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Hybrid Systems-in-Foil (HySiF) is a concept that extends the 
potential of conventional More-than-More Systems-in/on-
Package (SiPs and SoPs) to the flexible electronics world. In HySiF, 
an economical implementation of flexible electronic systems 
is possible by integrating a minimum number of embedded 
silicon chips and a maximum number of on-foil components. 
Here, the complementary characteristics of CMOS SoCs and 
larger-area organic and printed electronics are combined in 
a HySiF-compatible polymeric substrate. Within the HySiF 
scope, the fabrication process steps and the integration design 
rules together with all the accompanying boundary conditions 
concerning material compatibility, surface properties, and thermal 
budget are defined. This Element serves as an introduction to the 
HySiF concept. A summary of recent ultrathin chip fabrication 
and flexible packaging techniques is presented. Several bendable 
electronic components are discussed, demonstrating the benefits 
of HySiF. Finally, prototypes of flexible wireless sensor systems 
that adopt the HySiF concept are demonstrated.
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material compatibility, surface properties, and thermal budget are

defined. This Element serves as an introduction to the HySiF concept.
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1 Flexible Electronics and Hybrid Systems-in-Foil

1.1 Motivation

Silicon device miniaturization and very-large-scale integration (VLSI) have

followed the well-knownMoore’s law for the last 50 years.[1] Integrated digital

functions and information processing have downscaled steadily in what is

known as the “More Moore” (MM) trend. Alternatively, real-world sensory

interactions and analog functional diversification have indirectly benefited from

Moore’s law, but they do not necessarily scale in size or cost, which gave rise to

a new growth trend known as “More thanMoore” (MtM). Figure 1.1a illustrates

the timeline of CMOS technology scaling and highlights topics that drive the

digital and non-digital integrated functionality.

Complex digital integrated circuits (ICs) were developed on a silicon die in a so-

called system-on-chip (SoC) approach. For implementing more system function-

ality and due to limited access to custom IC foundries, multiple chips were jointly

assembled for achieving a higher abstraction level, arranged in a so-called multi-

chip module (MCM). The steady scaling of devices in digital ICs is accompanied

by continuous improvement of miniaturized passive and active components such

as capacitors, inductors, micro-electromechanical systems (MEMS), and analog

circuitry, which, when combined with SoCs, give rise to a new level of integration

known as system-in-package (SiP) and later system-on-package (SoP).

Reports cite the world’s largest IC foundry Taiwan Semiconductor

Manufacturing Company (TSMC) as having said, “Moore’s Law is not dead,

it’s not slowing down, it’s not even sick.”[2] However, several physical, mater-

ial, power-thermal, technological, and economical challenges are facing the

continuation of device miniaturization, and reports are already speculating on

the imminent end or slowing down of Moore’s law.[3], [4]

Other materials such as gallium arsenide (GaAs), gallium nitride (GaN), and

small-molecule organic semiconductors have found their application fields away

from scaled silicon technology. Nonetheless, non-silicon semiconductor manu-

facturing benefits from the success story of silicon integration and miniaturiza-

tion. Figure 1.1b shows different semiconductor materials and their operating

frequency versus power-handling ranges. Note the optimal place occupied by the

irreplaceable high-performance silicon semiconductor industry, which has led to

the modern digital age of the Internet, computing, and portable electronics.

1.2 Flexible Electronics

Flexible electronics is considered one of the main enablers of the Internet of

Things (IoT), as it introduces smartness to every Thing in our daily life
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regardless of its form factor and surface properties. Flexible, printable, and

organic electronics, when combined with new materials and advanced fabrica-

tion processes, offer unique characteristics such as mechanical flexibility, thin-

form factor, large area scaling feasibility, and adaptability to irregular surfaces.

However, most flexible electronic components are currently either fabricated as

stand-alone components or combined with bulky sensor readout and/or wireless

communication modules assembled to the surface of a flexible substrate.[6], [7],

[8] Other flexible electronic systems benefit from only one technology (e.g.,

integrated temperature sensor and analog-to-digital converter [ADC] using

Figure 1.1 (a) The combined need for digital and non-digital functionalities in an

integrated system is translated as a dual trend in miniaturization of the digital

functions (“More Moore”) and functional diversification (“More than Moore”).

[5] (b) Power-handling capability of different semiconductor materials illustrated

against the operating frequency range. (c) Elasticity of frequently used materials

in flexible and printed electronics and its potential surface area coverage.
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amorphous Indium-Gallium-Zinc-Oxide [InGaZnO] thin-film transistors

[TFTs]).[9]

Figure 1.1c shows the elasticity of frequently used materials in flexible and

printed electronics and its potential surface area coverage. Thin-film organic,

small-molecule, and inorganic poly-Si semiconductor materials are inherently

flexible and applied to low-speed and large-area electronic applications. Due to

the strengthened requirement on material purity and uniformity, single-

crystalline silicon has a limited surface area coverage governed by the max-

imum available wafer size. Ultrathin chips (UTCs) are a promising candidate

for high-performance bendable electronic applications with embedded intelli-

gence. UTCs can be considered the extension of mature silicon technology to

flexible electronics. However, a cost-effective and reliable UTC flexible pack-

aging solution is still in development. Note that GaN and GaAs on thin silicon

have extended the operating frequency of flexible and stretchable microwave

devices and circuits reaching 10 GHz and beyond.[10], [11] Substrates based on

polyimides, polyethylene naphthalate (PEN), and polydimethylsiloxane

(PDMS) are potential platforms for flexible systems integration complementing

the conventional rigid printed circuit boards (PCBs).

1.2.1 Hybrid Systems-in-Foil Definition

Hybrid Systems-in-Foil (HySiF) is a concept that extends the potential of

conventional MtM SiPs and SoPs to the flexible electronics world. HySiF

targets an economical implementation of flexible electronic systems by inte-

grating a minimum number of embedded silicon chips and a maximum number

of on-foil components.[12], [13] The complementary characteristics of CMOS

SoCs and larger-area organic and printed electronics are combined in a HySiF-

compatible polymeric substrate. Within the HySiF scope, the fabrication pro-

cess steps and design rules for integrating such flexible electronic components

with all the accompanying boundary conditions concerning material compati-

bility, surface properties, and thermal budget are defined.

In many electronic systems (e.g., data converters and microprocessors), stand-

ard criteria for performance evaluation are designed to reflect the trade-offs

between operational parameters such as power consumption, speed, and accuracy.

Walden and Schreier figures of merit (FoM) are known values to evaluate data

converters’ performance. In this context, a new figure of merit (FoMFlex) for

flexible smart electronic systems (i.e., bendable and/or stretchable electronic

systems with digital outputs) includes key features such as mechanical flexibility,

low-power operation, accuracy, and processing speed. This newly introduced

FoM is defined as follows (Eq. 1.1):
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FoMFlex Pa:Jð Þ ¼ E Pað Þ � P Wð Þ
Fsync s�1ð Þ � SNR

; ð1:1Þ

where E is Young’s (or the Elastic) modulus of the complete flexible system or

substrate, P is the power consumption, Fsync is the maximum data rate supported

by the flexible system, and SNR is the signal-to-noise ratio of the integrated front

end. More elasticity, higher speed, and SNR at lower power results in better FoM.

As shown in Figure 1.3, silicon-based UTCs outperform organic and inorganic

TFT technologies. However, large area coverage, low-temperature processing,

and shorter manufacturing time are the main advantages for organic and inorganic

TFT technologies and are challenging parameters to be evaluated using

a standardized FoM.

For purely digital IP blocks, such as microprocessors (µP), microcontrollers

(µC), and near-field communication (NFC), the maximum data rate supported

by the flexible system in samples/second and SNR of 2 are used. Figure 1.2

depicts the proposed FoMFlex against system energy consumption of selected

flexible silicon, inorganic, and organic TFT smart systems. Table 1.1 provides

a detailed comparison of the specifications of the blocks represented in

Figure 1.2.

1.2.2 Device Integration and Interconnect Technologies

For flexible systems exploiting metallic foil substrates, wire interconnects are

already available, and their properties are coupled to the substrate properties. In

other systems that have insulating substrates, metallic films are deposited to

electrically connect different electronic components. Conventional CMOS-

compatible lithography could be used to trade off smaller area coverage and

lower throughput with fine-pitch interconnects. Fortunately, the thinner the

material, the more flexible it becomes. This is true in the case of thin-film

metals, such as gold (Au), silver (Ag), and aluminum (Al), which normally are

used to manufacture flexible electronic components. However, the thinner the

metal, the higher the sheet resistance. As an example of this trade-off, multiple

overpasses are performed during metal inkjet printing to tailor the sheet resist-

ance to that of a printed single metal layer. Long wire interconnects that are

often used in large-area flexible electronics affect signal integrity, as they limit

the precision and speed of the embedded systems by adding line delays (higher

parasitic RLC).

Coplanar circuit interconnects are usually used in flexible sensor systems.

Since metals have higher Young’s moduli compared to polymers, the density
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