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Complex networks are typically not homogeneous, as they tend to 
display an array of structures at different scales. A feature that has 
attracted a lot of research is their modular organisation (i.e., networks 
may often be considered as being composed of certain building 
blocks, or modules). In this Element, the authors discuss a number of 
ways in which this idea of modularity can be conceptualised, focusing 
specifically on the interplay between modular network structure and 
dynamics taking place on a network. They discuss, in particular, how 
modular structure and symmetries may impact on network dynamics 
and, vice versa, how observations of such dynamics may be used to 
infer the modular structure. They also revisit several other notions of 
modularity that have been proposed for complex networks and show 
how these can be related to and interpreted from the point of view of 
dynamical processes on networks.
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1 Introduction
Over the last 20 years, networks and graphs have become a near-ubiquitous
modelling framework for complex systems. By representing the entities of a
system as nodes in a graph and encoding relationships between these nodes as
edges, we can abstract systems from a variety of domains with the same mathe-
matical language, including biological, social, and technical systems (Newman,
2018a). Network abstractions are often used with one of the two following
perspectives in mind. First, graphs and networks provide a natural way to
describe relational data (i.e., datasets corresponding to ‘interactions’ or corre-
lations between pairs of entities). A prototypical example here is online social
networks, in which we measure interactions between actors and can derive a
network representation of the social system based on these measurements. We
may then try to explain certain properties of the social system by modelling and
analysing the network (e.g., by searching for interesting connectivity patterns
between the nodes). Second, networks are often used to describe distributed
dynamical systems, including prototypical examples such as power grids, traf-
fic networks, or various other kinds of supply or distribution networks. The
edges of the network are in this context not the primary object of our modelling.
Rather, we are interested in understanding a dynamical process that takes place
on this network. More specifically, we often aim to comprehend how the net-
work structure shapes this dynamics (e.g., in terms of its long-term behaviour).
In reality, of course, both these perspectives are simplifications in that for many
real systems, there are typically uncertainty and dynamics associated to both
node and edge variables which make up the network: think, for instance, of a
rumour spreading on a social network, where both node variables (the infec-
tion state) and the network edges (who is in contact with whom) will be highly
dynamic and uncertain. We may not know the exact status of each individual;
moreover, edges will change dynamically, and their presence or absence may
not be determined accurately.
No matter under what perspective we are interested in networks, it should

be intuitively clear that networks with some kind of ‘modular structure’ may
be of interest to us. For now, consider modular structure simply in terms of
a network made of dense clusters that are loosely connected with each other.
From the perspective of relational data, modular structure may be indicative of
a hidden cause that binds a set of nodes together: this corresponds to the idea
of homophily in social networks (McPherson, Smith-Lovin, & Cook, 2001),
which can lead to the formation of communities of tightly knit actors. From
the perspective of dynamics, it is often impractical to keep a full descrip-
tion of a dynamical process on a network when the number of dynamical
units is too large. In many cases, it is unclear whether such finely detailed
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data is necessary to understand the global phenomena of interest, as relevant
observables can often be obtained by aggregating microscopic information into
macroscopic information (i.e., aggregating information over many nodes). This
kind of dimensionality reduction of the dynamics is particularly successful if
there exist roughly homogeneously connected blocks of nodes (i.e., a modular
network structure (Simon & Ando, 1961)).
As the title indicates, this Element will primarily adopt a dynamical perspec-

tive on network analysis. Accordingly, our core objective will be to explore
the relations between modular structure and dynamics on networks; but we
will also explain how certain aspects of the analysis of relational data can be
interpreted from this lens. However, an exhaustive exposition of methods to
characterise and uncovermodules (also called blocks, clusters, or communities)
in networks will not be the main focus of our exposition.We refer the interested
reader to the extensive literature on this topic for more detailed treatments; see,
for example, Doreian, Batagelj, and Ferligoj (2020); Fortunato andHric (2016);
Newman (2018a); Schaeffer (2007).

Network Dynamics and Network Structure
It is well-known that there exists a two-way relationship between dynamics on
graphs and the underlying graph structure (Schaub et al., 2019b). On the one
hand, the structure of a network affects dynamical processes taking place on
it (Porter & Gleeson, 2016). In the simplest case of a linear dynamical sys-
tem, this relationship derives from the spectral properties of a matrix encoding
the graph, most often the adjacency matrix or the graph Laplacian. On the
other hand, dynamics can help reveal salient features of a graph. This includes
the identification of central nodes or the detection of modules in large-scale
networks.
To illustrate this two-fold relation between network structure and network

dynamics on an intuitive level, let us consider randomwalks on networks. Ran-
dom walks are often used as a model for diffusion, and there is much research
on the impact of network structure on different properties of random-walk
dynamics (Masuda, Porter, & Lambiotte, 2017). In particular, degree heteroge-
neity, finite size effects and modular structure can all make diffusion processes
on networks quantitatively and even qualitatively different from diffusion on
regular or infinite lattices. At the same time, random walks are key to many
algorithms that uncover various types of structural properties of networks. For
example, the classical PageRank method for identifying important nodes may
be interpreted in terms of a random walk(Gleich, 2015). Indeed, as we will
discuss, several algorithms use trajectories of dynamical processes such as
random walks to reveal mesoscale network patterns.
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Figure 1 Modularity and Dynamics on Networks. Our main ambition is to
understand relationships between modular structure of a network, here

highlighted in different node colours, and a dynamics taking place on it, here
illustrated with the red trajectory on the network. The two complementary

questions at the core of this Element are: (1) How does the modular structure
of a network affect dynamics? (2) How can dynamics help us characterise and

uncover the modular structure of a network?

Outline of This Element
In this Element, we try to provide a basic overview of the topic of modularity
and dynamics on complex networks. Our exposition is structured as follows. In
Section 2, we first discuss some background material in Network Science and
then review classical notions of modular structure in networks in Section 3. In
Sections 4 and 5, we discuss the interplay between dynamics and network struc-
ture in terms of timescale separation and symmetries, and how these aspects can
be used to reduce the complexity of the description of network dynamics. In
Section 6, we then explain how we can detect so-called assortative community
structure, primarily based on the notion of timescale separation. Section 7 then
discusses the definition and detection of more general (dynamical) block struc-
ture, leveraging ideas from linear systems theory and symmetry reduction. In
Section 8, we conclude with a short discussion on avenues for future work and
additional perspectives.

W A N M ?
For many years, researchers have been fascinated by the prevalence of
modularity in systems as different as the World Wide Web, foodwebs,
and brain networks, raising the question: are there universal mechanisms
driving the evolution of networks toward a modular architecture? Among
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the many mechanisms that have been proposed (Meunier, Lambiotte, &
Bullmore, 2010), the following profound idea of Herbert Simon (1962)
stands out by its elegance. ‘Nearly-decomposable’ systems, as Simon calls
them, allow faster adaptation or evolution of the system in response to
changing environmental conditions. In Simon’s view, modules represent
stable building blocks that ensure the robustness of a system evolving
under changing or competitive selection criteria. To illustrate this idea,
Simon wrote an intuitive parable about two watchmakers, called ‘Hora’
and ‘Tempus’ (Simon, 1962):

There once were two watchmakers, named Hora and Tempus, who man-
ufactured very fine watches. Both of themwere highly regarded, and the
phones in their workshops rang frequently – new customers were con-
stantly calling them. However, Hora prospered, while Tempus became
poorer and poorer and finally lost his shop. What was the reason?

The watches the men made consisted of about 1,000 parts each. Tem-
pus had so constructed his that if he had one partly assembled and had to
put it down – to answer the phone say – it immediately fell to pieces and
had to be reassembled from the elements. The better the customers liked
his watches, the more they phoned him, the more difficult it became for
him to find enough uninterrupted time to finish a watch.

The watches that Hora made were no less complex than those of
Tempus. But he had designed them so that he could put together sub-
assemblies of about ten elements each. Ten of these subassemblies,
again, could be put together into a larger subassembly; and a system
of ten of the latter subassemblies constituted the whole watch. Hence,
when Hora had to put down a partly assembled watch in order to answer
the phone, he lost only a small part of his work, and he assembled his
watches in only a fraction of the man-hours it took Tempus.

This story illustrates in simple terms the potential evolutionary advantage
that a modular system structure may have, and provides an argument for
the ubiquity of modularity in a broad range of natural and social systems.a

In the following, we will not dwell on why there is modular structure in
the network, but rather focus on the question: how does the modularity of
a network affect its behaviour and, in particular, its dynamical properties?

a One needs to be careful with such statements. Simon himself cautioned that many systems
lack conclusive statistical evidence for being modular and may only be perceived as modular
due to confirmation bias. However, the statement that many networks are modular has been
validated on a large corpus of network datasets by now. See, for example, Fortunato (2010);
Ghasemian, Hosseinmardi, and Clauset (2019); Leskovec et al. (2008).
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Table 1 Notation

Symbol Description

n 2 N number of nodes
m 2 R total weight of edges (number of edges for

unweighted networks)
C 2 N number of modules / communities
V D f1; : : : ; ng set of nodes / vertices
i; j; ` 2 f1; : : : ; ng indices for nodes
P D fA1; : : : ;ACg partition of the nodes into communities A˛

A˛ set of nodes within the ˛th community
˛; ˇ 2 f1; : : : ; Cg indices for communities
ki 2 R weighted degree (strength) of node i
A 2 Rn�n weighted adjacency matrix of a network
K .A/ D diag.A1/ 2 Rn�n weighted degree matrix of a network
L.A/ D K � A combinatorial Laplacian matrix
L.A/ D I � K �1=2AK �1=2 normalised Laplacian matrix
Lrw.A/ D I � K �1A random-walk Laplacian matrix
H 2 f0; 1gn�C partition indicator matrix with entriesHi˛ D 1,

if node i is in the ˛th community (A˛),
andHi˛ D 0 otherwise

h˛ 2 f0; 1gn Indicator vector of the ˛th community
(i.e., ˛th column of H )

 W f1; : : : ; ng ! f1; : : : ; ng permutation function of node labels
� permutation matrix associated to 
d.x; y/ distance function between x and y
�.x; y/ kernel function of x and y

Notation
We use the following general mathematical notations and conventions. We
denote vectors by small letters in bold such as x;y and use .�/> to denote
the transpose of a vector. Our convention is that all vectors are column vectors,
and accordingly, x> is a row vector. We use 1 to denote the vector of all ones.
Matrices are denoted by bold uppercase letters such as A;M , where I is used
to denote the identity matrix. We write diag.x/ to denote the diagonal matrix
whose diagonal entries are defined by the components of vector x and are
0 otherwise. Entries of vectors or matrices are non-bold with subscripts. For
instance, vector x has entries x1; : : : ; xn and the matrix A has entries Aij . If
there is ambiguity, we may alternatively use the notation Œvi �j to denote the
j th entry of a vector vi (or a matrix, accordingly). Finally, we use P .�/ and
EŒ�� for the probability and expectation of the statement inside the parentheses,
respectively.


