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Preface

Origins of This Text

As is of true of many textbooks, this text has evolved from teaching a formal
course, specifically, “Optimum Design of Mechanical Elements and Systems,” at
the University of Wisconsin–Madison. It has undergone several revisions over
the last decade.

Target Audience

The primary audience for this text includes senior undergraduate students, junior
graduate students and practicing engineers. Given this wide audience, prerequis-
ites are kept to a minimum. Basic undergraduate-level mathematics is assumed,
but no prior background in optimization is required. Prior experience in pro-
gramming, especially MATLAB, is helpful.

Topics Covered

This text covers three complementary topics in optimization: (1) the underlying
mathematics, (2) numerical methods and nuances and (3) engineering
applications.
On the first topic, we will recall basic results from single- and multi-variable

calculus. Emphasis is given to conceptual understanding of theorems rather than
to elaborate proofs (which can be found in mathematically oriented texts).
The second topic, numerical methods, lies at the heart of optimization. It is

impossible to understand optimization without a good grasp of numerical
methods. Therefore, this text encourages the reader to implement simple opti-
mization methods “from scratch,” before delving into MATLAB’s optimization
toolbox. This will provide a good understanding of how optimization algorithms
work, or sometimes fail! Besides the generic class of constrained non-linear
optimization problems, we will also discuss special types of problems, including
linear-programming problems, least-squares problems and multi-objective prob-
lems, that require special treatment. Finally, we will briefly explore global opti-
mization methods that are becoming increasingly important in engineering.
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It is the author’s strong opinion that engineers should learn optimization
within the context of applications. This text largely focuses on geometric and
structural applications. For example, we will study how truss systems can be
optimized, and some of the pitfalls. Lessons learned from this exercise will be
applied toward the structural shape optimization of 2D and 3D designs. The
reader is encouraged to apply underlying optimization principles and methods to
his/her field of study.

Topics Not Covered

Engineering optimization is too broad to be covered in a single text.
Consequently, a few topics have been omitted; these include surrogate modeling,
stochastic optimization and optimization under uncertainty.

Software Resources

This text assumes that the reader has access to MATLAB® (www.mathworks.com).
The MATLAB code accompanying this text is an integral part of student learning,
and can be downloaded from the author’s website at www.ersl.wisc.edu under the
“Research” tab. TheMATLAB code is object-oriented; it teaches the basic concepts
of data encapsulation, inheritance and code reuse. Through exercises, the reader will
learn to extend the code to address various optimization problems.
In the last couple of chapters, we will create and analyze 3D designs using

SOLIDWORKS® (www.solidworks.com). It is assumed that the reader is famil-
iar with creating simple models in SOLIDWORKS. Basic finite element analysis
using SOLIDWORKS is covered in the text. Then a toolbox, namely
SOLIDLAB, which serves as an interface between SOLIDWORKS and
MATLAB, is presented; SOLIDLAB was developed by the author’s research
group. Through SOLIDLAB, one can, for example, modify feature dimensions
of SOLIDWORKS models, query mass properties, carry out a finite element
analysis and optimize, all from within the comfort of MATLAB.
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1 Introduction

Optimization is an integral part of engineering today. Engineers use optimization
techniques to design civil structures, machine components, electrical circuits,
plant layouts, chemical processes and so on. Indeed, one simply cannot make
technological advances without optimization.

1.1 An Example of Optimization

While there are numerous examples of optimization, we will consider here
a design problem posed in Figure 1.1 where a plate is subject to a uniform
pressure loading on one face, and is fixed at the other. The plate can be modeled
and analyzed using any of the popular finite element packages; we will discuss one
such package, namely SOLIDWORKS ([1]), later in the text.
Based on finite element analysis (FEA), one can determine the stress distribu-

tion within the plate, as illustrated in Figure 1.2; the maximum stress happens to
be around 515 MPa, and occurs on the periphery of the large hole, as expected.
A typical design objective now is to reduce the maximum stress, without increas-

ing the mass of the plate. Further, the overall plate dimensions and the diameter of
the larger hole cannot be modified. The location and size of the two smaller holes
can, however, be modified. In this example, the engineer finds out, through trial-
and-error, that the stress can be reduced by simply enlarging the two smaller holes.
This is illustrated in Figure 1.3, where the maximum stress is reduced to 466 MPa;
this is done by increasing the diameter of the two holes from 15 mm to 25 mm. The
maximum stress now occurs at the periphery of one of the smaller holes. Observe
that, in the process of reducing the stress, the mass has also been reduced!
One can now ask if the stress can be further reduced, i.e., is there an optimal

location and optimal diameter for the two smaller holes such that the maximum
stress is minimized? This is an example of shape optimization that we shall study
later in the text.

1.2 Challenges

There are numerous such “simple” optimization examples in engineering.
However, in the author’s experience, while solving such problems engineers
often run into several challenges: (1) How does one translate the above problem
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into a formal optimization statement (with objective, constraints, feasible space,
design variables, etc.)? (2) What optimization method should one use and why? (3)
What if the optimization method does not converge? And so on.

Figure 1.1 Design problem.

Figure 1.2 Stress plot based on finite element analysis (FEA).

Figure 1.3 Reduced stress for a modified design.
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After reading through this text, and completing the exercises, the author
sincerely believes that the reader will be able to answer such questions confi-
dently, and also extend the concepts to his/her field of study.
Study of optimization can be fun and enriching. However, for most effective

learning, engineers should study optimization within the context of a relevant and
familiar application. Learning to code sophisticated optimization methods, with-
out understanding why these different methods exist in the first place, is both
meaningless and counterproductive. Therefore, this text introduces fundamental
optimization concepts through concrete applications.
For example, to introduce the important concept of numerical scaling, we will

consider optimizing a truss system. We will observe that, without numerical
scaling, even the best optimization method will not converge correctly. By con-
sidering a variety of such applications, fundamental optimization concepts can be
assimilated easily.
No prior background in optimization is assumed in this text; basic undergradu-

ate-level mathematics is sufficient. Prior experience in programming, especially
MATLAB programming [2], is helpful. For this text, we will rely entirely on
MATLAB programming, basics of which are covered in Chapters 3, 6 and 7.

1.3 MATLAB Code

The MATLAB code accompanying this text is an integral part of student learn-
ing, and can be downloaded as a zip-file from the author’s website at www
.ersl.wisc.edu under the “Research” tab. The code is organized chapter-wise;
the use of this code is discussed in Chapter 3, where MATLAB is introduced.

1.4 Organization of Text

This text covers three complementary topics in engineering optimization: (1) the
underlying mathematics, (2) numerical methods and nuances and (3) engineering
applications; see Figure 1.4.
The text is organized as in Table 1.1; each chapter will introduce a critical

mathematical concept/numerical method (identified by rows in the table) by
considering a specific engineering application (identified by columns in the
table).
Chapter 2 introduces the critical concept ofmodeling, i.e., the art of translating

a loosely worded optimization problem into a formal mathematical statement.
The notions of objective and constraint are introduced by considering various
applications. This chapter will serve as an overview for the remainder of this text.
Chapter 3 is a short introduction toMATLAB. It is by nomeans an exhaustive

review. The reader will be introduced to basic computing and plotting
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routines available within MATLAB. Various programming constructs such as
the for-loop and if-then-else will be discussed. The concept of object-oriented
programming will be reviewed through examples.

Engineering
Optimization

Applications

Mathematics Numerics

Figure 1.4 Engineering optimization encompasses three topics: mathematics, numerics and
applications.

Table 1.1 Text organization across various chapters.

Applications →
Concepts/Tools↓

Analytical
optimization

Truss
optimization

Shape
optimization

Modeling Chapter 2 Chapter 2 Chapter 2
Basic MATLAB programming Chapter 3
Unconstrained theory Chapter 4
Basic algorithms Chapter 5
MATLAB optimization toolbox Chapter 6
Constrained theory Chapter 7
Specialized problems Chapter 8
Structural analysis Chapter 9
Numerical scaling Chapter 10
Gradient computation Chapter 11
Finite element analysis (2D) Chapters 12, 13
Finite element analysis (3D) Chapters 14, 15, 16
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In Chapter 4, we will address optimization theory, focusing on the uncon-
strained optimization problems discussed in Chapter 2. Some of the questions
raised in Chapter 2 will be answered. Critical concepts such as global/local
minima and stationary points will be introduced.
Chapter 5 complements Chapter 4 in that we will implement a few basic algorithms

to appreciate the nuances of numerical optimization. While engineers do not typic-
ally implement optimization algorithms “from scratch,” numerical implementation
will provide a good understanding of how algorithms work, and sometimes fail!
In Chapter 6, we will delve into MATLAB’s optimization toolbox and study

some of the algorithms for solving unconstrained problems. Using several test
cases, we will observe the behavior of these methods, and correlate them to the
observations made in the previous chapter.
Chapter 7 addresses the basic theory behind constrained optimization. Critical

concepts such as Lagrange multipliers will be introduced within the context of
engineering applications. Physical and mathematical interpretations of Lagrange
multipliers will be discussed. We will also studyMATLAB-supported algorithms
for solving constrained problems.
Chapter 8 covers certain special types of optimization problems, including

linear-programming problems, least-squares problems and multi-objective prob-
lems, that are not addressed in the previous chapters. One of the primary reasons
for treating them separately is that they often require the use of specialized
numerical methods.
In Chapter 9, trusses are analyzed through force balance and potential energy

principles. The main concept emphasized is that “elastic structures, such as truss
systems, when subject to an external load, reach a stable configuration when their
potential energy reaches a local minimum.” In other words, physical systems behave
in an optimal fashion! This observation is both fascinating and important in
engineering.
Chapter 10 will build on Chapter 9 by considering the size optimization of truss

systems, where the goal is to find the optimal size (diameter) of truss members
such that a given objective (say, the mass of the truss) is minimized, subject to
certain constraints (such as deflection and stresses). MATLAB optimization
methods introduced in Chapter 7 will be deployed to find optimal solutions to
such problems. We will find that the algorithms do not always converge to the
correct answer (even for simple problems). This will motivate the need for
numerical scaling – a critical concept in numerical optimization! This concept
will be covered and illustrated through several examples.
Chapter 11 will cover an equally important concept of gradient (i.e., sensitivity)

computation. Gradient computation is critical if first-order methods of optimiza-
tion are employed. This chapter covers the pitfalls of finite-difference-based
gradient computation and provides alternative methods.
In Chapters 12 and 13, we consider FEA and optimization of 2D

elastic problems. Conceptually, this is a direct extension of truss analysis and
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optimization, discussed in Chapters 9 and 10 respectively. However, new con-
cepts such as shape parameters and finite element discretization enter the picture.
Chapter 14 is an extension of Chapter 12 to 3D FEA. Here, we will rely on

SOLIDWORKS for modeling and analysis. It is assumed that the reader is
familiar with the process of creating 3D models and carrying out basic FEA
within SOLIDWORKS. The objective of this chapter is to develop a foundation
for parametric study and optimization to be pursued in the next chapter.
Chapter 15 introduces SOLIDLAB, an interface between SOLIDWORKS and

MATLAB. SOLIDLAB was developed by the author and his graduate students.
This chapter will illustrate the use of SOLIDLAB to query and analyze
SOLIDWORKS models, from within the comfort of MATLAB.
Chapter 16 addresses 3D shape optimization by combining SOLIDWORKS,

MATLAB and SOLIDLAB. The fundamental difference between compliance
and stress minimization is highlighted.
The Appendix covers additional mathematical concepts and proofs.
Finally, it goes without saying that no textbook is ever complete or compre-

hensive. There are several excellent textbooks on engineering optimization (see
references [3], [4], [5], [6], [7]) and numerical optimization (see references [8], [9])
that complement this text. The reader is strongly encouraged to consult these for
topics not covered here.
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2 Modeling

Modeling is the process of converting a loosely worded “optimization” problem
into a mathematically precise and standard formulation. For example, convert-
ing the stress minimization problem discussed in Section 1.1 into a formal opti-
mization statement would be a modeling effort. Accurate modeling is crucial; an
inaccurate model will lead to erroneous conclusions. To illustrate the concept of
modeling, we consider several examples in this chapter. However, first, the
standard optimization formulation is presented, together with an explanation
of the terminology.

2.1 Standard Optimization Formulation

Almost all optimization problems considered in this text will be posed in the
following standard form (“s.t.” is short for “such that”):

minimize
x

f ðxÞ
s:t: hiðxÞ ¼ 0; i ¼ 1; 2;…

gjðxÞ≤ 0; j ¼ 1; 2;…

xmin ≤ x ≤ xmax

x ¼ x1 x2 . . . xNf g (2.1)

Highlights

1. This chapter discusses modeling, the first step in optimization. Modeling is the
process of converting a loosely worded optimization problem into a formal
mathematical statement.

2. Several modeling examples from geometry and structural mechanics are
considered, and each example is converted into the standard formulation.

3. Through these examples, relevant optimization terminology is also
explained.

4. Finally, important observations are made about modeling; these include:
(1) introducing appropriate design variables, (2) exploiting optimality criteria
for simplification and (3) the iterative nature of modeling.
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where

• f ðxÞ is the single objective that we are trying to minimize. Given a loosely
worded problem statement, the first task is to identify and quantify the object-
ive. In structural design problems, the objective is typically the volume or
weight of a part, or the maximum deflection, or the maximum stress, and so
on. Two points are worth noting here: (1) Often, an engineer may be interested
in multiple objectives (for example, minimize weight and minimize stress); such
multi-objective problems are briefly considered in Section 6.7, but are not the
main focus of this text; further, it is often possible to interpret one or more of
these objectives as constraints. (2) If we desire to maximize an objective (for
example, maximize the stiffness of a part), it is easy to convert this into
a minimization problem in multiple ways, as discussed later on.

• x are the optimization or design variables. These are the free parameters that
can be modified to meet the objective. In structural design problems, these
could be geometric parameters (thickness of a truss member, the location
and size of a hole, topology), or material properties (Young’s modulus,
yield strength), and so on. In this text, we will assume that the optimization
variables are continuously varying (such as the radius of a hole). Discrete
variables, such as the number of holes in a design, are not explicitly treated
in this text; however, references and examples are provided on how such
integer problems can be handled.

• xmin and xmax are the lower and upper bounds on the optimization variables; for
example, a lower bound and/or upper bound on a hole radius. It is not essential
for optimization variables to exhibit lower and upper bounds. However, if such
bounds exist, it is important to include them in the problem statement.

• hiðxÞ are the equality constraints; for example, “the diameter of truss member
A must be exactly equal to three times the diameter of truss member B.”While
we are not distinguishing here between linear and non-linear constraints in the
formulation, such differences can be important in numerical analysis. They are
highlighted later on.

• gjðxÞ are the inequality constraints; for example, “the diameter of truss
member A must be less than three times the diameter of truss member B.”
Again, we are not distinguishing here between linear and non-linear inequal-
ity constraints, but such differences can be important in numerical analysis.

In the remainder of this chapter, we shall study several optimization examples
and convert them into the standard form shown in Equation (2.1). We will
observe that there are several special cases of the standard form; for example,
when the constraints are absent, we obtain an unconstrained minimization prob-
lem, which is mathematically and numerically easy to analyze:

minimize
x

f ðxÞ (2.2)
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where x ¼ x1 x2 . . . xNf g. Further, when there is precisely one optimization
variable, this reduces to a single-variable unconstrained minimization, which is one
of the simplest optimization problems that one can pose:

minimize
x

f ðxÞ (2.3)

2.2 Illustrative Examples

Beforemoving tomodeling, we consider here several examples of the standard form.
Consider

minimize
x

x2 (2.4)

This is a single-variable unconstrained minimization problem, with a trivial
solution of x ¼ 0. On the other hand, the problem

minimize
x

3 sin x� xþ 0:1x2 þ 0:1 cosð2xÞ (2.5)

is also a single-variable unconstrainedminimization problem, but its solution will
require numerical analysis. The problem

minimize
fu;vg

1

2
100
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ ð1þ vÞ2
q

� 1
�2

þ 1

2
50
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ ð1� vÞ2
q

� 1
�2

�ð10uþ 8vÞ

8><
>:

9>=
>;
(2.6)

is a two-variable unconstrained minimization problem. The physical interpret-
ation of the above problem is discussed later in this chapter. One can add upper
and lower bounds to the above problem, leading to

minimize
fu;vg

1

2
100
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ ð1þ vÞ2
q

� 1
�2

þ 1

2
50
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ ð1� vÞ2
q

� 1
�2

�ð10uþ 8vÞ

8><
>:

9>=
>;

s:t: 0 ≤ u ≤ 1:0
0 ≤ v (2.7)

One can also impose an equality constraint linking the two variables:

minimize
fu;vg

1

2
100
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ ð1þ vÞ2
q

� 1
�2

þ 1

2
50
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ ð1� vÞ2
q

� 1
�2

�ð10uþ 8vÞ

8><
>:

9>=
>;

s:t: v� u3 ¼ 0 (2.8)

The physical meaning behind such constraints is discussed later in this chapter,
and such constraints can completely change the complexity of the problem.
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2.3 Geometry Problems

We now consider problems in geometry; the primary goal is to translate each of
these problems into the standard form presented in Equation (2.1).

Example 2.1 Closest-Point Computation

Problem:Given a point p on a plane, and a straight line passing through the origin,
find the closest point on the straight line to the given point p.

Modeling: Let the straight line passing through the origin be denoted by y ¼ mx and
the given point be p ¼ ðx0; y0Þ. The task is to find the point q on the straight line that
is closest to p; see Figure 2.1.
Let q ¼ ðα;mαÞ be the point on the straight line. Observe that q is defined such
that it always lies on the straight line y ¼ mx. Introducing such intermediate variables
that satisfy the problem constraints is one of the most important steps in modeling.
Observe that the only unknown now is α.

Finding a point q closest to p is equivalent to minimizing the distance between
them, where the distance is given by

DðαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � αÞ2 þ ðy0 � mαÞ2

q
(2.9)

Thus, the optimization problem is posed as

minimize
α

DðαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � αÞ2 þ ðy0 � mαÞ2

q
(2.10)

Equation (2.10) is interpreted as “Find α that minimizes DðαÞ.”
Classification: The problem posed in Equation (2.10) is a single-objective, single-
variable, unconstrained optimization problem since: (1) there is only one objective
namely, the distance D, that must be minimized, (2) there is only one continuous
(unknown) variable α and (3) there are no constraints.

Solution: In the chapters that follow, we shall discuss various numerical methods to
solve optimization problems. However, for now, recall from basic calculus that, if a
continuous differentiable function takes aminimumat a point, then the derivative of

y mx�

0 0( , )p x y�

q

y

x

Figure 2.1 Closest point on a straight line.
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(cont.)
that function vanishes at that point. Thus, differentiating the objective DðαÞ with
respect to α and setting it equal to zero will yield the value of α:

dD
dα

¼ �2ðx0 � αÞ � 2mðy0 � mαÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � αÞ2 þ ðy0 � mαÞ2

q ¼ 0 (2.11)

i.e.,
α ¼ x0 þ my0

ð1þ m2Þ (2.12)

Thus, the closest point is

q ¼ x0 þ my0
ð1þ m2Þ ;

mx0 þ m2y0
ð1þ m2Þ

� �
(2.13)

and the shortest distance is

D ¼ jðx0m� y0Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ m2Þp (2.14)

Caveat:Wehave not formally established that Equation (2.11) yields aminimum;we
shall address this in later chapters.

Verification: Verify whether the above solution yields the “expected answer.” For
example, suppose the straight line is the x axis, and p ¼ ð0; 1Þ: do you recover the
expected solution? Verification, if possible, is highly recommended in order to catch
modeling errors.

Example 2.2 Fitting a Straight Line

Problem: Yet another commonly occurring optimization problem is “data-fitting,”
where, given a set of points, the task is to find a straight line that best fits the set of
points.

Modeling: Let the set of 2D data points be ðxi; yiÞ, i ¼ 1; 2;…;N; one must find the
straight line that best fits the data-set (see Figure 2.2).

( , )i ix y

y mx c� �y

x

Figure 2.2 Find the best-fitting straight line.
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The overall strategy is to construct a straight line that minimizes the total deviation
from the data points. There are, however, various definitions for “deviation” (see
Figure 2.3): (a) the shortest distance between the data point and straight line, (b) the
vertical distance between the data point and straight line and (c) the horizontal distance
between the data point and straight line. Each of these will yield a different mathemat-
ical problem and solution!
This highlights a second important aspect of modeling: a problem description can

often be interpreted in multiple ways, yielding different solutions. Here, we choose to
minimize the vertical distance.
Let the straight line be of the form y ¼ mxþ c. The task then is to find the optimal

values of m and c. Since deviation is defined as the vertical distance between a data
point and the straight line, for a given point ðxi; yiÞ the deviation (i.e., error) is given
by

Ei ¼ jmxi þ c� yij (2.15)

The “best-fitting” straight line can be defined as the one that minimizes the sum of
squares of all errors, i.e.,

minimize
m;c

E ¼
XN

i¼1;2;…

ðmxi þ c� yiÞ2 (2.16)

Equation (2.16) is interpreted as “find m and c that minimize the sum of squares of
individual deviations.” The reason for squaring the error measure is to make the
objective differentiable, an important consideration in optimization.

Classification: The problem posed in Equation (2.16) is a single-objective, two-
variable, unconstrained optimization problem since: (1) there is only one objective,
namely the total error E, that needs to be minimized, (2) there are two continuous
(unknown) variables, m and c, and (3) there are no constraints.

Solution: For multi-variable unconstrained problems, we set the partial derivative
of the objective with respect to each variable to zero (this is discussed formally in
later chapters), i.e.,

(a) Shortest distance

(c) Horizontal distance

(b) Vertical distance

( , )i ix y

Figure 2.3 Various interpretations of deviation.
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∂E
∂m

¼ 0 )
XN

i¼1;2;…

2ðmxi þ c� yiÞxi ¼ 0 (2.17)

and

∂E
∂c

¼ 0 )
XN

i¼1;2;…

2ðmxi þ c� yiÞ ¼ 0 (2.18)

Thus we have two linear equations involving two unknowns:

m
XN

i¼1;2;…

ðxiÞ2 þ c
XN

i¼1;2;…

xi �
XN

i¼1;2;…

xiyi ¼ 0 (2.19)

and

m
XN

i¼1;2;…

xi þ c
XN

i¼1;2;…

1�
XN

i¼1;2;…

yi ¼ 0 (2.20)

One can express the two equations in a standard linear algebraic form:

XN
i¼1;2;…

ðxiÞ2
XN

i¼1;2;…

xi

XN
i¼1;2;…

xi
XN

i¼1;2;…

1

2
66664

3
77775

m
c

� �
¼

XN
i¼1;2;…

xiyi

XN
i¼1;2;…

yi

8>>>><
>>>>:

9>>>>=
>>>>;

(2.21)

Many optimization problems reduce to linear algebra problems involving
symmetric matrices. Equation (2.21) can be solved provided the 2×2 matrix
is invertible.

Verification: As a specific example, consider finding the best-fitting straight line to
the two data points (0, 0) and (1, 1). Equation (2.21) reduces to

1 1
1 2

	 

m
c

� �
¼ 1

1

� �
(2.22)

One can verify that the solution is m ¼ 1 and c ¼ 0 (as expected).

Example 2.3 Area Maximization

Problem: Construct the largest rectangle within a circle of radius R. Figure 2.4
illustrates three sub-optimal rectangles within a circle.

2.3 Geometry Problems 13



(cont.)

Figure 2.4 Find the largest rectangle within a circle.

Modeling: We leave it as an exercise for the reader to show that, for a rectangle
within a circle to have maximum area, all four corners of the rectangle must touch
the circle (a necessary condition). This optimality condition (a condition that must be
satisfied when the solution is optimal) simplifies the problem considerably.
Thus, one of the rectangles in Figure 2.4 is clearly non-optimal. Now let an

optimal rectangle (with corners touching the circle) be of width W and height H.
Observe that since the corners touch the circle, W and H are not independent.
Indeed, we must have the following constraint:

W

2

� �2

þ H

2

� �2

¼ R2 (2.23)

Further, since the area is given by WH, the optimization problem reads

maximize
fW;Hg

ðWHÞ

s:t:
W
2

� �2

þ H
2

� �2

¼ R2 (2.24)

Observe that this is a maximization problem with one objective, two variables and
one equality constraint. One can easily transform this into the standard minimiza-
tion problem by introducing a negative sign to the objective:

minimize
fW;Hg

ð�WHÞ

s:t:
W
2

� �2

þ H
2

� �2

¼ R2 (2.25)

Solution: Later in the text, we shall consider formal methods for solving optimization
problems with constraints. But, for now, we will introduce an auxiliary variable θ such
that the constraint is automatically satisfied and can therefore be eliminated. In
particular, let
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W ¼ 2R cos θ
H ¼ 2R sin θ

(2.26)

Observe that this ensures that the equality constraint is always satisfied. Thus, one
can pose Equation (2.24) as

minimize
fθg

� 4R2 sin θ cos θ (2.27)

i.e., we have reduced the problem to a one-variable unconstrained problem. As the
reader can verify, the solution is θ ¼ π=4, i.e.,

W ¼ R
ffiffiffi
2

p
H ¼ R

ffiffiffi
2

p (2.28)

and the maximum area is 2R2. Is the answer reasonable?

Example 2.4 Container Optimization

Problem: Consider an empty cylinder of radius R and heightH that is closed at both
ends. The objective is to minimize the surface area of the cylinder while ensuring that
it contains a certain volume. This has practical implications – for example, minimizing
the material usage of a soda-can of a given volume.

Modeling: The total surface area of the cylinder is A ¼ 2πR2 þ 2πRH. Further, the volu-
me of the cylinder is V ¼ πR2H. Thus, one can state the optimization problem as
follows:

minimize
fR;Hg

ð2πR2 þ 2πRHÞ

s:t: πR2H � V0 ¼ 0 (2.29)

Equation (2.29) represents a minimization problem involving two variables, with an
equality constraint. Observe that one can eliminate the constraint in Equation (2.29)
by substituting H ¼ V0=ðπR2Þ in the objective (we shall discuss pitfalls of constraint
elimination later on), simplifying the problem to

minimize
fRg

2πR2 þ 2V0

R

� �
(2.30)

Observe that we have reduced the problem to a single-variable, unconstrained
minimization problem.

Solution: Once again we set the derivative of the objective to zero:

d 2πR2 þ 2V0

R

� �
dR

¼ 0 ) 4πR� 2V0

R2
¼ 0

) R ¼
ffiffiffiffiffi
V0

2π
3

r
H ¼ V0=ðπR2Þ (2.31)
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2.4 Analytical Design Problems

Next, we consider simple structural and engineering design problems where
the objective and/or constraints can be expressed analytically.

(cont.)

Instances: Now, suppose V0 = 16oz (0.00047 m3). We have

R ¼
ffiffiffiffiffi
V0

2π
3

r
¼ 0:042 m ¼ 1:65″

H ¼ V0=ðπR2Þ ¼ 0:084 m ¼ 3:3″

Observation: If the goal is to design a hand-held soda-can, clearly the large radius is
inappropriate. Proper ergonomic constraintsmust be placed; for example, a reasonable
modification to Equation (2.29) is

minimize
fR;Hg

ð2πR2 þ 2πRHÞ

s:t: πR2H � V0 ¼ 0

R� Rmax ≤ 0 (2.32)

It is indeed common to iterate on problem formulation until the solution is
“satisfactory.”

Example 2.5 Point of Maximum Deflection

Problem:Consider a beam that is pinned at both ends, with an asymmetric load
applied as illustrated in Figure 2.5; the Young’s modulus is E and the moment
of inertia is I. Find the point of maximum deflection; assume that b < L/2.

Modeling:This is, of course, a trivial problem in strength of materials where the beam
deflection is known analytically; the deflection in the left segment is given by (see
reference [10])

yðxÞ ¼ Pb
6EIL

½x3 � ðL2 � b2Þx� (2.33)

i.e.,
minimize

x

Pb
6EIL

½x3 � ðL2 � b2Þx�
� �

(2.34)

b
P

L

Figure 2.5 Beam deflection.
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(cont.)

This is a single-variable, unconstrained minimization problem. Setting the derivative
to zero, we have

dy
dx

¼ Pb
6EIL

½3x2 � ðL2 � b2Þ� ¼ 0 (2.35)

Thus,

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 � b2Þ

3

s
(2.36)

Example 2.6 Spring Design

Problem: Next consider the classic spring design problem where the objective is to
minimize the volume of a helical spring (see Figure 2.6) subject to deflection and stress
constraints. The primary design variables are the number of coils (N), the outer diameter
(D) and the wire diameter (d).

Modeling: Spring analysis is addressed in machine design handbooks such as reference
[11]. The example is used here merely to highlight a typical design optimization
problem.

The volume of a helical spring, after accounting for end-effects, can be approximated
via

V ¼ ðN þ 2Þ πD
2

πd2

4
¼ π2

ðN þ 2Þ
8

Dd2 (2.37)

Further, given an external load F, the deflection is given ([11]) by

δ ¼ 8FD3N
d4G

(2.38)

where G is the shear modulus. Finally, the maximum shear stress can be
approximated ([11]) by

τ ¼ 8FðD=dÞð1þ 0:5d=DÞ
πd2

(2.39)

d

D

N

Figure 2.6 Helical spring.
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2.5 Structural Analysis

Next, consider the problem illustrated in Figure 2.7, where a simple truss bridge is
pinned at two ends, and a load is applied in the middle. Assume that all material
and cross-sectional properties are given. The objective is to find the displacement
at the point of load application.
At first glance, this does not appear to be an optimization problem, i.e., we are

not trying to optimize any objective function. It is a structural analysis problem.
However, there is an intricate relationship between structural analysis and opti-
mization. This is captured by the principle of minimum potential energy.
The principle of minimum potential energy states that a structural system (such

as the one in Figure 2.7) subject to an external force will come to rest when its
potential energy is a minimum [12]. The potential energy is defined as

Π ¼ U � 2W (2.41)

where U is the internal elastic energy and W is the quasi-static work done by the
force.

(cont.)

Thus, the optimization problem can be posed as

minimize
fN;D;dg

π2
ðN þ 2Þ

8
Dd2

s:t:
8FD3N
d4G

≤ δmax

8FðD=dÞð1þ 0:5d=DÞ
πd2

≤ τmax (2.40)

where the constraint limits are provided by the user. This is a multi-variable, multi-
constrainedminimization problem. In practice, additional constraints on the ratioD/d
and the number of coils will be needed.

Solution: Since the objective and constraints are analytical functions of the design
variables, such problems are computationally easy to solve using numerical algo-
rithms to be discussed later.

Figure 2.7 A truss analysis problem.
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In other words, structural analysis is really an optimization problem. This
duality between structural analysis and optimization is fascinating and import-
ant. Using the above principle, one can pose the problem of computing the
displacement as a minimization problem. This is illustrated below through
a few examples.

Example 2.7 Tensile Bar Analysis

Problem: Consider a tensile bar subject to an external force on one end and pinned
at the other end (Figure 2.8). The properties of the tensile bar are as follows: E is the
Young’s modulus, A is the cross-sectional area and L is the length. Compute the
deformation of the bar by minimizing its potential energy.

Modeling: Once again, observe that this is an analysis problem. To pose this as an
optimization problem, we will appeal to the principle of minimum potential energy.
The potential energy consists of two terms: elastic energy and work done. If the
tensile bar undergoes a deformation δ, then its elastic energy is given by [10]

U ¼ 1

2
kδ2 (2.42)

where

k ¼ EA
L

(2.43)

is the stiffness of the bar. On the other hand, the quasi-static work done is (see
reference [10])

W ¼ 1

2
Pδ (2.44)

Observe the “1/2” in Equation (2.44); this arises because of the quasi-static nature
of the force, i.e., the force is gradually increased from zero to the maximum value,
rather a full force applied instantaneously. Thus, the potential energy is given by

ΠðδÞ ¼ U � 2W ¼ 1

2
kδ2 � Pδ (2.45)

Observe that the potential energy is a function of the unknown deformation δ. Since,
at equilibrium, the potential energy takes a minimum, we differentiate Equation (2.45)
with respect to δ, and set it equal to zero, leading to

P

Figure 2.8 A tensile bar problem.
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(cont.)
dΠ
dδ

¼ kδ� P ¼ 0 (2.46)

i.e.,

δ ¼ P=k (2.47)

Observe that Equation (2.46) is essentially the force balance equation, i.e., we have
arrived at the force balance equation by differentiating the potential energy equation
and setting it equal to zero! This fundamental duality is explored further in later
chapters.

Example 2.8 Truss Analysis

Problem: Consider the truss system in Figure 2.9, subject to an external force. Find
the deflection of the free node by minimizing its potential energy (the deflection is
illustrated schematically bydashed lines).A and l are respectively the cross-sectional area
and length of each bar.

Modeling: Let the displacement of the free node in the horizontal and vertical
directions be u and v respectively. Assuming small displacements, using simple
vector calculus one can show that the two bars undergo deformations of

δ1 ≈ u cos θ� v sin θ (2.48)

δ2 ≈ � u cos θ� v sin θ (2.49)

(see Exercise 2.11 at the end of this chapter). Thus, the total elastic energy is

U ¼ 1

2
kðδ1Þ2 þ 1

2
kðδ2Þ2 (2.50)

where k captures the stiffness of the truss bar and is given by

F

2

θ θ

1

l l

Figure 2.9 A two-bar truss analysis.
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(cont.)

k ¼ EA
l

(2.51)

From Equations (2.48) and (2.49), we have

U ¼ 1

2
kðu cos θ� v sin θÞ2 þ 1

2
kð�u cos θ� v sin θÞ2 (2.52)

Simplifying,
U ¼ kðu2 cos2θþ v2 sin2θÞ (2.53)

Further, since a horizontal force is applied, only the horizontal displacement plays
a role in the quasi-static work done:

W ¼ 1

2
Fu (2.54)

Once again, the factor of “1/2” is due to the quasi-static nature of the force. Finally,
the potential energy is given by

Π ¼ U � 2W ¼ kðu2 cos2θþ v2 sin2θÞ � Fu (2.55)

As stated earlier, the structural system will come to rest when the potential energy is a
minimum. Thus, we pose the optimization problem as

minimize
fu;vg

Π ¼ kðu2 cos2θþ v2 sin2θÞ � Fu (2.56)

Solution:This is a single-objective, two-variable, unconstrainedminimization problem.
For multi-variable, unconstrained problems, we set the partial derivative of the
objective with respect to each variable to zero, i.e.,

∂½kðu2 cos2θþ v2 sin2θÞ � Fu�
∂u

¼ 0 (2.57)

∂½kðu2 cos2θþ v2 sin2θÞ � Fu�
∂v

¼ 0 (2.58)

This results in

u ¼ F=ð2k cos2θÞ ¼ Fl=ð2EA cos2θÞ
v ¼ 0

(2.59)

Again, the reader can verify that we will arrive at the same result via force balance.

Example 2.9 Spring System Analysis

Problem: Consider the spring system in Figure 2.10, consisting of two springs (marked
as 1 and 2) that are fixed at top and bottom (nodes 2 and 3). An external force is applied
at the middle node (node 1). The lengths of the two springs are 1 unit each (in the
undeformed state), while their stiffnesses are 100 and 50 units respectively. The
force components are 10 units in the x-direction and 8 units in the y-direction. Find
the deflection of node 1 by minimizing the potential energy of the spring system.
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(cont.)

Figure 2.10 A spring system.

Modeling: Let the displacements of node 1 in the horizontal and vertical directions be
u and v respectively. Observe that the undeformed length of each spring is 1 unit.
Further, given an arbitrary displacement ðu; vÞ of node 1, the deformed lengths of the
two springs are

L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0� uÞ2 þ ð�1� vÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ð1þ vÞ2

q
L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0� uÞ2 þ ð1� vÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ð1� vÞ2

q (2.60)

Since the deformation can be fairly large, one cannot make the truss-based simplifi-
cation. Therefore, the increase in length is given by

DL1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ð1þ vÞ2

q
� 1

DL2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ð1� vÞ2

q
� 1

(2.61)

This results in an elastic energy of

U1 ¼ 0:5k1ðDL1Þ2 ¼ 0:5k1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ ð1þ vÞ2
q

� 1
�2

U2 ¼ 0:5k2ðDL2Þ2 ¼ 0:5k2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ ð1� vÞ2
q

� 1
�2 (2.62)

Given the spring stiffnesses of 100 and 50 units, the total elastic energy is given by

U ¼ 0:5
100
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ ð1þ vÞ2
q

� 1
�2

þ 50
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ ð1� vÞ2
q

� 1
�2

2
64

3
75 (2.63)

The external work done is

W ¼ ð1=2Þðfxuþ fyvÞ ¼ ð1=2Þð10uþ 8vÞ (2.64)

Finally, the potential energy is given by

Π ¼ 0:5
100
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ ð1þ vÞ2
q

� 1
�2

þ 50
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ ð1� vÞ2
q

� 1
�2

2
64

3
75� ð10uþ 8vÞ (2.65)
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