




The Bellman Function Technique in Harmonic Analysis

The Bellman function, a powerful tool originating in control theory, can be used
successfully in a large class of difficult harmonic analysis problems and has produced
some notable results over the last 30 years. This book by two leading experts is
the first devoted to the Bellman function method and its applications to various
topics in probability and harmonic analysis. Beginning with basic concepts, the
theory is introduced step-by-step starting with many examples of gradually increasing
sophistication, culminating with Calderón–Zygmund operators and endpoint estimates.
All necessary techniques are explained in generality, making this book accessible to
readers without specialized training in nonlinear PDEs or stochastic optimal control.
Graduate students and researchers in harmonic analysis, PDEs, functional analysis, and
probability will find this to be an incisive reference, and can use it as the basis of a
graduate course.

Vasily Vasyunin is Leading Researcher at the St. Petersburg Department of Steklov
Mathematical Institute of Russian Academy of Sciences and Professor at the Saint
Petersburg State University. His research interests include linear and complex analysis,
operator models, and harmonic analysis. Vasyunin has taught at universities in Europe
and the United States. He has authored or coauthored over 60 articles.

Alexander Volberg is Distinguished Professor of Mathematics at Michigan State
University. He was the recipient of the Onsager Medal as well as the Salem Prize,
awarded to a young researcher in the field of analysis. Along with teaching at institu-
tions in Paris and Edinburgh, Volberg also served as a Humboldt senior researcher, Clay
senior researcher, and a Simons fellow. He has coauthored 179 papers, and is the author
of Calderón–Zygmund Capacities and Operators on Non-Homogenous Spaces.





The Bellman Function Technique in
Harmonic Analysis

VASILY VASYUNIN
Russian Academy of Sciences

ALEXANDER VOLBERG
Michigan State University



University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025,
India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108486897

DOI: 10.1017/9781108764469

© Vasily Vasyunin and Alexander Volberg 2020

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ International, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Names: Vasyunin, Vasily I., 1948– author. | Volberg, Alexander, 1956– author.

Title: The Bellman function technique in harmonic analysis /
Vasily Vasyunin, Alexander Volberg.

Description: Cambridge ; New York, NY : Cambridge University Press, 2020. |
Includes bibliographical references and index.

Identifiers: LCCN 2019042603 (print) | LCCN 2019042604 (ebook) |
ISBN 9781108486897 (hardback) | ISBN 9781108764469 (epub)

Subjects: LCSH: Harmonic analysis. | Functional analysis. | Control theory.
Classification: LCC QA403 .V37 2020 (print) | LCC QA403 (ebook) |

DDC 515/.2433–dc23
LC record available at https://lccn.loc.gov/2019042603

LC ebook record available at https://lccn.loc.gov/2019042604

ISBN 978-1-108-48689-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of
URLs for external or third-party internet websites referred to in this publication

and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

www.cambridge.org
www.cambridge.org/9781108486897
http://dx.doi.org/10.1017/9781108764469
https://lccn.loc.gov/2019042603
https://lccn.loc.gov/2019042604


To our parents





Contents

Introduction page x

I.1 Preface x
I.2 Acknowledgments xii
I.3 The Short History of the Bellman Function xii
I.4 The Plan of the Book xv
I.5 Notation xvi

1 Examples of Exact Bellman Functions 1
1.1 A Toy Problem 1
1.2 Buckley Inequality 7
1.3 John–Nirenberg Inequality 14
1.4 Homogeneous Monge–Ampère Equation 28
1.5 Bellman Function for General Integral Functionals on BMO 30
1.6 Dyadic Maximal Operator 43
1.7 Weak Estimate of the Martingale Transform 62
1.8 Burkholder’s Bellman Function 80
1.9 On the Bellman Function Generated by a Weak Type Estimate

of a Square Function 113
1.10 More about Buckley’s Inequality 137
1.11 Hints and Answers 144

2 What You Always Wanted to Know about Stochastic Optimal
Control, but Were Afraid to Ask 150

2.1 Disclaimer 150
2.2 Stochastic Integrals Are Not That Simple 150
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Introduction

I.1 Preface

The subject of this book is the use of the Bellman function technique in
harmonic analysis. The Bellman function, in principle, is the creature of
another area of mathematics: control theory. We wish to show that it can be
used very successfully in a big class of harmonic analysis problems. In the
last 25–30 years some outstanding problems in harmonic analysis were solved
by this approach. Later, 10–15 years after, another solution has been found
by more classical methods involving some highly nontrivial stopping time
argument.

This is what happened with the A2 conjecture and then very recently with
the A1 conjecture concerning weighted estimates of singular integrals. Some
other problems solved by the Bellman function method still await their “de-
Bellmanisation.” Among such problems, we can list the celebrated solution by
Burkholder of Pełczyński’s problem about Haar basis, the best Lp estimates of
the Ahlfors–Beurling operator, and many matrix weight estimates.

One of the main technical advantages of the Bellman function technique
is that it does not require the invention of any sophisticated stopping time
argument of the kind that is so pervasive in modern harmonic analysis. We
can express this feature by saying that the Bellman function knows how to
stop the time correctly, but it does not show us its secret.

The purpose of this book is to present a wide range of problems in harmonic
analysis having the same underlying structure that allows us to look at them as
problems of stochastic optimal control and, consequently, to treat them by the
methods originated from this part of control theory.

We intend to show that a certain class of harmonic analysis problems
can be reduced (often without any loss of information) to solving a special
partial differential equation called the Bellman equation of a problem. For

x
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that purpose, we first cast a corresponding harmonic analysis problem as a
stochastic optimization problem.

A quintessentially typical problem of harmonic analysis is to find (or
estimate) the norm of this or that (singular) operator in function space Lp. If
we think about the operator as a black box, we should think about the unit
ball of Lp as its input. The unit ball of Lp is not compact in norm topology,
so there is a priori no extremizer, and moreover, it seems to be very difficult
to “list” all functions in the unit ball and “try” them as black box inputs one
by one.

The stochastic point of view helps here, because we can think about input
as a stochastic process stopped at a certain time. This point of view gives a
very nice and powerful way to list all inputs as solutions of simple stochastic
differential equations with some unknown stochastic control. Then the norm
of the operator becomes a functional on solutions of stochastic differential
equations that we need to optimize by choosing optimal control.

The technique of doing that is to consider the Bellman function of this
control problem and to write the Hamilton–Jacobi–Bellman equation whose
solution the Bellman function is supposed to be.

This book can be used as the basis of a graduate course, and it can also
serve as a reference on many (but not all) applications of the Bellman function
technique in harmonic analysis.

A certain number of very important results obtained with the use of the
Bellman function technique stayed outside of the scope of this book. For
example, these are the twisted paraproducts results of V. Kovac [91, 92], and, in
general, the applications of the Bellman function to multilinear and nonlinear
harmonic analysis. In the last category one finds the works of C. Muscalu,
T. Tao, and C. Thiele [119] concerning nonlinear analogs of the Hausdorff–
Young inequality that relates the norm of a function and the norm of its
nonlinear Fourier transform. This book does not present the recent results of
O. Dragicevic and A. Carbonaro [33, 34], where the authors study universal
multiplier theorems in the setting of symmetric contraction semigroups. In
particular, the authors solved a long-standing problem of finding the optimal
sector, where generators of symmetric contraction semigroups always admit
a H∞-type holomorphic functional calculus on Lp. This is done by a subtle
application of the Bellman function technique on a flow that is given by the
semigroup. Numerous multiplier theorems are improved due to this result,
and new results on pointwise convergence related to a symmetric contraction
semigroup on a closed sector are obtained.

The corresponding papers can be found in the References, and the reader
is encouraged to study these beautiful applications of the Bellman function
ideology.
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I.3 The Short History of the Bellman Function

The Bellman equation and the Euler–Lagrange equation both deal with
extremal values of functionals. Given a functional, the Euler–Lagrange
approach gives us a differential equation that rules the behavior of extremizers
of a functional in question. The Bellman equation has quite a different nature.
At first glance, it does not give any information on the extremizers. Moreover,
typically, there will be no extremal function. Only a sequence of almost
extremizers typically exists, which is yet another difference with applications
of the Euler–Lagrange equation.

In the Bellman paradigm, the (system of) differential equation(s) is given to
us, and we do not need to find it as in the Euler–Lagrange approach. However,
the given differential equation (or a system of equations) also has an unknown
functional parameter called control. We have to find the best control in the
sense that this control will optimize a functional applied to the solution of (an)
already given (system of) differential equation(s).

So the idea of Bellman is amazingly striking and incredibly simple simul-
taneously. Let us denote by B(x) the extremal value of the functional that
we want to optimize on solutions of a given system of differential equations
with initial value at x at initial time 0. Using the fact that at time Δt, we
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“know” where the solution is, and that having started at x(Δt) this solution
is also extremal (if the control is chosen correctly), one can deduce a partial
differential equation on B.

This equation is called the Hamilton–Jacobi equation. Due to the functional
in need of optimization, and depending on the system of differential equations
that is given to us, the Hamilton–Jacobi equation varies, but it stays in a certain
class of first-order nonlinear (usually) PDEs.

However, if the system of differential equations mentioned previously is not
the usual system, but is a system of stochastic differential equations, and we
are asked to optimize not just a functional of solutions of this system, but
the expectation (the average) of this functional, then the scheme mentioned
previously can be applied as well. The resulting PDE is often called the
Hamilton–Jacobi–Bellman equation, and the presence of stochasticity makes
it a second-order nonlinear (usually) PDE. It belongs to the class of equations
called degenerate elliptic equations, see, e. g., [120].

Previously we presented a very short exposition of the Bellman function of
stochastic optimal control. In this branch of mathematics, it is also often called
the value function. The reader who wants to acquire good knowledge in this
area is advised to read [95].

But the goal of the book is to show the deep (and almost perfect) analogy
between the Bellman function technique in stochastic optimal control and
the Bellman function technique in harmonic analysis, which is the branch of
analysis dealing with the estimates of singular integrals.

It was arguably in [130], and especially in [131, 193], where this parallelism
between a wide class of harmonic analysis problems and the stochastic optimal
control got recognized at face value.

The observation of this parallelism between two different branches of
mathematics is sort of important for this book, but the ideas that now are
generally recognized as the “Bellman function technique” in harmonic analysis
have been around long before those papers.

Without any claim of completeness, we can list several articles and their
ideas that now can be recognized as instances of application of the Bellman
function technique (without ever mentioning stochastic control, the value
function, or anything like that).

In the area of probability theory that deals with optimal problems for
Brownian motion or for martingales, D. Burkholder [22–31], B. Davis [50],
and Burkholder–Gundy [32] used what we call now the Bellman function as
their main tool of finding the constants of best behavior of stopping times and
of martingales with various restrictions.
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But to the best of our knowledge, the first use of the idea underlying
the Bellman function technique is due to A. Beurling, who found the exact
function of uniform convexity for the space Lp(0, 1). Strangely enough, his
work was not published: Beurling just made an oral report in Uppsala in 1945,
and the exposition of his idea can be found in the paper of O. Hanner [66]
of 1956. However, Beurling used certain magic guesses. These guesses were
explained in the paper of Ivanisvili–Stolyarov–Zatitskiy [82], who showed that
Beurling’s function method is nothing other than perhaps the first occasion of
the application of the Bellman function technique in harmonic analysis.

We think that chronologically the next case of using the Bellman function
technique in harmonic analysis was again related to uniform convexity. But
this case deals with the general theory of Banach spaces. In 1972, P. Enflo
in [59] proved that the Banach space X is super-reflexive if and only if it can
be given an equivalent norm that is uniformly convex. In fact, the “if” part was
proved by R. C. James in [86]. Enflo proved the “only if” part, and the proof
of Lemma 2 of [59] now reads as a typical Bellman function technique proof.

In 1975, G. Pisier [154] gave another proof of the James–Enflo result that the
Banach space X is super-reflexive if and only if it has an equivalent uniformly
convex norm. His proof used X-valued martingale interpretation of super-
reflexivity. The uniformly convex norm on X was constructed in the second
line of the proof of Theorem 3.1 of [154]. In fact, for a vector x ∈ X this
equivalent norm |x| is defined as the infimum of a certain functional on X-
valued martingales starting at x, and this is a quintessential Bellman function
definition.

Let us briefly explain why we associate such an approach (also used in all the
papers of Burkholder, Gundy, Davis mentioned previously) with the Bellman
function technique described previously.

Roughly speaking, any martingale is a solution of a controlled stochastic
differential equation (with continuous or discrete time), where martingale
differences play the role of control that should be optimized to give a
prescribed functional on martingale the “best” value. In the case explained
in [154], the functional is given at the beginning of the proof of Theorem 3.1,
and its optimal value is precisely |x| – the equivalent norm of the initial vector
x, where a martingale (the solution of a stochastic differential equation in our
interpretation) has started.

The fact that x → |x| is uniformly convex is exactly the Hamilton–
Jacobi–Bellman PDE, as the reader will conclude after reading this book. It
sounds strange: Why should a certain inequality be called a partial differential
equation?
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It will be explained repeatedly that the Bellman PDE pertinent to a harmonic
analysis problem is quite often, in fact, a certain second-order finite difference
inequality.

It is difficult to find the optimal solutions of inequalities, so the reader will
see in a case-by-case study how we account for this difficulty and how we
remedy it.

In probability theory, there was an interest in understanding the relationship
between the various norms of the stopping time T and the corresponding norms
of W (T ), where W is the Brownian motion. The exposition of these results
(and related martingale results) of B. Davis [50], G. Wang [196], and [197]
can be found in Chapter 5.

A huge amount of work has been done in the papers by D. Burkhol-
der [21, 22] and by Burkholder and Gundy [32]. These are all Bellman function
technique papers. In particular, this method (without mentioning any stochastic
optimal control or Hamilton–Jacobi equation) was used by Burkholder (in
his seminal articles cited previously) to solve problems of A. Pełczyński,
concerning sharp constants for unconditional Haar basis in Lp. We adapt
Burkholder’s solution to our language of the Bellman function technique,
which is done in Section 1.8. This is one of those cases when it is easy to
write the Bellman equation but difficult to solve it.

I.4 The Plan of the Book

In Chapter 1, we give nine precise Bellman functions corresponding to several
typical harmonic analysis problems. As we already mentioned, Section 1.8 of
this chapter is devoted to Burkholder’s Bellman function. The John–Nirenberg
inequality presents a very nice model for the application of the Bellman
function technique, which the reader will find in Section 1.3. Then, in Section
1.5 we extend the method of the Bellman function to rather general functionals
on the space BMO.

In Chapter 2, we first list elements of stochastic calculus and introduce
the Bellman function of stochastic optimal control. Then in Section 2.6, we
collect examples that show the perfect analogy between stochastic optimal
control and a wide class of harmonic analysis problems. After that, we turn
our attention to a class of problems from complex analysis that also can be
adapted to the Bellman method. One of these problems is finding Pichorides
constants, yet another question is concerned with the solution of Gohberg–
Krupnik problem by B. Hollenbeck and I. Verbitsky [69]. Our main goal is
to show that all harmonic analysis problems in this chapter can be interpreted
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as problems of stochastic optimal control. An important disclaimer should be
made: the stochastic optimal control point of view helps us to write down a
correct Bellman partial differential equation, but it does not, in any sense, help
to solve it. And solving it can be a major difficulty.

Chapter 3 is devoted to sharp estimates of conformal martingales. We then
use these results to consider one particular singular integral, the Ahlfors–
Beurling transform. We give the best up-to-date estimates of this transform.

Chapter 4 demonstrates an interesting and unexpected feature of the
Bellman function technique. Namely, it has been noticed that the Bellman
function built for one problem can be used in another problem, sometimes
not too close to the original problem. This allows us to use the Bellman
functions for the weighted martingale transform to have the right estimates for
much more complicated dyadic singular operators, the so-called dyadic shifts.
Moreover, one need not know the precise form of the Bellman function, one
should just know of its existence. This idea for the Ahlfors–Beurling transform
was used by S. Petermichl and A. Volberg in [152]. In that chapter, we follow
the ideas of S. Treil [181] with a slight modification.

It has been noticed repeatedly that the Bellman function technique can be
used not only to prove the conjectural estimates of singular integrals, but also
to disprove the estimates. This is, roughly speaking, the consequence of the
fact that the language of Bellman functions is often exactly adequate and
equivalent to harmonic analysis problems for which these functions are built.
This observation helps to find sharp constants in several endpoint estimates for
singular integrals. That point of view also brings counterexamples to several
well-known conjectures. We devote Section 5.2 to such counterexamples. The
rest of this chapter is devoted to using the Bellman function technique to find
sharp estimates in several classical problems concerning the square function
operator. Even though the sharp constants for this operator have been studied
since 1975, there are still open questions and we discuss them in Chapter 5.

I.5 Notation

We conclude this Introduction by a short list of notation that will be used
throughout the whole book.

The average of a summable function w over an interval I will be denoted by
the symbol 〈w〉

I
:

〈w〉
I

def
=

1

|I|

∫
I

w(t) dt ,

where |I| stands for the Lebesgue measure of I .
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We introduce the Haar system, normalized in L∞:

H
I
(t) =

{
−1 if t ∈ I−,

1 if t ∈ I+,
(0.1)

and another one, normalized in L2:

h
I
(t) =

1√
|I|

H
I
(t).

Then

|I|( 〈w〉
I+
− 〈w〉

I−
) = 2(w,H

I
)

and √
|I|( 〈w〉

I+
− 〈w〉

I−
) = 2(w, h

I
).

The characteristic function of a measurable set E is denoted by 1
E

.
The symbol D stands for a dyadic lattice, and Dn stands for the grid of

intervals (or cubes) of length (or side-length) 2−n, n ∈ Z. The σ-algebra
generated by Dn is denoted by Fn.

The symbol En stands for the expectation with respect to the σ-algebra Fn.

Then Δn stands for En+1 − En, Δ
I

def
= 1IΔn for I ∈ Dn, and thus,

Δn =
∑
I∈Dn

Δ
I
.

Bellman functions are usually denoted by B, but in Sections 5.4–5.7 they
are denoted by U to follow the established tradition coming from probability.

The matrix of second derivatives of a function B on Rd (the Hessian matrix)
is denoted by d2B

dx2 or HB . The symbol d2B stands for the second differential
form of B, namely, for the quadratic form (HB dx, dx).
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Examples of Exact Bellman Functions

1.1 A Toy Problem

Let us start by considering the following simple problem. Suppose we have
two positive functions f1 and f2 on an interval I, I ⊂ R, bounded, say, by 1

and having prescribed averages: 〈fi〉I = xi. We are interested in their scalar
product: how large or how small it can be. That is, we would like to find the
following two functions:

Bmax(x1, x2)
def
= sup {〈f1f2〉I : 0 ≤ fi ≤ 1, 〈fi〉I = xi} (1.1.1)

Bmin(x1, x2)
def
= inf {〈f1f2〉I : 0 ≤ fi ≤ 1, 〈fi〉I = xi} (1.1.2)

These functions will be called the Bellman functions of the correspond-
ing extremal problem. In this simple case, the functions can be found by
elementary consideration without using any special techniques. Nevertheless,
we approach this problem as “a serious one” and provide all the steps in
its derivation that we will need in the future consideration of more serious
problems.

In what follows, we will consider only the first of these functions, and it
will be denoted simply by B rather than Bmax. The first question is about the
domain of definition of our function. It is natural to define it on the set of all
x = (x1, x2) ∈ R2 for which there exists at least one pair of test functions f1
and f2 such that 〈fi〉I = xi.

Definition 1.1.1 For a pair of functions {f1, f2} from L1(I), we call the
point bf1,f2 ∈ R2,

b = bI(f1, f2)
def
= (〈f1〉I , 〈f2〉I ),

1
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the Bellman point of this pair. Very often, the pair of functions is fixed and we
are interested in the dependence of the Bellman point on the interval. Then we
omit arguments and use only the interval as the index:

bJ = (〈f1〉J , 〈f2〉J ) for any interval J , J ⊂ I .

Clearly, the Bellman points of all admissible pairs fill the square

Ω = {x = (x1, x2) : 0 ≤ xi ≤ 1} .

Of course, function B is formally defined outside the square Ω as well, but
it is not interesting to consider this function there because the supremum
of the empty set is −∞. Let us state this assertion as a formal proposition.
It is trivial in this case, but it might not be so trivial for a more serious
problem.

Proposition 1.1.2 (Domain of Definition) The function B is defined on the
domain Ω.

Proof On the one hand, for any pair of test functions f1, f2, we have 0 ≤
〈fi〉I ≤ 1, i.e., bI(f1, f2) ∈ Ω. On the other hand, for any x ∈ Ω, the pair of
constant functions fi ≡ xi is an admissible pair and bI(x1, x2) = x.

Proposition 1.1.3 (Independence on the Interval) The function B does not
depend on the interval I , where the test functions are defined.

Proof Indeed, if we have two intervals I1 and I2, then the linear change of
variables maps the set of test functions from one interval to another preserving
all averages. Therefore, for both intervals, the supremum in the definition of
the Bellman function is taken over by the same set.

We know the values of our function on the boundary ∂Ω.

Proposition 1.1.4 (Boundary Conditions)

B(0, x2) = 0, B(1, x2) = x2,

B(x1, 0) = 0, B(x1, 1) = x1.
(1.1.3)

Proof We easily know the boundary values because for these points, the
set, over which supremum in the definition of the Bellman function is taken,
consists of only one element. Indeed, if 〈fi〉I = 0, then fi = 0 almost
everywhere (because fi ≥ 0), and therefore, 〈f1f2〉I = 0. If 〈fi〉I = 1, then
fi = 1 almost everywhere (because fi ≤ 1), and hence, 〈fifj〉I = xj .
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Our function possesses an additional symmetry property:

Proposition 1.1.5 (Symmetry)

B(x1, x2) = B(x2, x1) . (1.1.4)

Proof We can interchange the roles of f1 and f2 without changing the value
of 〈f1f2〉I . Then we interchange x1 and x2 keeping the value of the Bellman
function stable.

Proposition 1.1.6 (Main Inequality) For every pair of points x± from Ω and
every pair of positive numbers α± such that α− + α+ = 1, the following
inequality holds:

B(α−x− + α+x+) ≥ α−B(x−) + α+B(x+). (1.1.5)

Proof Let us split the interval I into two parts: I = I− ∪ I+ such that |I±| =
α±|I|. The integral in the definition of B can be presented as a sum of two
integrals, the first over I− and the second over I+:∫

I

f1(s)f2(s) ds =

∫
I−
f1(s)f2(s) ds+

∫
I+

f1(s)f2(s) ds.

After dividing over |I| we get

〈f1f2〉I = α−〈f1f2〉I− + α+〈f1f2〉I+ .

Now, using the independence of the Bellman function on the interval (Propo-
sition 1.1.3), we choose functions f±

i on the intervals I± such that they almost
give us the supremum in the definition of B(x±), i.e.,

〈f±
1 f±

2 〉I± ≥ B(x±)− η,

for a fixed small η > 0. Then for the functions fi(s), i = 1, 2, on I , defined
as f+

i on I+ and f−
i on I−, we obtain the inequality

〈f1f2〉I ≥ α−B(x−) + α+B(x+)− η. (1.1.6)

Observe that the pair of the compounded functions fi is an admissible pair of
test function corresponding to the point x = α−x− + α+x+. Indeed, x± =

bI±(f±
1, f

±
2 ) = bI±(f1, f2), and therefore,

bI(f1, f2) = α−bI−(f1, f2) + α+bI+(f1, f2) = α−x− + α+x+ = x.

The inequality 0 ≤ fi ≤ 1 is clearly fulfilled as well. So, we can take
supremum in (1.1.6) over all admissible pairs of functions. This yields

B(x) ≥ α−B(x−) + α+B(x+)− η,

which proves the main inequality because η is arbitrarily small.
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Proposition 1.1.7 (Obstacle Condition)

B(x) ≥ x1 · x2. (1.1.7)

Proof Since the constant functions fi = xi belong to the set of admissible
test functions corresponding to the point x, we come to the desired inequality
sup{〈f1f2〉 : 〈fi〉I = xi} ≥ 〈x1x2〉I = x1x2.

Before stating the next proposition, we introduce some notation. Let I be a
family of subintervals of an interval I with the following properties:

• I ∈ I;
• if J ∈ I, then there is a couple of almost disjoint intervals J± (i.e., with

the disjoint interiors), such that J = J− ∪ J+;
• I = ∪n≥0In, where I0 = {I}, In+1 = {J−, J+ : J ∈ In};
• limn→∞ max{|J | : J ∈ In} = 0.

If the family I satisfies the following additional condition

• |J−| = |J+|,

it is called dyadic. For the dyadic family of subintervals, we use notation D(I)

instead of I.

Proposition 1.1.8 (Bellman Induction) If B is a continuous function on the
domain Ω satisfying the main inequality (that is just concavity condition) and
obstacle condition (1.1.7), then B(x) ≤ B(x).

Proof Fix an interval I and its splitting I. Take an arbitrary point x ∈ Ω and
two test function f1 and f2 on I, 0 ≤ fi ≤ 1, such that x = bI(f1, f2). We
can rewrite the main inequality in the form

|J |B(bJ )| ≥ |J+|B(bJ+) + |J−|B(bJ−).

Let us take the sum of the earlier inequalities when J runs over Ik, the set of
subintervals of kth generation. Then J± are all intervals of the set Ik+1, and
we get ∑

J∈Ik

|J |B(bJ ) ≥
∑

J∈Ik+1

|J |B(bJ ).

Therefore,

|I|B(x)| = |I|B(bI) =
∑
J∈I0

|J |B(bJ ) ≥
∑
J∈In

|J |B(bJ ) =

∫
I

B(x(n)(s)) ds,

where x(n) is a step function defined in the following way: x(n)(s) = bJ , when
s ∈ J, J ∈ In.
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We know that x(n)(s)→ (f1(s), f2(s)) almost everywhere by the Lebesgue
differentiation theorem. Since B is continuous, we have B(x(n)(s)) →
B(f1(s), f2(s)). Now, using the obstacle condition (1.1.7) and the Lebesgue
dominated convergence theorem, we can pass to the limit in the obtained
inequality as n→∞.

|I|B(x) ≥
∫
I

B(f1(s), f2(s)) ds ≥
∫
I

f1(s)f2(s) ds = |I|〈f1f2〉I . (1.1.8)

Taking supremum in this inequality over all admissible pairs f1, f2 with
bI(f1, f2) = x, we come to the desired estimate.

According to this proposition, every concave function satisfying the obstacle
condition gives us an upper estimate of the functional under consideration. If
we are interested in a sharp estimate, we need to look for minimal possible
such functions. Due to the symmetry (see Proposition 1.1.5), it is sufficient to
consider x1 ≤ x2.

On a triangle, we know our function at the vertices: B(0, 0) = 0, B(0, 1) =

0, and B(1, 1) = 1. The minimal possible concave function passing through
the given three points is a linear function. In our case, it is the function B(x) =

x1. By the symmetry on the whole square Ω, we get the following Bellman
candidate1 B(x) = min{x1, x2}.

In fact, we have already found the Bellman function.

Theorem 1.1.9

B(x) = min{x1, x2}.

Proof First of all, by Proposition 1.1.8, the upper estimate B(x) ≤ B(x) is
true because B is concave and min{x1, x2} ≥ x1x2. Since there is no concave
function satisfying the required boundary condition and that is less than B, we
get B = B.

However, in a more difficult problem, it is not so clear that the Bellman
candidate cannot be diminished. By this reason, we demonstrate on this
example how we will typically prove the lower estimate B(x) ≥ B(x).
To this end for every point x ∈ Ω, we present an admissible test function,
realizing the supremum in the definition of the Bellman function. In some
papers, such a function (in our case, it is a pair of functions) is called an
extremizer, but in other papers it is called an optimizer. We shall use both
these words as synonyms. In our case, the possible pair of extremizers is very

1
Such a term is used for a function possessing the necessary properties of the Bellman function,
e.g., concavity, symmetry, boundary values, etc. After a Bellman candidate is presented, we
need to check that it indeed is the desired Bellman function.
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simple: fi = 1
[0,xi]

. We evidently have 〈fi〉[0,1] = xi and 〈f1f2〉[0,1] =

min{xi}. Since by definition B(x) is the supremum of 〈f1f2〉[0,1] , when fi
runs over all admissible pairs corresponding to the point x, B(x) is not less
that this particular value, which is equal to min{xi} = B(x).

At the end of this section, we would like to explain how to find the
extremizers mentioned earlier. Look at the proof of Proposition 1.1.8. Let us
take B = B in this chain of inequalities choosing at the beginning f1, f2
to be a pair of extremizers. Since the first and the last terms in the chain
of inequalities (1.1.8) are equal, namely, they are |I|B(x), we must have
equalities in each step. In other words, we need to choose such a splitting
x = α−x− + α+x+ to have equality rather than inequality in (1.1.5). In our
case, it is easy to do because our Bellman candidate is a concatenation of two
linear functions, and if we deal only with one of these linear functions, we
always have equality in (1.1.5). Based on this reason, in this simple situation,
we can choose extremizers in an almost arbitrary way; the only condition is that
all three points x and x± must be in the same triangle: either in {x : x1 ≤ x2}
or in {x : x1 ≥ x2}.

Let us construct a pair of optimizers for some point x with x1 ≤ x2. First

we draw the straight line passing through the points x and x− def
= (1, 1). It

intersects the boundary of Ω at the point (0, x2−x1

1−x1
)

def
= x+. So, we have

x = x1 · x− + (1 − x1) · x+, i.e., α− = x1, α+ = 1 − x1, and we
need to split our initial interval I (take I = [0, 1]) in the union I− = [0, x1]

and I+ = [x1, 1]. The point x− = (1, 1) is the Bellman point of the
only pair f1 = f2 = 1, hence on [0, x1] we take both extremal functions
equal identically to 1. The point x+ = (0, x2−x1

1−x1
) is the Bellman point,

for example, the pair of constant functions, and we can put f1 = 0 and
f2 = x2−x1

1−x1
on [x1, 1]. It is easy to check whether this pair of functions

gives us an extremizer. However, the second function of this extremizer differs
from that presented earlier. What to do to get that extremizer? We only have
to split I+ once more, presenting x+ as the convex combination of (0, 1)

and (0, 0):

x+ =
x2 − x1

1− x1
(0, 1) +

1− x2

1− x1
(0, 0), I+ = [x1, 1] = [x1, x2] ∪ [x2, 1].

The function f1 is, as before, the zero function on both subintervals, but we
have to take f2 equal to 1 on [x1, x2] and equal to 0 on [x2, 1]. In this way, we
come to the pair of functions presented earlier.

We would like to provide support now to the readers for whom the latter
paragraph remains unclear: you meet such kind of construction (splitting the
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interval and representing a Bellman point as a convex combination of two (or
more) other Bellman points) many times on the pages of this book. We hope
that after several repetitions, the construction becomes absolutely clear.

Exercises

Problem 1.1.1 Find the function B defined for a similar problem, where the
restriction 0 ≤ fi ≤ 1 is replaced by |fi| ≤ 1

Problem 1.1.2 Find the function Bmin defined in (1.1.2).

Problem 1.1.3 Find the function Bmin for the set of test functions described
in Problem 1.1.1.

1.2 Buckley Inequality

For an interval I and a number r > 1, the symbol A∞(I, r) denotes the
r-“ball” in the Muckenhoupt class A∞:

A∞(I, r)
def
=
{
w : w ∈ L1(I), w ≥ 0, 〈w〉

J
≤ re〈logw〉

J ∀J ⊂ I
}
.

(1.2.1)

We denote by D(I) the set of all dyadic subintervals of I and by Ad
∞(I, r) the

dyadic analog of (1.2.1), i.e., in the definition of Ad
∞(I, r), we consider only

J ∈ D(I).

Theorem (Buckley [19]) There exists a constant c = c(r) such that∑
J∈D(I)

|J |
( 〈w〉

J+ − 〈w〉
J−

〈w〉
J

)2
≤ c(r)|I|

for any weight w from Ad
∞(I, r).

Now, we are ready to introduce the main object of our consideration, the
so-called Bellman function of the problem.

B(x) = B(x1, x2; r)

def
= sup
w∈Ad

∞(I,r)

{
1

|I|
∑

J∈D(I)

|J |
( 〈w〉

J+ − 〈w〉
J−

〈w〉
J

)2

:

〈w〉
I
= x1, 〈logw〉I = x2

}
.

(1.2.2)
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Let us note that we did not assign the index I to B despite the fact that all
test functions w in its definition are considered on I . This omission is not due
to our desire to simplify notation, but rather an indication of the very important
fact that the function B does not depend on I; Proposition 1.1.3 holds in this
situation by the same reason.

For a given weight w ∈ Ad
∞(I, r), we introduce a Bellman point bI(w)

in the following way: bI(w) = (〈w〉
I
, 〈logw〉

I
). Note that for all admissible

weights and for any dyadic subinterval J ⊂ I , the corresponding Bellman
point bJ (w) is in the following domain Ωr:

Ωr
def
=
{
x = (x1, x2) : log

x1

r
≤ x2 ≤ log x1

}
.

Indeed, the right bound is simply Jensen’s inequality and the left one is fulfilled
because our weight w is from Ad

∞(I, r).
To show that Ωr is the domain of the function B, we need to check that for

any point x ∈ Ωr there exists an admissible weight with bI(w) = x. However,
we leave this for the reader as an exercise (see Problem 1.2.1).

Now we prove the crucial property of the function B that follows directly
from its definition.

Lemma 1.2.1 (Main Inequality) For every pair of points x± from Ωr such
that their mean x = (x+ + x−)/2 is also in Ωr, the following inequality
holds:

B(x) ≥ B(x+) +B(x−)

2
+

(
x+
1 − x−

1

x1

)2

. (1.2.3)

Proof Let us split the sum in the definition of B into three parts: the sum
over D(I+), the sum over D(I−), and an additional term corresponding to I

itself:

1

|I|
∑

J∈D(I)

|J |
( 〈w〉

J+ − 〈w〉
J−

〈w〉
J

)2

=
1

2|I+|
∑

J∈D(I+)

|J |
( 〈w〉

J+ − 〈w〉
J−

〈w〉
J

)2

+
1

2|I−|
∑

J∈D(I−)

|J |
( 〈w〉

J+ − 〈w〉
J−

〈w〉
I

)2

+

( 〈w〉
I+
− 〈w〉

I−

〈w〉
I

)2

.
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Using the fact that B does not depend on the interval where the test functions
are defined, we can choose two weights w± on the intervals I± that almost
give us the supremum in the definition of B(x±), i.e.,

1

|I±|
∑

J∈D(I±)

|J |
( 〈w±〉

J+ − 〈w±〉
J−

〈w±〉
J

)2

≥ B(x±)− η,

for an arbitrary fixed small η > 0. Then for the weight w on I , defined as w+

on I+ and w− on I−, we obtain the inequality

1

|I|
∑

J∈D(I)

|J |
( 〈w〉

J+ − 〈w〉
J−

〈w〉
J

)2
≥ B(x+) +B(x−)

2
− η +

(
x+
1 − x−

1

x1

)2
.

(1.2.4)

Observe that the compound weight w is an admissible weight, corresponding
to the point x. Indeed, x± = bI±(w) and by the construction of w± we have
w± ∈ Ad

∞(I±, r). Therefore, the weight w satisfies the inequality 〈w〉
J
≤

re〈logw〉
J for all J ∈ D(I+), since w+ does, and for all J ∈ D(I−), since w−

does. Lastly, 〈w〉
I
≤ re〈logw〉

I , because, by assumption, x ∈ Ωr.
We can now take supremum in (1.2.4) over all admissible weights w, which

yields

B(x) ≥ B(x+) +B(x−)

2
− η +

(x+
1 − x−

1

x1

)2
.

This proves the main inequality because η is arbitrarily small.

Lemma 1.2.2 (Boundary Condition)

B(x1, log x1) = 0.

Proof Let us take a boundary point x of our domain Ωr, that is a point with
x2 = log x1. Since the equality in Jensen’s inequality e〈w〉 ≤ 〈ew〉 occurs
only for constant functions w, the only test function corresponding to x is the
constant (up to a set of measure zero) weight w = x1. So, on this boundary,
we have B(x) = 0.

Lemma 1.2.3 (Homogeneity) There is a function g on [1, r] satisfying g(1) = 0

and such that

B(x) = B(x1e
−x2 , 0) = g(x1e

−x2).

Proof For a weight w on an interval I and a positive number τ , consider a
new weight w̃ = τw. If x = bI(w), i.e., x1 = 〈w〉

I
, x2 = 〈logw〉

I
, then

for the point bI(w̃) = x̃ we have x̃1 = τx1, x̃2 = x2 + log τ . Note that the
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expression in the definition of B is homogeneous of order 0 with respect to w,
i.e., it does not depend on τ . Since the weights w and w̃ run over the whole
set Ad

∞(I, r) simultaneously, we get B(x) = B(x̃). Choosing τ = e−x2 , we
obtain

B(x) = B(x1e
−x2 , 0).

To complete the proof, it suffices to take g(s) = B(s, 0). The boundary
condition g(1) = 0 holds due to Lemma 1.2.2.

We are now ready to demonstrate how the Bellman induction works in
this case.

Lemma 1.2.4 (Bellman Induction) Let B be a nonnegative function on Ωr

satisfying the main inequality in Ωr (Lemma 1.2.1). Then

B(x) ≤ B(x).

Proof Fix an interval I and a point x ∈ Ωr. Take an arbitrary weight w ∈
Ad

∞(I, r) such that bI(w) = x. Let us repeatedly use the main inequality in
the form

|J |B(bJ ) ≥ |J+|B(bJ+) + |J−|B(bJ−) + |J |
( 〈w〉

J+ − 〈w〉
J−

〈w〉
J

)2

,

applying it first to I , then to the intervals of the first generation (that is I±),
and so on until Dn(I):

|I|B(bI) ≥ |I+|B(bI+) + |I−|B(bI−) + |I|
( 〈w〉

I+
− 〈w〉

I−

〈w〉
I

)2

≥
∑

J∈Dn(I)

|J |B(bJ ) +

n−1∑
k=0

∑
J∈Dk(I)

|J |
( 〈w〉

J+ − 〈w〉
J−

〈w〉
J

)2

.

Therefore,

n−1∑
k=0

∑
J∈Dk(I)

|J |
( 〈w〉

J+ − 〈w〉
J−

〈w〉
J

)2

≤ |I|B(bI),

and passing to the limit as n→∞, we get

∑
J∈D(I)

|J |
( 〈w〉

J+ − 〈w〉
J−

〈w〉
J

)2

≤ |I|B(x).

Taking supremum over all admissible weight w corresponding to the point x,
we come to the desired estimate.
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Corollary 1.2.5 Let g be a nonnegative function on [1, r] such that the

function B(x)
def
= g(x1e

−x2) satisfies inequality (1.2.3) in Ωr. Then Buckley’s
inequality holds with the constant c(r) = ‖g‖L∞([1,r]).

A natural question arises: How to find such a function g? To answer it, we
first replace our main inequality, which is an inequality in finite differences,
by a differential inequality. Let us denote the difference between x+ and x−

by 2Δ, then x± = x ± Δ and the Taylor expansion around the point x

gives us

B(x±) = B(x)± ∂B

∂x1
Δ1 ±

∂B

∂x2
Δ2

+
1

2

∂2B

∂x2
1

Δ2
1 +

∂2B

∂x1∂x2
Δ1Δ2 +

1

2

∂2B

∂x2
2

Δ2
2 + o(|Δ|2),

and, therefore,

B(x+) +B(x−)

2
+

(
x+
1 − x−

1

x1

)2

−B(x)

=
1

2

∂2B

∂x2
1

Δ2
1 +

∂2B

∂x1∂x2
Δ1Δ2 +

1

2

∂2B

∂x2
2

Δ2
2 + 4

(
Δ1

x1

)2

+ o(|Δ|2).

Thus, under the assumption that our candidate B is sufficiently smooth, the
main inequality (1.2.3) implies the following matrix differential inequality:⎛⎜⎜⎜⎜⎝

∂2B

∂x2
1

+
8

x2
1

∂2B

∂x1∂x2

∂2B

∂x1∂x2

∂2B

∂x2
2

⎞⎟⎟⎟⎟⎠ ≤ 0. (1.2.5)

That is, this matrix has to be nonpositively defined.
By the preceding two lemmata, we can restrict our search to functions B of

the form B(x1, x2) = g(x1e
−x2), where g is a function on the interval [1, r].

In terms of g, our condition (1.2.5) can be rewritten as follows:⎛⎜⎝e−2x2

(
g′′ +

8

s2

)
−e−x2(sg′)′

−e−x2(sg′)′ s(sg′)′

⎞⎟⎠ ≤ 0,

where g = g(s) and s = x1e
−x2 . From this matrix inequality, we conclude

that

g′′ +
8

s2
≤ 0, (1.2.6)

(sg′)′ ≤ 0, (1.2.7)
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and that the determinant of the matrix must be nonnegative. However, we
replace the last requirement by a stronger one – we require the determinant
to be identically zero. This requirement comes from our desire to find the
best possible estimate: If we take an extremal weight w, i.e., a weight on
which the supremum in the definition of the Bellman function is attained,
then we must have equalities on each step of the Bellman induction; therefore,
on each step the main inequality (1.2.3) becomes an equality. Thus, for each
dyadic subinterval J of I , there exists a direction through the point bJ in Ωr

along which the quadratic form given by (1.2.5) is identically zero. Hence, the
matrix (1.2.5) has a nontrivial kernel and so must have a zero determinant.2

Calculating the determinant, we get the equation(
g′ − 8

s

)
(sg′)′ = 0.

The general solution of this equation is g(s) = c log s+c1. Due to the boundary
condition g(1) = 0, we have to take c1 = 0.

Now we need to choose another constant, c. To this end, we return to the
necessary conditions (1.2.6–1.2.7). The second inequality is fulfilled for all c
because the expression is identically zero, while the first one gives c ≥ 8.

Since we would like to have g as small as possible (as it gives the upper bound
in Buckley’s inequality), it is natural to take c = 8. Finally, we get

g(s) = 8 log s and B(x1, x2) = 8(log x1 − x2).

Lemma 1.2.6 The function

B(x1, x2) = 8(log x1 − x2)

satisfies the main inequality (1.2.3).

Proof Put, as before, Δ = 1
2 (x

+ − x−), so x± = x±Δ. Then

B(x)− B(x+) +B(x−)

2
−
(
x+
1 − x−

1

x1

)2

= 8 log x1 − 8x2 − 4 log(x+
1 x

−
1 ) + 4(x+

2 + x−
2 )−

(
x+
1 − x−

1

x1

)2

2
This is not a proof, the arguments are not absolutely correct; for example, the existence of an
extremal weight w is not guaranteed. The supremum in the definition of the Bellman function
can be not attainable and only an extremal sequence of weights can realize it. (By the way, for
the Buckley inequality it is just the case.) Nevertheless, in the process of searching for a
Bellman candidate, we may assume whatever we want (e.g., its smoothness to replace a finite
difference condition by a differential one), but a rigorous proof starts after a candidate is found
and we check that it is the true Bellman function.
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= 4 log
x2
1

(x1 +Δ1)(x1 −Δ1)
− 4

(
Δ1

x1

)2

= −4
[
log
(
1−

(Δ1

x1

)2)
+
(Δ1

x1

)2]
≥ 0.

Now we can apply Lemma 1.2.4 to g(s) = 8 log s, which yields the
following:

Theorem The estimate∑
J∈D(I)

|J |
( 〈w〉

J+ − 〈w〉
J−

〈w〉
J

)2
≤ 8 log r |I|

holds for any weight w ∈ Ad
∞(I, r).

We would like to emphasize that we still have not found the Bellman
function B. The theorem just proved guarantees only the estimate

B(x) ≤ 8(log x1 − x2).

To prove that this Bellman candidate is the true Bellman function (what
proves sharpness of the earlier estimate), we need to find extremizers for every
point of the domain Ωr. However, this is a much more difficult task than it
was in our previous example. For this reason, we now stop our investigation of
the Bellman function for the Buckley inequality. The more experienced reader
interested in completing investigation of this Bellman function can refer to
Section 1.10, where we not only present the extremizers for the discussed
Bellman function but also find the minimal Bellman function with completely
different extremizers.

Exercises

Problem 1.2.1 Check that the function B defined on the whole domain Ωr,
i.e., for every point x, x ∈ Ωr, there exists a function w ∈ Ad

∞(I, r) such that
x = bI(w).

Problem 1.2.2 Try to repeat the earlier procedure for finding the function
Bmin defined by (1.2.2), where sup is replaced by inf .

Problem 1.2.3 Try to find the following Bellman function

B(x;m,M)
def
= sup

u,v

{ 1

|I|
∑

J∈D(I)

|(u, h
J
)| |(v, h

J
)|
}
,
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where the supremum is taken over the set of all pairs of weights u, v such that
〈u〉

I
= x1, 〈v〉I = x2, and m2 ≤ 〈u〉

J
〈v〉

J
≤M2, ∀J ∈ D(I).

As a result you have to prove the following theorem:

Theorem If two weights u, v ∈ L1(I) satisfy the condition

sup
J∈D(I)

〈u〉
J
〈v〉

J
≤M2,

then

1

|I|
∑

J∈D(I)

|J | |〈u〉
J+ − 〈u〉

J− | |〈v〉J+ − 〈v〉
J− | ≤ 16M

√
〈u〉

I
〈v〉

I
.

1.3 John–Nirenberg Inequality

A function ϕ ∈ L1(I) is said to belong to the space BMO(I) if

sup
J
〈|ϕ(s)− 〈ϕ〉

J
|〉

J
<∞

for all subintervals J ⊂ I . If this condition holds only for the dyadic
subintervals J ∈ D(I), we will write ϕ ∈ BMOd(I). In fact, the following is
true for any p, p ∈ (0,∞):

ϕ ∈ BMO(I) ⇐⇒
(
sup
J⊂I

1

|J |

∫
J

|ϕ(s)− 〈ϕ〉
J
|p ds

) 1
p

<∞.

If we factor over the constants, we get a normed space, where the expression
on the right-hand side can be taken as one of the equivalent norm for any
p ∈ [1,∞). In what follows, we will use the L2-based norm:

‖ϕ‖2BMO(I) = sup
J⊂I

1

|J |

∫
J

|ϕ(s)− 〈ϕ〉
J
|2 ds = sup

J⊂I

(
〈ϕ2〉

J
− 〈ϕ〉2

J

)
.

The BMO ball of radius ε centered at 0 will be denoted by BMOε. Using the
Haar decomposition

ϕ(s) = 〈ϕ〉
I
+

∑
J∈D(I)

(ϕ, h
J
)h

J
(s),

we can write down the expression for the norm in the following way:

‖ϕ‖2BMO(I) = sup
J⊂I

1

|J |
∑

L∈D(J)

|(ϕ, h
L
)|2

=
1

4
sup
J⊂I

1

|J |
∑

L∈D(J)

|L|
(
〈ϕ〉

L+ − 〈ϕ〉
L−

)2
.
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Theorem (John–Nirenberg [88]) There exist absolute constants c1 and c2 such
that ∣∣{s ∈ I : |ϕ(s)− 〈ϕ〉

I
| ≥ λ}

∣∣ ≤ c1e
−c2

λ
‖ϕ‖ |I|

for all ϕ ∈ BMOε(I).

An equivalent, integral form of the same assertion is the following:

Theorem There exists an absolute constant ε0 such that for any ϕ ∈
BMOε(I) with ε < ε0, the inequality

〈eϕ〉
I
≤ c e〈ϕ〉

I

holds with a constant c = c(ε) not depending on ϕ.

We shall prove the theorem in this integral form and find the sharp constant
c(ε). Our Bellman function

B(x; ε)
def
= sup

ϕ∈BMOε(I)

{〈eϕ〉
I
: bI(ϕ) = x} ,

where bI(ϕ)
def
= (〈ϕ〉

I
, 〈ϕ2〉

I
) is the Bellman point corresponding to the test

function ϕ and the interval I . It is clear that the set of all Bellman points is the
domain

Ωε
def
=
{
x = (x1, x2) : x

2
1 ≤ x2 ≤ x2

1 + ε2
}
,

i.e., Ωε is the domain where B is defined. Let us note from the beginning that
we will consider ε < 1 only because ϕ(s) = − log s ∈ BMO1([0, 1]) and
〈eϕ〉

[0,1]
=∞.

First, we will consider the dyadic problem and deduce the main inequality
for the dyadic Bellman function.

Lemma 1.3.1 (Main Inequality) For every pair of points x± from Ωε such that
their mean x = (x+ + x−)/2 is also in Ωε, the following inequality holds

B(x) ≥ B(x+) +B(x−)

2
. (1.3.1)

Proof The proof repeats almost verbatim the proof of the main inequality for
the Buckley’s Bellman function. We split the integral in the definition of B
into two parts, the integral over I+ and the one over I− :∫

I

eϕ(s) ds =

∫
I+

eϕ(s) ds+

∫
I−
eϕ(s) ds.
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Now we choose such functions ϕ± on the intervals I± that they almost give us
the supremum in the definition of B(x±), i.e,

1

|I±|

∫
I±
eϕ

±(s) ds ≥ B(x±)− η,

for a fixed small η > 0. Then for the function ϕ on I , defined as ϕ+ on I+ and
ϕ− on I−, we obtain the inequality

1

|I|

∫
I

eϕ(s) ds ≥ B(x+) +B(x−)

2
− η. (1.3.2)

Observe that the compound function ϕ is an admissible test function corre-
sponding to the point x. Indeed, x± = bI±(ϕ) and by construction ϕ± ∈
BMOd

ε(I
±); therefore, the function ϕ satisfies the inequality 〈ϕ2〉

J
− 〈ϕ〉2

J
≤

ε2 for all J ∈ D(I+), since ϕ+ does, and for all J ∈ D(I−), since ϕ− does.
Lastly, 〈ϕ2〉

I
− 〈ϕ〉2

I
≤ ε2, because, by assumption, x ∈ Ωε.

We can now take supremum in (1.3.2) over all admissible functions ϕ, which
yields

B(x) ≥ B(x+) +B(x−)

2
− η.

This proves the main inequality because η is arbitrarily small.

As in the case of the Buckley inequality, the next step is to derive a boundary
condition for B.

Lemma 1.3.2 (Boundary Condition)

B(x1, x
2
1) = ex1 . (1.3.3)

Proof The function ϕ(s) = x1 is the only test function corresponding to the
point x = (x1, x

2
1), because the equality in the Hölder inequality x2 ≥ x2

1

occurs only for constant functions. Hence, eϕ = ex1 .

Now we are ready to describe super-solutions as functions verifying the
main inequality and the boundary conditions.

Lemma 1.3.3 (Bellman Induction) If B is a continuous function on the domain
Ωε, satisfying the main inequality (1.3.1) for any pair x± of points from Ωε

such that x
def
= x++x−

2 ∈ Ωε, as well as the boundary condition (1.3.3), then
B(x) ≤ B(x).

Proof Fix a bounded function ϕ ∈ BMOε(I) and put x = bI(ϕ). As in the
case of Buckley inequality, we rewrite the main inequality in the form

|J |B(bJ ) ≥ |J+|B(bJ+) + |J−|B(bJ−),
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applying it first to I , then to the intervals of the first generation (that is I±),
and so on until Dn(I):

|I|B(bI)| ≥ |I+|B(bI+) + |I−|B(bI−)

≥
∑

J∈Dn(I)

|J |B(bJ ) =

∫
I

B(x(n)(s)) ds,

where x(n)(s) = bJ , when s ∈ J, J ∈ Dn(I). (Recall that Dn(I) stands
for the set of subintervals of n-th generation.) By the Lebesgue differentiation
theorem, we have x(n)(s) → (ϕ(s), ϕ2(s)) almost everywhere. Now, we can
pass to the limit in this inequality as n → ∞. Since ϕ is assumed to be
bounded, x(n)(s) runs in a bounded (and, therefore, compact) subdomain of
Ωε. Since B is continuous, it is bounded on any compact set and so, by the
Lebesgue dominated convergence theorem, we can pass to the limit in the
integral using the boundary condition (1.3.3):

|I|B(bI(ϕ)) ≥
∫
I

B(ϕ(s), ϕ2(s)) ds =

∫
I

eϕ(s)ds = |I|〈eϕ〉
I
. (1.3.4)

To complete the proof of the lemma, we need to pass from bounded to
arbitrary BMO test functions. To this end, we will use the following result:

Lemma 1.3.4 (Cut-Off Lemma) Fix ϕ ∈ BMO(I) and two real numbers c, d
such that c < d. Let ϕc,d be the cut-off of ϕ at heights c and d :

ϕc,d(s) =

⎧⎪⎪⎨⎪⎪⎩
c, if ϕ(s) ≤ c;

ϕ(s), if c < ϕ(s) < d;

d, if ϕ(s) ≥ d.

(1.3.5)

Then

〈ϕ2
c,d〉J − 〈ϕc,d〉2J ≤ 〈ϕ2〉

J
− 〈ϕ〉2

J
, ∀J, J ⊂ I,

and, consequently,

‖ϕc,d‖BMO ≤ ‖ϕ‖BMO.

Proof If we integrate the evident inequality

|ϕc,d(s)− ϕc,d(t)|2 ≤ |ϕ(s)− ϕ(t)|2

over J with respect to s and once more with respect to t, then dividing the
result over 2|J |2, we get the desired estimate.
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Now, let ϕ ∈ BMOε(I) be a function bounded from above. Then, by the

earlier lemma, ϕn
def
= ϕ−n,∞ ∈ BMOε(I). For the bounded function ϕn,

inequality (1.3.4) is true, i.e.,

B(〈ϕn〉I , 〈ϕ2
n〉I ) ≥ 〈eϕn〉

I
.

Since eϕ0 is a summable majorant for eϕn and B is continuous, we can pass
to the limit and obtain the estimate (1.3.4) for any function ϕ bounded from
above. Finally, we repeat this approximation procedure for an arbitrary ϕ. Now,
we take ϕn = ϕ−∞,n and we can pass to the limit in the right-hand side of the
inequality by the monotone convergence theorem.

So, we have proved the inequality

B(bI(ϕ)) ≥ 〈eϕ〉
I

for arbitrary ϕ ∈ BMOε(I). Taking supremum over all admissible test
functions corresponding to the point x, i.e., over all ϕ such that bI(ϕ) = x, we
get B(x) ≥ B(x).

As before, to come up with a candidate for the Bellman function, we pass
from the finite difference inequality (1.3.1) to the infinitesimal one:

d2B

dx2

def
=

⎛⎜⎜⎜⎜⎝
∂2B

∂x2
1

∂2B

∂x1∂x2

∂2B

∂x1∂x2

∂2B

∂x2
2

⎞⎟⎟⎟⎟⎠ ≤ 0, (1.3.6)

and we will require this Hessian matrix to be degenerate, i.e., det(d
2B
dx2 ) = 0.

Again, to solve this PDE, we use a homogeneity property to reduce the problem
to an ODE.

Lemma 1.3.5 (Homogeneity) There exists a function G on the interval [0, ε2]
such that

B(x; ε) = ex1G(x2 − x2
1), G(0) = 1.

Proof Let ϕ be an arbitrary test function defined on an interval I and x =

(〈ϕ〉
I
, 〈ϕ2〉

I
) its Bellman point. Then the function ϕ̃

def
= ϕ + τ is also a test

function with the same norm, and its Bellman point is

x̃ = (x1 + τ, x2 + 2τx1 + τ2).
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If ϕ runs over the set of all test functions corresponding to x, then ϕ̃ runs over
the set of all test functions corresponding to x̃ and vice versa. Therefore,

B(x̃) = sup
ϕ̃
〈eϕ̃〉

I
= eτ sup

ϕ
〈eϕ〉

I
= eτB(x).

Choosing τ = −x1, we get

B(x) = e−τB(x1 + τ, x2 + 2τx1 + τ2) = ex1B(0, x2 − x2
1).

Setting G(s) = B(0, s) completes the proof.

Since G > 0, we can introduce g(s) = logG(s) and look for a function B

of the form

B(x1, x2) = ex1+g(x2−x2
1).

By direct calculation, we get

∂2B

∂x2
1

=
(
1− 4x1g

′ + 4x2
1(g

′)2 − 2g′ + 4x2
1g

′′)B,

∂2B

∂x1∂x2
=
(
g′ − 2x1(g

′)2 − 2x1g
′′)B,

∂2B

∂x2
2

=
(
(g′)2 + g′′

)
B. (1.3.7)

The partial differential equation det(d
2B
dx2 ) = 0 then turns into the following

ordinary differential equation:(
1− 4x1g

′ + 4x2
1(g

′)2 − 2g′ + 4x2
1g

′′)((g′)2 + g′′
)

=
(
g′ − 2x1(g

′)2 − 2x1g
′′)2,

which reduces to

g′′ − 2g′g′′ − 2(g′)3 = 0. (1.3.8)

Dividing by 2(g′)3 (since we are not interested in constant solutions), we get(
1

g′
− 1

4(g′)2

)′
= 1,

which yields

1

g′
− 1

4(g′)2
= s+ const

or, equivalently,

−
(
1− 1

2g′

)2

= s+ const, ∀s ∈ [0, ε2].
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Since the left-hand side is nonpositive, the constant cannot be greater than−ε2.
Let us denote it by −δ2, where δ ≥ ε.

Thus, we have two possible solutions:

1− 1

2g′±
= ±

√
δ2 − s. (1.3.9)

Using the boundary condition g(0) = 0, we obtain

g±(s) =
1

2

∫ s

0

dt

1∓
√
δ2 − t

= log
1∓

√
δ2 − s

1∓ δ
±
√

δ2 − s∓ δ.

These functions are well defined for δ ∈ [ε, 1) and give us two solutions for B:

B±(x; δ) =
1∓

√
δ2 − x2 + x2

1

1∓ δ
exp

{
x1 ±

√
δ2 − x2 + x2

1 ∓ δ

}
.

(1.3.10)

For the function B = B+(x; δ), the Hessian d2B
dx2 is nonpositive and it

is nonnegative for B = B−(x; δ). This is possible to check either by the
direct calculation (see Problem 1.3.1) or using formula (1.3.9) for g′ and
expression (1.3.7) for Bx2x2

together with relation (1.3.8) between g′′ and
g′. Therefore, we have to choose our Bellman candidate among the family
of functions B = B+(x; δ), δ ∈ [ε, 1). Since

∂B

∂δ
=

δ2

(1− δ)2
exp

{
x1 ±

√
δ2 − x2 + x2

1 ∓ δ

}
,

i.e., B increases in δ, and we are interested in the minimal possible majorant,
it is natural to choose δ = ε. However, this choice does not give us the dyadic
Bellman function because for this function, the main inequality (1.3.1) is not
fulfilled (see Problem 1.3.3). This is in contrast to the Buckley’s Bellman
function from Section 1.2.

To choose the proper δ for a given ε is not a simple task and for this reason,
we refer the reader to [171]. Now we concentrate our attention on the function
B(x; ε). As already mentioned, this function is not concave in the strip Ωε

(i.e., inequality (1.3.1) is not fulfilled everywhere in Ωε), but it is locally
concave. This means that it is concave in every convex subset of Ωε because
its Hessian is negative.

The latter statement is simple, but for the reader who is not familiar with
the fact that a smooth function is locally concave in a domain if and only
if its Hessian is nonpositive in this domain, we present a proof. Let us
parametrize the interval [x−, x+] as follows: x(s) = (1 − s)x− + sx+,
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0 ≤ s ≤ 1, and put b(s)
def
= B(x(s)). Then for arbitrary α±, α+ + α− = 1,

we have

B(α−x− + α+x+)− α−B(x−)− α+B(x+)

= b(α+)− α−b(0)− α+b(1) = −
∫ 1

0

k(α, s)b′′(s) ds,

where

k(α, s) =

{
α−s for 0 ≤ s ≤ α+,

α+(1− s) for α+ ≤ s ≤ 1.

And since

b′′(s) =
2∑

i,j=1

Bxixj
(x(s))(x+

i − x−
i )(x

+
j − x−

j ) ≤ 0,

we have the required concavity condition

B(α−x− + α+x+) ≥ α−B(x−) + α+B(x+).

Our next goal is to show that B+(x, ε) is the Bellman function for
classical (non-dyadic) BMO. We need to modify the Bellman induction for this
situation because now we have significant freedom: We need to choose how to
split the interval on each step of induction. For a given test function ϕ, we will
split the interval I not in two equal halves as for dyadic case, but try to split it
in two parts I = I+ ∪ I− in such a way that the segment [bI− , bI+ ] is entirely
if not in Ωε then in a slightly larger domain Ωδ . If this were possible for some
δ, we could run the Bellman induction for B(x; δ) and get B(x; ε) ≤ B(x; δ).
If such a procedure were possible for every δ > ε, we could pass to the limit
δ → ε to get the final upper estimate B(x; ε) ≤ B(x; ε).

To realize this plan, we prove the following purely geometric result
that is crucial to applying the Bellman function method to the usual,
non-dyadic BMO.

Lemma 1.3.6 (Splitting Lemma) Fix two positive numbers ε and δ with
ε < δ. For an arbitrary interval I and any function ϕ ∈ BMOε(I), there
exists a splitting I = I+ ∪ I− such that the whole straight-line segment

[bI−(ϕ), bI+(ϕ)] is inside Ωδ . Moreover, the parameters of splitting α± def
=

|I±|/|I| are separated from 0 and 1 by constants depending on ε and δ only,
i.e., uniformly with respect to the choice of I and ϕ.

Proof Fix an interval I and a function ϕ ∈ BMOε(I). We now demonstrate
an algorithm to find a splitting I = I− ∪ I+ (i.e., choose the splitting
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parameters α± = |I±|/|I|) so that the statement of the lemma holds. For
simplicity, put x0 = bI and x± = bI± .

First, we take α− = α+ = 1
2 (see Figure 1.1). If the whole segment

[x−, x+] is in Ωδ, we fix this splitting. Assuming it is not the case, i.e., there
exists a point x on this segment with x2 − x2

1 > δ2. Observe that only one
of the segments, either [x−, x0] or [x+, x0], contains such points. Denote the
corresponding endpoint (x− or x+) by ξ and define a function ρ by

ρ(α+) = max
x∈[x−, x+]

{x2 − x2
1} = max

x∈[ξ, x0]
{x2 − x2

1}.

By assumption, ρ
(
1
2

)
> δ2.

Recall that our test function ϕ is fixed and the position of the Bellman points
x± depends on the splitting parameter α+ only. We will now change α+ so
that ξ approaches x0, i.e., we will increase α+ if ξ = x+ and decrease it if
ξ = x−. We stop when ρ(α+) = δ2 and fix that splitting. It remains to check
that such a moment occurs and that the corresponding α+ is separated from 0
and 1.

Without loss of generality, assume that ξ = x+. Since the function x+(α+)

is continuous on the interval (0, 1] and x+(1) = x0, ρ is continuous on [ 12 , 1].

We have ρ
(
1
2

)
> δ2 and we also know that ρ(1) ≤ ε2 < δ2 (because x0 ∈

Ωε). Therefore, there is a point α+ ∈
[
1
2 , 1
]

with ρ(α+) = δ2 (Figure 1.2).
Having just proved that the desired point exists, we need to check that the

corresponding α+ is not too close to 0 or 1. If ξ = x+, we have α+ > 1
2 and

ξ1−x0
1 = x+

1 −x0
1 = α−(x+

1 −x−
1 ). Similarly, if ξ = x−, we have α− > 1

2 and
ξ1− x0

1 = x−
1 − x0

1 = α+(x−
1 − x+

1 ). Thus, |ξ1− x0
1| = min{α±}|x−

1 − x+
1 |.

For the stopping value of α+, the straight line through the points x−, x+, and

Figure 1.1 The initial splitting: α− = α+ = 1
2

, ξ = x+.
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Figure 1.2 The stopping time: [x−, ξ] is tangent to the parabola x2 = x2
1 + ε2.

x0 is tangent to the parabola x2 = x2
1 + δ2 at some point y. The equation of

this line is, therefore, x2 = 2x1y1 − y21 + δ2. The line intersects the graph of
x2 = x2

1 + s2 at the points

x±(s) =
(
y1 ±

√
δ2 − s2, y2 ± 2y1

√
δ2 − s2

)
.

Let us focus on the points x±(0) and x±(ε). We have

[x−(ε), x+(ε)] ⊂ [x0, ξ] ⊂ [x−, x+] ⊂ [x−(0), x+(0)]

and, therefore,

2
√
δ2 − ε2 = |x+

1 (ε)− x−
1 (ε)| ≤ |x0

1 − ξ1| = min{α±}|x+
1 − x−

1 |

≤ min{α±}|x+
1 (0)− x−

1 (0)| = min{α±}2δ,
which implies √

1−
(ε
δ

)2
≤ α+ ≤ 1−

√
1−

(ε
δ

)2
.

As promised, this estimate does not depend on ϕ or I.

From now on, we shall consider not the dyadic Bellman function B, but the
“true” one:

B(x; ε)
def
= sup

ϕ∈BMOε(J)

{
〈eϕ〉

J
: 〈ϕ〉

J
= x1, 〈ϕ2〉

J
= x2

}
.

The test functions now run over the ε-ball of the non-dyadic BMO.
Using the splitting lemma, we are able to make the Bellman induction work

in the non-dyadic case.
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Lemma 1.3.7 (Bellman Induction) If B is a continuous, locally concave
function on the domain Ωδ, satisfying the boundary condition (1.3.3), then
B(x; ε) ≤ B(x) for all ε < δ.

Proof Fix a function ϕ ∈ BMOε(I). By the splitting lemma, we can split
every subinterval J ⊂ I in such a way that the segment [bJ− , bJ+ ] is inside
Ωδ . Since B is locally concave, we have

|J |B(bJ ) ≥ |J+|B(bJ+) + |J−|B(bJ−)

for any such splitting. Now we can repeat, word for word, the arguments
used in the dyadic case. Recall that In stands for the set of intervals of n-th
generation, then

|I|B(bI) ≥ |I+|B(bI+) + |I−|B(bI−)

≥
∑
J∈In

|J |B(bJ ) =

∫
I

B(x(n)(s)) ds,

where x(n)(s) = bJ , when s ∈ J, J ∈ In. By the Lebesgue differentiation
theorem, we have x(n)(s) → (ϕ(s), ϕ2(s)) almost everywhere. (We have
used here the fact that we split the intervals so that all coefficients α± are
uniformly separated from 0 and 1, and, therefore, max{|J | : J ∈ In} → 0

as n → ∞.) Now, we can pass to the limit in this inequality as n → ∞.
Again, first we assume ϕ to be bounded and, by the Lebesgue dominated
convergence theorem, pass to the limit in the integral using the boundary
condition (1.3.3)

|I|B(bI(ϕ)) ≥
∫
I

B(ϕ(s), ϕ2(s)) ds =

∫
I

eϕ(s)ds = |I|〈eϕ〉
I
.

Then using the cut-off approximation, we get the same inequality for an
arbitrary ϕ ∈ BMOε(I) such that bI(ϕ) = x for any given x ∈ Ωε.

Corollary 1.3.8

B(x; ε) ≤ B(x; δ), ε < δ < 1.

Proof The function B(x; δ) was constructed as a locally concave function
satisfying boundary condition (1.3.3).

Corollary 1.3.9

B(x; ε) ≤ B(x; ε). (1.3.11)

Proof Since the function B(x; δ) is continuous with respect to the parameter
δ ∈ (0, 1), we can pass to the limit δ → ε in the preceding corollary.
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Now, we would like to prove the inequality converse to (1.3.11). To this
end, for every point x of Ωε, we construct a test function ϕ with BMO-norm
ε, satisfying 〈eϕ〉 = B(x; ε), and such that its Bellman point is x. This would
imply the inequality B(x; ε) ≥ B(x; ε). Recall that such a test function that
realizes the extremal value for the functional under investigation is called an
extremizer.

First, we construct an extremizer ϕ0 for the point (0, ε2). Without loss of

generality, we can work on I = [0, 1]. Note that the function ϕa
def
= ϕ0 + a

will then be an extremizer for the point (a, a2 + ε2). Indeed, ϕa has the same
norm as ϕ0, and if

〈eϕ0〉 = B(0, ε2; ε) =
e−ε

1− ε
,

then

〈eϕa〉 = ea−ε

1− ε
= B(a, a2 + ε2; ε).

The point (0, ε2) is on the extremal line starting at (−ε, ε2). To keep equality
on each step of the Bellman induction, when we split I into two subintervals
I− and I+, the segment [x−, x+] has to be contained in the extremal line along
which our function B is linear. Since x is a convex combination of x− and x+,

one of these points, say x+, has to be to the right of x. However, the extremal
line ends at x = (0, ε2), and so there seems to be nowhere to place that point.
We circumvent this difficulty by placing x+ infinitesimally close to x and using
an approximation procedure. Where should x− be placed? We already know
extremizers for points on the lower boundary x2 = x2

1, since the only test
function there are constants. Thus, it is convenient to put x− there. Therefore,
we set

x− = (−ε, ε2) and x+ = (Δε, ε2),

for small Δ. To get these two points, we have to split I in proportion 1:Δ, that
is, we take I+ = [0, 1

1+Δ ] and I− = [ 1
1+Δ , 1]. To get the point x−, we have

I+ I−
0 1

1+Δ
1

ϕ0(t) ≈ ϕΔε((1 + Δ)t) −ε

to put ϕ0(t) = −ε on I−. On I+, we put a function corresponding not to the
point x+, but to the point (Δε, (1 + Δ2)ε2) on the upper boundary, which is
close to x+ (the distance between these two points is of order Δ2). For such a



26 1 Examples of Exact Bellman Functions

point, the extremal function is ϕΔε(t) = ϕ0(t)+Δε. Therefore, this function,
when properly rescaled, can be placed on I+. As a result, we obtain

ϕ0(t) ≈ ϕ0

(
(1 + Δ)t

)
+Δε ≈ ϕ0(t) + ϕ′

0(t)Δt+Δε,

which yields

ϕ′
0(t) = −ε

t
.

Taking into account the boundary condition ϕ0(1) = −ε, we get

ϕ0(t) = ε log
1

t
− ε.

Let us check whether we have found what we need. By the direct calculation,
we get: 〈ϕ0〉[0,1] = 0, 〈ϕ2

0〉[0,1] = ε2, and

〈eϕ0〉
[0,1]

=

∫ 1

0

e−ε dt

tε
=

e−ε

1− ε
= B(0, ε2; ε).

It is easy now to get an extremal function for an arbitrary point x in Ωε. First
of all, we draw the extremal line through x. It touches the upper boundary at
the point (a, a2 + ε2) with a = x1 +

√
ε2 − x2 + x2

1 and intersects the lower
boundary at the point (u, u2) with u = a− ε. Now, we split the interval [0, 1]
in the ratio (x1 − u) : (a − x1) and concatenate the two known extremizers,
ϕ = u for the x− = (u, u2) and ϕ = ϕa for x+ = (a, a2 + ε2). This gives the
following function:

ϕ(t) =

{
ε log x1−u

εt + u for 0 ≤ t ≤ x1−u
ε

u for x1−u
ε ≤ t ≤ 1

, (1.3.12)

where

u = x1 +
√

ε2 − x2 + x2
1 − ε.

This is a function from BMOε satisfying the required property 〈eϕ〉
[0,1]

=

B(x; ε) (see Problem 1.3.4 later on).
This completes the proof of the following theorem.

Theorem 1.3.10 If ε < 1, then

B(x; ε) =
1−

√
ε2 − x2 + x2

1

1− ε
exp

{
x1 +

√
ε2 − x2 + x2

1 − ε
}
;

if ε ≥ 1, then B(x; ε) =∞.

Indeed, the second statement can be verified by the same extremal function
ϕ because eϕ is not summable on [0, 1] for ε ≥ 1.
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Historical Remarks

The first proof of the theorem mentioned earlier was independently presented
in [168] and [183]; a complete proof of this result together with the estimate
from below (i.e., the lower Bellman function) and consideration of the dyadic
version of the problem can be found in [171]. The Bellman function for the
classical weak form of the John–Nirenberg inequality can be found in [185] or
in [191].

Exercises

Problem 1.3.1 Calculate the quadratic form of the Hessian
∑

i,j Bxixj
ΔiΔj

for the function B = B+(x, δ).

Problem 1.3.2 Find the extremal trajectories along which the Hessian degen-
erates. Check that these are the tangent line to the parabola y2 = y21 + δ2.

Problem 1.3.3 Check that for the function B = B+(x; δ) from (1.3.10), the
main inequality (1.3.1) is not true for some points. In particular,

B(u, u2+δ2;δ)≤
B(u− δ√

2
, (u− δ√

2
)2; δ) +B(u+ δ√

2
, (u+ δ√

2
)2 + δ2; δ)

2
.

Problem 1.3.4 Verify the following properties of the extremal function ϕ :

• 〈ϕ〉
[0,1]

= x1;

• 〈ϕ2〉
[0,1]

= x2;

• 〈eϕ〉
[0,1]

= B(x1, x2; ε);

• ϕ ∈ BMOε.

Problem 1.3.5 Recall that we also obtained a second solution in (1.3.10):

B−(x; ε) =
1 +

√
ε2 − x2 + x2

1

1 + ε
exp

{
x1 −

√
ε2 − x2 + x2

1 + ε
}
.

Check that this is the solution of the following extremal problem:

Bmin(x; ε)
def
= inf

ϕ∈BMOε(I)

{
〈eϕ〉

I
: 〈ϕ〉

I
= x1, 〈ϕ2〉

I
= x2

}
,

that is, check that the Bellman induction works and construct an extremal
function for every x ∈ Ωε.


