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Preface

The branch of physics known as “classical mechanics” originated in the seven-
teenth century, but wasn’t called that until the discovery of quantum mechanics
in the 1920s. It was quantum mechanics that most profoundly changed our
understanding of how and why particles move as they do, and even what a particle
is. Quantum mechanics was so completely different that the word “classical” had
to be added to the older theory to make it clear which mechanics was meant. At
the same time, quantum mechanics was heavily inspired and influenced by the
formulations of classical mechanics by Lagrange and Hamilton dating back to the
eighteenth and nineteenth centuries.

Einstein’s theories of special relativity (1905) and general relativity (1915)
also had important impacts on classical mechanics, changing the laws of motion
primarily by revolutionizing our understanding of the spacetime arena in which
physics takes place. These theories have been viewed as either introducing a
new “relativistic mechanics” or more modestly as completing classical mechanics,
making it useful even for particles moving close to the speed of light and for
particles moving in strong gravitational fields.

Quantum mechanics, special relativity, and general relativity stand together as
the three pillars of modern physics. Classical mechanics integrates with all three
as a robust approximation framework that is both useful in practice for problem
solving – but also as an inspirational venue for developing basic intuition about
physics.

In the title of the book we have endowed our exposition of classical mechanics
with the word “modern,” because it is a modern approach in several ways. First, we
focus on the Lagrangian and Hamiltonian formulations of mechanics almost from
the outset, modern of course only relative to Newton’s formulation. Throughout
we emphasize the connections of these newer approaches to the development of
quantum mechanics – through contact with Feynman’s path-integral formulation of
quantum mechanics and the relations of Hamilton–Jacobi theory to Schrödinger’s
approach to wave mechanics. We also develop the subject of mechanics with
relativity in mind early on, integrating modern differential geometry notation in
the narrative and motivating the variational principle through arguments that come
naturally from special relativity. In particular, immediately after a compact review
of Newtonian particle mechanics in Chapter 1, special relativity is introduced
already in Chapter 2. Finally, the exposition is modern in that we use a tone
and physics mindset that is contemporary, often with an emphasis on the role of
symmetry as a guiding principle, and we draw on many examples from modern
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subjects and applications such as black holes, cosmology, atomic physics, particle
physics, magnetic trapping, orbital mechanics, and spaceflight.

Modern classical mechanics also stands strong on its own as a useful approx-
imation framework that addresses physics problems in regimes where quantum
mechanics and/or relativity come in as sub-leading effects. In many situations,
using quantum mechanics and/or relativity to study a physical system would be
tantamount to shooting a fly with a catapult. Roughly speaking, classical mechanics
works very well (i.e., agrees with experiments) for macroscopic objects that are
moving at speeds much less than the speed of light, and where gravity is not too
strong – and also where our experimental measurements are not too precise.

Take the motions of planets around the sun and moons around their planets, for
example. Motions within the solar system were the most important testing ground
for classical mechanics in the first place, and for nearly all purposes classical
mechanics in this domain works as well now as it ever did. We still use it to plot
the motion of spacecraft on their way to distant planets, for example – it would
be completely unnecessary to tackle a problem like that using the full apparatus
of quantum mechanics. The same can be said for the use of special and general
relativity, except for tiny but nevertheless important effects like the precession of
the planet Mercury’s perihelion or the rate of atomic clocks in Global Positioning
System (GPS) satellites around the earth.

Our book is first and foremost a textbook on classical mechanics and its
many uses, while also showing where its limitations lie – limitations as defined
by quantum mechanics as well as the relativity theories, and emphasizing the
inspirational role the subject played in the development of modern physics. To
accomplish these goals, the book is divided into three main parts. There are five
chapters in each part, where the fifth chapter is a “capstone chapter,” a special
unit that elaborates further on the boundaries of classical mechanics as presented
in the preceding four chapters and its connections to the three pillars of modern
physics.

In broad strokes, the first part of the book is about the Lagrangian formulation of
mechanics; the second part is about the various forces and symmetries that present
themselves on the mechanics stage; and the third part is about the Hamiltonian
formulation. The capstone chapter of the first part is a pedagogical exposition of
Feynman’s path-integral formulation of quantum mechanics and its connections
to modern classical mechanics; the capstone chapter of the second part discusses
general relativity and its relations to relativistic mechanics; and the capstone
chapter of the third part is about Hamilton–Jacobi theory, phase space, and the
connections to the wavefunction formulation of quantum mechanics.

This layout allows for different pathways through the book, depending on the
time available for a given class and the background preparation of the students.
The following diagram illustrates the conceptual connections and dependencies
between the various sections.

Based on this, we can identify several possible pathways that can be adopted in
a typical 15-week-long class.
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• Basic mechanics: For students who have had a basic calculus-based mechanics
course and are looking for a basic second course. Chapters 1, 2, 3, 4, 6.1 and 6.2,
7.1 to 7.4, 9.1 to 9.4.

• Lagrangian approach plus a bit more: For students who have had a robust
calculus-based mechanics course and are looking for a more sophisticated
second course. Chapters 2, 3, 4, 6, 7, 8, and 9.

• Traditional Lagrangian and Hamiltonian mechanics: For students who have
had a robust calculus-based mechanics course and are looking for a rather
traditional course on Lagrangian and Hamiltonian mechanics. Chapters 2, 3, 4,
6, 7, 9, 11, 12 or 13.

• Advanced mechanics: For students who have had a robust calculus-based
mechanics course and are looking for an advanced modern exposure to mechan-
ics. Chapters 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, one of 12, 13, or 14, optional reading 15.

In a 20-week timeframe, one can cover most if not all the chapters. This can also
be done naturally in a 14-week graduate-level course. Chapters 5, 10, and 12 to
15 can also serve as excellent directed reading material for students who complete
their second mechanics course but want to learn more advanced topics.

A Note about Notation
Throughout the book, we have attempted to accord, as much as possible, with
notational conventions that are commonly used in similar textbooks. However,
there is one place we have decided to adopt a notation that is instead more
consistent with more advanced graduate-level textbooks: components of vectors
are labeled by superscripts instead of subscripts. For example, the components
of a velocity vector v in spherical coordinates are written as v = (vr, vφ, vθ);
similarly, the components of a four-velocity vector u in Cartesian coordinates take
the form u = (ut, ux, uy, uz). This notation is conventional in differential geometry
and graduate-level textbooks so as to distinguish vectors from co-vectors – such as
the momentum co-vector and the gauge potential co-vector in electromagnetism.
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Given that our modern approach to the subject of mechanics incorporates the
language of special relativity from the outset, it is indeed natural to adopt the
“correct” differential geometry notation from the start. This also helps the reader
later on in transitioning to graduate-level coursework and research-level literature.
One pitfall of this notation is that it does require a bit of an initial learning curve
as the superscript might be confused with raising a variable to a power. We have
addressed this issue by choosing a different font for superscripts that represent
components – and generally making sure that we point out potential confusion
whenever the context does not make the interpretation obvious. Because of this,
we recommend that all users of this book are at least encouraged to read Chapter 2,
which covers special relativity, even if they are already familiar with the subject.
This chapter establishes the notation clearly and gets readers used to it quickly. We
have tested this in the classroom over many years and found that the adoption of
the notation can be rather smooth and seamless. One bonus advantage of the new
notation is that subscripts can be reserved to label particles or degrees of freedom,
needs that are very common in the subject of classical mechanics; and indeed, we
do so throughout the book. When all is said and done, we believe it is worthwhile
to introduce readers to the newer notation, and that it pays off quickly.

Each chapter ends with a list of problems arranged in the order that the topics
they cover appear in the chapter. And each problem is labeled by one, two, or
three stars, indicating the level of difficulty – one star being easiest and three being
hardest.
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Notation and Conventions

v three-vector
v four-vector
r̂ unit vector
va three-vector component
vμ four-vector component
R̂ matrix

r, θ polar coordinates
ρ, ϕ, z cylindrical coordinates
r, φ, θ spherical coordinates: radial, azimuthal, latitude

T kinetic energy
U potential energy

−+++ spacetime signature
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T = 1
2 m

(
ẋ2 + ẏ2 + ż2) Cartesian

T = 1
2 m

(
ρ̇2 + ρ2ϕ̇2 + ż2) cylindrical

T = 1
2 m

(
ṙ2 + r2 sin2 θφ̇2 + r2θ̇2

)
spherical

T = 1
2 mv2

rot + mvrot · (ω×r) + 1
2 mω2r2 − 1

2 m (ω · r)2 non-inertial

Frot = Fin−mω×(ω×r)rot
︸ ︷︷ ︸

centrifugal

−2 m (ω×vrot)rot
︸ ︷︷ ︸

Coriolis

−m (ω̇×r)rot
︸ ︷︷ ︸

Euler

fictitious forces

S = −m c2 ∫ dt
√

1 − v2

c2 + Q
∫

dt
(
−φ+A · v

c
)

charged particle

d
dt

(
∂L
∂q̇k

)
− ∂L

∂qk
= λlalk, alkq̇k + alt = 0 equations of motion

δS =
∫

dt
(

∂L
∂qk

Δqk +
∂L
∂q̇k

d
dt (Δqk) +

d
dt(L δt)

)
transformation

Q ≡ ∂L
∂q̇k

Δqk + L δt Noether charge

H = ∂L
∂q̇k

q̇k − L Hamiltonian

q̇k =
∂H
∂pk

, ṗk = − ∂H
∂qk

, ∂L
∂t = − dH

dt Hamiltonian equations

r = �2/G M m2

1+ε cosφ gravitational orbits

a = −G M m
2 E , ε =

√
1 + 2 E �2

G2M2m3 orbit relations

Vector identities

A · (B×C) = B · (C×A) = C · (A×B)
A× (B×C) = (A ·C)B− (A ·B)C

∇ · (fA) = f (∇ ·A) +A · (∇f)
∇× (fA) = f (∇×A) + (∇f)×A
∇ (A ·B) = (A · ∇)B+ (B · ∇)A+A× (∇×B) +B× (∇×A)
∇ · (A ·B) = (∇×A) ·B−A · (∇×B)
∇× (A×B) = A (∇ ·B)−B (∇ ·A) + (B · ∇)A− (A · ∇)B
∇× (∇×A) = ∇ (∇ ·A)−∇2A
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PART I





1 Newtonian Particle Mechanics

We begin our journey of discovery by reviewing the well-known laws of Newto-
nian mechanics. We set the stage by introducing inertial frames of reference and the
Galilean transformation that translates between them, and then present Newton’s
celebrated three laws of motion for both single particles and systems of particles.
We review the three conservation laws of momentum, angular momentum, and
energy, and illustrate how they can be used to provide insight and greatly simplify
problem solving. We end by discussing the fundamental forces of nature and which
of them are encountered in classical mechanics. All this is a preview to a relativistic
treatment of mechanics in the following chapter.

1.1 Inertial Frames and the Galilean Transformation

Classical mechanics begins by analyzing the motion of particles. Classical particles
are idealizations: they are point-like, with no internal degrees of freedom like
vibrations or rotations. But by understanding the motion of these ideal “particles”
we can also understand a lot about the motion of real objects, because we can often
ignore what is going on inside of them. The concept of “classical particle” can in
the right circumstances be used for objects all the way from electrons to baseballs
to stars to entire galaxies.

In describing the motion of a particle, we first have to choose a frame of
reference in which an observer can make measurements. Many reference frames
could be used, but there is a special set of frames, the non-accelerating, inertial
frames, in which the physics is particularly simple. Picture a set of three orthogonal
meter sticks defining a set of Cartesian coordinates drifting through space with no
forces applied. An inertial observer drifts with the coordinate system and uses it
to make measurements of physical phenomena. This inertial frame and inertial
observer are not unique, however: having established one inertial frame, any other
frame moving at constant velocity relative to it is also inertial, as illustrated in
Figure 1.1.

Two of these inertial observers, along with their personal coordinate systems,
are depicted in Figure 1.2: observer O describes positions of objects through a
Cartesian system labeled (x, y, z), while observer O′ uses a system labeled (x′, y′, z′).

3



4 1 Newtonian Particle Mechanics

Fig. 1.1 Various inertial frames in space. If one of these frames is inertial, any other frame moving at constant
velocity relative to it is also inertial.

z

y

x

y’

z’

x’

Fig. 1.2 Two inertial frames, Oand O′, moving relative to one another along their mutual x or x′ axes.

An event of interest to an observer is characterized by the position in space
at which the measurement is made – but also by the instant in time at which the
observation occurs, according to clocks at rest in the observer’s inertial frame. For
example, an event could be a snapshot in time of the position of a particle along its
trajectory. Hence, the event is assigned four numbers by observer O: x, y, z, and t
for time, while observer O′ labels the same event x′, y′, z′, and t′.

Without loss of generality, observer O can choose her x axis along the direction
of motion of O′, and then the x′ axis of O′ can be aligned with that axis as well, as
shown in Figure 1.2. It seems intuitively obvious that the coordinates of the event
are related by

x = x′ + Vt′, y = y′, z = z′, t = t′, (1.1)



5 1.2 Newton’s Laws of Motion

where we assume that the origins of the two frames coincide at time t′ = t = 0.
This is known as a Galilean transformation. Note that the only difference in
the coordinates is in the x direction, corresponding to the distance between the
two origins as each system moves relative to the other. This transformation – in
spite of being highly intuitive – will turn out to be incorrect, as we shall see
in the next chapter. But for now, we take it as good enough for our Newtonian
purposes.

If the coordinates represent the instantaneous position of a particle, we can write

x(t) = x′(t′) + Vt′, y(t) = y′(t′), z(t) = z′(t′), t = t′. (1.2)

We then differentiate this transformation with respect to t = t′ to obtain the
transformation laws of velocity and acceleration. Differentiating once gives

vx = v′x + V, vy = v′y, vz = v′z, (1.3)

where, for example, vx ≡ dx/dt and v′x ≡ dx′/dt′, and differentiating a second time
gives

ax = a′x, ay = a′y, az = a′z. (1.4)

That is, the velocity components of a particle differ by the relative frame velocity
in each direction, while the acceleration components are the same in every
inertial frame. Therefore one says that the acceleration of a particle is Galilean
invariant.

Henceforth, we assert that all statements of physics that we write are expressed
from the perspective of inertial observers – unless explicitly stated otherwise.
For this purpose, any inertial observer has a valid perspective and is no more
privileged than any other. This implies that all fundamental laws of physics we will
write should be unchanged between the perspectives of different inertial observers.
This equivalence of physics amongst inertial frames is called the principle of
relativity.

1.2 Newton’s Laws of Motion

In his Principia of 1687, Newton presented his famous three laws. The first of these
is the law of inertia:

I. If there are no forces on an object, then if the object starts at rest it will stay at
rest, or if it is initially set in motion, it will continue moving in the same direction
in a straight line at constant speed. �

Since this is a statement of physics – made by definition from the perspective of
any inertial observer – it should be compatible with the principle of relativity: all
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inertial observers can write this same statement. On the contrary, using the Galilean
velocity transformation, we see that if a particle has constant velocity in one inertial
frame then it has constant velocity in all inertial frames. Hence, to assure that
this statement can be written by any inertial observer and is hence compatible
with the principle of relativity, we use the Galilean transformations to connect the
perspectives of inertial reference frames.1 In practice, we can henceforth use this
first law of Newton to test whether or not our frame is inertial: if we remove all
interactions from a particle under observation, and if we then notice that when set
at rest the particle stays put and if tossed in any direction it keeps moving in that
direction with constant speed, we can conclude that the law of inertia is obeyed and
our frame is inertial.

An astronaut set adrift from her spacecraft in outer space, far from earth, or the
sun, or any other gravitating object, will move off in a straight line at constant
speed when viewed from an inertial frame. So if her spaceship is drifting without
power and is not rotating, the spaceship frame is inertial and onboard observers
will see her move away in a straight line. But if her spaceship is rotating, for
example, observers on the ship will see her move off in a curved path – the frame
inside a rotating spaceship is not inertial.

Now consider an inertial observer who observes a particle to which a force F is
applied. Then Newton’s second law states that

F =
dp
dt

, (1.5)

1 Alternatively, we can think of inertial frames as some yet-undefined set of reference frames for the principle
of relativity, then use this first law of Newton to define what inertial reference frames must be, along with the
associated Galilean transformations that connect them. A curious fact is that having identified an inertial frame
as one in which Newton’s first law is valid, which can be accomplished by purely local observations of the
motion of test particles, one finds that inertial frames are also those which are neither accelerating nor rotating
relative to the distant stars! It is hard to believe this is mere coincidence, but the reasons for it are not universally
agreed upon.
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where the momentum of the particle is p=mv, the product of its mass and velocity.
That is:

II. The time rate of change of a particle’s momentum is equal to the net force on
that particle. �

Newton’s second law tells us that if the momentum of a particle changes, there
must be a net force causing that change. Note that the second law gives us the
means to identify and quantify the effect of forces and interactions. By conducting a
series of measurements of the rate of change of momenta of a selection of particles,
we explore the forces acting on them in their environment. Once we understand the
nature of these forces, we can use this knowledge to predict the motion of other
particles in a wider range of circumstances – this time by deducing the effect of
such forces on rate of change of momentum.

Note also that dp/dt = mdv/dt = ma, so Newton’s second law can also be
written in the form F=ma, where a is the acceleration of the particle. The particle
is taken to have a fixed mass, independent of its position or velocity. The law
therefore implies that if we remove all forces from an object, neither its momentum
nor its velocity will change: it will remain at rest if started at rest, and move in a
straight line at constant speed if given an initial velocity. But that is just Newton’s
first law, so it might seem that the first law is just a special case of the second law!
However, the second law is not true in all frames of reference. An accelerating
observer will see the momentum of an object changing, even if there is no net
force on it. In fact, it is only inertial observers who can use Newton’s second
law, so the first law is not so much a special case of the second as a means
of specifying those observers for whom the second law is valid. Put differently,
Newton uses the first law to implicitly define the concept of inertial reference
frames.

Newton’s second law is the most famous fundamental law of classical mechan-
ics, and it must also be Galilean invariant according to our principle of relativity.
We have already shown that the acceleration of a particle is invariant and we also
take the mass of a particle to be the same in all inertial frames. So if F = ma is to
be a fundamental law, which can be used by observers at rest in any inertial frame,
we must insist that the force on a particle is likewise Galilean invariant. Newton’s
second law itself does not specify which forces exist, but in classical mechanics
any force on a particle (due to a spring, gravity, friction, or whatever) must be the
same in all inertial frames.

If the drifting astronaut is carrying a wrench, by throwing it away (say) in the
forward direction she exerts a force on it. During the throw the momentum of the
wrench changes, and after it is released it travels in some straight line at constant
speed.
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Of course, it is one thing to know Newton’s second law; it is quite another
thing to solve it to find a particle’s motion in a particular case, which may range
from easy to quite challenging. At the easy end of the spectrum is the case of
an object of mass m moving under the influence of a constant force, such as the
gravitational force F = mg on a particle in a uniform gravitational field g. If that
is the only force, the particle’s acceleration a will be constant, so its velocity v(t)
can be found by integrating a over time, and then its position r(t) can be found
by integrating v(t) over time. All this leads to the familiar equations of projectile
motion.

Finally, Newton’s third law states that

III. “Action equals reaction.” If one particle exerts a force on a second
particle, the second particle exerts an equal but opposite force back on the first
particle. �

We have already stated that any force acting on a particle in classical mechan-
ics must be the same in all inertial frames, so it follows that Newton’s third
law is also Galilean invariant: a pair of equal and opposite forces in a given
inertial frame transform to the same equal and opposite pair in another inertial
frame.

While the astronaut, drifting away from her spaceship, is exerting a force on the
wrench, at each instant the wrench is exerting an equal but opposite force back on
the astronaut. This causes the astronaut’s momentum to change as well, and if the
change is large enough her momentum will be reversed, allowing her to drift back
to her spacecraft in a straight line at constant speed when viewed in an inertial
frame.
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1.3 One-Dimensional Motion: Drag Forces

Before discussing the full rich possibilities of the three-dimensional motion of a
particle, we will begin with the simpler case of one-dimensional motion. In fact, if
the total force acting on a particle pulls or pushes it in one linear direction, say in
the x direction, and if the particle begins at rest or with some initial velocity that
happens also to be in this same x direction, then the particle will continue to move
in the x direction.

In general, the net force on a particle moving in one dimension might depend
upon the particle’s position, or its velocity, or time, or any combination of these
variables. In this section we will suppose that the net force on a particle depends
only upon its velocity, and not its position in space or the time. Then Newton’s
second law takes the form

F(v) = ma ≡ m
dv
dt

(1.6)

which is a first-order differential equation. This often makes the problem much
simpler than for position-dependent forces, which lead to second-order differential
equations.

Drag forces are prime examples of one-dimensional velocity-dependent forces.
They include air resistance on dropped baseballs, raindrops, and skydivers; they
also include the horizontal motion of automobiles or airplanes and water drag
on fish or submarines. By definition, drag forces act in opposition to an object’s
velocity through the fluid. For small objects moving sufficiently slowly, fluid flows
around an object smoothly in what is called laminar flow, giving rise to “viscous
drag,” where the drag force is proportional to the viscosity of the fluid, a measure
of how much of the fluid is pulled along with the object as it moves. An example
would be dropping a small ball into a vat of honey or molasses, both highly viscous
fluids. The viscous drag force is linear in the velocity, so has the form Fdrag = −bv,
where b is a constant.
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Example 1.1 A Bacterium with a Viscous Drag Force
The most important force on a non-swimming bacterium in a fluid is the viscous drag force F = −bv, where
v is the velocity of the bacterium relative to the fluid and b is a constant that depends on the size and shape
of the bacterium and the viscosity of the fluid – the minus sign means that the drag force is opposite to the
direction of motion. If the bacterium, as illustrated in Figure 1.3, gains a velocity v0 and then stops swimming,
what is its subsequent velocity as a function of time?

Fig. 1.3 A bacterium in a fluid. What is its motion if it begins with velocity v0 and then
stops swimming? Reprinted figure with permission from Guanglai Li, Lick-Kong
Tam, and Jay X. Tang, Amplified effect of Brownian motion in bacterial near-
surface swimming, PNAS, November 17, 2008 (Figure 1b). Copyright (2008) by
the American Physical Society. Figure 1b. DOI: https://doi.org/10.1103/PhysRevE
.84.041932

Let us assume that the fluid defines an inertial reference frame. Newton’s second law then leads to the
ordinary differential equation

m
dv
dt

= −b v ⇒ m ẍ = −b ẋ, (1.7)

where ẋ ≡ dx/dt and ẍ ≡ d2x/dt2. So Newton’s second law is a second-order differential equation in
position and time, but a particularly simple one that can be integrated at once to give a first-order differential
equation in v and t. Separating variables and integrating:∫ v

v0

dv
v
= − b

m

∫ t

0
dt, (1.8)

which gives ln(v)− ln(v0) = ln(v/v0) = −(b/m)t. Exponentiating both sides:

v = v0e−(b/m)t ≡ v0e−t/τ ⇒ a =
dv
dt

= − v0

τ
e−t/τ , (1.9)

https://doi.org/10.1103/PhysRevE.84.041932
https://doi.org/10.1103/PhysRevE.84.041932
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where τ ≡ m/b is called the “time constant” of the exponential decay. In a single time constant, i.e., when
t = τ , the velocity decreases to 1/e of its initial value; thereforeτ is a measure of how quickly the bacterium
slows down. The bigger the drag force (or the smaller the mass), the greater the deceleration.

An alternate way to solve the differential equation is to note that it is linear with constant coefficients, so
the exponential form v(t)= Aeαt is bound to work, for an arbitrary constant A and a particular constant
α. In fact, the constant α= − 1/τ , found by substituting v(t)= Aeαt into the differential equation
and requiring that it be a solution. In this first-order equation the constant A is the single required arbitrary
constant. It can be determined by imposing the initial condition v = v0 at t = 0, which tells us that
A = v0.

Now we can integrate once more to find the bacterium’s position x(t). If we choose the x direction as the
v0 direction, then v = dx/dt, so

x(t) = v0

∫ t

0
e−t/τ dt = v0τ

(
1 − e−t/τ

)
. (1.10)

The second integration constant is fixed by the bacterium’s starting position, x(0) = 0. As t → ∞, we see
that its position x asymptotically approaches the value v0τ . Note that given a starting position and an initial
velocity, the path of a bacterium is determined by the forces exerted on it. Figure 1.4 shows x(t) and v(t) for
the bacterium.

(b)(a)

Fig. 1.4 Position (a) and velocity (b) versus time for the bacterium. �

For larger and more quickly moving objects there comes a point where the
fluid no longer flows smoothly around the object, but becomes turbulent, churn-
ing around and shedding swirling eddies and vortices. The drag force is then
approximately proportional to the square of the object’s velocity through the fluid.
This is sometimes called inertial drag or Newtonian drag. Air in front of a
fast-moving baseball has no time to flow smoothly out of the way, but becomes
turbulent and retains this turbulence after the ball has already passed by. This is
the type of drag that normally happens all around us, including the drag force
on cars and airplanes moving at typical speeds. Doubling their velocity increases
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the drag force by a factor of four, so in the case of automobiles, for example,
designers are motivated to reduce the drag force by streamlining the shape of cars to
minimize the turbulence. This helps increase fuel efficiency and also the top speed
attainable.

Example 1.2 A ball of mass m and radius r is dropped from the top of a skyscraper. Find the height of the skyscraper if the
ball reaches the ground at a time t later.

In this case the drag force is quadratic over essentially the entire trip, so the equation of motion is

m
dv
dt

= mg − cv2, (1.11)

where c is the drag constant and we have taken the positive direction to be downward. Note that the net force
on the ball goes to zero as v →

√
mg/c, so there is a terminal velocity vT =

√
mg/c which the ball never

quite reaches as it falls. Initially, when v is small, the ball has downward acceleration a � g, and then a → 0
as v → vT =

√
mg/c. It is the existence of a terminal velocity that helps some cats survive when they

leap out of open windows in tall apartment buildings hoping to catch a bird, or even a very few people among
those whose parachutes have failed to open, or in one case a soldier who jumped without a parachute from
a plane in flames, preferring to take his chances in free fall rather than getting burned alive. Thanks to the
terminal velocity, the impact velocity of an object at the ground stays nearly the same no matter how high up
the object begins, assuming of course that the initial altitude is sufficiently great. Using the result v2

T = mg/c,
the v and t variables in F = ma can be separated to give

gt = g
∫ t

0
dt =

∫ v

0

dv
1 − v2/v2

T
. (1.12)

A particularly simple way to carry out the integration is to use the technique of partial fractions, beginning
with the identity

1
1 − z2 =

1
2

(
1

1 + z
+

1
1 − z

)
. (1.13)

So if we let z = v/vT , it follows that

gt =
vT

2
[ln(1 + z)− ln(1 − z)] =

vT

2
ln
(

1 + z
1 − z

)
, (1.14)

which gives t in terms of v, since v = vT z. We can invert this equation to find v as a function of t. The result is

v = vT

[
egt/vT − e−gt/vT

egt/vT + e−gt/vT

]
= vT tanh(gt/vT) (1.15)

in terms of a hyperbolic tangent function. From this result we can verify that v � gt for small t, using the
series expansion for exponentials ex = 1 + x + (1/2)x2 + ... for small x. We can also verify that v → vT

for large t, since then e−gt/vT → 0.
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So far so good. Now we can find how far the ball falls in a given time by integrating the last result over
time, and letting y be the distance fallen. That is:

y =
∫

dy = vT

∫ t

0
dt tanh(gt/vT) =

v2
T

g

∫
dq tanh q =

v2
T

g

∫
dq
(

sinh q
cosh q

)
, (1.16)

where we have defined q = gt/vT and used the identity tanh q = sinh q/ cosh q, where sinh and cosh are
the hyperbolic sine and cosine functions. The differential of cosh q is sinh qdq, so the integral is just the natural
logarithm of cosh q. So finally:

y =
(

v2
T

g

)
ln(cosh q) =

(
v2

T

g

)
ln(cosh gt/vT). (1.17)

This is how far the ball has fallen as a function of time. One can also invert this equation to find how long it
takes the ball to reach the ground in terms of its initial height. �

1.4 Oscillation in One-Dimensional Motion

The drag forces we have used so far are purely velocity-dependent forces in which
Newton’s second law becomes a first-order differential equation. In contrast, a
simple harmonic oscillator consists of a mass m attached to one end of a Hooke’s-
law spring exerting force F = −kx, where k (a positive constant) is the force
constant of the spring and x is the spring stretch. For such position-dependent
forces, Newton’s second law becomes a second-order differential equation. The
minus sign indicates that if x is positive, when the spring has been stretched, it will
pull the particle back toward equilibrium, and if x is negative, the spring has been
compressed, and it will push the particle back toward equilibrium. The importance
of this linear force extends far beyond the force exerted by an actual spring, because
very often it is a spring-like linear restorative force that is exerted when a particle is
displaced slightly from equilibrium under the influence of a wide variety of forces.
We will return to this point when we discuss energy a bit later.

If the only force on a particle moving in one dimension is due to a Hooke’s-law
spring, the equation of motion is

mẍ = −kx or mẍ + kx = 0, (1.18)

where each overdot means a time derivative, a notation due to Newton himself.
This is the famous simple harmonic oscillator (SHO) equation, a linear second-
order differential equation in x and t.

There are several ways to solve the equation. One way is to note that we
require a couple of linearly independent functions whose second derivatives are
the negatives of themselves, apart from constants; this suggests sines and cosines.
The general solution can then be written
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x(t) = A cos(ωt) + B sin(ωt) or x(t) = C cos(ωt + ϕ), (1.19)

where ω =
√

k/m = 2πν with ν the frequency of oscillation, and where A and B
(or C and ϕ) are the two arbitrary constants needed in solutions of the second-order
differential equation. The constants C and ϕ can be found in terms of A and B,
or vice versa, using the trig identity cos(α + β) = cosα cosβ − sinα sinβ. The
second form of the solution is depicted in Figure 1.5, illustrating the meaning of
the constants C,ω, and ϕ.

Fig. 1.5 A simple harmonic oscillation x(t) = C cos(ω t + ϕ) for phase angleϕ = π/4. Shown is the
amplitude C. The period of oscillations is P = 2π/ω, andω = 2πν , where ν = 1/P is the
frequency andω is the angular frequency of oscillation.

Another method of solving the SHO equation is more formal but also provides
more insight. We can solve the equation in stages, integrating once to get a first-
order differential equation, called a “first integral of motion,” and then integrating
a second time to get the final solution x(t). This first integration can be carried out
by first multiplying the equation by a so-called “integrating factor” ẋ, giving

mẋẍ + kxẋ = 0 or
1
2

m
dẋ2

dt
+ kx

dx
dt

= 0. (1.20)

Multiplying by dt, we have (1/2)m d(ẋ2) + kxdx = 0, which is directly integrable
because each term contains only a single variable. Integrating this last equation:

1
2

mẋ2 +
1
2

kx2 = E, (1.21)

where E is the constant of integration. We recognize this as a conservation of energy
equation for the particle, the sum of its kinetic and potential energies. The kinetic
energy T = (1/2)mẋ2 depends on the particle’s velocity but not its position, and
the potential energy U = (1/2)kx2 depends on the particle’s position but not its
velocity. The sum is the total energy, a constant of the motion.
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Now we can separate the remaining variables x and t and integrate once more:∫
dt =

√
m
2

∫
dx√

E − (1/2)kx2
, (1.22)

again with only a single variable in each term. Substituting x=
√

2E/k cos θ and
integrating gives t= −

√
m/k θ + constant and then rearranging and using the fact

that cos(−θ) = cos(θ) it follows that

x(t) =
√

2E
k

cos(ωt + ϕ), (1.23)

where ω =
√

k/m and E and ϕ are the two necessary arbitrary constants. In
addition to showing that energy conservation is the first integral of motion, we have
found the amplitude of oscillation in terms of the energy E and force constant k.

Damped Oscillations
The simple harmonic oscillator is not damped. According to the solutions, once
excited it will oscillate forever. However, real oscillations eventually die out, which
means they must have additional forces exerted on them that cause them to decrease
their amplitude with time. A realistic force that does this in most situations is the
quadratic damping force Fdrag = −cv2, where c is a constant. It will continually
reduce the oscillator’s amplitude.

Adding this force to the oscillating object leads to the equation mẍ = −kx− cẋ2,
which is still a second-order differential equation, but with a new x2 term that is
nonlinear. Unfortunately, this nonlinearity makes the equation impossible to solve
in terms of elementary functions, so the tradition is to replace quadratic damping
with linear damping, which makes the full equation linear and easy to solve.
Even though linear damping is usually unrealistic, it at least leads to decaying
oscillations, which is more realistic than no damping at all.

A particular linearly damped oscillator consists of a mass m confined to move in
the x direction attached at one end to a Hooke’s-law spring of force constant k, and
which is also subject to the damping force −b v where b is a constant. That is, we
assume that the damping force is linearly proportional to the velocity of the mass
and in the direction opposite to its motion.

Newton’s second law then gives F = −kx − bẋ = mẍ, a second-order linear
differential equation equivalent to

ẍ + 2βẋ + ω2
0x = 0, (1.24)

where we let β ≡ b/2m and ω0 ≡
√

k/m to simplify the notation. Mathematically,
we are guaranteed a solution once we fix two initial conditions. These can be, for
example, the initial position x(0)= x0 and velocity v(0) = ẋ(0) = v0. Hence, our
solution will depend on two constants to be specified in the particular problem.
In general, each dynamical variable we track through Newton’s second law will
generate a single second-order differential equation, and so will require two initial
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conditions. This is the sense in which Newton’s laws provide us with predictive
power: fix a few constants using initial conditions, and physics will tell us the future
evolution of the system. For the example at hand, Eq. (1.24) is a linear differential
equation with constant coefficients, which can be solved by setting x ∝ eαt for
some α. Substituting this form into Eq. (1.24) gives the quadratic equation

α2 + 2βα+ ω2
0 = 0 with solutions α = −β ±

√
β2 − ω2

0. (1.25)

There are now three possibilities: (1) β > ω0, the “overdamped” solution; (2)
β = ω0, the “critically damped” solution; and (3), β < ω0, the “underdamped”
solution, all as illustrated in Figure 1.5.

(1) In the overdamped case the exponent α is real and negative, and so the
position of the mass as a function of time is

x(t) = A1eγ1t + A2eγ2t, (1.26)

where γ1 = −β +
√

β2 − ω2
0 and γ2 = −β −

√
β2 − ω2

0 . Here A1 and
A2 are arbitrary constants. The two terms are the expected linearly independent
solutions of the second-order differential equation, and the coefficients A1 and A2
can be determined from the initial position x0 and initial velocity v0 of the mass.
Figure 1.6(a) shows a plot of x(t).

(2) In the critically damped β = ω0 case the two solutions of Eq. (1.25)
merge into the single solution x(t) = A e−βt. However, a second-order differential
equation has two linearly independent solutions, so we need one more. This
additional solution is A′t e−βt for an arbitrary coefficient A′, as can be seen by
substituting this form into Eq. (1.24). The general solution for the critically damped
case is therefore

x = (A + A′t)e−βt, (1.27)

which has the two independent constants A and A′ determined from the initial
position x0 and velocity v0. Figure 1.6(b) shows a plot of x(t) in this case.

(3) In the underdamped case, the quantity
√

β2 − ω2
0 = i

√
ω2

0 − β2 is purely
imaginary, so

x(t) = e−βtRe (A1eiω1t + A2e−iω1t), (1.28)

where ω1 =
√

ω2
0 − β2 and we take only the real part of the solution, as indicated

by “Re.” It is mathematically legal to take only the real part of the solution since
the differential equation is real and linear in x: if the complex function x(t) solves
the differential equation, so will the real and imaginary parts of x(t) separately.1
We can use Euler’s identity

eiθ = cos θ + i sin θ (1.29)

1 You can convince yourself of this by plugging x(t) = xR(t)+ i xI(t) into the differential equation and extracting
two identical equations for xR(t) and xI(t) from the real and imaginary parts, respectively.
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(a)

t

t

t

(b)

(c)

Fig. 1.6 Motion of an oscillator if it is (a) overdamped, (b) critically damped, or (c) underdamped, for the special
case where the oscillator is released from rest (v0 = 0) at some position x0.

to write x in terms of purely real functions:

x(t) = e−βt(Ā1 cosω1t + Ā2 sinω1t), (1.30)

where Ā1 = A1 +A2 and Ā2 = i(A1 −A2) are real coefficients. We can also use the
identity cos(θ + ϕ) = cos θ cosϕ− sin θ sinϕ to write Eq. (1.30) in the form
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x(t) = A e−βt cos(ω1t + ϕ), (1.31)

where A=
√

Ā2
1 + Ā2

2 and ϕ= tan−1(−Ā2/Ā1). That is, the underdamped solu-
tion corresponds to a decaying oscillation with amplitude A e−βt. The arbitrary
constants A and ϕ can be determined from the initial position x0 and velocity v0
of the mass. Figure 1.6(c) shows a plot of x(t) in this case. If there is no damping
at all, we have b = β = 0 (and the oscillator is obviously “underdamped”). The
original Eq. (1.24) becomes the SHO equation ẍ + ω2

0x = 0 whose most general
solution is

x(t) = A cos(ω0t + ϕ). (1.32)

This gives away the meaning of ω0: it is the angular frequency of oscillation of a
simple harmonic oscillator, related to the oscillation frequency ν in cycles/second
by ω0 = 2πν. Note that ω1 <ω0; i.e., the damping reduces the oscillation frequency
in addition to damping the amplitude.

Whichever solution applies, it is clear that the motion of the particle is
determined by (a) the initial position x(0) and velocity ẋ(0), and (b) the forces
acting on it throughout its motion.

1.5 Resonance

If we “drive” a lightly damped spring–mass system with an oscillating force at
the right frequency we observe the phenomenon of resonance. Repeated small
stimulations of an oscillating system at its natural frequency of oscillation can
cause the oscillation amplitude to become large, especially if the damping is small.
In particular, consider adding a sinusoidal driving force F=F0 sinωt to the spring
force and the damping force acting upon a spring–mass system. Then Newton’s
law becomes

mẍ = Fspring + Fdamping + Fdriving = −kx − bẋ + F0 sinωt. (1.33)

We can change the driving frequency ω arbitrarily. So now we have three important
frequencies, the “natural” frequency ω0 =

√
k/m of an undamped spring–mass

system; the linear damped frequency ω1 =
√

ω2
0 − β2, where β= b/2m; and the

new driving frequency ω. There are various ways to apply this sinusoidal driving
force. One way is to hold the end of the spring which is not connected to the mass
m, and move it back and forth sinusoidally in the x direction, so its position on a
frictionless table as a function of time is X = A sinωt. Then the length of the spring
at any time is not x, but (x−X), so the force it exerts on m is Fspring = −k(x−X) =
−k(x − A sinωt). Newton’s second law then gives

mẍ = −k(x − A sinωt)− bv = −kx − bẋ + kA sinωt, (1.34)
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so

mẍ + bẋ + kx = F0 sinωt or ẍ + 2βẋ + ω2
0x = f0 sinωt, (1.35)

where F0 ≡ kA, β ≡ b/2m is the damping constant, and f0 ≡ F0/m. This
is the equation of a driven, linearly damped harmonic oscillator. Mathematically
speaking, the differential equation is still linear and of second order, but it has been
changed from a homogeneous to an inhomogeneous equation, due to the driving
force term on the right. The solution of this inhomogeneous equation is the sum of
the general (or “characteristic”) solution xc(t) of the homogeneous equation (i.e.,
the equation without the driving term on the right) and a particular solution xp(t)
of the full inhomogeneous equation

x(t) = xc(t) + xp(t). (1.36)

We have already found the general solution of the homogeneous equation. It is

xc(t) = Ae−βt cos(ω1t + ϕ0), (1.37)

where ω1 =
√
ω2

0 − β2 and the amplitude A and phase angle ϕ0 are the requisite
number of arbitrary constants for the second-order differential equation. Note that
this homogeneous term xc(t) gradually dies out, so it is often called the “transient”
solution, as illustrated in Figure 1.7.

Fig. 1.7 Transient solution of a forced, damped harmonic oscillator.

It is the other, “particular” solution xp(t) that wins out in the end, and it is called
the “steady state” solution

xp(t) = C sin(ωt + δ), (1.38)

where C and δ are constants to be determined. The complete solution is the sum of
the steady-state solution and the transient (characteristic) solution:

xp(t) = Ae−βt cos(ω1t + ϕ0) + C sin(ωt − δ). (1.39)
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The first term, the transient solution, dies away as time goes on, leaving the steady-
state solution with amplitude C.

How did we know the form of xp(t)? We could first try xp =C sinωt for some
constant C, in which the mass oscillates in synchrony with the driving force.
However, that cannot work, because the first-derivative term in the differential
equation converts the sine to a cosine, while every other term in the equation is
the sine, so there is no value of C for which the trial solution works. Another
possibility is to try the phase-shifted sine function xp(t) = C sin(ωt − δ), which
oscillates at the driving frequency but is phase-shifted by the angle δ.

Substituting this trial solution xp(t) = C sin(ωt−δ) into the differential equation
gives

C[(ω2
0 − ω2) sin(ωt − δ) + 2βω cosωt − δ] = f0 sinωt. (1.40)

Using the trig identities

sin(a ± b) = sin a cos b ± cos a sin b and cos(a ± b) = cos a cos b ∓ sin a sin b
(1.41)

we write

C[(ω2
0 − ω2)(sinωt cos δ − cosωt sin δ)

+ 2βω(cosωt cos δ + sinωt sin δ)] = f0 sinωt, (1.42)

which must hold at all times. Orthogonality of the sine and cosine functions implies
that the coefficients of each should independently vanish. For example, at times t
such that ωt = 0,π, 2π, etc., the sinωt terms all vanish, so the cosωt terms alone
must satisfy the equation. That is:

C[(−ω2
0 − ω2) sin δ + 2βω cos δ] = 0 (1.43)

at any one of the times mentioned above. But all of these quantities are independent
of time, so this expression must always be zero. Therefore the quantity inside the
square brackets vanishes. That is:

tan δ =
2βω

ω2
0 − ω2 =

(2β/ω0)(ω/ω0)

1 − (ω/ω0)2 . (1.44)

Notice that if the damping β → 0, it follows that tan δ → 0, so that the phase angle
δ → 0 as well. Then the mass moves back and forth in phase with the driving force.
This is also true for very low applied frequencies ω; as ω → 0, the phase angle
δ → 0. This means that if the driving force causes the spring to oscillate very
slowly back and forth, the mass on the other end of the spring will move back and
forth in phase with the driving force.

Figure 1.8 is a graph of the phase angle δ as a function of ω/ω0, the ratio of the
driving frequency to the natural frequency of the undamped spring for a particular
value of 2β/ω0. Note that the response of the system is π/2 out of phase with the
driving frequency if ω = ω0, and out of phase by the angle π if ω � ω0. It is
straightforward to work out the changes in shape of this graph depending upon
the value of 2β/ω0. Equation (1.42) must also be correct for all times such that
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Fig. 1.8 Graph of the phase angle δ between the driving frequency and the response frequency of the oscillator,
drawn for a particular value of the parameter 2β/ω0. As the parameter is made larger, the slope of the
graph becomes steeper nearω/ω0 = 1.

ωt = π/2, 3π/2, 5π/2, etc., when each cosωt term is zero. Only the sinωt terms
survive, so it follows that

C[(ω2
0 − ω2) cos δ + 2βω sin δ] = f0, (1.45)

so the constant C is

C =
f0

(ω2
0 − ω2) cos δ + 2βω sin δ

. (1.46)

We have already found tan δ, so noting that

tan δ =
sin δ

cos δ
=

sin δ√
1 − sin2 δ

, (1.47)

we get

sin δ =
2βω√

(ω2
0 − ω2)2 + 4β2ω2

. (1.48)

Substituting these into the previous equation for C, the final result for the amplitude
C as a function of the driving frequency ω is

C(ω) =
f0

(ω2
0 − ω2) cos δ + 2βω sin δ

=
f0√

(ω2
0 − ω2)2 + 4β2ω2

. (1.49)

Now we have found both the amplitude and the phase angle of the “particular”
(steady-state) solution xp(t) of the forced, damped oscillator:

xp(t) = C(ω) sin(ωt − δ(ω)), (1.50)

where C(ω) is given by Eq. (1.49) and the phase angle δ by Eq. (1.44).
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Fig. 1.9 Shape of the oscillation amplitude response of the system as a function ofω/ω0 for various damping
constants.

The shape of C(ω), the amplitude response, is especially interesting; it is
displayed in Figure 1.9 as a function of the ratio ω/ω0, for various damping
constants, as characterized by the ratio β/ω0. The curves show a resonance peak at
a frequency near, but not quite at, the natural frequency ω0 of the undamped spring–
mass system. Note that the curves are sharper for small damping than for large
damping. If the driving force frequency ω is close to the natural frequency ω0 the
response is large, especially if the drag is small. This is the resonance phenomenon.
The resonance frequency ωR is the frequency corresponding to the maximum in the
response curve C(ω). It is then given by

ωR =
√
ω2

0 − 2β2, (1.51)

which is easily found by setting dC(ω)/dω = 0. It is then easy to show that the
oscillation amplitude at resonance is

CR =
F0

2mβω1
, (1.52)

where ω1 =
√
ω2

0 − β2 is the frequency of the damped, undriven oscillator. Note
that CR is large if the damping β is small.

Resonance can be observed by repeated small pushes on a child on a swing at his
or her natural frequency of oscillation; or by driving a car at just the right speed on
a washboard road, especially when the car has no shock absorbers to damp out the
motion; or when tuning a radio, where incoming radio waves striking the antenna
can excite large oscillations in the radio’s electrical circuits if the frequency is just
right, but not otherwise, so you hear only the station you tuned for.
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1.6 Motion in Two or Three Dimensions

So far all of our examples have been restricted to one-dimensional motion. When
the motion is in two or three dimensions, the first step is to select an appropriate
coordinate system that fits the problem. For two-dimensional motion there are
Cartesian or plane polar coordinates, for example, and for three-dimensional
motion there are Cartesian, spherical, or cylindrical coordinates, the most common
choices among many others.

Having chosen a coordinate system, it is often convenient to express vector quan-
tities like position, velocity, acceleration, or force using unit vectors. Each unit
vector has unit length and points in one of the orthogonal directions corresponding
to the coordinates in the system. It follows that the dot product of any unit vector
with itself is unity, while the dot product of any unit vector with any other unit
vector in the same system is zero.

For Cartesian coordinates in two dimensions the unit vectors are x̂ and ŷ, where

x̂ · x̂ = 1, ŷ · ŷ = 1, x̂ · ŷ = ŷ · x̂ = 0. (1.53)

The position vector of a particle is then

r = xx̂+ yŷ (1.54)

and the particle’s velocity and acceleration vectors are

v =
dr
dt

= ẋx̂+ ẏŷ and a =
dv
dt

= ẍx̂+ ÿŷ. (1.55)

In differentiating r and v we differentiated their components, but did not have to
differentiate the unit vectors, because x̂ and ŷ are constants: neither the length of
these unit vectors nor their directions in space change with time. If plane polar
coordinates r, θ are chosen instead, the unit vectors are r̂ and θ̂, where

r̂ · r̂ = 1, θ̂ · θ̂ = 1, r̂ · θ̂ = θ̂ · r̂ = 0. (1.56)

Now whereas Cartesian unit vectors do not change with time, the plane polar unit
vectors generally do change as the particle moves, because their directions may
change. For example, if the particle moves in a circle around the origin, both unit
vectors r̂ and θ̂ change direction in space. In fact, their time derivatives are

dr̂
dt

= θ̇θ̂ and
dθ̂
dt

= −θ̇r̂. (1.57)

In plane polar coordinates the position vector of a particle is simply r = rr̂.
Therefore the velocity is

v =
dr
dt

= ṙr̂+ r ˙̂r = ṙr̂+ rθ̇ θ̂, (1.58)
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and the acceleration is

a =
dv
dt

= (r̈ − rθ̇2)r̂+ (rθ̈ + 2ṙθ̇)θ̂. (1.59)

This equation contains within it the well-known results that a particle circling the
origin at constant radius r and constant angular velocity θ̇ ≡ ω will have an inward
(“centripetal”) acceleration −rω2r̂ = −(v2/r) r̂, and a person walking outward ṙ >
0 on a steadily rotating carousel with angular velocity θ̇ > 0 will be accelerating
sideways, in the θ̂ direction. Much more on all of this in Chapter 9.

Of course, motion in all three dimensions requires three unit vectors, typically
for Cartesian, spherical, or cylindrical coordinates. These unit vectors are given in
Appendix A.

Example 1.3 A Slingshot on the Moon
Someday we may want to construct spacecraft or space colonies not on the earth or the moon but in space
itself, using mined metals and other materials lifted off the moon. The moon has the advantage of a much
smaller escape velocity than that of the earth, and no atmosphere to retard motion. Instead of using expensive
rockets and fuel, could it be possible to achieve the escape velocity from the airless moon by slinging containers
of material from its surface using a rapidly rotating boom? A sturdy boom of length R might swing around in a
horizontal plane on the moon’s surface about a central vertical axis at constant angular velocityω. A payload
container starting near the rotation axis of the boom might then slide with increasing speed out along the
length of the boom and then project outward at a very high velocity when it leaves the end of the boom.

payload

!

r

µ

Fig. 1.10 A boom with payload on the moon’s surface, rotating in a horizontal plane.

Plane polar coordinates are the obvious choice here, with r measured outward from the rotation axis and
θ the angle of the boom from some initial angle θ = 0 when the payload is released on the rotating boom
at a small initial radius r0, with ṙ0 = 0. The boom keeps swinging around at constant angular velocity, so the
angle of the payload is θ = ωt until it finally flies off the end of the boom (see Figure 1.10).

We assume the payload slides frictionlessly along the boom, so the radial force Fr = 0. The tangential
force is Fθ �= 0, which is the normal force of the boom on the payload, keeping it moving with constant
angular velocityω as it slides outward. Newton’s second law is then

F = Fθθ̂ = ma = m[(̈r − rω2)r̂ + (rθ̈ + 2ṙθ̇)θ̂], (1.60)
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so

r̈ − ω2r = 0 and Fθ = m(rθ̈ + 2ṙθ̇). (1.61)

The first equation is a linear, second-order differential equation with solution r = Aeωt + Be−ωt , where
A and B are arbitrary constants. We can find A and B from the given initial conditions at t = 0, which are
r = r0 and ṙ = 0. This gives A = B = r0/2, so

r = (r0/2)(eωt + e−ωt) ≡ r0 cosh ωt (1.62)

in terms of the hyperbolic cosine function. Then the velocity of the payload as a function of time, including
both the radial and tangential components, is

v = ṙ r̂ + rθ̇ θ̂ = r0ω sinh ωt r̂ + r0ω cosh ωt θ̂. (1.63)

We can find the payload velocity when it reaches the end of the boom. At that point R = r0 cosh ωtf ,
where tf is the time when this happens. Then cosh ωtf = R/r0 and sinh ωtf =

√
cosh2 ωtf − 1 =√

(R/r0)2 − 1), where we have used the identity 1 + sinh2 = cosh2. Substituting these results into the
expression for v:

v = ω

[√
R2 − r2

0 r̂ + Rθ̂
]

(1.64)

and from this we can find the speed of the payload as it flies off the end:

vf =
√

v2
r + v2

θ = ω
√

2R2 − r2
0 , (1.65)

which must equal or exceed the moon’s escape velocity. Finally, we can calculate the tangential force the boom
must exert upon the payload to keep θ = ω t, as a function of time and as a function of r:

Fθ = m(rθ̈ + 2ṙθ̇) = m(0 + 2ω2r0 sinh ωt) = 2mω2
√

r2 − r2
0 , (1.66)

which is greatest when r = R, at the tip of the boom. There will be an equal but opposite reaction force back
on the boom due to the payload, so the boom must be strong enough to withstand this tangential force at
its tip.

Putting in some numbers, the escape velocity on the moon is approximately 2.4 km/s, and we can choose
ω = 2π s−1 and r0 = 1 m. The radius of the boom must then be R � 270 m. �

1.7 Systems of Particles

Up to now we have concentrated on the dynamics of single particles. We will now
expand our horizons to encompass systems of an arbitrary number of particles. A
system of particles might be an entire solid object like a bowling ball, in which tiny
parts of the ball can be viewed as individual infinitesimal particles. Or we might
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have a liquid in a glass, or the air in a room, or a planetary system, or a galaxy of
stars, all made of constituents we treat as “particles.”

The location of the ith particle of a system can be identified by a position
vector ri extending from the origin of coordinates to that particle, as illustrated in
Figure 1.11. Using the laws of classical mechanics for each particle in the system,
we can find the laws that govern the system as a whole.

y

x

Fig. 1.11 A system of particles, with each particle identified by a position vector ri with i = 1, 2, 3.

Define the total momentum P of the system as the sum of the momenta of the
individual particles:

P =
∑

i
pi. (1.67)

Similarly, define the total force FT on the system as the sum of all the forces on all
the particles:

FT =
∑

i
Fi. (1.68)

It then follows that FT = dP/dt, just by adding up the individual Fi = dpi/dt
equations for all the particles. If we further split up the total force FT into Fext (the
sum of the forces exerted by external agents, like earth’s gravity or air resistance
on the system of particles that form a golfball) and Fint (the sum of the internal
forces between members of the system themselves, like the mutual forces between
particles within the golfball), then

FT = Fint + Fext = Fext, (1.69)

because all the internal forces cancel out by Newton’s third law. That is, for any
two particles i and j, the force of i on j is equal but opposite to the force of j on i.
Finally, we can write a grand second law for the system as a whole:

Fext =
dP
dt

, (1.70)

showing how the system as a whole moves in response to external forces.
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Now the importance of momentum is clear. For if no external forces act on the
collection of particles Fext = 0, their total momentum cannot depend upon time,
so P is conserved. Individual particles in the collection may move in complicated
ways, but they always move in such a way as to keep the total momentum constant.

Another useful quantity characterizing a system of particles is their center of
mass position RCM. Let the ith particle have mass mi, and define the center of
mass of the collection of particles as

RCM =

∑
i miri

M
, (1.71)

where M =
∑

i mi is the total mass of the system. We can write the position vector
of a particle as the sum ri = RCM + r′i, where r′i is the position vector of the
particle measured from the center of mass, as illustrated in Figure 1.12.

y

x

Fig. 1.12 A collection of particles, each with a position vector ri from a fixed origin. The center of mass RCM is
shown, and also the position vector r′i of the ith particle measured from the center of mass.

The velocity of the center of mass is

VCM =
dRCM

dt
=

∑
i mivi

M
=

P

M
, (1.72)

differentiating term by term, and using the fact that the particle masses are constant.
Again P is the total momentum of the particles, so we have proven that the center
of mass moves at constant velocity whenever P is conserved – that is, whenever
there is no net external force. In particular, if there is no external force on the
particles, their center of mass stays at rest if it starts at rest.

This result is also very important because it shows that a real object composed of
many smaller “particles” can be considered a particle itself: it obeys all of Newton’s
laws with a position vector given by RCM, a momentum given by P, and the only
relevant forces being the external ones. It relieves us of having to draw a distinct
line between particles and systems of particles. For some purposes we think of a
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star as composed of many smaller particles, and for other purposes the star as a
whole could be considered a single particle in the system of stars called a galaxy.

1.8 Conservation Laws

Using Newton’s laws we can show that under the right circumstances there are
as many as three dynamical properties of a particle that remain constant in time,
i.e., that are conserved. These properties are momentum, angular momentum,
and energy. They are conserved under different circumstances, so in any particular
case all of them, none of them, or only one or two of them may be conserved. As
we will see, a conservation law typically leads to a first-order differential equation,
which is generally much easier to tackle than the usual second-order equations
we get from Newton’s second law. This makes identifying conservation laws in a
system a powerful tool for problem solving and characterizing the motion. We will
see later in Chapter 6 that there are deep connections between conservation laws
and symmetries in Nature.

Momentum
From Newton’s second law in the form F= dp/dt it follows that if there is no net
force on a particle, its momentum p=mv is conserved, so its velocity v is also
constant. Conservation of momentum for a single particle simply means that a free
particle (a particle with no force on it) moves in a straight line at constant speed. For
a single particle, conservation of momentum is equivalent to Newton’s first law.

For a system of particles, however, momentum conservation becomes nontrivial,
because it requires the conservation of only total momentum P. When there are
no external forces acting on a system of particles, the total momentum of the
individual constituents remains constant, even though the momentum of each
single particle may change:

P =
∑

i
pi = constant. (1.73)

As we saw earlier, this is the momentum of the center of mass of the system if we
were to imagine the sum of all the constituent masses added up and placed at the
center of mass. This relation can be very handy when dealing with several particles.

Example 1.4 A Wrench in Space
We are sitting within a spaceship watching a colleague astronaut outside holding a wrench. The astronaut-
plus-wrench system is initially at rest from our point of view. The astronaut (of mass M) suddenly throws the
wrench (of mass m), with some unknown force. We then see the astronaut moving with velocity V. Without
knowing anything about the force with which she threw the wrench, we can compute the velocity of the
wrench. No external forces act on the system consisting of wrench plus astronaut, so its total momentum is
conserved:
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P = M V + m v = constant, (1.74)

where v is the unknown velocity of the wrench. Since the system was initially at rest, we know that P = 0
for all time. We then deduce

v = −M V
m

(1.75)

without needing to use Newton’s second law or any other differential equation. �

Example 1.5 Rockets
In the preceding example the astronaut gains velocity in a direction opposite to the direction in which she
throws the wrench, thereby conserving overall momentum. A rocket behaves exactly the same way, for exactly
the same reason, except the single throw of a wrench is replaced by the continuous exhaust of burned fuel
streaming out from the combustion chamber at the rear of the rocket. Figure 1.13 shows the rocket moving
to the right in gravity-free empty space; there are no external forces, so the total momentum of the rocket
plus expelled combustion gases must be conserved. At time t, shown in Figure 1.13(a), the rocket (including
onboard fuel) has mass m and velocity v. Slightly later, at time t +Δt, as shown in Figure 1.13(b), the rocket
has mass m + Δm (where Δm is negative, since the rocket has expelled some fuel in the exhaust) and
velocity v+Δv. In addition, there is now an exhaust mass−Δm = |Δm|, where−Δm is positive. Note
that our system of rocket plus exhaust has constant mass, which is essential here, because it only makes sense
to conserve momentum for a system in which the mass stays the same.

What is the velocity of the bit of exhaust |Δm| in the second figure? We will suppose that its velocity is
u relative to the rocket, called the exhaust velocity, directed in the backwards direction, and so in the inertial
frame in which we are viewing the rocket the rocket has velocity v (or v + Δv) to the right – it will make
no difference which we choose – so the bit of exhaust has velocity u − v to the left from our point of view.
(Note that if at some instant the rocket happens to be moving to the right at speed u relative to us, then the
bit of exhaust will be at rest in our frame; if the rocket is moving faster than u, the bit of exhaust will actually
be moving to the right, since u − v will be negative.)

(a)

(b)

time

m

m + Δm

t + Δt

v + Δv

v

u – v

–Δm = |Δm|

t

time

Fig. 1.13 A rocket and expelled exhaust (a) at time t and (b) at time t +Δt.



30 1 Newtonian Particle Mechanics

We can now conserve momentum between times t and t +Δt. That is:

(m +Δm)(v +Δv)− (−Δm)(u − v) = mv. (1.76)

So

mΔv +ΔmΔv +Δm u = 0. (1.77)

Dividing by the brief time interval Δt and taking the limit Δt → 0, the doubly small term ΔmΔv goes
away in the limit, so we find that the equation of motion is

m(t)
dv
dt

= −u
dm
dt

. (1.78)

This looks very similar to Newton’s second law in the form mdv/dt = F, except that here the mass of the
rocket changes with time. The “force” term on the right is called the thrust of the rocket:

Thrust ≡ −u
dm
dt

, (1.79)

which is positive because the rocket mass is decreasing with time as its fuel is burned. The equation makes
intuitive sense: the thrust is proportional to both the exhaust velocity and the rate at which the fuel is burned.

We can now integrate the rocket’s equation of motion if we assume that the exhaust velocity u is constant.
First, multiply Eq. (1.78) by dt and divide by m: this removes t as a variable, and we are left with dv =

−udm/m. The remaining variables v and m have been separated, so we can integrate both sides:∫ v

v0

dv = −u
∫ m

m0

dm
m

, (1.80)

giving

v = v0 + u ln(m0/m), (1.81)

which is often called the rocket equation. If, for example, 90% of the initial mass of the rocket consists of fuel,
while only 10% is “payload,”then when all the fuel has burned the rocket has only 10% of its original mass, so
its velocity has increased by

v − v0 = u ln
(

m0

mpayload

)
= u ln

(
m0

0.1m0

)
� 2.30 u. (1.82)

By the end, the rocket is traveling faster than the fuel speed relative to the rocket. �

Finding the motion of a rocket is an example of a “variable mass” problem,
called that because the mass of the object of interest (the rocket in this case)
changes mass as time goes on. There are dozens of analogous problems, including
for example (i) a hailstone that gains mass with time, freezing and accreting water
molecules in the air as it falls; (ii) a jet aircraft whose mass increases as its wings ice
up while its mass decreases as fuel is burned; (iii) a railroad boxcar moving along a
horizontal track, open at the top and gaining mass as rain falls in, while losing mass
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due to a hole in the bottom of the boxcar through which water is leaking. Note that
the total mass of the system does not change; it simply moves from one part of the
system to another.

(a)

(b)

Δmr

time t

t + Δttime

M

M + Δmr – Δm`

Fig. 1.14 A leaky open boxcar in a rainstorm. (a) At time t the boxcar is moving at velocity v and some raindrops of
massΔmr are about to fall in, with no horizontal component of velocity. (b) At time t +Δt the boxcar
is moving at velocity v +Δv. The raindropsΔmr have fallen in, and a quantity of waterΔm� has
leaked out, still moving with horizontal velocity v.

The technique for solving such problems is to use Newton’s second law F =
dp/dt in the form Δp = FΔt over the short time interval Δt for a system whose
mass is the same at time t+Δt as it was at time t. That is, we can only be confident
that F = dp/dt is valid if the system has fixed mass. So in the case of the boxcar, for
example, we draw two pictures (see Figure 1.14). The first at time t shows a boxcar
of mass M moving to the right at speed v plus a small quantity of rain of mass Δmr
falling with no horizontal velocity (its vertical velocity is irrelevant here). Thus,
the horizontal momentum of the system at time t is simply p0 = Mv. The second
picture is at time t +Δt, and shows a boxcar of mass M +Δmr −Δm�, indicating
that the boxcar has gained mass Δmr due to the falling rain, while losing mass Δm�

due to the leak. In this picture there is also a mass Δm�, the leaked mass, moving
to the right at speed v, because it “remembers” the speed it had just before it leaked
out by the law of inertia, Newton’s first law. The momentum of the entire system
at t + Δt is p1 = (M + Δmr −Δm�)(v + Δv) + Δm�v. Now if we pretend there
is no horizontal force on the system due to air resistance or friction with the tracks,
the total momentum of the fixed-mass system is the same at t+Δt as it was at time
t. Therefore, setting p1 = p0:

(M +Δmr −Δm�)(v +Δv) + Δm�v = Mv. (1.83)
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Now cancel the Mv terms, divide by Δt, and take the limit Δt → 0. The result is
the differential equation of motion of the boxcar:

M
dv
dt

= −λrv, where λr =
dmr
dt

. (1.84)

Here, λr is the rate at which rain is falling in. Note that this equation looks just
like the equation for the bacterium subject to a linear drag force. The cause of
the “drag” here is that the boxcar has to speed up the horizontal velocity of the
raindrops that fall in, and the rain reacts back upon the boxcar tending to slow it
down. Appearances may be deceiving, however, because in the boxcar problem
M changes with time unless the rate of rainfall happens to be exactly the same as
the rate of leakage. Nevertheless, we can solve the problem completely for v(t)
and then x(t) if we assume the rates of rainfall and leaking are both constants,
λr and λ� (see the Problems section at the end of this chapter). We can also find
the differential equation of motion if there is air resistance or friction by adding
nonzero forces to Δp = FΔt, and perhaps solve the equation exactly if F has a
sufficiently simple form.

Angular Momentum
Let a position vector r extend from an origin of coordinates to a particle, as shown
in Figure 1.15. The angular momentum of the particle is defined to be

� = r× p, (1.85)

the vector cross product of r with the particle’s momentum p. Note that in a given
inertial frame the angular momentum of the particle depends not only on properties
of the particle itself, namely its mass and velocity, but also upon our choice of
origin.

y
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z

Fig. 1.15 The position vector for a particle. Angular momentum is always defined with respect to a chosen point
from where the position vector originates.
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Using the product rule, the time derivative of � is
d�
dt

=
dr
dt

× p+ r× dp
dt

. (1.86)

The first term on the right is v × mv, which vanishes because the cross product
of two parallel vectors is zero. In the second term, we have dp/dt = F using
Newton’s second law, where F is the net force acting on the particle. It is therefore
convenient to define the torque N on the particle due to F as

N = r× F, (1.87)

so that

N =
d�
dt

. (1.88)

That is, the net torque on a particle is responsible for any change in its angular
momentum, just as the net force on the particle is responsible for any change in
its momentum. The angular momentum of a particle is conserved if there is no net
torque on it.

Sometimes the momentum p is called the “linear momentum” to distinguish it
from the angular momentum �. They have different units and are conserved under
different circumstances. The momentum of a particle is conserved if there is no net
external force and the angular momentum of the particle is conserved if there is no
net external torque. It is easy to arrange forces on an object so that it experiences
a net force but no net torque, and equally easy to arrange them so there is a net
torque but no net force. For example, if the force F is parallel to r, we have N = 0;
yet there is a nonzero force.

There is another striking difference between momentum and angular momentum.
In a given inertial frame, the value of a particle’s momentum p is independent
of where we choose to place the origin of coordinates. But because the angular
momentum � of the particle involves the position vector r, the value of � does
depend on the choice of origin. This makes angular momentum more abstract than
momentum, in that in the exact same problem different people at rest in the same
inertial frame may assign it different values depending on where they choose to
place the origin of their coordinate system.

The angular momentum of systems of particles is sufficiently complex and
sufficiently interesting to devote much of Chapter 12 to it. For now, we can simply
say that as with linear momentum, angular momentum can be exchanged between
particles in the system. The total angular momentum of a system of particles is
conserved if there is no net external torque on the system.

Example 1.6 A Particle in Two Dimensions Attached to a Spring
A block of mass m is free to move on a frictionless tabletop under the influence of an attractive Hooke’s-law
spring force F = −kr, where the vector r is the position vector of the particle measured from the origin. We
will find the motion x(t), y(t) of the ball and show that the angular momentum of the ball about the origin
is conserved.
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The vector r = x x̂ + y ŷ, where x and y are the Cartesian coordinates of the ball and x̂ and ŷ are unit
vectors pointing in the positive x and positive y directions, respectively. Newton’s second law −kr = mr̈
becomes

−k(xx̂ + yŷ) = m(̈xx̂ + ÿŷ), (1.89)

which separates into the two simple harmonic oscillator equations

ẍ + ω2
0 x = 0 and ÿ + ω2

0 y = 0, (1.90)

whereω0 =
√

k/m. It is interesting that the x and y motions are completely independent of one another in
this case; the two coordinates have been decoupled, so we can solve the equations separately. The solutions are

x = A1 cos(ω0t + ϕ1) and y = A2 cos(ω0t + ϕ2), (1.91)

showing that the ball oscillates simple harmonically in both directions.

y

x

Fig. 1.16 A two-dimensional elliptical orbit of a ball subject to a Hooke’s-law spring force,
with one end of the spring fixed at the origin. The spring’s rest length is zero.

The four constants A1, A2, ϕ1, ϕ2 can be evaluated in terms of the four initial conditions x0, y0, vx0 , vy0 .
The oscillation frequencies are the same in each direction, so orbits of the ball are all closed. In fact, the orbit
shapes are ellipses centered at the origin, as shown in Figure 1.16.a Note that in this two-dimensional problem,
the motion of the ball is determined by four initial conditions (the two components of the position vector and
the two components of the velocity vector), together with the known force throughout the motion. This is
what is expected for two second-order differential equations.

The spring exerts no torque on the ball about the origin, since the cross product of any vector with itself
vanishes, so N = r× F = r×−kr = 0. Therefore the angular momentum of the ball is conserved about
the origin. In this case, this angular momentum is given by

� = (x x̂ + y ŷ)× (m ẋ x̂ + m ẏ ŷ) = (m x ẏ − m y ẋ)ẑ, (1.92)
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so the special combination m x ẏ − m y ẋ remains constant for all time. That is certainly a highly nontrivial
statement.

The angular momentum is not conserved about any other point in the plane, because then the position
vector and the force vector would be neither parallel nor antiparallel. The angular momentum of a particle is
always conserved if the force is purely central, i.e., if it is always directly toward or away from a fixed point, as
long as that same point is chosen as origin of the coordinate system.

We still have not used the conservation of angular momentum in this problem to our advantage, because
we solved the full second-order differential equation. To see how we can tackle this problem without ever
needing to invoke Newton’s second law or any second-order differential equation, we need to first look at
another very useful conservation law, the conservation of energy. �

aRemember that the equation of an ellipse in the x–y plane can be written as

(x − x0)
2

a2
+

(y − y0)
2

b2
= 1, (1.93)

where (x0, y0) is the center of the ellipse, and a and b are the minor and major radii. One can show that Eq. (1.91) indeed satisfies this equation
for appropriate relations betweenϕ1,ϕ2, A1, A2 and x0, y0, a, b.

Energy
Energy is the third quantity that is sometimes conserved. Of momentum, angular
momentum, and energy, energy is the most subtle and most abstract, yet it is often
the most useful.

We begin by writing Newton’s law for a particle in the form FT = mdv/dt,
where FT is the total force on the particle. Dotting this equation with the particle’s
velocity v:

FT · v = mv · dv
dt

=
d
dt

(
1
2

mv2
)

≡ dT
dt

, (1.94)

where we have defined

T =
1
2

mv2 (1.95)

as the kinetic energy of the particle.4 If F is the force of gravity, for example, then
if the particle is falling vertically its velocity is parallel to F, so F · v is positive,
causing the kinetic energy of the particle to increase; and if the particle is rising,
its velocity is antiparallel to F, so F · v is negative, causing the kinetic energy of
the particle to decrease. If FT is the total force acting on the particle, the time rate
of change

4 In deriving Eq. (1.94), we have used the identity

v · dv
dt

= vx
dvx

dt
+ vy

dvy

dt
+ vz

dvz

dt
=

1
2

d
dt
(v2

x + v2
y + v2

z ) =
1
2

d(v2)

dt
. (1.96)
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dT
dt

= FT · v (1.97)

is called the net power input to the particle.

Example 1.7 Charged Particle in a Magnetic Field
The force exerted by a magnetic field B on a particle of electric charge q moving with velocity v is given by

FB = qv × B. (1.98)

What is the change in a particle’s kinetic energy if this is the only force acting on it?
Using the fact that the cross product of any two vectors is perpendicular to both vectors, it follows that

v · (v × B) = 0. Therefore, the kinetic energy of a particle moving in a magnetic field is constant in
time. Seen another way, the particle generally accelerates, but its acceleration a = q(v × B)/m is always
perpendicular to v, so the magnitude of v remains constant, and therefore the kinetic energy T = (1/2)mv2

remains constant as well. The particle may move along very complicated paths, but its kinetic energy never
changes. �

We can integrate Eq. (1.94) over time to find the change in a particle’s kinetic
energy as it moves from some point a to another point b. The result is

ΔT ≡ Tb − Ta =

∫ b

a
FT · v dt =

∫ b

a
FT · ds, (1.99)

since v ≡ ds/dt, where ds is the instantaneous displacement vector. At each
point on the path the vector ds is directed along the path, and its magnitude is
an infinitesimal distance along the path.

Now define the work W done by any one of the forces F acting on the particle,
as it moves from a to b, as the line integral (or path integral)

W =

∫ b

a
F · ds. (1.100)

Note from the dot product that it is only the component of F parallel to the path at
some point that does work on the particle. Figure 1.17 illustrates the setup.

We can then define the total work done on the particle by all of the forces F1,
F2, . . . to be

WT = W1 + W2 + · · · =
∫ b

a
F1 · · · ds+

∫ b

a
F2 · ds+ · · · (1.101)

so it follows from Eq. (1.99) that

WT = Tb − Ta, (1.102)

which is known as the work–energy theorem: the change in kinetic energy of a
particle is equal to the total work done upon it. If we observe that the kinetic energy
of a particle has changed, there must have been a net amount of work done upon it.
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y

x

a

b

Fig. 1.17 The work done by a force on a particle is the line integral
∫ b

a F · ds along the path traced by the particle.

Often the work done by a particular force F depends upon which path the particle
takes as it moves from a to b. The frictional work done by air resistance on a ball as
it flies from the bat to an outfielder depends upon how high it goes, that is, whether
its total path length is short or long. There are other forces, however, like the static
force of gravity, for which the work done is independent of the particle’s path. For
example, the work done by earth’s gravity on the ball is the same no matter how it
gets to the outfielder. For such forces the work depends only upon the endpoints a
and b. That implies that the work can be written as the difference5

Wa→b = −Ub + Ua (1.103)

between a potential energy function U evaluated at the final point b and the initial
point a.

A force F for which the work W=
∫ b

a F · ds between any two points a and b
is independent of the path is said to be conservative. There are several tests for
conservative forces that are mathematically equivalent, in that if any one of them
is true the others are true as well. The conditions are:

1 W =
∫ b

a F · ds is path independent.
2 The work done around any closed path is

∮
F · ds = 0.

3 The curl of the force function vanishes: ∇× F = 0.
4 The force function can always be written as the negative gradient of some scalar

function U: F = −∇U.

Often the third of these conditions makes the easiest test. For example, the curl of
the uniform gravitational force F = −mg ẑ is, using the determinant expression
for the curl:

∇× F =

∣∣∣∣∣∣
x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂z
Fx Fy Fz

∣∣∣∣∣∣ = 0, (1.104)

5 The reason for this choice of signs will soon become clear.
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since each component of F is zero or a constant. Therefore this force is conserva-
tive. That means it must have a potential energy given by the indefinite integral

U = −
∫

F · ds (1.105)

= −
∫
(−mgẑ) · ds = mg

∫
dz = mgz.

The work done by a conservative force is equal to the difference between two
potential energies, so it follows that the physics is exactly the same for a particle
with potential energy U(r) as it is for a potential energy U(r) + C, where C is any
constant. For example, the potential energy of a particle of mass m in a uniform
gravitational field g is Ugrav = mgh, where h is the altitude of the particle. The
fact that any constant can be added to U in this case is equivalent to the fact that
it doesn’t matter from what point the altitude is measured, as long as this is done
consistently throughout a problem. The motion of a particle is the same whether
we measure altitude from the ground or from the top of a building.

Not all forces are conservative: for example, the curl of the hypothetical force
F = αxyẑ, where α is a constant, is

∇× F =

∣∣∣∣∣∣
x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂z
0 0 αxy

∣∣∣∣∣∣
= x̂

∂

∂y
(α x y)− ŷ

∂

∂x
(α x y) = α(x x̂− y ŷ) �= 0, (1.106)

so this force is not conservative, and does not possess a potential energy function.
Typically both conservative (FC) and nonconservative forces (FNC) act on a

particle, so the total work done on it is

WT = WC + WNC = −Ub + Ua + WNC = T(b)− T(a) (1.107)

from the work–energy theorem equation (1.102), where now the potential energies
Ua and Ub are the total potential energies due to all of the conservative forces.
Rewriting this equation in the form

[Tb + Ub]− [Ta + Ua] = WNC, (1.108)

we can finally define the energy E of the particle as the sum of the kinetic and
potential energies:

E ≡ T + U. (1.109)

The change in a particle’s energy as it travels from a to b is therefore

ΔE = Eb − Ea = WNC, (1.110)
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the total work done by nonconservative forces. The energy is conserved, with Eb =
Ea, if only conservative forces act on the particle (that is, if WNC = 0).6

Example 1.8 A Child on a Swing
A child of mass m is being pushed on a swing. Suppose there are just four forces acting on her: (i) the normal
force of the seat; (ii) the hands of the pusher; (iii) air resistance; and (iv) gravity. What is the work done by each?

(i) As long as the normal force of the swing seat is perpendicular to the instantaneous displacement, the work
it does must be zero at all times, FN · ds = 0.

(ii) While the pusher is pushing, the force is in the direction of the displacement and F · ds > 0, so the work
it does is positive. The net work done over a complete cycle is also positive,

∮
F · ds > 0.

(iii) The work done by air resistance is negative, because air resistance is opposite to the direction of motion,
and hence F · ds < 0. The net work done by air resistance is therefore negative,

∮
F · ds < 0.

(iv) The work done by gravity is positive while she is descending, and negative while she is ascending; they
exactly cancel out over a complete cycle. That is, gravity is a conservative force, or

∮
F · ds = 0.

The only two forces that do a net amount of work on her over a complete cycle are the hands pushing (positive)
and air resistance (negative). Neither force is conservative, soΔE = Eb−Ea = WNC = Whands+Wair. If the
right-hand side is positive (the net work done by the pusher exceeds the magnitude of the (negative) net work
done by air resistance), her energy increases; but if Whands < |Wair|, her energy decreases. If the pusher stops
pushing, and if we could remove air resistance, then her energy would be conserved, continually oscillating
between kinetic energy (maximum at her lowest point) and gravitational potential energy (maximum at her
highest points). �

It is useful to expand the concept of energy beyond kinetic and potential energies
by regarding the work done by nonconservative forces as external sources or sinks
of the total energy. For example, in the case of the friction force, a decrease in
the “mechanical energy” T + U shows up in some other external form, such as
heat. That is, conservation of energy is more general than one might expect from
classical mechanics alone; in addition to kinetic and potential energies, there is
thermal energy, the energy of deformation, energy in the electromagnetic field,
and many other forms as well. Energy is a useful concept across many disparate
physical systems.

Example 1.9 A Particle Attached to a Spring Revisited
We want to demonstrate the power of conservation laws in solving the previous problem of a particle of mass
m confined to a two-dimensional plane and attached to a spring of force constant k (see Figure 1.16). The only
force law is Hooke’s law F = −kr. We can check that∇× F = 0, and then find that the potential energy
for this conservative force is

6 That, of course, is responsible for the term “conservative forces.”
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Ub − Ua = −
∫ b

a
F · dr = −k

∫ b

a
r · dr ⇒ U =

1
2

k r2. (1.111)

Fig. 1.18 A ball free to move in two dimensions subject to the spring force F = −k r. We
assume the spring has natural length r = 0.

The total energy is therefore

E =
1
2

m v2 +
1
2

k r2. (1.112)

The problem has rotational symmetry, so it is helpful to use polar coordinates. The velocity of the particle is

v = ṙ r̂ + r θ̇ θ̂, (1.113)

where r and θ are the polar coordinates (see Appendix A for a review of coordinate systems). We then have

E =
1
2

m
(

ṙ2 + r2θ̇2
)
+

1
2

k r2. (1.114)

Since E is a constant, this would be a very nice first-order differential equation for r(t) if we could get rid of
the pesky θ̇ term. Angular momentum conservation comes to the rescue. We know that

� = r × (m v) = m r r̂ × (ṙ r̂ + r θ̇ θ̂) = m r2 θ̇ ẑ = constant. (1.115)

We can then write

m r2 θ̇ = � ⇒ θ̇ =
�

m r2 (1.116)

with � a constant. Putting this back into Eq. (1.114):

E =
1
2

m ṙ2 +
�2

2 m r2 +
1
2

k r2, (1.117)

which is a first-order differential equation from which r(t) can be determined; after that we can find θ(t)
using Eq. (1.116). We have thus solved the problem without ever dealing with the second-order differential
equation arising from Newton’s second law. This is not particularly advantageous here, given that the original
second-order differential equations corresponded to harmonic oscillators. In general, however, tackling only
first-order differential equations is likely to be a huge advantage.

It is instructive to analyze the boundary conditions and conservation laws of this system. Newton’s
second law provides two second-order differential equations in two dimensions. Each differential equation
requires two boundary conditions to yield a unique solution, for a total of four required constants. If we
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use conservation laws instead, we know that both energy and angular momentum are conserved. Energy
conservation provides us with a single first-order differential equation requiring a single boundary condition.
But the value of energy E is another constant to be specified, so there are altogether two constants to fix using
energy conservation. Angular momentum conservation gives us another first-order differential equation, with
a single boundary condition plus the value � of the angular momentum itself, so there are another two
constants. The energy and angular momentum conservation equations together thus again require a total
of four constants to yield a unique solution. The four boundary conditions of Newton’s second law are directly
related to the four constants required to solve the problem using conservation equations. �

Example 1.10 Newtonian Central Gravity and its Potential Energy
Newton’s law of gravity for the force on a “probe” particle of mass m due to a “source” particle of mass M
is F = − (GMm/r2)r̂, where r̂ is a unit vector pointing from the source particle to the probe in spherical
coordinates. The minus sign means that the force is attractive, in the negative r̂ direction. We can check to see
whether this force is conservative by taking its curl.

In spherical coordinates, the curl of a vector F in terms of unit vectors in the r, θ, andφ directions is

∇× F =
1

r2 sin θ

∣∣∣∣∣∣
r̂ rθ̂ r sin θφ̂

∂/∂r ∂/∂θ ∂/∂φ

Fr rFθ r sin θFφ

∣∣∣∣∣∣ , (1.118)

so the curl of F is

∇×
(
−GMm

r2 r̂
)

=
1

r2 sin θ

∣∣∣∣∣∣
r̂ rθ̂ r sin θφ̂

∂/∂r ∂/∂θ ∂/∂φ

−GMm/r2 0 0

∣∣∣∣∣∣ = 0. (1.119)

Therefore, Newton’s inverse-square gravitational force is conservative, and must have a corresponding poten-
tial energy function

U(r) = −
∫

F · dr = GMm
∫

dr
r2 = −G M m

r
+ constant, (1.120)

where by convention we ignore the constant of integration, which in effect makes U → 0 as r → ∞. �

Example 1.11 Dropping a Particle in Spherical Gravity
Armed with the potential energy expression due to a spherical gravitating body of mass M, we write the total
energy of a probe particle of mass m as

E = T + U(r) =
1
2

mv2 − G M m
r

, (1.121)

which is conserved. Suppose that the probe particle is dropped from rest some distance r0 from the center of
M, which we assume is so large, M � m, that it does not move appreciably as the small mass m falls toward
it. The particle has no initial tangential velocity, so it will fall radially with v2 = ṙ2. Energy conservation gives
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E =
1
2

mṙ2 − G M m
r

. (1.122)

The initial conditions are r = r0 and ṙ = 0, so it follows that

E = −GMm/r0. (1.123)

Equation (1.122) is a first-order differential equation in r(t). It is said to be a “first integral” of the second-
order differential equation F = ma, which in this case is

−GMm
r2 = m̈r. (1.124)

That is, if we want to find the motion r(t) it is a great advantage to begin with energy conservation, because
that equation already represents one of the necessary two integrations of F = ma. Solving Eq. (1.122) for ṙ,
we get

ṙ = ±
√

2
m

(
E +

GMm
r

)
= ±

√
2GM

(
1
r
− 1

r0

)
. (1.125)

We have to choose the minus sign, because when the particle is released from rest it will subsequently fall
toward the origin with ṙ < 0. Separating the variables r and t and integrating both sides:∫ r

r0

dr
√

r√
1 − r/r0

= −
√

2 G M
∫ t

0
dt = −

√
2 G M t. (1.126)

At this point we say that the problem has been reduced to quadrature, an old-fashioned phrase which
simply means that all that remains to find r(t) (or in this case t(r)) is to evaluate an indefinite integral, which
in the problem at hand is the integral on the left. If we are lucky, the integral can be evaluated in terms of
known functions, in which case we have an analytic solution. If we are not so lucky, the integral can at least be
evaluated numerically to any level of accuracy we need. See Chapter 14 on techniques of numerical integration.

An analytic solution of the integral in Eq. (1.126), using the substitution r = r0 sin2 θ, gives

t(r) =

√
r3

0

2 G M

[
π

2
− sin−1

√
r
r0
+

√
r
r0

√
1 − r

r0

]
(1.127)

from which we can find the time it takes to fall to r given some initial value r0. We cannot solve explicitly for
r(t) in this case, because the right-hand side is a transcendental function of r. Note that the constant r0 in this
equation is directly related to the energy E through Eq. (1.123).

The problem is much simplified if the particle falls from a great altitude to a much smaller altitude, so that
r 
 r0, in which case the first term in Eq. (1.127) is much bigger than the others. For example, the time it
takes an astronaut to fall from rest at radius r0 to the surface of an asteroid of radius R, where r0 � R, is
essentially

t =
π

2

√
r3

0

2GM
, (1.128)
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which is independent of R! This insensitivity to the asteroid radius is due to the fact that nearly all of the travel
time is spent at large radii, during which the astronaut is moving slowly. Changes in the asteroid radius R
affect the overall travel time very little, because the astronaut is falling so fast near the end. On the contrary,
the travel time is clearly quite sensitive to the initial position r0. �

Example 1.12 Potential Energies for Positive Power-Law Forces
A particle moves in one dimension subject to the power-law force F = − kxn, where the coefficient k is
positive, and n is a positive integer. Let us find the potential energy of the particle and also the maximum
distance xmax it can reach from the origin, in terms of its maximum speed vmax. The maximum distance is the
turning point of the particle, because as the particle approaches this position it slows down, stops at xmax,
and turns around and heads in the opposite direction.

The potential energy of the particle is the indefinite integral

U = −
∫

F(x)dx = −
∫

(−kxn)dx =
k

n + 1
xn+1 (1.129)

plus an arbitrary constant of integration, which we choose to be zero. Two of these potential energy functions,
one with odd n and one with even n, illustrate the range of possibilities, as shown in Figure 1.19. The case
n = 1, corresponding to a linear restoring force, corresponds to a Hooke’s-law spring, where k is the spring
constant and the potential energy is U = (1/2)kx2. In this case the lowest possible energy is E = 0, when
the particle is stuck at x = 0. There are two turning points for energies E > 0, one at the right and one at
the left.

Energy is conserved for any value of n, where

E =
1
2

mv2 +

(
k

n + 1

)
xn+1. (1.130)

The potential energy increases with increasing positive x, so the maximum speed of the particle is at the origin,
where x = 0 and E = (1/2)mv2

max. The speed goes to zero at the maximum value of x attainable, i.e., where
E = k xn+1

max /(n + 1). Eliminating E and solving for xmax, we find

xmax =

[
n + 1

2

(m
k

)]1/(n+1)

(vmax)
2/(n+1) . (1.131)

For the spring force, which corresponds to n = 1, xmax is directly proportional to vmax, so if we double the
particle’s velocity at the origin we double the maximum x it can achieve.

Note that the conservation of energy equation (1.130) can also be solved for v ≡ ẋ to give

ẋ = ±
√

2
m

(
E −

(
k

n + 1

)
xn+1

)
, (1.132)

which is a first-order differential equation. Dividing by the right-hand side and integrating over time
yields
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V

x

turning points

kinetic energy kinetic energy

Fig. 1.19 Potential energy functions for selected positive powers n. A possible energy E is
drawn as a horizontal line, since E is constant. The difference between E and U(x)
at any point is the value of the kinetic energy T. The kinetic energy is zero at the
turning points, where the E line intersects U(x). Note that for n = 1 there are two
turning points for E > 0, but for n = 2 there is only a single turning point. The
quadratic force with n = 2 has a cubic potential U = (1/3)kx3 which is positive
for x > 0 and negative for x < 0. Note that the slope of this potential is everywhere
positive except at x = 0, so the force on any particle at x �= 0 is toward the left,
since F = −dU/dx is then negative. So particles at positive x are pulled toward the
origin, while particles at negative x are pushed away from the origin.

∫
dx√

E − [k/(n + 1)]xn+1
= ±

√
2
m

∫
dt = ±

√
2
m

t + C, (1.133)

where C is a constant of integration. The problem has been reduced to quadrature.
For some values of n, the integral on the left can be evaluated in terms of standard functions; this includes

the cases n = 0 and+1, for example. For other values of n the integral can be evaluated numerically; that is,
there are algorithms such as “Simpson’s Rule”that can be implemented on a computer to provide a numerical
value for the integral, given numerical values of E, k, n, and the limits of integration. Note that conservation
of energy results in a first-order differential equation, so specifying the constant of integration C is equivalent
to specifying a single initial condition.

Rather than integrating Eq. (1.130), which leads to Eq. (1.133), we can differentiate the equation instead.
The time derivative of Eq. (1.130) is

0 = mẋẍ +
(

k
n + 1

)
(n + 1)xnẋ = 0, (1.134)

since dE/dt = 0. The velocity ẋ is not generally zero, so we can divide it out, leaving
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mẍ = −kxn, (1.135)

which we recognize as m a = F for the given force F = −kxn. That is, the time derivative of the energy
conservation first-order differential equation is simply F = m a, which is a second-order differential equation.
Often, energy conservation serves as a first integral of motion, halfway toward a complete solution of the
second-order equation F = m a. �

1.9 Collisions

Collisions are commonplace: billiard balls on a billiard table, nitrogen molecules in
the air, protons in a synchrotron, cars on the highway. Typically, colliding objects
exert very strong equal but opposite forces on one another during a short time
interval Δt, before and after which they hardly interact at all. It is true that there
are usually also external forces acting on the objects during this brief time interval,
such as gravity or the normal and frictional forces exerted by a pool table or road
surface. However, during the brief collision times Δt such external forces are
negligible compared with the internal smashing forces of one object on the other,
so we can safely neglect them. Therefore, to an excellent approximation the total
momentum of the colliding objects is conserved during the collision. And since
their momentum is conserved, the center of mass (CM) of the colliding objects
moves in a straight line at constant speed during the time just before, during, and
after the collision. There is therefore an inertial frame in which the CM of the
system stays at rest, called the center-of-mass (CM) frame. Analyzing the collision
in the CM frame can be particularly useful.

The velocity of the CM frame in the original frame, which we will call the “lab
frame,” is

VCM =
m0v0 + m1v1

m0 + m1
=

P

M
, (1.136)

where P is the total momentum and M is the total mass. Here m0 and m1 are the
masses of the initial particles, and v0 and v1 are their velocities in the original lab
frame. It is sometimes convenient to analyze the collision in the CM frame first,
then transform results to the lab frame, or vice versa, using this relative velocity to
transform between them.

In addition to momentum conservation, kinetic energy is sometimes also
conserved in collisions, at least to a good approximation. Such kinetic-energy-
conserving collisions are said to be elastic. Proton–proton collisions or ideal
billiard-ball collisions may be nearly elastic, for example. We think of the billiard
balls deforming slightly during such a collision, and then springing back to their
original shape; that is, their initial kinetic energy is temporarily converted into a
spring-like potential energy, and then returned to kinetic energy as soon as the
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balls separate. However, this is often just an approximation, although sometimes
a pretty good one, because some of their initial energy is turned into oscillations
within the balls themselves, which turns eventually into heat, robbing the balls of
their macroscopic kinetic or potential energies. If a collision does not conserve
macroscopic kinetic energy, it is said to be inelastic. And if the incident and target
particles in a collision stick together during the collision, so two particles become
one, that collision is said to be totally inelastic. A meteorite strikes the earth in a
totally inelastic collision; the sum of their macroscopic kinetic energies decreases
in the collision and the overall system becomes warmer to compensate.

There is an interesting special case, the elastic collision between two protons or
two billiard balls of equal mass, where there is a “target” ball m0 initially at rest,
and an “incident” ball m1 moving at velocity v1 toward its target in the “forward”
direction, as shown in Figure 1.20. After they collide, and relative to the forward
direction, ball m1 bounces off at angle θ with velocity v′

1, while ball m0 moves off
at angle ϕ with velocity v′

0. Conservation of momentum tells us that

mv1 = mv′
0 + mv′

1 so v1 = v′
0 + v′

1, (1.137)

while conservation of kinetic energy (for such an elastic collision) gives

1
2

m(v1)
2 =

1
2

m(v′0)2 +
1
2

m(v′1)2 so (v1)
2 = (v′0)2 + (v′1)2. (1.138)

before after

Fig. 1.20 A collision of equal-mass balls with ball 0 initially at rest. For an elastic collision, the two balls move at
right angles to one another after the collision.

Squaring the conservation of momentum equation (i.e., dotting it with itself)
gives

v1 · v1 ≡ (v1)
2 = (v′0)2 + 2v′

0 · v′
1 + (v′1)2. (1.139)

Comparing this last equation with the conservation of kinetic energy equation,
clearly v′

0 · v′
1 = 0, so the two balls must emerge from the collision in directions

perpendicular to one another, with θ + ϕ = 90◦. The only exception occurs for an
absolutely head-on collision in which the incident ball stops dead (with v′

1 = 0)
and all of its momentum and kinetic energy are transferred to ball m0.
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1.10 Forces of Nature

The hallmark of Newtonian mechanics – the relationship F = ma – is only one
part of a mechanics problem. To determine the dynamics of a particle, we also need
to know the left-hand side of the equation. That is, we need to specify the forces.
This is a separate requirement: we need to discover and learn about what forces are
present through experimentation and additional theoretical considerations. We may
then be tempted to ask the bold question: what are all of the possible forces that
can arise on the left-hand side of Newton’s second law? Surprisingly, this question
has a complete answer at the fundamental level, an exhaustive and finite catalogue
of possibilities.

To date, depending upon what one counts as a force, there are at most four
fundamental forces in Nature, and only two of the four can be used in classical
Newtonian mechanics. For the sake of completeness, let us list these four:

1 The electromagnetic force can be attractive or repulsive, and acts only on
particles that carry a certain mysterious attribute we call “electric charge.” This
force is relevant from subatomic length scales to planetary length scales, and
plays a role in virtually every physical setting.

2 The gravitational force is an omnipresent force in classical physics, which
acts on anything that has mass or energy. Gravity is by far the weakest of the
four forces, but at macroscopic length scales it is very noticeable nonetheless
if objects are essentially electrically neutral – so that the much stronger
electromagnetic force vanishes. To make things especially mysterious, our best
and current theory of gravity is Einstein’s theory of general relativity, and in this
theory gravity is not a force at all, but an effect of the curvature of space and
time. We will discuss this theory further in Chapter 10.

3 The weak force is subatomic in nature, acting only over very short distances,
around 10−15 m – a regime where it is essential to use quantum mechanics.
The weak force therefore plays no role in typical classical mechanics problems.
The weak force is important for understanding radioactivity, neutrinos, and
the Higgs boson particle. We have also learned that the weak force is closely
related to electromagnetism. The electromagnetic and weak forces collectively
are sometimes referred to as the electroweak force.

4 The strong force, which is also a force of subatomic relevance at around 10−18

m, binds quarks together and underlies nuclear energy. This is the strongest of all
the forces, but in spite of its great importance it is not directly relevant to classical
mechanics, since it arises in contexts requiring the use of quantum mechanics.

In summary, if we consider electromagnetism and the weak force to be two
aspects of a single electroweak force, and if we take Einstein’s point of view that
gravity is not in fact a force at all, then we are left with only two truly fundamental
forces, the electroweak and strong forces. If, however, we look at physics from
the point of view of the large-scale, classical world, the forces that matter in our
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day-to-day experience can be taken to be gravity and electromagnetism. That is,
in a setting where the strong and weak forces play a relevant dynamical role, the
framework of classical mechanics itself is typically already faltering and a full
extension to quantum mechanics is needed. And if we need to take account of
gravitational effects more subtle or much more exotic than Newtonian gravity, the
classical laws of motion have to be modified as well.

Hence, our classical mechanics world will deal primarily with Newtonian gravity
and electromagnetic forces. But what can we say about the friction and spring
forces encountered already in many examples, like the normal force, the tension
force in a rope, and a myriad of other force laws that make prominent appearances
on the left-hand side of Newton’s second law? The answer is that these are
all macroscopic effective forces, and are not fundamental. Microscopically, they
originate entirely from the electromagnetic force law. For example, when two
surfaces in contact rub against one another, the atoms at the interface interact
microscopically through Coulomb’s law of electrostatics. When we add a large
number of these tiny forces, we have an effective macroscopic force that we call
friction. The microscopic details can often, to a good approximation, be tucked
into one single parameter, the coefficient of friction. Similarly, the effect of a large
number of liquid molecules on a bacterium averages out into a simple force law,
F = −b v, where b is the only parameter left over from the detailed microscopic
interactions – which are once again electromagnetic in origin. Contact forces, as
they are called, are again not fundamental; they originate with the electromagnetic
force law.

The reader may rightfully be surprised that complicated microscopic dynamics
can lead to rather simple effective force laws – often described by a few
macroscopic parameters. This is a rather general feature of the natural laws. When
microscopic complexity is averaged over a large number of particles and length
scales, it is expected that the resulting macroscopic system is described through
simpler laws with fewer parameters. This is not supposed to be obvious, although
it may feel intuitive. Realization of its significance and implications in physics
underlies several physics Nobel prizes in the late twentieth century.1

1.11 Summary

So much for our brief survey of Newtonian particle mechanics. Particles obey
Newton’s laws of motion, and depending upon the nature of the forces on a particle,
one or another of momentum, angular momentum, and energy may be conserved.

1 The Nobel prize for the development of the renormalization group was awarded to Kenneth G. Wilson in 1982.
Wilson described most concisely and elegantly the idea that physics at large length scales can be sensitive to
physics at small length scales only through a finite number of parameters. However, the idea pervades other
major benchmarks of theoretical physics, such as the Nobel prizes of 1999 to Gerardus ’t Hooft and Martinus
J. G. Veltman and of 1965 to Sin-Itiro Tomonaga, Julian S. Schwinger, and Richard P. Feynman.
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The momentum of a particle is conserved if there is no net force on it, while the
angular momentum of the particle is conserved if there is no net torque on it. Energy
is conserved if all the forces acting are conservative and time independent; i.e., if
the work done by each force is independent of the path of the particle. Similar laws
apply to systems of particles.

Given the forces on a particle together with its initial position and velocity, a
classical particle moves along a single, precise path. That is the vision of Isaac
Newton: particles follow deterministic trajectories. When viewed from an inertial
frame, a particle moves in a straight line at constant speed unless a net force is
exerted on it, in which case it accelerates according to a = F/m.

We have required that the fundamental laws of mechanics obey what is called
the principle of relativity, which means that if a fundamental law is valid in one
inertial frame it is valid in all inertial frames. According to the principle, there is
no preferred inertial frame: the fundamental laws can be used by observers at rest
in any one of them. This physical statement can be translated into a mathematical
statement that given a mathematical transformation of coordinates and other
quantities from one frame to another, the fundamental equations should look the
same in all inertial frames. We have assumed that the Galilean transformation is
the correct transformation of coordinates, and have shown that Newton’s laws are
invariant under that transformation (provided that any particular force considered
is the same in all inertial frames). It is therefore consistent to take Newton’s laws
as fundamental laws of mechanics.

Then what is left to do in classical mechanics? First of all, since the time of
Newton extremely useful and elegant mathematical methods have been developed
that give us deep insights into mechanics and may allow us to solve whole
classes of problems more easily than with the methods discussed so far. These
include Chapter 3 on variational methods culminating in Lagrange’s approach to
mechanics in Chapter 4; also the relation between symmetries and conservation
laws as summarized by Noether’s theorem in Chapter 6; Hamilton’s equations as
presented in Chapter 11; and the Hamilton–Jacobi equation in Chapter 15. Then
there are a number of chapters on special cases and applications of classical
mechanics, including motion in central-force gravity in Chapter 7 and in electro-
magnetic fields in Chapter 8; motion as viewed in non-inertial frames of reference
in Chapter 9, rigid-body rotation in Chapter 12, motion of coupled oscillators in
Chapter 13, and chaotic motion in Chapter 14. Finally, to illustrate how classical
mechanics fits inside the larger world of physics, the path-integral approach
to quantum mechanics is discussed in capstone Chapter 5, and how Newtonian
physics emerges from quantum mechanics in a certain limit; also how Einstein’s
general theory of relativity describes the motion of particles subject to gravity in
capstone Chapter 10; and then how Schrödinger discovered his famous equation
of quantum mechanics using the Hamilton–Jacobi equation of classical mechanics
as a guide, in final capstone Chapter 15. But before all of this, we first introduce
special relativity in Chapter 2 and show how Einstein’s very simple postulates have
modified classical mechanics, especially for high-energy, fast-moving particles,


