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Introduction

Algebra is the offer made by the devil to the mathematician. The devil says: I will give
you this powerful machine, it will answer any question you like. All you need to do is
give me your soul: give up geometry and you will have this marvellous machine.

Michael Atiyah (2005).

In his famous essay on how to write mathematics, Paul Halmos (1970) states,
“Just as there are two ways for a sequence not to have a limit (no cluster points
or too many), there are two ways for a piece of writing not to have a subject (no
ideas or too many).” The book that you are now starting has two main subjects,
which is hopefully a reasonable amount. These two subjects, the polynomial
method and incidence theory, are tied together and difficult to separate.

Geometric incidences are a family of problems that have existed in discrete
geometry for many decades. Starting around 2009, these problems have
been experiencing a renaissance. New and interesting connections between
incidences and other parts of mathematics are constantly being exposed.
Incidences already have a variety of applications in harmonic analysis,
theoretical computer science, model theory, number theory, and more. At the
same time, significant progress is being made on long-standing open incidence
problems. The study of geometric incidences is currently an active and exciting
research field. One purpose of this book is to survey this field, the recent
developments in it, and its connections to other fields.

What are incidences? Consider a set of points P and a set of lines L in the
plane R2. An incidence is a pair (p, �) ∈ P × L such that the point p is on the
line �. For example, see Figure 1. One fundamental incidence result states that
n points and n lines in R2 form at most 2.5n4/3 incidences. While the exponent
4/3 cannot be improved, it is possible that the coefficient 2.5 could be replaced
with a slightly smaller one.

xi



xii Introduction

Figure 1 A configuration of four points, four lines, and nine incidences. For
example, the point a forms an incidence with each of the lines A, B, and C.

In other incidence problems, we replace the lines with circles, parabolas,
or other types of curves. Additional variants include incidences with higher-
dimensional objects in Rd , incidences with semi-algebraic sets, incidences
with complex objects in Cd , in spaces over finite fields, o-minimal structures,
and more. In most of these cases, finding the maximum possible number of
incidences remains an open problem.

An incidence result of a different flavor states that there exists a positive
constant c ∈ R that satisfies the following. For every sufficiently large n, every
set of n points in R2 satisfies at least one of the following statements:
• There exists a line that is incident to at least cn of the points.
• There exist at least cn2 lines that are incident to at least two of the points.

Sylvester (1868) studied incidence problems back in the 1860s. The earliest
incidence problem that we are aware of appears in a book of riddles (Jackson,
1821). This book contains 10 problems of the form that is presented in Figure 2.
In modern English, the problem in Figure 2 asks for the following: Place points
in the plane, such that the number of lines that contain exactly three points is
at least the number of points.

Figure 2 A riddle from the 1821 book Rational Amusement for Winter Evenings,
Or, A Collection of Above 200 Curious and Interesting Puzzles and Paradoxes
Relating to Arithmetic, Geometry, Geography.

Most of the recent progress in incidence theory is due to new algebraic
techniques. One may describe the philosophy behind these techniques as
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Collections of objects that exhibit extremal behavior often have hidden
algebraic structure. This algebraic structure can be exploited to gain a better
understanding of the original problem.

For example, in a point-line configuration with many incidences, we might
expect the points to form a lattice structure. Intuitively, we expose the algebraic
structure by defining polynomials according to the problem, and then studying
properties of these polynomials. In an incidence problem, we might study
a polynomial that vanishes on all the points. This approach is called the
polynomial method. In this book, we explore a wide variety of such polynomial
proofs. We use these techniques to study incidence bounds, the finite field
Kakeya problem, the cap set problem, distinct distances problems, the joints
problem, and more.

Polynomial methods have existed for several decades. One well-known
polynomial method is Alon’s Combinatorial Nullstellensatz, as described in
Alon (1999). As long ago as 1970, Rédei introduced an elegant polynomial
proof. This book is focused on the new wave of polynomial methods that
started to appear around 2009. These methods are quite different from the
preceding ones.

This book aims to be an accessible introduction to the new polynomial
methods and to incidence theory. For that reason, the book includes many
examples, warm-up proofs, figures, and intuitive ways of thinking about tricky
ideas. Many techniques are presented gradually and in detail. Readers who wish
to dig deeper into a particular topic can find references in the relevant chapter.

Incidence theory and the polynomial methods are still developing. There are
many interesting open problems, and, in some sense, the foundations are not
completely established yet. For that reason, most of the chapters of this book end
with an open problems section. These sections focus mostly on long-standing
difficult problems. Their goal is to illustrate the current research fronts and the
main difficulties that researchers are currently facing.

Several sections are defined as optional. Some sections, such as Section
7.3, are optional because they consist of standard technical proofs that may
not provide any new insights. Other sections require familiarity with a topic
that is orthogonal to the topics of this book. For example, the optional Section
9.3 requires basic familiarity with differential topology, which does not appear
anywhere else in the book.

Two other good sources for polynomial methods in discrete geometry are
the book Polynomial Methods in Combinatorics (Guth, 2016) and the survey



xiv Introduction

“Incidence theorems and their applications” (Dvir, 2012). While these sources
and the current book study similar topics, the overlap between them is smaller
than one might expect.

Figure 3 Chapter dependencies. The dashed edge marks a dependency that is
recommended but not necessary.

How to Read This Book

Throughout this book, we rely heavily on asymptotic notation such as x = O(y).
The appendix contains an introduction to asymptotic notation, together with
exercises. This appendix also briefly surveys basic graph theory notation and
the Cauchy–Schwarz inequality.

There are many ways to read this book, depending on the goal of the reader.
One way is to start from the beginning and read the chapters consecutively.
The beginning of the book contains more introductory material. The end of the
book contains mostly optional advanced topics. Figure 3 illustrates the chapter
dependencies. Some reading options are:
• A brief introduction to discrete geometry. For an introduction to problems

and techniques from classical discrete geometry, read Chapter 1. This chapter
does not involve polynomial methods.
• An introduction to polynomial partitioning. To learn how to prove

incidence results by using polynomial methods, read Chapters 1–3. Chapter 2
is a minimal introduction to algebraic curves in the real plane. Chapter 3
consists of the basics of the polynomial partitioning technique, and how to
use this technique to prove incidence bounds.
• A variety of polynomial methods in combinatorics. To see a variety of

polynomial methods in combinatorics, read Chapters 1–6. In addition to
the polynomial partitioning technique, Chapters 5 and 6 contain several
other polynomial breakthroughs. Chapter 4 introduces basic concepts from
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real algebraic geometry, and can be quickly skimmed by a reader who does
not intend to read beyond Chapter 6. Chapter 5 contains the polynomial proof
of the joints theorem. Chapter 6 contains polynomial proofs for problems in
finite fields, such as the finite field Kakeya problem and the cap set problem.

• The distinct distances theorem. To understand the distinct distances
theorem of Guth and Katz, read Chapters 1–5 and 7–10. Chapter 7 reduces
the distinct distances problem to an incidence problem in R3. Chapter 8
introduces the constant-degree polynomial-partitioning technique and uses
it to prove incidence bounds in the complex plane. Chapter 9 extends this
technique and uses it to prove the distinct distances theorem. Chapter 10
studies a few variants of the distinct distances problem.

• Incidences and polynomial methods over finite fields. To study incidences
and polynomial methods over finite fields, read Chapters 6 and 13. You
might wish to first read Chapter 1, but this is not necessary. Chapter 13
studies point-line incidences over finite fields.

• Incidences in Rd . To understand advanced incidence techniques in Rd , read
Chapters 1–5, 8, 11, 12, and 14. Chapter 11 studies more advanced techniques
for deriving incidence bounds in Rd . Chapter 12 consists of applications
for such incidence bounds. Chapter 14 introduces more advanced tools for
studying incidences and related problems. In particular, this final chapter
studies properties of ruled surfaces.
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1

Incidences and Classical Discrete Geometry

My most striking contribution to geometry is, no doubt, my problem on the number
of distinct distances. This can be found in many of my papers on combinatorial and
geometric problems.

Paul Erdős, in a survey of his favorite contributions to mathematics, compiled for the
celebration of his 80th birthday (Erdős, 1993).

1.1 Introduction to Incidences

We begin our study of geometric incidences by surveying the field and deriving
a few first bounds. In this chapter we only discuss classical discrete geometry
from before the discovery of the new polynomial methods. This makes the
current chapter rather different from the rest of the book (outrageously, it even
includes some graph theory). We also learn basic tricks that are used throughout
the book, such as double counting, applying the Cauchy–Schwarz inequality,
and dyadic decomposition. These techniques are presented in full detail in this
chapter, while some details are omitted in the following chapters.

Consider a set P of points and a set L of lines, both in R2. An incidence
is a pair (p, �) ∈ P × L such that the point p is contained in the line �. We
denote the number of incidences in P × L as I (P,L). For example, Figure 1
(in the Introduction) depicts a configuration with nine incidences. For any
m and n, Erdős constructed a set P of m points and a set L of n lines
with Θ

(
m2/3n2/3 + m + n

)
incidences. Erdős (1985) conjectured that no point-

line configuration has an asymptotically larger number of incidences. This
conjecture was proved by Szemerédi and Trotter in 1983.

Theorem 1.1 (The Szemerédi–Trotter theorem) Let P be a set of m points
and let L be a set of n lines, both in R2. Then I (P,L) = O

(
m2/3n2/3 +m + n

)
.

1
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The original proof of the Szemeredi–Trotter theorem is rather involved. In
this chapter we present a later elegant proof by Székely (1997). A more general
algebraic proof is presented in Chapter 3.

Finding the maximum number of point-line incidences in R2 is one of the
simplest incidence problems. It is also one of very few incidence problems
that are solved asymptotically. Other problems involve incidences with circles
or other types of curves, incidences with varieties in Rd , with semi-algebraic
objects in Rd , in complex spaces Cd , in spaces over finite fields, and much
more. In each of these problems, we wish to find the maximum number of
incidences between a set of points and a set of geometric objects. If you ever
need to snub a discrete geometer, try pointing out how they can barely solve
any of these problems after decades of work.

One reason for studying incidence problems is that they are natural
combinatorial problems. Throughout this chapter, we start to see additional
reasons for studying incidence problems, including:
• Incidence problems are not purely combinatorial, but also require an

understanding of the underlying geometry. One example of this appears
in Section 1.5, where we introduce the unit distances problem. This problem
involves studying properties that distinguish the Euclidean metric from
almost all other distance metrics.
• Incidence results are also useful for problems that may not seem related

to geometry. In Section 1.8, we use incidences to study the sum-product
problem. This problem started as a number-theoretic problem that does not
involve any geometry.

1.2 First Proofs

We now develop some initial intuition about incidences. We begin by deriving
our first bound for an incidence problem. This is a weak bound, but it is still
useful in some cases.

Lemma 1.2 Let P be a set of m points and let L be a set of n lines, both in
R2. Then I (P,L) = O(m

√
n + n) and I (P,L) = O(n

√
m + m).

Why do we say that Lemma 1.2 is weaker than Theorem 1.1? For some
intuition, consider the case where m = n. In this case, Theorem 1.1 leads to the
bound O(n4/3), while Lemma 1.2 only gives O

(
n3/2) .

Proof of Lemma 1.2 We only derive I (P,L) = O(m
√

n+ n). The other bound
is obtained in a symmetric manner. Consider the set of triples
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T =
{
(a, b, �) ∈ P2 × L : a and b are both incident to �

}
.

Note that T also contains triples (a, b, �) where a = b.
Let m j be the number of points of P that are incident to the jth line of
L. Then the number of triples of T that include the jth line of L is m2

j . This
implies that |T | = ∑n

j=1 m2
j . Also, note that I (P,L) =

∑n
j=1 m j . We apply the

Cauchy–Schwarz inequality (Theorem A.1). We present this first application
of the inequality in full detail. Throughout the rest of the book, we skip the
intermediary steps. For 1 ≤ j ≤ n, we set a j = m j and bj = 1. The Cauchy–
Schwarz inequality implies that

n∑
j=1

m j ≤ ��
�

n∑
j=1

m2
j
��
	

1/2 ��
�

n∑
j=1

1��	
1/2

=
��
�

n∑
j=1

m2
j
��
	

1/2

· n1/2.

Squaring both sides and rearranging leads to

|T | =
n∑
j=1

m2
j ≥

(∑n
j=1 m j

)2
n

=
I (P,L)2

n
. (1.1)

The number of triples (a, b, �) ∈ T with a = b is I (P,L). The number of
triples (a, b, �) ∈ T with a � b is at most

(
m
2

)
, since each pair of distinct a,

b ∈ P is contained in at most one line of L . Thus, |T | ≤
(
m
2

)
+ I (P,L).

Combining this with Equation (1.1) gives

I (P,L)2

n
≤
(
m
2

)
+ I (P,L). (1.2)

When
(
m
2

)
≥ I (P,L), rearranging Equation (1.2) leads to I (P,L) =

O
(
mn1/2) . Otherwise, rearranging Equation (1.2) leads to I (P,L) = O(n). �

To prove Lemma 1.2, we used a common combinatorial method called double
counting. In this method, we bound some quantity X in two different ways and
then compare the two bounds. This leads to new information that does not
involve X . In the proof of Lemma 1.2, we derived upper and lower bounds for
the size of T . By comparing these two bounds, we obtained a bound for the
number of incidences. Double counting is ubiquitous in this book.

In the proof of Lemma 1.2, we did not use any geometry beyond observing
that two points are contained in one line. This implies that the proof still holds
after removing all the other geometric properties of the problem. That is, when
replacing the lines with abstract sets of points, such that every two sets have at
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most one common element. For example, instead of the lines in Figure 1 (in the
Introduction), we can consider the sets

A = {a, d}, B = {a, c}, C = {a, d}, D = {b, c, d}.

In this abstract setting, the bounds of Lemma 1.2 are asymptotically tight. There
exist n subsets of m elements with the above property andΘ

(
mn1/2) incidences

(orΘ
(
nm1/2)). Thus, to derive a stronger upper bound for point-line incidences,

we must rely on additional geometric properties of lines.
We now consider an asymptotically tight lower bound for Theorem 1.1.

Instead of Erdős’s original construction, we present a simpler construction due
to Elekes (2001).

Claim 1.3 For every m and n there exist a set P of m points and a set L of n
lines, both in R2, such that I (P,L) = Θ

(
m2/3n2/3 + m + n

)
.

Proof The term m dominates the boundΘ
(
m2/3n2/3+m+n

)
when m = Ω

(
n2) .

In this case we can simply take m points on a single line to obtain m incidences.
Similarly, the term n dominates the bound when n = Ω

(
m2) . In this case we

take n lines that pass through a single point to obtain n incidences. It remains to
construct a configuration with Θ

(
m2/3n2/3) incidences when m = O

(
n2) and

n = O
(
m2) .

Let r =
(
m2/4n

)1/3 and s =
(
2n2/m

)1/3 (for simplicity, instead of taking the
ceiling function of s and r , we assume that these are integers). We set

P = { (i, j) : 1 ≤ i ≤ r and 1 ≤ j ≤ 2rs } ,

and
L = { y = ax + b : 1 ≤ a ≤ s and 1 ≤ b ≤ rs } .

Note that P is a rectangular section of the integer lattice. The slopes and
y-intercepts of the lines of L also form such a lattice. Figure 1.1 depicts an
example configuration rotated by 90◦. We also have that

|P | = 2r2s = 2 · m4/3

(4n)2/3 ·
(
2n2)1/3

m1/3 = m,

Figure 1.1 Elekes’s construction, rotated by 90◦.
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and

|L| = rs2 =
m2/3

(4n)1/3 ·
(
2n2)2/3

m2/3 = n.

Consider a line � ∈ L that is defined by the equation y = ax + b. For any
x ∈ {1, . . . , r }, there exists y ∈ {1, . . . , 2rs} such that the point (x, y) is incident
to �. That is, every line of L is incident to exactly r points of P, which in turn
implies that

I (P,L) = r · |L| = m2/3

(4n)1/3 · n = 2−2/3m2/3n2/3. �

1.3 The Crossing Lemma

One elegant proof of Theorem 1.1 is based on the crossing lemma. We study
this proof in Section 1.4. Here, we first go over some required preliminaries.
For a brief review of graph theory notation, see Section A.2.

The crossing number of a graph G = (V, E), denoted cr(G), is the smallest
integer k such that we can draw G in the plane with k edge crossings.
Figure 1.2(a) depicts a drawing of K5 with a single crossing. Since K5 cannot
be drawn without crossings, we have that cr(K5) = 1. Intuitively, we expect
a graph with a lot more edges than vertices to have a large crossing number.
Given a graph G = (V, E), we are interested in a lower bound for cr(G) with
respect to |V | and |E |.

(a) (b)

Figure 1.2 (a) A drawing of K5 with a single crossing. (b) A graph with two
bounded faces and one unbounded face.

A graph G is planar if cr(G) = 0. We consider a connected planar graph
G = (V, E) with v vertices and e edges. More specifically, we consider a drawing
of G in the plane with no crossings. The faces of this drawing are the maximal
two-dimensional connected regions that are bounded by the edges. This includes
one outer, infinitely large region. For an example, see Figure 1.2(b). Denote by
f the number of faces in the drawing of G. Then Euler’s formula states that

v + f = e + 2. (1.3)
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For planar graphs that are not connected, we instead have that v + f > e + 2.
Every edge of G is either on the boundary of two faces or has both of its

sides on the boundary of the same face. Moreover, the boundary of every face
of G consists of at least three edges. Thus, we have 2e ≥ 3 f . Plugging this into
Equation (1.3) yields

e ≤ v + f − 2 ≤ v +
2e
3
− 2.

That is, for any planar graph G = (V, E), we have that

|E | ≤ 3|V | − 6. (1.4)

The above leads to our first lower bound on cr(G).

Lemma 1.4 For any graph G = (V, E), we have cr(G) ≥ |E | − 3|V | + 6.

Proof Consider a drawing of G in the plane that minimizes the number of
crossings. Let E ′ ⊂ E be a maximum subset of the edges such that no two
edges of E ′ intersect in the drawing. By Equation (1.4), we have that |E ′ | ≤
3|V | − 6. Since every edge of E\E ′ intersects at least one edge of E ′, and
since |E\E ′| ≥ |E | − 3|V | + 6, there are at least |E | − 3|V | + 6 crossings in the
drawing. �

Since K5 has 5 vertices and 10 edges, Lemma 1.4 gives the correct value
cr(K5) = 1. However, in general the bound of this lemma is rather weak. For
example, it is known that cr(Kn) = Θ

(
n4) , while Lemma 1.4 only implies that

cr(Kn) = Ω
(
n2) . We can amplify the lower bound of Lemma 1.4 by combining

it with a probabilistic argument. The following lemma was originally derived
in Ajtai et al. (1982); Leighton (1983), with different proofs.

Lemma 1.5 (The crossing lemma) Let G = (V, E) be a graph with |E | ≥
4|V |. Then cr(G) = Ω

(|E |3/|V |2) .
Proof Consider a drawing of G with cr(G) crossings. Set p = 4 |V |

|E | . The
assumption of the lemma implies that 0 < p ≤ 1. We remove every vertex
of V from the drawing with probability 1 − p (together with the edges adjacent
to the vertex). Let G′ = (V ′, E ′) denote the resulting subgraph. Let c′ denote
the number of crossings in the drawing of G that have both of their edges in E ′.

To avoid confusion with the edge set E, we denote expectation of a random
variable as E[·]. Since every vertex remains with probability p, we have that
E[|V ′ |] = p|V |. Since every edge remains if and only if its two endpoints
remain, we have that E[|E ′ |] = p2 |E |. Finally, since each crossing remains if
and only if the two corresponding edges remain, we have that E[c′] = p4cr(G).
By linearity of expectation,
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E[c′ − |E ′ | + 3|V ′ |] = p4cr(G) − p2 |E | + 3p|V |

=
44 |V |4

|E |4
cr(G) − 42 |V |2

|E |2
· |E | + 3 · 4|V |

|E | · |V |

=
44 |V |4

|E |4
cr(G) − 4|V |2

|E | .

Since this is the expected value, there exists a subgraph G∗ = (V ∗, E∗) with
c∗ crossings remaining from the drawing of G, such that

c∗ − |E∗ | + 3|V ∗ | ≤ 44 |V |4

|E |4
cr(G) − 4|V |2

|E | . (1.5)

By Lemma 1.4, we have c∗ ≥ |E∗ |−3|V ∗ |+6. Combining this with Inequality
(1.5) implies

0 < 6 ≤ c∗ − |E∗ | + 3|V ∗ | ≤ 44 |V |4

|E |4
cr(G) − 4|V |2

|E | .

That is, 4 |V |2
|E | < 44 |V |4

|E |4 cr(G). Tidying up this inequality leads to the required
bound. �

Lemma 1.5 implies the asymptotically tight bound cr(Kn) = Ω
(
n4) .

1.4 Szemerédi–Trotter via the Crossing Lemma

We are now ready to prove Theorem 1.1. We first restate this theorem.

Theorem 1.1 Let P be a set of m points and let L be a set of n lines, both in
R2. Then I (P,L) = O

(
m2/3n2/3 + m + n

)
.

Proof We write L = {�1, . . . , �n} and denote by m j the number of points of P
that are on � j . Notice that I (P,L) =

∑n
j=1 m j . We may remove any line � j that

satisfies m j = 0, since this would not change the number of incidences.
We build a graph G = (V, E) as follows. Every vertex of V corresponds to a

point of P. For v, u ∈ V , we add (v, u) to E if v and u correspond to consecutive
points along a line of L. For an example, see Figure 1.3. A line � j contributes
exactly m j − 1 edges of E. Thus, we have |V | = m and |E | = ∑n

j=1(m j − 1) =
I (P,L) − n.

If |E | < 4|V | then I (P,L) = O(m+ n), which completes the proof. We may
thus assume that |E | ≥ 4|V |. Then, Lemma 1.5 leads to

cr(G) = Ω

(
(I (P,L) − n)3

m2

)
. (1.6)
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Figure 1.3 (Solid segment) The edges of the graph. (Dashed segment) The portions
of the lines �j that do not form graph edges.

We draw G according to the point-line configuration: Every vertex is at the
corresponding point and every edge is the corresponding line segment. Every
crossing in this drawing is an intersection of two lines of L. Since every two
lines intersect at most once, we have that cr(G) ≤

(
n
2

)
= O
(
n2) . Combining

this with Equation (1.6) implies that

(I (P,L) − n)3

m2 = O
(
n2) .

Rearranging this equation gives I (P,L) = O
(
m2/3n2/3 + n

)
. �

The proof of Theorem 1.1 is another example of the double counting method.
We counted cr(G) in two different ways. By combining the two resulting
bounds, we obtained a bound on the number of incidences.

In the proof of Theorem 1.1, we used the geometric property that two lines
intersect at most once. This is similar to the observation that any two points
are contained in one line,1 which was used in the proof of Lemma 1.2. In the
proof of Theorem 1.1 we used a second geometric property when stating that
the line � j corresponds to exactly m j − 1 edges of E. This statement relies on
the observation that a line consists of a single connected component and does
not intersect itself. When replacing the lines with other curves that satisfy the
same geometric properties, the proof of Theorem 1.1 remains valid.

1.5 The Unit Distances Problem

The unit distances problem is one of the main open problems in discrete
geometry. While it is extremely difficult to solve this problem, it easy to state:

In a set of n points in the plane, what is the maximum possible number of pairs
of points at distance 1 from each other?

1 These two geometric properties are equivalent when studying point-line incidences, due to
point-line duality. We discuss this concept in Section 1.10.
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We denote this maximum number of pairs as u(n). By taking a set of n points
equally spaced on a line, we immediately obtain that u(n) ≥ n−1. Erdős (1946)
introduced the problem, while also deriving the bounds u(n) = O

(
n3/2) and

u(n) = Ω
(
n1+c/ log log n) , for some constant c. While many mathematicians have

studied this problem, the lower bound for u(n) has not been improved since
1946 and the upper bound was last improved in 1984. That was when Spencer
et al. (1984) derived the bound u(n) = O

(
n4/3) .

Consider a set P ⊂ R2 of n points such that the number of unit distances
between pairs of points of P is u(n). We draw a unit circle (a circle of radius
one) around each point of P, and denote the set of these n circles as C. Every
two points p, q ∈ P that determine a unit distance correspond to two incidences
in P × C: The circle around p is incident to q and vice versa. See Figure 1.4
for an example. Thus, to bound u(n) it suffices to bound the maximum number
of incidences between n points and n unit circles (it is not difficult to show that
this maximum number of incidences is asymptotically equivalent to u(n)).

Figure 1.4 Every two points that are at a unit distance correspond to two point-
circle incidences.

Theorem 1.6 Let P be a set of n points and let C be a set of n unit circles,
both in R2. Then I (P, C) = O

(
n4/3) .

Theorem 1.6 immediately implies the current best bound u(n) = O
(
n4/3) .

Proof of Theorem 1.6 We imitate the proof of Theorem 1.1. Let C =
{c1, . . . , cn} and let m j denote the number of points of P on cj . Note that
I (P, C) =

∑n
j=1 m j . We may remove any circle cj that satisfies m j < 3, since

this reduces the number of incidences by at most 2n.
We build a graph G = (V, E) as follows. Every vertex of V corresponds to a

point of P. For v, u ∈ V , the edge (v, u) is in E if v and u are consecutive points
along at least one circle of C. A circle cj corresponds to exactly m j edges of E,
and every edge originates from at most two unit circles. Note that |V | = n and
|E | ≥ ( ∑n

j=1 m j
)
/2 = I (P, C)/2.

If |E | < 4|V | then I (P, C) = O(n), which completes the proof. We may thus
assume that |E | ≥ 4|V |. By Lemma 1.5, we have that

cr(G) = Ω

(
I (P, C)3

n2

)
. (1.7)


