
When the third coefficient has a singularity,

Bk(ω, k) = 0 , (1.11)

on some curve in the (ω, k)-plane, the leading order Whitham equations break
down. But adjustment of the scaling in (1.7) to

α = 3 , β = 1 , a = 1 , b = 2 , c = 4 , d = 3 ,

re-substitution and re-expansion morph the Whitham equations into (1.1)
exposing the Bkk nonlinear term and evoking dispersion.

Adjustment of scale starts with changing from a “fast phase” ansatz to
a “slow phase” ansatz. The conservation of wave action (1.10) is based on
a = −1 in the ansatz (1.7),
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θ �→ θ +
1
ε
φ(X,T, ε) ,

which will be called a fast phase. The modulation ansatz with a fast phase
produces dispersionless but nonlinear modulation equations. The limitations
imposed by a fast phase are relaxed by focusing attention on a slow phase
where a ≥ 0 in (1.7). It is this change, from a fast phase to an order-one or slow
phase, which will be central to the modulation theory in this book. The slow
phase will lead to modulation equations with nonlinearity and dispersion. In
addition to the limitations imposed by fast phase and dispersionless modulation
equations, the Whitham theory is also limited by the emphasis on modulation
of periodic travelling waves, when in fact any basic state with a phase is a
candidate for modulation, and the most important class is relative equilibria.

A Lagrangian formulation of PDEs will be the starting point for the theory,
but the theory rapidly becomes complex without additional structure in the
Lagrangian. A Legendre transform can be used to convert it to a Hamiltonian
system, but even this added structure will be insufficient. The strategy is to
partition the Lagrangian using a multisymplectic structure. A multisymplectic
structure generates a symplectic operator for each space direction and time.
This latter partition will also give a geometric formulation of symmetry and
the conservation of wave action. The additional structure in the Lagrangian,
which is central to the derivation of (1.1), is the generalization of (1.2) to a
multisymplectic Hamiltonian PDE:

MZt + JZx = ∇S(Z) , Z ∈ R
2n , (1.12)

where M and J are skew-symmetric operators and S : R
2n → R is a

given smooth generalized Hamiltonian function. The theory of multisymplec-
tic Hamiltonian PDEs, which can be interpreted as a geometric reformulation
of the Lagrangian, is developed in Chapter 6.

The modulation theory for PDEs proceeds similarly to the ODE case. Sup-
pose there exists a periodic travelling wave satisfying (1.12) of frequency ω
and wavenumber k,

Ẑ(θ, ω, k) , with θ = kx+ω+ θ0 and Ẑ(θ+ 2π, ω, k) = Ẑ(θ, ω, k) .

The phase symmetry (1.3) generalizes to

Ẑ(θ + φ, ω, k) is a solution of (1.12) whenever Ẑ(θ, ω, k) is a solution.
(1.13)

The phase shift is replaced by a slowly varying phase φ(X,T, ε) as in
the ansatz (1.7), substituted into equation (1.12), expanded in powers of ε
and solved order by order. Solvability conditions and the conservation of



Introduction 7

wave action then provide the geometric and universal characterization of the
coefficients in (1.1). This theory is developed in detail in Chapter 8.

The modulation ansatz (1.7) is a form of the method of multiple scales but
the embedding of the phase modulation in the basic state differs from the strat-
egy of the classical method of multiple scales. Given a basic state, dependent
on a phase and a parameter, represented by Ẑ(θ, k, ω), with θ = kx+ωt+ θ0,
satisfying a given PDE, a classical multiple scales perturbation is of the form

Z(x, t) = Ẑ(θ, k, ω) + εdW̃ (θ,X, T, ε) , (1.14)

with slow space and time scales T = εt,X = εx. For example, this is the
approach that is used in the justification of Whitham modulation theory in
[179], and is widely used in fluid mechanics [85]. However, in this approach it
is not immediately clear how to generalize it to different scalings, and how to
track singularities in the mapping (k, ω) �→ (A (ω, k),B(ω, k)). On the other
hand, the use of classical multiple scales is useful for the case where the basic
state is not necessarily a relative equilibrium.

The advantage of the ansatz (1.7) over the classical multiple scales ansatz
(1.14) is that modulation is embedded in the basic state, with the phase modu-
lation explicit, and the frequency and wavenumber also explicitly modulated.
In principle the two expressions (1.14) and (1.7) are equivalent: expand the first
term in (1.7) in a Taylor series in ε and absorb into W to form W̃ . However,
the separation and embedding of the perturbation of θ, k, ω and W in (1.7)
gives more information that feeds into the reduced modulation equations for
φ(X,T, ε) and q(X,T, ε).

The idea of adding dispersion to the Whitham modulation equations has
been introduced before (e.g. section 16.5 of WHITHAM [180], section 5.3.3 of
INFELD & ROWLANDS [105], and references [57, 182, 81, 72, 166, 167, 168]).
However, in these cases the dispersion is introduced for weakly nonlinear
waves. Here, via scaling and singularity, dispersion will emerge in a general
way for fully nonlinear basic states.

To summarize the case of one space dimension and time, the starting point
is a class of PDEs generated by a Lagrangian with a one-parameter symme-
try group. Relative equilibria on the symmetry are modulated using (1.7),
and different scalings, combined with singularities, generate reduced equa-
tions such as the Whitham equations and the KdV equation. The modulation
approach to producing the KdV equation is interesting for a number of rea-
sons. Firstly, the modulation approach produces equations with coefficients
that are universal and easy to calculate using properties of the family of relative
equilibria. Secondly, the modulation equations are obtained as perturbations of
finite-amplitude basic states. Thirdly, it gives a new way to find examples in
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applications where the KdV equation is the right model, by searching for singu-
larities of relative equilibria, rather than searching for an appropriate dispersion
relation. Fourthly, by experimenting with different singularities and scalings in
(1.7) other key PDEs such as the dual KdV equation (space and time reversed),
the Kadomtsev–Petviashvili (KP) equation (and its variants), and a family of
two-way Boussinesq equations emerge. For example, it is shown in Chapter 12
that the generalization of (1.1) in 2+1 is the KP equation

(Ak + Bω) qT + Bkk qqX + K qXXX + C�pY = 0 , pX = qY . (1.15)

In 2+1 the conservation of wave action evaluated on the basic state has three
components (A ,B,C ). In this case a remarkable feature is that the transverse
dispersion coefficient C� is determined by the properties of the family of basic
states. Fifthly, modulation of relative equilibria is the “right mechanism” for
emergence of KdV, KP, Whitham equations and many others. Singularity in
families of relative equilibria captures the physical mechanism for emergence
of KdV in a purely mathematical construction.

The purely mathematical construction leading to the KdV equation (1.1)
may give the impression that the emergence of KdV in the form (1.1) is “yet
another way” for the KdV equation to emerge. This mechanism appears to
be completely unrelated to the way the KdV equation emerges in the theory
of water waves, since the KdV equation is normally derived in shallow water
hydrodynamics from the trivial solution and so no modulation appears to be
possible. However, there is a hidden phase and hidden relative equilibrium
structure, which when modulated shows that the KdV equation in the theory
of water waves emerges in precisely the form (1.1). The only difference is
that the conservation of wave action which generates (1.1) is replaced by the
conservation of mass, which is mathematically equivalent but is quite different
physically. Even in the case of water waves, the generation of the KdV equation
using the formula (1.1) gives new information in that the coefficient of the
nonlinear term is related to the curvature of the mass flux as a function of the
uniform flow.

Before presenting the connection between phase modulation and the KdV
equation in shallow water hydrodynamics, the governing equations and back-
ground physics for water waves are introduced in Chapters 9 and 10. Uniform
flows are characterized as relative equilibria, and criticality in hydrodynamics
is shown to be equivalent to the singularity (1.11), thereby generating the KdV
equation in shallow water hydrodynamics in the form (1.1). An additional fea-
ture arising from the new characterization of the emergent KdV equation is
that it is now clear that the KdV equation is not just a model for shallow water,
it is much more pervasive in the theory of water waves. Indeed, an example is
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given in Chapter 10 showing that the KdV equation can also be a model for
deep water waves.

The theory of phase modulation generalizes to PDEs in 2+1 (two space
dimensions and time), with the key new features being an additional wavenum-
ber in space and an additional component in the conservation laws. Otherwise,
the theory extends in a straightforward way. First the classical 2+1 Whitham
theory, based on a fast phase, is reviewed, then extended to the case of a slow
phase in Chapter 11. The slow phase and appropriate singularities lead to the
emergence of the KP equation via modulation. The 2+1 modulation theory
with nonlinearity and multi-dimensional dispersion is developed in Chapter
12. It is shown with model equations and the full water wave problem how
the KP equation emerges in the theory of water waves via phase modulation in
Chapters 13 and 14. The conditions for emergence of KP are quite general and
it is shown that the emergence of KP is much more pervasive than previously
thought.

One of the first examples of the Whitham theory was the application to
bifurcation of planforms by HOWE [97, 98]. He used the steady Whitham mod-
ulation equations to study pattern changes in the plane such as phase jumps. In
chapter 12.4 of [180], the steady Whitham modulation equations are used to
study a finite-amplitude version of the theory for the Kelvin wake behind ships.
All this theory is based on the fast-phase approach. This theory is generalized
in Chapter 15 using the ansatz and slow-phase approach giving a wider range
of modulation equations for steady planforms, including KdV planforms.

The chapter on planforms provides a segue into the parallel development
of phase modulation theory for periodic solutions of non-conservative sys-
tems, which is widely used in pattern formation. Non-conservative systems
are not considered in this book in general, but a review of the theory is given
in Chapter 17, with particular attention to features that resonate with the con-
servative case. There are two main strands in the theory of phase modulation
for non-conservative systems: pattern formation PDEs and reaction–diffusion
equations. The cornerstones of phase modulation in pattern formation are the
phase diffusion equation of POMEAU & MANNEVILLE [156] and its nonlinear
generalization, the Cross–Newell equation [60]. Starting with a steady peri-
odic pattern, the phase-diffusion equation is obtained by modulation using an
order-one phase, leading to a linear diffusion equation. The nonlinear Cross–
Newell equation is obtained by using a fast phase. In reaction–diffusion the
cornerstone is phase modulation of periodic travelling waves leading gener-
ically to Burgers’ equation. This approach started with the Howard–Kopell
theory [123] and was comprehensively generalized including validity results
by DOELMAN ET AL. [67]. When the basic state is a periodic travelling wave,
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rather than a stationary wave, then nonlinearity is generated in the phase dif-
fusion equation by a group velocity, thereby generating a nonlinear Burgers
equation. When the coefficient of dissipation is small, the Burgers equation is
modified to the Kuramoto–Sivashinsky equation [126, 125]. A brief overview
of phase modulation for reaction–diffusion equations and pattern formation is
given in Chapter 17.

This book just scratches the surface of the potential of the theory of phase
modulation for conservative systems. By removing the restrictions of a fast-
phase approach, introducing the role of singularities, and using a general ansatz
(1.7), new reduced models are found, and even familiar equations such as the
KdV equation are viewed afresh. Remarkably, all the theory in this book is
based on conservative PDEs with a single one-parameter group of symmetries.
Naturally, PDEs arising in applications may have higher dimensional symme-
try groups, and so there is a vast area for generalization of the one-phase theory,
including bifurcation of multi-phase wavetrains and coupling with mean flow.
Multi-dimensional groups can also be non-abelian, which brings in new com-
plexity and geometry, requiring new theory. Another direction that is not
considered but has important implications is systems with inhomogeneities,
where the Lagrangian depends explicitly on space and time. Some speculation
about these other directions is given in Chapter 18.



2

Hamiltonian ODEs and Relative Equilibria

A large class of solutions of Hamiltonian ODEs which are candidates for phase
modulation are relative equilibria, a class which includes periodic orbits. Rel-
ative equilibria are solutions that are aligned with the orbit of a symmetry
group. In this chapter the background needed for the introduction of relative
equilibria is developed, including symplectic structures, Hamiltonian ODEs,
symmetry and Lie groups, symplectic Noether theory, and the geometry of the
linearization about relative equilibria.

Classically, Hamiltonian systems were obtained from a Lagrangian formu-
lation as the Lagrangian formulation can be deduced from physics: the kinetic
and potential energies and constraints. Consider a classical Lagrangian in
standard form:

L(U) =
∫ x2

x1

L(Ux, U) dx , (2.1)

for some field U(x) ∈ R
n, n ≥ 1, defined on the interval x ∈ [x1, x2],

and smooth Lagrangian density L. The Lagrangian is assumed to be non-
degenerate, L11 �= 0, where〈

L11V, V
〉

=
d2

ds2
L(Ux + sV, U)

∣∣∣∣
s=0

, V ∈ R
n (2.2)

and 〈·, ·〉 is an inner product on R
n. Here and throughout this chapter the time-

like direction will be denoted by x in preparation for the later PDE analysis
where the symplectic structure in space will be an organizing centre.

A Hamiltonian system is obtained by Legendre transform. Let

V =
δL

δUx
, (2.3)

and define the functional H(U, V ) by

H(U, V ) :=
〈
V,Ux

〉− L(U,Ux) ,

11
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where Ux is considered a function of V by inverting (2.3). Back substitution
into (2.1) then gives

L̂(U, V ) =
∫ x2

x1

[〈
V,Ux

〉−H(U, V )
]

dx . (2.4)

This functional is the same as (2.1) but with the Lagrangian density partitioned
into two parts: a term involving a symplectic operator and a Hamiltonian func-
tion which does not contain any derivatives. The symplectic structure can be
more easily seen by introducing the operator

J =
(
0 −I
I 0

)
, (2.5)

where I is the identity on R
n. Then the functional in (2.4) can be written in the

form

L̃(Z) =
∫ x2

x1

[
1
2 〈JZx, Z〉 −H(Z)

]
dx , Z =

(
U

V

)
∈ R

2n , (2.6)

where 〈·, ·〉 is now an inner product on R
2n, and L̃(Z) is the same L in different

coordinates. The operator J defines a symplectic form

sym(Z,W ) = 〈JZ,W 〉 , Z,W ∈ R
2n , (2.7)

and the first variation of the functional in (2.6) gives the Hamiltonian system

JZx = ∇H(Z) , Z ∈ R
2n . (2.8)

In general a Hamiltonian system does not have to come from a Lagrangian.
It can be constructed abstractly from a symplectic vector space or manifold.
A symplectic vector space is a pair (P, sym), where P is a vector space (the
phase space) and sym is a non-degenerate closed two-form (the symplectic
form, (2.7)). Here and throughout the vector space P will be taken to be R

2n

with standard inner product

〈Z,W 〉 := Z1W1 + · · · + Z2nW2n , Z,W ∈ P . (2.9)

A Hamiltonian system consists of the triple (P, sym,H), where H : P → R

is a given smooth function, and the flow of the Hamiltonian system is defined
by (2.8).

2.1 Symmetry

A symmetric Hamiltonian system is one which is equivariant with respect
to the action of a group G. For the purposes of this book the simplest


