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383 Motivic integration and its interactions with model theory and non-Archimedean geometry I,

R. CLUCKERS, J. NICAISE & J. SEBAG (eds)
384 Motivic integration and its interactions with model theory and non-Archimedean geometry II,

R. CLUCKERS, J. NICAISE & J. SEBAG (eds)
385 Entropy of hidden Markov processes and connections to dynamical systems, B. MARCUS, K. PETERSEN

& T. WEISSMAN (eds)
386 Independence-friendly logic, A.L. MANN, G. SANDU & M. SEVENSTER
387 Groups St Andrews 2009 in Bath I, C.M. CAMPBELL et al (eds)
388 Groups St Andrews 2009 in Bath II, C.M. CAMPBELL et al (eds)
389 Random fields on the sphere, D. MARINUCCI & G. PECCATI
390 Localization in periodic potentials, D.E. PELINOVSKY
391 Fusion systems in algebra and topology, M. ASCHBACHER, R. KESSAR & B. OLIVER
392 Surveys in combinatorics 2011, R. CHAPMAN (ed)
393 Non-abelian fundamental groups and Iwasawa theory, J. COATES et al (eds)
394 Variational problems in differential geometry, R. BIELAWSKI, K. HOUSTON & M. SPEIGHT (eds)
395 How groups grow, A. MANN
396 Arithmetic differential operators over the p-adic integers, C.C. RALPH & S.R. SIMANCA
397 Hyperbolic geometry and applications in quantum chaos and cosmology, J. BOLTE & F. STEINER (eds)
398 Mathematical models in contact mechanics, M. SOFONEA & A. MATEI
399 Circuit double cover of graphs, C.-Q. ZHANG
400 Dense sphere packings: a blueprint for formal proofs, T. HALES
401 A double Hall algebra approach to affine quantum Schur–Weyl theory, B. DENG, J. DU & Q. FU
402 Mathematical aspects of fluid mechanics, J.C. ROBINSON, J.L. RODRIGO & W. SADOWSKI (eds)
403 Foundations of computational mathematics, Budapest 2011, F. CUCKER, T. KRICK, A. PINKUS &

A. SZANTO (eds)
404 Operator methods for boundary value problems, S. HASSI, H.S.V. DE SNOO & F.H. SZAFRANIEC (eds)
405 Torsors, étale homotopy and applications to rational points, A.N. SKOROBOGATOV (ed)
406 Appalachian set theory, J. CUMMINGS & E. SCHIMMERLING (eds)
407 The maximal subgroups of the low-dimensional finite classical groups, J.N. BRAY, D.F. HOLT &

C.M. RONEY-DOUGAL
408 Complexity science: the Warwick master’s course, R. BALL, V. KOLOKOLTSOV & R.S. MACKAY (eds)
409 Surveys in combinatorics 2013, S.R. BLACKBURN, S. GERKE & M. WILDON (eds)
410 Representation theory and harmonic analysis of wreath products of finite groups,

T. CECCHERINI-SILBERSTEIN, F. SCARABOTTI & F. TOLLI
411 Moduli spaces, L. BRAMBILA-PAZ, O. GARCÍA-PRADA, P. NEWSTEAD & R.P. THOMAS (eds)
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Preface

The chapters of the present volume cover a range of topics in equivariant
topology and derived algebra, chosen to connect with major themes from
John Greenlees’ vast mathematical career.

Conference

The catalyst for these proceedings was a week-long conference held at
NTNU (Trondheim) between the 29th of July and the 2nd of August 2019.
This conference, entitled Equivariant Topology and Derived Algebra, was
held in honor of John Greenlees’ 60th birthday. The conference consisted
of 15 invited talks, 11 contributed talks, and 13 shorter gong show style
talks, and was attended by a diverse group of over 90 international
participants. The mathematical content was enhanced by a customary
hiking excursion and a hearty conference dinner with beautiful scenic
views.

Summary of the chapters

We briefly outline the chapters appearing in these proceedings, while also
taking the opportunity to connect them to the work of John Greenlees,
which at the date of writing spans more than 90 papers and four research
monographs [32, 45, 57, 73].
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Comparing Dualities in the K(n)-local Category
P. G. Goerss and M. J. Hopkins

Duality is a recurring theme through the work of John Greenlees;
the starting place is perhaps Spanier–Whitehead duality. In modern
language, the Spanier–Whitehead dual of a spectrum X is the function
spectrum DX = F (X,S), which arises from the commutative monoidal
structure of the stable homotopy category. A common calculation is to
show that the dual of the Moore spectrum for Z/2 is simply a shift of that
spectrum. A detailed examination of functional duals and Moore spectra
is the subject of Greenlees’ first published work, [93]. It is natural to
look for generalisations of (Spanier–Whitehead) duality, for example [86]
and [88] consider duality in the equivariant stable homotopy category,
while [31] and [41] look more generally at questions of duality.

The first chapter of this volume takes up this theme and investigates
duality in the K(n)-local stable homotopy category, giving a full and
detailed proof of a result relating K(n)-local Spanier–Whitehead duality
to the more computable notion of Brown–Comenetz duality.

Axiomatic Representation Theory of Finite Groups by way of
Groupoids

I. Dell’Ambrogio

A second major theme in the work of John Greenlees is representation
theory, and in particular, the use and study of Mackey functors. The most
immediate way Mackey functors appear in the work of Greenlees is via
equivariant cohomology theories. These are a generalisation of cohomology
theories that have G-spaces as input, and take G-Mackey functors as
coefficients. The category of Mackey functors is also a rich and interesting
category in its own right, as demonstrated in [40, 60, 73, 82, 85]. Indeed,
three chapters of this volume consider Mackey functors at length.

This chapter considers very general notions of Mackey functors and
gives a common conceptual framework for several different versions. It
provides relations between these different versions and connects the
theory to 2-categories and bisets.
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Chromatic Fracture Cubes
O. Antolín-Camarena and T. Barthel

A sizable portion of John Greenlees’ work is dedicated to the develop-
ment of algebraic models for rational G-spectra, where G is a compact
Lie group. Algebraic models for several groups have been established,
including all finite groups, the circle, tori of arbitrary dimension, O(2)

and SO(3), see [73, 57, 16, 11, 59, 52]. Greenlees has conjectured that
an algebraic model (satisfying a list of key properties) exists for every
compact Lie group G. A key tool for this project is an isotropy sep-
aration of the sphere spectrum in rational G-spectra. This separation
is a pullback square similar to the arithmetic pullback square or the
chromatic fracture square. As the sphere spectrum is the monoidal unit,
the isotropy separation extends to a decomposition of the (homotopy)
category of rational G-spectra into simpler building blocks. Recent work
of Greenlees abstracts this machinery to the setting of axiomatic stable
homotopy theory [1].

This chapter generalises the familiar chromatic fracture square in
the E(n)-local stable homotopy category to a chromatic fracture cube.
This cube categorifies to provide a combinatorial decomposition of the
category into monochromatic pieces. The E(n)-local stable homotopy
category can be reconstructed by taking a homotopy limit of these
monochromatic pieces over a certain diagram of diagrams.

An Introduction to Algebraic Models for Rational G-Spectra
D. Barnes and M. Kędziorek

As mentioned above, a major project of Greenlees is the development
of algebraic models for rational G-spectra, where G is a compact Lie
group, see [73, 57, 16, 11, 59, 52]. The initial case is where G is a
finite group, here the algebraic model for rational G-spectra is a finite
product over conjugacy classes of subgroups H ≤ G of graded Q[WGH]-
modules (WGH is the Weyl group of H in G). One of the ways to prove
this result uses the idempotent splitting of rational G-Mackey functors,
see Appendix A of [73]. There are many papers building upon that
work, such as constructing an algebraic model for naive-commutative
ring G-spectra [9].

This chapter gives an introduction to rational Mackey functors and
summarises the main techniques used to obtain algebraic models for
rational G-spectra, concentrating on the case of a finite group G. It
discusses the topological and algebraic parallels of using idempotents to
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split the category of rational G-spectra and rational G-Mackey functors.
It also briefly mentions the techniques to obtain algebraic models when G

is not finite.

Monoidal Bousfield Localizations and Algebras over Operads
D. White

Commutative monoidal structures appear throughout John Greenlees’
work, occurring with algebraic origins [63, 72, 74], topological origins [4, 9]
and bridging the divide between algebra and topology: [13, 36, 37, 75].
Moreover, the construction of algebraic models for rational G-spectra
often depends upon making use of (commutative) monoidal structures
in both topology and algebra. For example, the isotropy separation
arguments require that certain localizations of the sphere spectrum are
still commutative monoids. This property is not automatic, even under
suitable cofibrancy conditions.

This chapter characterizes those Bousfield localizations that respect (com-
mutative) monoidal structures, and moreover proves that these localiza-
tions preserve algebras over cofibrant operads. This general machinery
can be used to retrieve many classical results which have repeatedly been
used in the work of Greenlees.

Stratification and Duality for Unipotent Finite Supergroup
Schemes

D. Benson, S. B. Iyengar, H. Krause and J. Pevtsova

A recent direction in the work of Greenlees is the study of tensor-
triangulated categories, triangulated categories with compatible symmet-
ric monoidal product and function object. A central example is the stable
homotopy category, arising from homotopy (co)fibre sequences and the
smash product and function spectrum. The equivariant stable homotopy
category for a compact Lie group G is an even richer example, see [1], [3]
and [8]. An important problem in such contexts is to classify the tensor
ideal localising subcategories, and also the tensor ideal thick subcate-
gories of compact objects, and to study questions related to duality as
in [33].

The purpose of this chapter is to survey some methods developed
to address these problems, and to illustrate them by establishing such
classifications and duality statements for the stable module category of a
unipotent finite supergroup scheme.
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Bi-incomplete Tambara Functors
A. J. Blumberg and M. A. Hill

One of the recent themes in equivariant homotopy theory is to un-
derstand commutative ring objects in G-spaces and G-spectra. This is
reflected in John Greenlees’ work through the research on commutativ-
ity described above and more directly, as in [16, 9]. The subtlety and
complications of equivariant commutativity can be described using a
certain class of G-operads, called N∞ operads. Algebras over an N∞
operad O in G-topological spaces correspond, roughly speaking, to a G-
spectrum with transfers determined by O. Thus, one might think of O as
governing the additive structure of a G-spectrum. Algebras over an N∞
operad O in G-spectra (as opposed to G-spaces) correspond, roughly
speaking, to O-commutative ring G-spectra, that is, ring G-spectra with
norm maps on homotopy groups determined by O. Thus, in this case
one might think of O as governing the multiplicative ring structure of
a G-spectrum. The natural question is: how one can mix the various
additive and multiplicative structures?

This chapter investigates the compatibility conditions between in-
complete additive transfers and incomplete multiplicative norms in the
algebraic setting of G-Tambara functors and provides a full description
of the possible interactions of these two classes of maps.

Homotopy Limits of Model Categories, Revisited
J. E. Bergner

A key observation of the paper [1] is that the algebraic models for
rational G-equivariant spectra can be described as homotopy limits of
diagrams of model categories. This observation developed from homotopy
pullback constructions in [11] based on isotropy separation, building on
machinery of Greenlees–Shipley [20, 21, 25]. Homotopy limits also occur
in the chapter of Antolín-Camarena–Barthel (in the setting of (∞, 1)-
categories) further demonstrating their ubiquity.

The final chapter of this volume provides a comprehensive outline of
the machinery required for constructing homotopy limits of diagrams
of Quillen model categories and left Quillen functors between them,
collecting previous work of the author. Moreover the chapter provides a
wealth of important examples of this homotopy limit construction. The
chapter also provides some warning on working with diagrams which
come with a mix of left and right Quillen functors.
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Comparing Dualities in the K(n)-local

Category

Paul G. Goerssa

Michael J. Hopkinsb

Abstract

In their work on the period map and the dualizing sheaf for Lubin-Tate
space, Gross and the second author wrote down an equivalence between
the Spanier-Whitehead and Brown-Comenetz duals of certain type n-
complexes in the K(n)-local category at large primes. In the culture
of the time, these results were accessible to educated readers, but this
seems no longer to be the case; therefore, in this note we give the details.
Because we are at large primes, the key result is algebraic: in the Picard
group of Lubin-Tate space, two important invertible sheaves become
isomorphic modulo p.

For John Greenlees, the master of duality.

Introduction

Fix a prime p and and an integer n ≥ 0, and let K(n) denote the nth
Morava K-theory at the prime p. If n ≥ 1, the K(n)-local stable homotopy
category has two dualities. First, there is K(n)-local Spanier-Whitehead
duality Dn(−). This behaves very much like Spanier-Whitehead duality
in the ordinary stable category: it has good formal properties, but it
can be very hard to compute. Second, there is Brown-Comenetz duality
In(−), which behaves much like a Serre-Grothendieck duality and, in
many ways, is much more computable. One of the key features of the
a Department of Mathematics, Northwestern University
b Department of Mathematics, Harvard University
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K(n)-local category is that under some circumstances the two dualities
are closely related.

Recall that a finite spectrum X is of type n if K(m)∗X = 0 for m < n.
By [22], any type n spectrum has a vp

k

n -self map; that is, there is an
integer k and map

Σ2pk(pn−1)X → X

which induces multiplication by vp
k

n in K(n)∗. In their papers on the
period map and the dualizing sheaf for Lubin-Tate space, Gross and the
second author [20] wrote down the following result. Suppose X is a type
n-spectrum with a vp

k

n -self map and suppose further that p times the
identity map of X is zero. Then if 2p > max{n2 + 1, 2n+ 2} there is an
equivalence in the K(n)-local category1

InX � Σ2pnkr(n)+n2−nDnX (1.1)

where r(n) = (pn−1)/(p−1) = pn−1+ · · ·+p+1. This equivalence gives
a conceptual explanation for many of the self-dual patterns apparent
in the amazing computations of Shimomura and his coauthors. See, for
example, [32], [31], [5], and [26].

The point of this note is to write down a linear narrative with this
result at the center. In some sense, there is nothing new here, as the key
ideas can be found scattered through the literature, and other authors
have obliquely touched on this topic. A rich early example is in §5 of the
paper [8] by Devinatz and the second author, and the important paper of
Dwyer, Greenlees, and Iyengar [10] embeds many of the ideas here into
a far-reaching and beautiful theory. In another sense, however, there is
quite a bit to say, as there are any number of key technical ideas we need
to access, some of which have not quite made it into print and others
buried in ways that make them hard to uncover. In any case, the result
is of enough importance that it deserves specific memorialization.

Here is a little more detail. We fix p and n and let E = En be Morava
E-theory for n and p. This represents a complex oriented cohomology
theory with formal group law a universal deformation of the Honda
formal group law Hn of height n. See §1 for more details. As always we
write

E∗X = π∗LK(n)(E ∧X).

The E∗-module E∗X is a graded Morava module: it has a continuous

1 The bound on p is very slightly different than in [20]; see Proposition 1.9.
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and twisted action of the Morava stabilizer group Gn = Aut(Hn,Fpn).
See Remark 1.5.

There are two key steps to the equivalence (1.1). We have a K(n)-local
equivalence InX � In ∧DnX where In = In(S

0); thus, the first step is
the identification of the homotopy type of In, at least for p large with
respect to n. This is also due to Gross and the second author, with details
laid out in [33]. The key fact is that In is dualizable in the K(n)-local
category; by [21] this is equivalent to the statement that E∗In is an
invertible graded Morava module and, indeed, the main result of [33]
(interpreting [20]) is that there is an isomorphism of Morava modules

E∗In ∼= E∗S
n2−n[det]

where S0[det] = S[det] is a determinant twisted sphere in the K(n)-local
category; see Remark 1.26. The number r(n) in (1.1) is an artifact of the
determinant; see (1.3.1).

The second key step is an analysis of the K(n)-local Picard group
PicK(n) of equivalence classes of invertible objects in the K(n)-local
category. As mentioned, we know that a K(n)-local spectrum X is
invertible if and only if E∗X is an invertible graded Morava module.
We also know that the group of invertible graded Morava modules
concentrated in even degrees is isomorphic to the continuous cohomology
group H1(Gn, E

×
0 ), where E×

0 is the group of units in the ring E0. Hence,
if we write Pic0K(n) ⊆ PicK(n) for the subgroup of objects X with E∗X

in even degrees, we get a map

e : Pic0K(n)−→ H1(Gn, E
×
0 ).

The map is an injection under the hypothesis 2p > max{n2 + 1, 2n+ 2}.
See Proposition 1.9. This is the origin for the hypothesis on p and n

in the equivalence of (1.1): it reduces that equivalence to an algebraic
calculation.

It is an observation of [21] that the map Z → Pic0K(n) sending k to
S2k extends to an inclusion of the completion of the integers

Zn
def
= lim

k
Z/(pk(pn − 1)) → Pic0K(n);

that is, for any a ∈ Zn we have a sphere S2a. (The phrase “p-adic sphere”
is common here, but misleading: Zn is not the p-adic integers. See Remark
1.23.) Now let λ = limk pnkr(n) ∈ Zn. The key algebraic result can now
be deduced from Proposition 1.30 below: under the composition

Pic0K(n)
e−→ H1(Gn, E

×
0 ) → H1(Gn, (E0/p)

×)
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the spectra S[det] and S2λ map to the same element. The equivalence
(1.1) follows once we observe that if X is type n and has a vp

k

n -self map,
then there is K(n)-local equivalence

S2λ ∧X � Σ2pnkr(n)X.

See Theorems 1.42 and 1.43.
It is worth emphasizing that the algebraic result Proposition 1.30 only

requires p > 2; it is the topological applications which require the more
stringent restrictions on the prime. In fact, the equivalence of dualities
in (1.1) can be false if the prime is small. See Remark 1.45.

The plan of this note is as follows: in the first section we give some
homotopy theoretic and algebraic background, in the second section
we give a discussion of the Picard group, lingering long enough to give
details of the structure of Pic0K(n) as a profinite Zn-module. See Propo-
sition 1.18. In Section 3 we discuss the determinant and prove the key
Proposition 1.30. In Section 4 we give some discussion of how Spanier-
Whitehead and Brown-Comenetz duality behave in the Adams-Novikov
Spectral Sequence. In the final section, we give the homotopy theoretic
applications.
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1.1 Some background

In this section we gather together the basic material used in later sections.
All of this is thoroughly covered in the literature and collected here only
for narrative continuity.

1.1.1 The K(n)-local category

For an in-depth study of the technicalities in the K(n)-local category, see
Hovey and Strickland [24]. Other introductions can be found in almost
any paper on chromatic homotopy theory. We were especially thorough
in [3] §2.

Fix a prime p and an integer n > 0. In order to be definite we define
the nth Morava K-theory K(n) to be the 2-periodic complex oriented
cohomology theory with coefficients K(n)∗ = Fpn [u±1] with u in degree
−2. The associated formal group law over K(n)0 = Fpn is the unique
p-typical formal group law Hn with p-series [p]Hn

(x) = xpn

. This is, of
course, the nth Honda formal group law. For Hn we have

vn = u1−pn ∈ K(n)2(pn−1).

The K(n)-local category is the category of K(n)-local spectra.
We also have K(0) = HQ, the rational Eilenberg-MacLane spectrum,

and K(0)-local spectra are the subject of rational stable homotopy theory.
We define Gn = Aut(Hn,Fpn) to be the group of automorphisms of

the pair (Hn,Fpn). Since Hn is defined over Fp, there is a splitting

Aut(Hn,Fpn) ∼= Aut(Hn/Fpn)�Gal(Fpn/Fp)

where the normal subgroup is the isomorphisms of Hn as a formal group
law over Fpn . We write Sn = Aut(Hn/Fpn) for this subgroup.

To get a Landweber exact homology theory which captures more than
Morava K-theory, we use the Morava (or Lubin-Tate) theory E = En.
This theory has coefficients

E∗ = W[[u1, . . . , un−1]][u
±1]
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where again u is in degree −2 but the power series ring is in degree 0.
The ring W = W (Fpn) is the Witt vectors of Fpn .

Note that E0 is a complete local ring with maximal ideal m generated
by the regular sequence {p, u1, . . . , un−1}. We choose the formal group
law Gn over E0 to be the unique p-typical formal group law with p-series

[p]Gn
(x) = px+Gn

u1x
p +Gn

· · ·+Gn
un−1x

pn−1

+Gn
xpn

. (1.1.1)

Thus vi = uiu
1−pi

, 1 ≤ i ≤ n− 1, vn = u1−pn

and vi = 0 if i > n. Note
that Gn reduces to Hn modulo m.

We define E∗X = (En)∗X by

E∗X = π∗LK(n)(E ∧X).

While not quite a homology theory, as it does not take wedges to sums,
it is by far our most sensitive algebraic invariant in K(n)-local homotopy
theory. The group Gn acts continuously on E∗X making E∗X into a
Morava module. We will be more precise on this notion below in Remark
1.5.

A basic computation gives

E0E = π0LK(n)(E ∧ E) ∼= mapc(Gn, E0)

where mapc denotes the continuous maps. See Lemma 10 of [33] for a
proof. The K(n)-local En-based Adams-Novikov Spectral Sequence now
reads

Hs(Gn, EtX) =⇒ πt−sLK(n)X. (1.1.2)

Cohomology here is continuous cohomology.

Remark 1.1 (Lubin-Tate theory) The pair (Gn, E0) has an impor-
tant universal property which is useful for understanding the action of
Gn.

Consider a complete local ring (S,mS) with S/mS of characteristic p.
Define the groupoid of deformations DefHn

(S) to be the category with
objects (i, G) where i : Fpn → S/mS is a morphism of fields and G is a
formal group law over S with q∗G = i∗Hn. Here q : S → S/mS is the
quotient map. There are no morphisms ψ : (i, G)→ (j,H) if i �= j and
a morphism (i, G) → (i,H) is an isomorphism of formal groups laws
ψ : G → H so that q∗ψ is the identity. These are the �-isomorphisms.
By a theorem of Lubin and Tate [28] we know that if two deformations
are �-isomorphic, then there is a unique �-isomorphism between them.
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Put another way, the groupoid DefHn
(S) is discrete. Furthermore, E0

represents the functor of �-isomorphism classes of deformations:

Homc
W(E0, S) ∼= π0DefHn(S).

Here Homc
W is the set of continuous W-algebra maps. As a universal

deformation we can and do choose the formal group law Gn over E0 to
be the p-typical formal group law defined above in (1.1.1).

Remark 1.2 (The action of the Morava stabilizer group) We
use Lubin-Tate theory to get an action of Gn on E0. This exposition
follows [18] §3.

Let g = g(x) ∈ Fpn [[x]] be an element in Sn. Choose any lift of g(x)
to h(x) ∈ E0[[x]] and let Gh be the unique formal group law over E0 so
that

h : Gh → Gn

is an isomorphism. Since g : Hn → Hn is an isomorphism over Fpn , the
pair (id, Gh) is a deformation of Hn. Hence there is a unique W-algebra
map φ = φg : E0 → E0 and a unique �-isomorphism f : φ∗Gn → Gh. Let
ψg be the composition

φ∗Gn
f ��

ψg

��Gh
h �� Gn . (1.1.3)

Note that while Gh depends on choices, the map φg and the isomorphism
ψg do not. The map Sn → Aut(E0) sending g to φg defines the action
of Sn on E0. The Galois action on W ⊆ E0 extends this to an action
of all of Gn on E0. The action can be extended to all of E∗ be noting
that E2

∼= Ẽ0S2 ∼= Ẽ0CP1 is isomorphic to the module of invariant
differentials on the universal deformation Gn. See (1.1.4) below for an
explicit formula.

Remark 1.3 (Formulas for the action) We make the action of Sn

a bit more precise. By (1.1.3) we have an isomorphism ψg : φ∗Gn → Gn

of p-typical formal group laws over E0. This can be written

ψg(x) = t0(g) +Gn
t1(g)x

p +Gn
t2(g)x

p2

+Gn
· · · .

This formula defines continuous functions ti : Sn → E0. As in Section
4.1 of [18] we have

g∗u = t0(g)u. (1.1.4)
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The function t0 is a crossed homomorphism t0 : Sn → E×
0 ; that is,

t0(gh) = [gt0(h)]t0(g).

Since the Honda formal group is defined over Fp we can choose the
class u to be invariant under the action of the Galois group; hence
t0 extends to crossed homomorphism t0 : Gn → E×

0 sending (g, φ) ∈
Sn �Gal(Fpn/Fp) ∼= Gn to t0(g).

Remark 1.4 We record here some basic useful facts about the K(n)-
local Adams-Novikov Spectral Sequence (1.1.2) which we will use later.

The first two statements are standard and are proved using the action
of the center of Z(Gn) ⊆ Gn on E∗ = E∗S

0. There is an isomorphism
Z×
p
∼= Z(Gn) sendings a ∈ Z×

p to the a-series [a]Hn(x) of the Honda
formal group. The action of Z(Gn) on E0 is trivial and the action on E∗
is then determined by the fact that t0(a) = a; that is, a acts on u ∈ E−2

by multiplication by a.
1.) Sparseness: If t �≡ 0 modulo 2(p − 1), then H∗(Gn, Et) = 0. If

p = 2 this is not new information. If p > 2 let C ⊆ Z(Gn) be the cyclic
subgroup of Teichmüller lifts of F×

p . Then EC
t = 0 and hence

H∗(Gn, Et) ∼= H∗(Gn/C,E
C
t ) = 0.

2.) Bounded torsion: Suppose p > 2 and suppose

2t = 2pkm(p− 1) �= 0

with m not divisible by p. Then we have

pk+1H∗(Gn, E2t) = 0.

If p = 2 write 2t = 2k(2m+ 1). Then we have

2H∗(Gn, E2t) = 0 if k = 1,

and

2k+1H∗(Gn, E2t) = 0 if k > 1.

To get these bounds, first suppose p > 2. Let K = 1 + pZp ⊆ Z(Gn)

be the torsion-free subgroup and let x ∈ K be a topological generator;
for example, x = 1 + p. The choice of x defines an isomorphism Zp

∼= K.
Thus, there is an exact sequence

0 → H0(K,E2t) �� E2t
xk−1 �� E2t

�� H1(K,E2t) → 0.
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Thus we see that pk+1H1(K,E2t) = 0 and Hq(K,E2t) = 0 if q �= 1. Now
use the Lyndon-Hochschild-Serre Spectral Sequence

Hp(Gn/K,Hq(K,E2t)) =⇒ Hp+q(Gn, E2t)

to deduce the claim. At the prime 2 let x ∈ Z×
2 be an element of infinite

order which reduces to −1 modulo 4 – for example, x = 3 – and let K

be the subgroup generated by x. The proof then proceeds in the same
fashion.

Note that the arguments for parts (1) and (2) apply not only to Gn,
but also for any closed subgroup G ⊆ Gn which contains the center. In
fact, for part (1) we need only have C = F×

p ⊆ G.
3.) There is a uniform and horizontal vanishing line at E∞:

there is an integer N , depending only on n and p, so that in the Adams-
Novikov Spectral Sequence (1.1.2) for any spectrum X

Es,∗
∞ = 0, s > N.

This can be found in the literature in several guises; for example, it can
be put together from the material in Section 5 of [9], especially Lemma
5.11. See [3] §2.3 for references and explanation. See also [2] for even
further explanation. If p− 1 > n, there is often a horizontal vanishing
line at E2. See Proposition 1.6 below.

1.1.2 Some local homological algebra.

Because E0 is a complete local ring with maximal ideal m generated by a
regular sequence, we have a variety of tools from homological algebra. The
classic paper here is Greenlees and May [15], but see also [24], Appendix
A for direct connections to E∗(−). Tensor product below will mean the
m-completed tensor product. This is one place where the notation E0

gets out of hand; thus we write R = E0 in this subsection.
Let u0 = p and define a cochain complex Γm by

Γm =

(
R → R[

1

u0
]

)
⊗R

(
R → R[

1

u1
]

)
⊗R · · · ⊗R

(
R → R[

1

un−1
]

)
and more generally we set

Γm(M) = M ⊗R Γm.

Then H0
m(M)

def
= H0Γm(M) is the sub-module of m-torsion and we see

that

HsΓm(M)
def
= Hs

m(M)
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is the sth right derived functor of the m-torsion functor and thus inde-
pendent of the choices. These are the local cohomology groups. If M is
m-torsion, there is a composite functor spectral sequence

ExtpR(M,Hq
m(N)) =⇒ Extp+q

R (M,N). (1.1.5)

In the case N = R, this spectral sequence simplifies considerably. Note
that Hs

m(R) = 0 unless s = n and

Hn
m(R)

def
= R/m∞ def

= R/(p∞, u∞
1 , . . . , u∞

n−1) . (1.1.6)

The R-module R/m∞ is an injective R-module and, in fact the injective
hull of R/m. This is a consequence of Matlis duality for (R,m); see §12.1
of [7], especially Definition 12.1.2 and Remark 12.1.3.

Combining this observation with the spectral sequence (1.1.5) we have

Extp+n
R (M,R) ∼= ExtpR(M,R/m∞) ∼=

{
HomR(M,R/m∞), p = 0;

0, p �= 0.

(1.1.7)
The module R/m∞ also arises in the theory of derived functors of

completion. The completion functor

M �−→ lim
k

[
M ⊗R R/mk

]
is neither left nor right exact; however, it still has left derived functors
Lm
s (M). These vanish if s > n and there is an isomorphism

Lm
n (M) ∼= lim TorRn (M,R/mk)

∼= lim HomR(R/mk,M)

∼= HomR(R/m∞,M).

From this it follows that

Lm
s (M) ∼= Extn−s

R (R/m∞,M).

Remark 1.5 (Morava modules) If X is a spectrum we defined

E∗X = π∗LK(n)(E ∧X).

By [24], Proposition 8.4, the E∗-module E∗X is Lm-complete; that is,
the map

E∗X−→ Lm
0 (E∗X)

is an isomorphism. In particular, E∗X is equipped with the m-adic
topology.
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The action of Gn on E determines a continuous action of Gn on EtX.
This action is twisted in the sense that if g ∈ Gn, a ∈ E0 and x ∈ EtX,
then g∗(ax) = g∗(a)g∗(x). We will call an Lm-complete E0-module with
a continuous and twisted Gn action a Morava module. Many (if not all)
of our Morava modules will actually be m-complete; that is, the natural
maps

M−→ Lm
0 M−→ limM/mkM

are all isomorphisms. For example, if M is m-complete, so is the induced
module of continuous map mapc(Gn,M). Hence the continuous cohomol-
ogy of m-complete Morava modules can be constructed entirely in the
category of m-complete Morava modules.

The graded Morava module module E∗X is determined by E0X, E1X,
and the isomorphism of Gn-modules, for n ∈ Z,

Et+2nX ∼= E⊗n
2 ⊗E0 EtX.

The Gn-action is the diagonal action. If n ≥ 0, E⊗n
2 = E2⊗E0

· · · ⊗E0
E2

is a free of rank 1 over E0. If n < 0, then E⊗n
2 is the dual Gn-module

to E⊗−n
2 . This discussion gives an evident category of graded Morava

modules.
We say a graded Morava module M∗ is finitely generated if it is finitely

generated as a graded E∗-module or, equivalently, if M0 and M1 are
finitely generated as E0-modules. We also say a graded Morava module
M∗ is finite if M0 and M1 are finite. If X is a finite CW spectrum then
E∗X is finitely generated. More generally, X is dualizable in the K(n)-
local category if and only if E∗X is finitely generated. See Theorem 8.6
of [24]. If X is also of type n, then E∗X is finite.

Here is a key fact about Morava modules which we use often. The
argument owes quite a good deal to the proof of Lemma 5 of [33].

Proposition 1.6 Let p− 1 > n and let M be an m-complete Morava
module. Then for all s > n2

Hs(Gn,M) = 0.

Proof Let Sn ⊆ Sn be the subgroup of automorphisms g = g(x) of the
Honda formal group Hn so that g′(0) = 1. Then Sn is a compact p-adic
analytic group of dimension n2 by §3.1.2 of [17]. Under the assumption
p − 1 > n the group Sn is torsion-free; see Theorem 3.2.1 of [17]. By
a theorem of Lazard (combine Theorems 4.4.1 and 5.1.9. of [34]) we
may conclude Sn is a Poincaré duality group of dimension n2 and of
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cohomological dimension n2. Since the index of Sn in Sn is finite and
prime to p, the cohomological dimension of Sn is also n2. So far we have
not used the hypothesis on M .

Let Gal = Gal(Fpn/Fp). If M is an m-complete Morava module then
MSn is a p-complete twisted W-Gal-module; that is, if g ∈ Gal and
x ∈ MSn , then g(ax) = g(a)g(x). Now we use a version of Galois descent
– see Lemma 1.7 below – to conclude

H∗(Gn,M) ∼= H∗(Sn,M)Gal

and we have the vanishing we need.

Lemma 1.7 Let Gal = Gal(Fpn/Fp). Let M be a p-complete twisted
W-Gal-module. Then the inclusion MGal → M of the invariants extends
to an isomorphism of twisted W-Gal-modules

W⊗Zp
MGal ∼= M.

The functor M �→ MGal from p-complete twisted W-Gal-modules to p-
complete modules is exact.

Proof This can be proved using standard descent theory, but here is a
completely explicit argument.

We are using the completed tensor product

W⊗Zp
N = lim(W⊗Zp

N)/pk ∼= lim(W/pk ⊗Z/pk N/pkN).

First, since inverse limits commute with invariants, we have

MGal ∼= (limM/pkM)Gal ∼= lim(M/pkM)Gal.

Next, the map MGal → (M/pkM)Gal factors as

MGal−→ MGal/pkMGal−→ (M/pkM)Gal

with the second map an inclusion. This yields isomorphisms

MGal ∼= lim(MGal/pkMGal) ∼= lim(M/pkM)Gal.

Since W is a finitely generated free Zp module

W⊗Zp MGal ∼= lim(W/pk ⊗Z
pk

MGal/pkMGal)

∼= lim(W/pk ⊗Z
pk

(M/pkM)Gal).

Finally, Z/pk → W/pk is Galois with Galois group Gal we have

W/pk ⊗Z/pk (M/pkM)Gal ∼= M/pkM.
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The exactness statement follows from the fact that W is a free and finitely
generated Zp-module, so N �→ W⊗Zp

N is exact.

1.2 Picard groups

The point of this section is to develop enough technology to pave the
way for the key Proposition 1.30.

1.2.1 Some basics

Let PicK(n) denote the K(n)-local Picard group of weak equivalence
classes of invertible elements. Here is an observation from [21]. If X ∈
PicK(n), then K(n)∗X is an invertible K(n)∗-module and, since K(n)∗
is a graded field, it follows that K(n)∗X is of rank 1 over K(n)∗. From
this it follows from Proposition 8.4 of [24] that E∗X is also free of rank
1 over E∗.

Remark 1.8 Let Pic0K(n) ⊆ PicK(n) be the subgroup of index 2 gener-
ated by the elements X with E∗X in even degrees. Then E0X is free of
rank 1 over E0. If we choose a generator a ∈ E0X then we can define a
crossed homomorphism φ : Gn → E×

0 by the formula

ga = φ(g)a, g ∈ Gn.

This defines a homomorphism

e : Pic0K(n)−→ H1(Gn, E
×
0 ) (1.2.1)

to the algebraic Picard group of invertible Morava modules. We write κn

for the kernel of e; this is the subgroup of exotic elements in the Picard
group.

Notation: Both PicK(n) and H1(Gn, E
×
0 ) are abelian groups where the

group operation is written as multiplicatively; thus e(X∧Y ) = e(X)e(Y ).

The following result explains the hypothesis on the prime in the
equivalence of dualities (1.1). This appears in the literature in various
guises; the exact criterion on the prime depends on the setting, but the
proof is always the same as in Theorem 5.4 of [23].

Proposition 1.9 Suppose 2p > max{n2+1, 2n+2}. Then κn = 0 and
the map e is an injection.
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Proof Suppose X and Y are two invertible spectra so E0(X) ∼= E0(Y ) as
Morava modules. Let DnY = F (Y, LK(n)S

0) be the K(n)-local Spanier-
Whitehead dual of Y . Then DnY is the inverse of Y in Pic0K(n); hence,
E0DnY is the inverse of E0Y as an invertible Morava module. It follows
that E∗(X ∧DnY ) ∼= E∗S

0 as Morava modules and we need only show
that the class

ι ∈ H0(Gn, E0(X ∧DnY ))

determined by this isomorphism is a permanent cycle. The differentials
will lie in subquotients of

Hs+1(Gn, Es), s ≥ 1.

Under the hypotheses here, we can now apply the sparseness result of part
(1) of Remark 1.4 and the horizontal vanishing line of Proposition 1.6. The
second of these requires p− 1 > n and the first requires 2(p− 1)+1 > n2.
Combined they imply that all differentials on ι land in zero groups.

Remark 1.10 A more sophisticated variation of the argument used to
prove Proposition 1.9 will also show that e is surjective under the same
hypotheses on p and n. See [29] for details. Here is an outline.

Let M be an invertible graded Morava module and let

M∨ = HomE0
(M,E0)

with conjugation Gn-action; see Remark 1.4.1 on why this action arises.The
essential idea is to use a Toda-style obstruction theory with successively
defined obstructions

θs ∈ Hs+2(Gn, Es ⊗E0
M ⊗E0

M∨) ∼= Hs+2(Gn, Es), s ≥ 1,

to finding such an X with E0X ∼= M . Such an obstruction theory can
be constructed using Toda’s techniques [35] or a linearized version of the
vastly more complex obstruction theory of [14]. These obstruction groups
will vanish if 2p > max{n2 + 1, 2n+ 2}.

The basic example of an element in Pic0K(n) is the localized 2-sphere
LK(n)S

2. Since E0S
2 ∼= E−2 we can choose u ∈ E−2 as the generator

and the associated crossed homomorphism is t0 : Gn → E×
0 . See (1.1.4).

We next explore the underlying algebraic structure of the Picard group
Pic0K(n); in particular, it is a profinite abelian group and continuous
module over the rather unusual completion of the integers

Zn
def
= lim

k
Z/pk(pn − 1) . (1.2.2)
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The canonical isomorphisms Z/pk(pn− 1) ∼= Z/pk ×Z/(pn− 1) assemble
to give a continuous isomorphism of rings

Zn
∼= Zp × Z/(pn − 1).

See Remark 1.23 for more thoughts on the ring Zn.
The number pn−1 appears in a number of ways in K(n)-local homotopy

theory; for example, the element vn = u−(pn−1) ∈ E2(pn−1). We explore
that observation more in Remark 1.24 below. In this context, however,
the ring Zn arises for a much more basic reason.

Lemma 1.11 Let (S,mS) be a complete local ring with residue field
Fpn ∼= S/ms. The abelian group structure on the group of units S×

extends to a continuous Zn-module structure in the topology given by the
isomorphism S× ∼= lim(S/mk)×.

Proof For any a ∈ Zn and any x ∈ S× we must define an element
xa ∈ S×. Furthermore if a = n ∈ Z, then we need xa = xn.

Since (S/m)× ∼= F×
pn , any x ∈ S× has the property that xpn−1 ≡ 1

modulo mS and, hence, that

xpk(pn−1) ≡ 1 mod mk+1.

Let a ∈ limk Z/pk(pn − 1) ∈ Zn. For each integer k ≥ 0 choose an integer
ak so that ak ≡ a ∈ Z/pk(pn − 1). Then the elements

xak ∈ (S/mk+1)×

define an element xa ∈ S× ∼= lim(S/mk+1)× as needed.

The basic application of Lemma 1.11 is to the ring S = E0. This
further implies that the continuous cohomology group H1(Gn, E

×
0 ) is a

continuous module over Zn.
It turns out we can show Pic0K(n) is also a profinite module over Zn

and the evaluation map

e : Pic0K(n)−→ H1(Gn, E
×
0 )

is a continuous map of Zn modules. This can be deduced from Proposition
14.3.d of [24], which in turn depends heavily on [21]. The argument given
here is essentially the same, but packaged to emphasize the role of the
group κn of exotic elements in the Picard group and the cohomology
group H1(Gn, E

×
0 ). We’ll give a proof in Proposition 1.18 below.
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Remark 1.12 Using nilpotence technology derived from [22] and work-
ing as in [24] §4 we can choose a sequence of ideals J(i) ⊆ m ⊆ E0 and
spectra S/J(i) with the following properties:

1 J(i+ 1) ⊆ J(i) and ∩ J(i) = 0;
2 E0/J(i) is finite;
3 E0(S/J(i)) ∼= E0/J(i) and there are maps q : S/J(i + 1) → S/J(i)

realizing the quotient map E0/J(i+ 1) → E0/J(i);
4 there are maps η = ηi : S0 → S/J(i) inducing the quotient map
E0 → E0/J(i) and qηi+1 = ηi : S/J(i) → S/J(i);

5 if X a finite type n-spectrum, then the map X → holim X ∧ S/J(i)

induced by the maps η is an equivalence; and,
6 the S/J(i) are μ-spectra; that is, there are maps

μ : S/J(i) ∧ S/J(i) → S/J(i)

so that μ(η ∧ 1) = 1 : S/J(i) → S/J(i).

They also prove that items (1)-(5) characterize the tower {S/J(i)} up
to equivalence in the pro-category of towers under S0. See Proposition
4.22 of [24].

Hovey and Strickland choose the J(i) with the property that there are
positive integers a0, a1, . . . , an−1 (depending on i) so that

J(i) = (pa0 , ua1
1 , . . . , u

an−1

n−1 ).

They don’t quite say it explicitly, but in their construction they choose
the ai, i ≥ 1, to be powers of p.

Remark 1.13 Let G(i) ⊆ Pic0K(n) be the set of equivalence classes X

which can be given a K(n)-local equivalence

X ∧ S/J(i) � S/J(i).

Item (6) of Remark 1.12 is used to show G(i+1) ⊆ G(i). By Proposition
14.2 of [24] G(i) is a finite index subgroup and ∩ G(i) = {LK(n)S

0}; thus
the subgroups G(i) define a separated profinite topology on Pic0K(n).

Lemma 1.14 The evaluation map

e : Pic0K(n)−→ H1(Gn, E
×
0 )

is a continuous homomorphism of profinite abelian groups.


