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Foreword

Francis Bach, INRIA

Characterizing and analyzing probability distributions through their moments
has a long history in probability, statistics, optimization, signal processing,
machine learning and all related fields. Christoffel–Darboux (CD) kernels are
well-studied mathematical objects which were originally introduced for very
different purposes. They turn out to benefit from interesting properties within
a moment-based analysis context leading to interesting applications.
The theory of CD kernels and their relationship to moments is more than a

century old, and is still an active field ofmathematical research. Themotivations
for studying such objects arose from fundamentalmathematics, with orthogonal
polynomials and approximation theory, and have remained quite disconnected
to applied disciplines centered on inference fromdata.YetCDkernels turn out to
have several appealing properties from an empirical inference perspective. They
can be defined from moments, requiring only conceptually simple numerical
operations. Furthermore, theory shows that many subtle properties of the
underlying distribution can be obtained from the CD kernels of increasing
orders, such as its support.

This book demonstrates the potential of CD kernels as an empirical inference
tool in a data analysis context. It investigates the consequences of the favorable
properties of CD kernels in a statistical context where one only has access to
empirical measures and empirical moments. This original thematic positioning
naturally leads to questions at the interface between applied statistical inference
and the CD kernel literature. These include statistical connections between
empirical Christoffel functions and its large-sample limit, quantitative estimates
and bounds, and consequences for applications.

Interestingly, the Christoffel–Darboux kernel is a reproducing kernel for a
space of polynomials, a notion that is now common in statistics and machine

ix
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learning. The construction is, however, very different with a sample dependency
of underlying scalar product and norm, which are adapted to the empirical
measure. This contrasts with more usual machine learning applications where
the scalar product is fixed and given, and provides an efficient basis for
polynomial estimationwith a natural interpretation for increasing degree orders.
Many aspects of the theory of Christoffel functions and the associated

Christoffel–Darboux kernels are well established and have become classical
in the polynomial approximation literature. This book provides a unified and
clear exposition of the main tools and algorithms, with a strong focus on data
analysis applications. It shows in particular how the new polynomial kernels
can be efficiently used for many relevant tasks, such as support estimation,
outlier detection or experimental design.
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s(d)
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n

)
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A matrix in Rm×n
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Preface

Among the many positive-definite kernels appearing in classical analysis,
approximation theory, probability, mathematical physics, control theory and
more recently in machine learning, the Christoffel–Darboux (CD) kernel
stands out by its numerical accessibility from raw data and its versality in
encoding/decodingfine properties of the generatingmeasure. Indeed this unique
feature was recognized very early and was exploited over a century and a half
via surprising developments. One can safely draw a parallel: just as the power
moment problem is the quintessential inverse problem, the CD kernel is the
prototypical positive-definite reproducing kernel. While the computationally
oriented practitioner may think that dealing with real monomials brings
instability, we argue that complex monomials restricted to the unit circle or
higher-dimensional tori are the very stable ubiquitous Fourier modes.
The CD kernel has a particular property that enables us to identify the

underlying reproducing kernel Hilbert space (RKHS) inner product with a
bilinear form induced by a given measure over a finite-dimensional function
space. This feature allows us to develop a rich theory describing the relation
between the Christoffel–Darboux kernel and the underlying measure in a data
analysis context. Our aim in this book is to explain this property and its
application in data analysis and the numerical treatment of statistical data.
Another of our goals is to make it straightforward for the non-expert reader
to obtain further insights about the role of the Christoffel function in function
theory, approximation theory and the spectral analysis of dynamical systems,
as well as sketching some possible extensions (e.g. to Lebesgue Lp (µ) spaces).

Since the Christoffel function and the Christoffel–Darboux kernel have a long
mathematical history, we confine ourselves on the one hand to describing in a
streamlined manner their classical theory and on the other to giving an up-to-
date collection of results that provide a theoretical basis for such applications.
Examples of these include:

xiii
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Figure 1 N = 1040 and n = 8; points with size and color proportional to the
value of 1/ΛµN

n .

• outlier detection, whereΛµN
n provides a simple test to decide whether a point

x of the cloud can be considered as an outlier;
• density estimation, when µN is the empirical measure µN on a cloud of
points drawn for some unknown probability distribution µ on Ω, with a
density with respect to Lebesgue measure on Ω;

• manifold learning: when the cloud of points is supported on a subset of
a manifold (e.g. the sphere) or on an algebraic variety, can we detect the
manifold (or algebraic variety) and its dimension?

To better appreciate the simplicity of the approach, consider the cloud of two-
dimensional points shown in Figure 1. Most points are in an annulus and the
color and size of a point ξ is proportional to the value of ΛµN

n (ξ )−1 at this
point. Therefore all points ξ with “color” ΛµN

n (ξ ) ≤ τ (for some threshold τ)
are declared potential outliers. In Figure 1 one clearly sees that points with
colors close to pink, red, or brown, are “outside” the annulus.
Of course, when µN is the empirical measure supported on a sample drawn

from some distribution µ on Ω, to obtain rigorous asymptotic results on the
unknown µ and Ω, it is expected that one has to carefully scale the degree n
with the size N of the sample. This issue is clearly particular to data analysis
because one uses an empirical measure µN on a typically finite sample. We
showhow such asymptotic results can be rigorously justified in this data analysis
framework.
By its nature, our text interlaces distant themes, over-simplifies most of

the theoretical background and sacrifices fine tuning for wide accessibility
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and utility. We are aware that balancing such opposite tendencies leads to
brutal omissions. The story does not end here. We apologize in advance to the
neglected parties and invite them to take our essay as a basis for exploring novel
ramifications of Christoffel–Darboux analysis.
Having said all that, we have to recognize the lasting creative power of the

two founders of the theory. The genius of E. B. Christoffel emanates from
every page of the astounding collection Butzer and Fehér (1981). Darboux’s
innovative brilliance was recognized by all leading figures of the mathematical
landscape (Lippmann et al., 1912). His eulogy in Hilbert (1920) is as fresh and
accurate now as it was at the time of its publication a century ago.
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Institute), coordinated by the Federal University of Toulouse within the
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grant agreement ANR-19-PIA3-0004. The third author was partially supported
by a Simons Foundation collaboration grant for mathematicians.





1
Introduction

To get a glimpse of the main theme of the book, consider an arbitrary cloud of
N points xi = (xi, yi) ∈ R2, i = 1, . . . , N , in the plane, dense enough to form
some geometric shape. For instance in Figure 1.1 the shape looks like a rotated
letter “T”; similarly in the frontispiece, the cloud of points is concentrated on
the letters “C” and “D” (for Christoffel and Darboux). Then we invite the reader
to perform the following simple operations on the preferred cloud of points:

1. Fix n ∈ N (for instance n = 2) and let s(n) =
(
n+2

2

)
.

2. Let vn(x) = (1, x, y, x2, x y, . . . , x yn−1, yn) be the vector of all monomials
xiy j of total degree i + j ≤ n.

3. Form Xn ∈ R
n×s(n) , the design matrix whose ith row is v(xi), and the

real symmetric matrix Mn ∈ R
s(n)×s(n) with rows and columns indexed by

monomials such that

Mn :=
1
N

XT
nXn.

4. Form the polynomial

x 7→ pn(x) := vn(x)TM−1
n vn(x).

5. Plot the level sets Sγ := {x ∈ R2 : pn(x) = γ} for some values of γ, and in
red for the particular value γ =

(2+n
2

)
.

As the reader can observe in Figure 1.1, the various level sets (and in particular
the red one) capture quite accurately the shape of the cloud of points.
The above polynomial pn is associated with the cloud of points (xi)i≤N only

via the real symmetric matrix Mn in a conceptually simple manner, the main

1


