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The rapid growth of science and technology during the last few decades has made a tremendous 
change to the nature of various mathematical problems. It is not easy to solve these new problems 
for analytical solutions by conventional methods. In fact, the study of these mathematical 
problems for analytical solutions is not only regarded as a difficult endeavor, rather it is almost 
impossible to get analytical solutions in many cases. The tools for analysis and for obtaining 
the analytical solutions of complex and nonlinear mathematical systems are limited to very 
few special categories. Due to this reason, when confronted with such complex problems we 
usually simplify them by invoking certain restrictions on the problem and then solve it. But 
these solutions, however, fail to render much needed information about the system. These 
shortcomings of analytical solutions lead us to seek alternates, and various numerical techniques 
developed for different types of mathematical problems seem to be excellent options. During 
the last century, the numerical techniques have witnessed a veritable explosion in research, both 
in their application to complex mathematical systems and in the very development of these 
techniques. At many places in this book, we will compare numerical techniques with analytical 
techniques, and point out various problems which can not be solved through analytical 
techniques, and to which numerical techniques provide quite good approximate solutions.

Many researchers are using numerical techniques to investigate research problems. 
Numerical techniques are now widely used in a lot of engineering and science fields. Almost 
all universities now offer courses on introductory and advanced computer-oriented numerical 
methods to their engineering and science students, keeping in mind the utilization merits of 
these techniques. In addition, computer-oriented problems are part of various other courses of 
engineering/technology. 

Preface

There is no branch of mathematics, however abstract, which may not some day be 
applied to phenomena of the real world. 

Nikolai Ivanovich Lobachevsky 
(December 1, 1792–February 24, 1856)

His work is mainly on hyperbolic geometry, also known as Lobachevskian geometry.



xviii Preface

It gives me immense pleasure in presenting the book to our esteemed readers. This book is 
written keeping several goals in mind. It provides essential information on various numerical 
techniques to the students from various engineering and science streams. The aim of the book 
is to make the subject easy to understand, and to provide in-depth knowledge about various 
numerical tools in a simple and concise manner. 

Students learn best when the course is problem-solution oriented, especially when studying 
mathematics and computing. This book contains many examples for almost all numerical 
techniques designed from a problem-solving perspective. In fact, theoretical and practical 
introductions to numerical techniques and worked examples make this book student-friendly. 

While the main emphasis is on problem-solving, sufficient theory and examples are also 
included in this book to help students understand the basic concepts. The book includes 
theories related to errors and convergence, limitations of various methods, comparison of 
various methods for solving a specific type of problem and scope for further improvements, etc. 

The practical knowledge of any subject is thought to be an essential part of the curriculum 
for an engineering student. Numerical methods require tedious and repetitive arithmetic 
operations, wherein for large-scale problems it is almost impossible to do such cumbersome 
arithmetic operations manually. Fortunately most numerical techniques are algorithmic in 
nature, so it is easy to implement them with the aid of a computer. To enrich problem-solving 
capabilities, we have presented the basic C-programs for a wide range of methods to solve 
algebraic and transcendental equations, linear and nonlinear systems of equations, eigenvalue 
problems, interpolation problems, curve fitting and splines, numerical integration, initial and 
boundary value problems, etc. 

The section below provides an overview of the contents of the book. Each chapter contains 
a brief introduction and it also emphasis the need for numerical techniques for solving specific 
problems. We have provided exercises in all chapters with the aim of helping students check 
their capabilities and understanding, and also illustrate how various numerical methods are the 
better problem solvers. 

Chapter-by-chapter Introduction to the Book
The book comprises sixteen chapters.

Chapter 1: Number Systems explains integral and fractional numbers in the binary, octal, decimal 
and hexadecimal number systems. It also includes the conversion from one number system to 
another number system. 

Chapter 2: Error Analysis primarily presents various types of errors, and some standard remedies 
to trace and reduce these errors. 

Except Chapters 1 and 2, all other chapters of this book have been devoted to numerical 
techniques which are used to solve some specific type of problems. In each chapter, various 
numerical methods will be introduced to solve these problems. 

Chapter 3: Nonlinear Equations consists of various techniques to solve nonlinear equations in 
single variable. Primary aim is to determine the value of variable or parameter x, called root of 
the equation that satisfies the equation 

f x( ) = 0
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Roots of simple equations like quadratic equation x x2 3 2 0− + =  can be obtained easily. But 
in the case of higher order polynomial equations like 3 3 2 3 9 05 4 3 2x x x x x+ + − − + =  and 
transcendental equations viz. 2 0e x xx cos ,− =  we do not have any general method to compute 
the roots of these equations. Numerical techniques will be helpful for computing roots of such 
equations. 

Root
x

y = f(x)

f(x)

Fig. 1 Root of f x( ) = 0

1

1 32

2

3

4

5

y

y = x2 − 3x + 2

x

Fig. 2 Roots of x2 – 3x + 2 = 0

These problems are especially valuable in engineering design contexts where due to the 
complexity of the design equations it is often impossible to solve these equations with analytical 
methods. 

Chapter 4: Nonlinear Systems and Polynomial Equations deals with the numerical techniques to 

solve the systems of nonlinear equations, say, the system of two equations 
f x y
g x y

( , )
( , )

=
=

0
0

.

Root
x

f(x, y)

y

g(x, y)

Fig. 3 Solution of 
f x y
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=
=
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Fig. 4 Roots of 
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+ − − =
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The aim is to find coordinate (x, y), which satisfies these two equations simultaneously. Since 
there is no general analytical method for the solution of such systems of nonlinear equations, 
therefore we will apply numerical methods to solve such kind of problems. This chapter also 
includes some numerical methods for the roots of polynomial equations. 

Chapter 5: Systems of Linear Equations is devoted to obtain solution of the system of linear 
algebraic equations

a x a x a x b
a x a x a x b

a x a

n n

n n

n n

11 1 12 2 1 1

21 1 22 2 2 2

1 1

+ + + =
+ + + =

+

...
...





22 2x a x bnn n n+ + =...

  e.g.,  
x x x

x x x
x x x

1 2 3

1 2 3

1 2 3

2 3 15
2 3 15

3 9

− + =
− + =
+ − = −

 with n = 3.

In case of system of two algebraic equations, we have two lines, and their point of intersection 
is the solution. 

1

1

2

3

2

(1, 2)

x

y

y

3–1

–1

–2

–3

x+2*y = 5
3*x–y = 1

0

Fig. 5 Linear system in two variables (x, y)

Such equations have many important applications in science and engineering, specifically in the 
mathematical modeling of large systems of interconnected elements such as electrical circuits, 
structures, lattice and fluid networks, etc. In this chapter, we will discuss various direct and 
iterative methods to solve these systems of linear equations. Also, we will discuss problems that 
arise in applying these methods on the computer and some remedies for these problems.

Chapter 6: Eigenvalues and Eigenvectors is to deduce eigenvalues and eigenvectors for a square 
matrix A. A column vector X is an eigenvector corresponding to eigenvalue λ of a square matrix 
A, if 

AX X= λ .   (or) A X−( ) =λI 0

The nontrivial solutions of this homogeneous system exist, only if 

p A( ) detλ λ= −( ) =I 0
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These types of problems arise in different streams of science and engineering especially in the 
case of oscillatory systems like elasticity, vibrations, etc.

Chapter 7: Eigenvalues and Eigenvectors of Real Symmetric Matrices deals with the eigenvalues 
and eigenvectors of real symmetric matrices. Some methods are applicable only to real 
symmetric matrices. Since these methods are easy to implement and provide all the eigenvalues 
and eigenvectors at a time, hence need more exploration. 

Chapter 8: Interpolation is most important part of numerical methods, as it deals with the 
approximation of the data sets with the polynomials. This chapter deals with the task of 
constructing a polynomial function P(x) of minimum degree, which passes through a given 
set of discrete data points ( , ), , , ...,x y i ni i = 0 1 . This polynomial is known as interpolating 
polynomial. It estimates the value of the dependent variable y for any intermediate value of the 
independent variable, x.

p(λ) is the polynomial of degree n for a square matrix of order n. There are only n eigenvalues of 
matrix A, including repetitions (eigenvalues may be complex). The polynomial p(λ) is known as 
characteristic polynomial, and the equation p(λ) = 0 is called characteristic equation. 

For example, the characteristic equation for the matrix A =










1 2
3 2

 is given by

p A( )λ λ
λ

λ
λ λ= − =

−
−

= −( ) +( ) =I
1 2
3 2

4 1 0

The roots of the characteristic equation give eigenvalues – 1 and 4.

X

Y

Y

λY

λX

AX = λX

X

X

Fig. 6 Eigenvalue λ and eigenvector X of matrix A
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For example: consider the data set (0, –1), (1, 1), (2, 9), (3, 29), (5, 129). The aim is to construct a 
polynomial of minimum degree which passes through all these points. We will discuss methods 
to construct such polynomial. The polynomial P x x x( ) = + −3 1 is the required polynomial and 
it passes through all these points.

x

P(x)

f(x)

Fig. 7 Interpolation

1−1 2 3 4 5

160 y = x3 + x − 1
y

x

140

120

100

80

60

40

20

−20

Fig. 8 Interpolating polynomial for data set  
(0, –1), (1, 1), (2, 9), (3, 29), (5, 129)

A data set is either the table of values of well-defined functions or the table of data points 
from observations during an experiment. These types of problems are most common in 
various experiments where only inputs and corresponding outputs are known. In most of the 
experimental cases, we have data points, i.e., inputs (x) and correspondingly outputs (y). Also, 
many practical problems involve data points instead of the mathematical model for the problem. 
For example, Indian government carries out national census after a gap of 10 years to speculate 
about the development in population of country. Hence, we have populations in these years as 
follows:

Years Population (in crores)
1961 43.9235
1971 54.8160
1981 68.33229
1991 84.6421
2001 102.8737
2011 121.0193

This population data is exact up to four decimal digits. But, in intermediate years such as 1977, 
2010, etc., we do not have exact population. The numerical techniques can be used to compute 
approximate populations in these years.
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Except for data points, sometimes, we also require approximating different functions with 
polynomials due to the simple structure of the polynomials. The polynomials are also easy for 
analysis like differentiation and integration etc. 

This chapter is devoted to various techniques for the polynomial approximations of functions 
and data points. The chapter also includes the piecewise interpolation. 

Chapter 9: Finite Operators introduces various finite operators including finite difference 
operators (forward, backward and central difference operators) and other operators like average 
or mean operator, shift operator, and differential operator. The chapter contains the relations 
between these operators. This chapter also presents construction of finite difference tables and 
the error propagation in these tables. 

These finite difference operators are helpful in constructing solutions of difference equations 
and also used to construct interpolating polynomials for equally spaced points, as discussed in 
Chapter 10.

Chapter 10: Interpolation for Equal Intervals and Bivariate Interpolation contains some 
interpolation methods for equally spaced points. The methods discussed in Chapter 8 
are applicable for both unequally as well as equally spaced points. Rather, the interpolating 
polynomial obtained from any formula is unique, but for equally spaced points, the calculations 
for interpolation become simpler and hence need more exploration. 

We will also discuss the extension of interpolation from one independent variable to two 
independent variables known as bivariate interpolation. 

Chapter 11: Splines, Curve Fitting, and Other Approximating Curves discusses approximations of 
data set other than interpolation. In interpolation, we fit a polynomial of the degree ≤n to (n + 1) 
data points. But if the data set is large, say 50 data points, then it is impractical to fit a polynomial 
of degree 49 to the data set. In this case, other approximation techniques like least squares curve 
fitting, spline fitting, etc., can be used. In this chapter, we will discuss different approximation 
techniques which have certain advantages over interpolation in some real time problems. 

Curve fitting is to construct an approximate function f(x) (like exponential, polynomial, 
logistic curve, etc.) for a table of data points. 

x

f(x)

Fig. 9 Straight line fitting
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5

0

–5

0.5 1 1.5 2.52
x

Fig. 10 Cubic spline curve
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Interpolating polynomials have global effect, i.e., if we change a point in the data set, then 
complete polynomial will change. Also if we change the order of data points, the interpolating 
polynomial remain same, which is not recommended for certain applications like computer 
graphics and designing, etc. In these cases, we can apply Bězier and B-Spline curves. 

y

x

2

3 4

2

2

3

4

4

3

3

1 1

1

1

2

y

x

y

x

y

x

y

x

2

3 4

2

2

3

4

4

3

3

1 1

1

1

2

y

x

y

x

y

x

y

x

2

3 4

2

2

3

4

4

3

3

1 1

1

1

2

y

x

y

x

y

x

y

x

2

3 4

2

2

3

4

4

3

3

1 1

1

1

2

y

x

y

x

y

x

Fig. 11 Bězier curves

In approximations of any polynomial by lower order polynomial, the maximum absolute error 
can be minimized by Chebyshev polynomials. We can deduce best lower order approximation 
to a given polynomial by using Chebyshev polynomials.

The polynomial approximations are best approximations for smooth functions and 
experiments (data set). But if function/experiment behaves in chaos or singular manner (i.e. 
tends to infinity at some points), then we have to approximate with some other function. One 
of the functions is a rational function of polynomials, and the approximation is known as Padé 
approximation.

Chapter 12: Numerical Differentiation is devoted to obtaining numerical differentiation from 
discrete data points. This chapter elaborates some numerical differentiation techniques based 
on interpolation.
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a c b
x

f(x)

f(x)

dy
dx x=c

Fig. 12 Differentiation

Chapter 13: Numerical Integration deals with approximating the finite integral of the functions, 
which are complicated enough to integrate analytically. For example, we don’t have exact closed 

form solutions of integrations like 1 2

0

+∫ cos ,x dx
π

 
sin ,x

x
dx

1

2

∫  e dxx−∫
2

0

2

 etc. In these cases, we 

can simply apply numerical methods for the approximate solutions. Sometimes we have to 
find the integration from a set of discrete data points ( , ), , , ...,x y i ni i ={ }0 1 . It is not possible 

to integrate data points analytically, so it is imperative to approximate these integrations by 

numerical methods. For example, the value of integral y x dx( )
0

5

∫  for the given data set (0, –1),  

(1, 1), (2, 9), (3, 29), (5, 129) can be obtained only through numerical methods.

a b
x

f(x)

f(x)

a
f(x)dx

b
∫

Fig. 13 Integration
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Fig. 14 Numerical Integration
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Chapter 14: First Order Ordinary Differential Equations: Initial Value Problems provides a 
detailed description of standard numerical techniques for the solution of first order ordinary 
differential equation (ODE) with the initial condition 

dy
dx

f x y y x y= =( , ), ( )0 0

The ODE with initial conditions is known as initial value problem (IVP). Most of the physical 
laws have a rate of change of quantity rather than the magnitude of the quantity itself; e.g., 
velocity of any fluid (rate of change of distance), radioactive decay (rate of change of radioactive 
material), etc. Differential equations govern all these physical phenomena. This chapter contains 
some basic definitions on differential equations. 

The main aim of this chapter in to study numerical methods for the solutions of first order 
IVP. Differential equations, especially nonlinear, are not easy to solve analytically, as very few 
analytical methods exist in the literature for a limited class of differential equations. Hence, 
numerical methods play an important role in the theories of the differential equations. 

Consider the following examples 

i) 
dy
dx

x y y= + =2 1 2, ( )

ii) 
d y
dx

x
dy
dx

y y y
2

2 0 1 0 1= + = ′ =sin ; ( ) , ( ) , .etc

These examples are difficult to solve analytically, but we can use numerical techniques for 
approximate solutions of such ODEs. 

xi

h

y

x

Slope = f (xi , yi)

yi+1 = yi + hf (xi , yi)

Compute   y(x)

xi+1

Given = f(x, y)=
dy

dx

Δy

Δx

Fig. 15 First order ODE

Chapter 15: Systems of First Order ODEs and Higher Order ODEs: Initial and Boundary Value 
Problems elucidates the steps involved for finding numerical solutions of a system of first order 
ODEs and higher order ODEs with initial and boundary conditions, for examples 
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Systems of First Order ODEs:

i) 

dy
dx

x y z

dz
dx

z xy

y z

= + −

= −

= = −

2

0 1 0 1

sin( )

( ) , ( )

  ii) 

dy
dx

w x y z

dz
dx

z xy

dw
dx

x w y

y z

= + −

= −

= + −

= = −

sin( )

sin( )

( ) , ( ) ,

2

2

2

1 1 1 1 ww( ) .1 1 3=

Second and Higher Order Initial Value Problems

i) 
d y
dx

x
dy
dx

y y y
2

2 3 0 1 0 2+ + = = ′ =; ( ) , ( )

ii) 
d y
dx

x
d y
dx

xy x y y y
3

3

2

2 0 1 0 2 0 2+ + = = ′ = ′′ =sin cos ; ( ) , ( ) , ( )

Second and Higher Order Boundary Value Problems

i) x
d y
dx

x
dy
dx

y y y y2
2

2 1 3 0 2 0 1 1 3+ − + = + ′ = =( ) ; ( ) ( ) , ( )

ii) 
d y
dx

x
d y
dx

xy x y y y y
3

3

2

2 0 1 1 2 3 3 4+ + = = ′ = + ′′ = −sin cos ; ( ) , ( ) , ( ) ( )

In last chapter, we have described various numerical methods for the solutions of the first order 

ODE dy
dx

f x y y x y= =( , ); ( )0 0. In this chapter, we will generalize these methods to find the 

numerical solutions of system of first order ODEs. 
The chapter deals with the conversion of higher order ODEs to the systems of first order 

ODEs. This chapter also includes the finite difference approximations of derivatives and further 
solutions of boundary value problems using these finite differences. 

Chapter 16: Partial Differential Equations: Finite Difference Methods presents various finite difference 
methods for the solutions of some standard linear partial differential equations (PDEs). The finite 
difference method is a simple and most commonly used method to solve PDEs. In this method, we 
select some node points in the domain of the PDE. Various derivative terms in the PDE and the 
derivate boundary conditions are replaced by their finite difference approximations at these node 
points. The PDE is converted to a set of linear algebraic equations at node points. This system of 
linear algebraic equations can be solved by any direct/iterative procedure discussed in Chapter 5.  
The solution of this system of linear equations leads to the solution of PDE at node points. An 
important advantage of this method is that the procedure is algorithmic, and the calculations can 
be carried out on the computer. So, the solutions can be obtained in a systematic and easy way.

PDEs are of great significance in describing the systems in which the behavior of any physical 
quantity depends on two or more independent variables. Laplace and Poisson equations (steady-
state flow, fluid mechanics, electromagnetic theory and torsion problems), heat conduction 
equation (temperature distribution) and wave equation (vibrations, fluid dynamics, etc.) are 
some important examples of second order linear PDEs. Numerical techniques for the solution 
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of PDEs include finite difference methods (FDMs), finite volume methods (FVMs) and finite 
element methods (FEMs). This chapter contains only a few finite difference techniques for the 
solutions of following PDEs governing some important physical phenomena. 

Parabolic Equation (Heat Conduction or Diffusion Equation)

∂
∂

= ∂
∂

u
t

c u
x

2

2    (1-Dimensional heat conduction equation)

∂
∂

= ∂
∂

+ ∂
∂







= ∇u
t

c u
x

u
y

c u
2

2

2

2
2  (2-Dimensional heat conduction equation)

Elliptic Equation (Laplace and Poisson Equations)

∇ ≡ ∂
∂

+ ∂
∂

=2
2

2

2

2 0u u
x

u
y

  (Laplace equation in 2-dimensions)

∇ ≡ ∂
∂

+ ∂
∂

=2
2

2

2

2u u
x

u
y

f x y( , ) (Poisson equation in 2-dimensions)

Hyperbolic Equation (Wave Equation) 

∂
∂

= ∂
∂

2

2
2

2

2

u
t

c u
x

   (1-Dimensional wave equation)

The primary focus is on the preliminary material and the basic concepts of the finite difference 
techniques used in the book along with their application procedures to derive the numerical 
solutions of the PDEs.
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Fig. 16 Partial differential equations
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1.1 Introduction 

In everyday life, we are habituated to doing arithmetic using numbers based on the decimal 
system. Any number in the decimal number system, say for example, 349.15, can be 
expressed as a polynomial in the base or radix 10 with integral coefficients 0 to 9.

(349.15)10 = 3 ×102 + 4 ×101 + 9 ×100 + 1 ×10–1 + 5 ×10–2

In number 349.15, 349 is an integral part and .15 is a fractional part. Note that the subscript 
(10) in the number (349.15)10 denotes the base of the number system. 

There is no intrinsic reason to use the decimal number system. Computers read electrical 
signals, and the state of an electrical impulse is either on or off. Hence, binary system, with 
base 2 and with integer coefficients 0 and 1, is convenient for computers. However, most 
computer users prefer to work with the familiar decimal system. It is cumbersome to work 
with the binary number system, as a large number of binary digits are required to represent 
even a moderate-sized decimal number. Hence the octal and hexadecimal number systems 
are also used for this purpose. If the base is two, eight or sixteen, the number is called as the 
binary, octal or hexadecimal number, respectively. Any number x a a a a b bn n= −( . )1 1 0 1 2… … β  
with base β can be represented as follows

Number Systems Chapter 
1

All the mathematical sciences are founded on relations between physical laws and laws 
of numbers, so that the aim of exact science is to reduce the problems of nature to the 

determination of quantities by operations with numbers. 

In a few years, all great physical constants will have been approximately estimated, 
and that the only occupation which will be left to men of science will be to carry these 

measurements to another place of decimals. 

James Clerk Maxwell 
(June 13, 1831–November 5, 1879) 

He pioneered the classical theory of “Electromagnetism”.
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x a a a a b bn
n

n
n= + + + + + +−

− − −β β β β β β1
1

1 0
0

1
1

2
2… …  (1.1)

The number system with base β contains numbers from 0 to β–1. For examples, decimal 
number system, with base 10, contains numbers from 0 to 9. Similarly, binary system, with 
base 2, contains numbers 0 and 1. 

Table 1.1 Binary, Octal, Decimal and Hexadecimal Numbers

Binary
Base: 2
Digits: 0, 1

Octal
Base: 8
Digits:  0, 1, 2, 3, 4, 

5, 6, 7

Decimal
Base: 10
Digits:  0, 1, 2, 3, 4, 

5, 6, 7, 8, 9

Hexadecimal
Base: 16
Digits:  0, 1, 2, 3, 4, 5, 6, 7, 

8, 9, A, B, C, D, E, F
0000 00 00 0

0001 01 01 1

0010 02 02 2

0011 03 03 3

0100 04 04 4

0101 05 05 5

0110 06 06 6

0111 07 07 7

1000 10 08 8

1001 11 09 9

1010 12 10 A

1011 13 11 B

1100 14 12 C

1101 15 13 D

1110 16 14 E

1111 17 15 F

To work with the computer-preferred binary and the people-preferred decimal, and also 
with the octal and hexadecimal number systems, it is imperative to have algorithms for 
conversion from one number system to another number system. In the next two sections, 
some algorithms are discussed to convert the integral and fractional parts of a number from 
one number system to another number system.

1.2 Representation of Integers 

The arithmetic for various number systems with some examples has been discussed in this 
section. We will use this for conversion of integers in different number systems. 
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Explore the addition and multiplication in the decimal, binary, octal and hexadecimal 
number systems with some examples.

Decimal Arithmetic (For base 10, digits are 0 … 9) 
(1295)10 + (357)10 = (1652)10
(734)10 × (46)10 = (33764)10

Binary Arithmetic (For base 2, digits are 0 and 1)
(101011)2 + (11011)2 = (1000110)2
(11101)2 × (1001)2 = (100000101)2

Octal Arithmetic (For base 8, digits are 0 … 7)
(1635)8 + (274)8 = (2131)8 
(752)8 × (23)8 = (22136)8

Hexadecimal Arithmetic (For base 16, digits are 0 … 9, A, B, C, D, E, F)
(5AB7)16 + (F63)16 = (6A1A)16
(A4B)16 × (7A)16 = (4E7BE)16

Note: Arithmetic for numbers with base β:
Consider the addition of two numbers (1635)8 and (274)8 in the octal number system with 
the base β = 8. Note that, the addition of numbers 5 and 4 will produce number 9. For  
β = 8, we have 1 carry, and the remaining number is 1. Similarly, other calculations give 
the following result 

  1 1 1  Carry
 (1 6 3 5)8
 + (2 7 4)8

 (2 1 3 1)8
⇒ (1635)8 + (274)8 = (2131)8

Similarly, consider the multiplication of two numbers. For example, multiplication of 
numbers 7 and 5 will produce number 35. In octal system (base β = 8), for number 32, we 
have 4 carry; and remaining is 3. So, final result is ( ) ( ) ( )7 5 438 8 8× = . 

1.1Example

1.2.1 Conversion from Any Number System to the Decimal Number System 
Conversion from any number system to the decimal form may be obtained directly from 
the definition (1.1)

x a a a a b bn
n

n
n= + + + + + +−

− − −β β β β β β1
1

1 0
0

1
1

2
2… …

Some of the examples are as follows
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1.2.2 Conversion between Binary, Octal and Hexadecimal Number Systems 
Conversion in the binary, octal and hexadecimal can be accomplished easily since four/
three binary digits make one hexadecimal/octal digit, respectively. To convert from the 
binary to the octal/hexadecimal, we have to partition the binary digits in groups of three/
four (starting from right in an integral part and from left in fractional part) and then 
replace each group by its equivalent octal/hexadecimal digit. To convert from octal and 
hexadecimal, we have to replace all digits by their binary equivalents.

 
(1101.101)2 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 + 1 × 2–1 + 0 × 2–2 + 1 × 2–3 = (13.625)10

(347.623)8 = 3 × 82 + 4 × 81 + 7 × 80 + 6 × 8–1 + 2 × 8–2 + 3 × 8–3 = (231.787109375)10

(A5F.B42)16 = 10 × 162 + 5 × 161 + 15 × 160 + 11 × 16–1 + 4 × 16–2 + 2 × 16–3 

     = (2655.70361328125)10

 
(1101.101)2 = (001 101. 101) = ( ) ( . )001 101 101 15 5

1 5 5
8  . =

(1101.101)2 =(1101. 1010) = ( )1101 1010
D A

.  = (D.A)16  

(347.623)8 = (011 100 111. 110  010  011)
3 4 7 6 2 3

 = (11100111.110010011)2

(A5F.B42)16= ( )1010  0101 1111. 1011  0100  0010
A 5 F B 4 2

 = (101001011111.101101000010)2

{ {

{ { { { { {

{ { { { { {

1.2

1.3

Example

Example

1.2.3 Conversion from Decimal Number System to Any Other Number System
The conversion of the integer N in decimal number system to another number system can be 
easily obtained in a systematic manner described as follows. Let there be a number N with 
base β

N a a a an
n

n
n= + + + +−

−β β β1
1

1 0…
Division by the base β will give 

N a a a
a

n
n

n
n

β
β β

β
= + + + +−

−
−1

1
2

1
0…
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The digit a0 is the remainder after the base β divides the number N. Let us consider the 
above equation in the form

N N
a

β β
= +0

0 , where N a a an
n

n
n

0
1

1
2

1= + + +−
−

−β β …

On dividing N0 by base β, we get

N
a a

a
n

n
n

n0 2
1

3 1

β
β β

β
= + + +−

−
− …

The number a1 is the remainder. We can continue the process till the quotient is 0. 
Apparently, the conversion from decimal number system to a number system with base β 
can be achieved by the following algorithm.

N N a= +β 0 0

N N a0 1 1= +β

N N a1 2 2= +β



till the quotient is 0.

Convert the decimal number (231)10 into its binary equivalent.

Ans.

231 = 115 × 2 + 1 N a0 0115 1= =  

115 = 57 × 2 + 1  N a1 157 1= =

57 = 28 × 2 + 1  N a2 228 1= =

28 = 14 × 2 + 0  N a3 314 0= =

14 = 7 × 2 + 0  N a4 47 0= =

7 = 3 × 2 + 1  N a5 53 1= =

3 = 1 × 2 + 1  N a6 61 1= =

1 = 0 × 2 + 1  N a7 70 1= =

Thus the binary representation of the decimal number (231)10 is (11100111)2. It can be 
computed from the expression a a a an n−( )1 1 0 2

… .

1.4Example
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1.2.4 Conversion from One Number System to Any Other Number System 
So far, we have discussed the algorithms for conversion of integers in some number systems. 
The following recursive algorithm can be utilized for conversion of integers in any general 
number systems. 

Compute the hexadecimal equivalent of the decimal number (2655)10.

Ans.

2655 = 165 × 16 + 15   N a F0 0 10 16
165 15= = ( ) = ( )  

165 = 10 × 16 + 5  N a1 1 10 16
10 5 5= = ( ) = ( )

10 = 0 × 16 + 10   N a A2 2 10 16
0 10= = ( ) = ( )

So, (A5F)16 is hexadecimal equivalent of (2655)10. 

Convert the binary number (110111)2 into its decimal equivalent.

Ans.

(110111)2= 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20

Since the conversion is from binary to decimal, we will use decimal arithmetic for this 
conversion. Note that each digit in the following calculation is in decimal number system.

1.5

1.6

Example

Example

Consider a number N with the coefficients a a an n, , ... ,−1 0  

N a a a an
n

n
n= + + + +−

−β β β β1
1

1 0
0…

Calculate the following numbers b b bn n, , ... ,−1 0 recursively using 

b an n=

b a b i n ni i i= + = − −+1 1 2 0β , , , ...,

Then b N0 = . 

Algorithm 1.1
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Compute the binary equivalent of the decimal number (231)10 using recursive algorithm 1.1.

Ans.

(231)10 = 2 × 102 + 3 × 101 + 1 × 100  = (10)2 × (1010)2
2  + (11)2 × (1010)2 + (1)2

This conversion uses binary arithmetic as follows

 b a2 2 2
10= = ( )

 b a b1 1 2 2 2 2 2
11 10 1010 10111= + = ( ) + ( ) × ( ) = ( )β

 b a b0 0 1 2 2 2 2
1 10111 1010 11100111= + = ( ) + ( ) × ( ) = ( )β

Compute the octal equivalent of the decimal number (231)10.

Ans.

(231)10 = 2 × 102 + 3 × 101 + 1 × 100 = (2)8 × (12)8
2 + (3)8 × (12)8 + (1)8

On using octal arithmetic in the Algorithm 1.1, we have

 b a2 2 8
2= = ( )

 b a b1 1 2 8 8 8 8
3 2 12 27= + = ( ) + ( ) × ( ) = ( )β

 b a b0 0 1 8 8 8 8 8 8
1 27 12 1 346 347= + = ( ) + ( ) × ( ) = ( ) + ( ) = ( )β

 b a5 5 1= =

 b a b4 4 5 1 1 2 3= + = + × =β

 b3 0 3 2 6= + × =

 b2 1 6 2 13= + × =

 b1 1 13 2 27= + × =

 b0 1 27 2 55= + × =

1.7

1.8

Example

Example
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On multiplying the fraction x b b b bF k
k

k

= =−

=

∞

∑ β
1

1 2 3. … with base β, we get 

 β β βx b b bF k
k

k
k

k

k

= = +− +

=

∞

+
−

=

∞

∑ ∑1

1
1 1

1

Thus the number b1 is an integral part of the product βxF. On repeating the process, we 
find that b2 is an integral part of β βxF F( ) , b3 is an integral part of β β βxF F F

( )( )  and 
so on. One can easily conclude the following algorithm for a general base β from the 
procedure above.

Algorithm 1.2

1.3 Representation of Fractions 

In a number system with base β, the fractional part can always be written as follows

x bF k
k

k

= −

=

∞

∑ β
1

where bk is a non-negative integer less than the number β. If bk = 0 for all k greater than a 
positive integer, then the fractional part is said to be terminating otherwise non-terminating. 

For example 1
4

0 25= .  is terminating, while 1
6

0 166666= . ... is non-terminating. Conversion 

of the fractional part from one number system to another number system can be achieved 
with the help of the following algorithm. 

Convert the decimal number (2655)10 into hexadecimal number.

Ans.

(2655)16 = 2 × 103 + 6 × 102 + 5 × 101 + 5 × 100 

 
= ( ) × ( ) + ( ) × ( ) + ( ) × ( ) + ( )2 6 5 5

16 16

3

16 16

2

16 16 16
A A A

 b a3 3 16
2= = ( )

 b a b A A2 2 3 16 16 16 16 16 16
6 2 6 14 1= + = ( ) + ( ) × ( ) = ( ) + ( ) = ( )β

 b a b A A1 1 2 16 16 16 16 16 16
5 1 5 104 109= + = ( ) + ( ) × ( ) = ( ) + ( ) = ( )β

 b a b A A A A F0 0 1 16 16 16 16 16 16
5 109 5 5 5= + = ( ) + ( ) × ( ) = ( ) + ( ) = ( )β

1.9Example
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Let  c xF0 =

 b c c c
I F1 0 1 0= ( ) = ( )β β,

 b c c c
I F2 1 2 1= ( ) = ( )β β,

 
. . .

where subscript I denotes an integral part, while subscript F denotes the fractional part.

Calculate the binary equivalent of the decimal number (.3125)10 using the recursive 
algorithm 1.2.

Ans.

Let c0 10
3125= ( ).

 2 3125 6250 0 6250
10 10 1 1 10

. . .( ) = ( ) = = ( )b c

 2 6250 1 250 1 250
10 10 2 2 10

. . .( ) = ( ) = = ( )b c

 2 250 50 0 50
10 10 3 3 10

. . .( ) = ( ) = = ( )b c

 2 50 1 00 1 0
10 10 4 4 10

. .( ) = ( ) = = ( )b c

The binary equivalent of (.3125)10 is . .b b b b1 2 3 4 2 2
0101( ) = ( ) . This example has a terminating 

binary fraction, but not each terminating decimal fraction will give a terminating binary 
fraction, and this is true for other number systems also. 

Find the binary equivalent of the decimal number (0.3)10. 

Ans. 

Let c0 10
3= ( ).

 2 3 6 0 6
10 10 1 1 10

. . .( ) = ( ) = = ( )b c

 2 6 1 2 1 2
10 10 2 2 10

. . .( ) = ( ) = = ( )b c

 2 2 4 0 4
10 10 3 3 10

. . .( ) = ( ) = = ( )b c

 2 4 8 0 8
10 10 4 4 10

. . .( ) = ( ) = = ( )b c

 2 8 1 6 1 6
10 10 5 5 10

. . .( ) = ( ) = = ( )b c


Since the digits are repeating, we can conclude that the binary equivalent of (.3)10 is a non-
terminating fraction (.0 1001 1001 1001 …)2 (or) (. )01001

1.10

1.11

Example

Example



10 Numerical Methods

Find the decimal representation of the binary number (.0101)2.

Ans.

Using the algorithm 1.2 and binary arithmetic, we get

 c0 2
0101= ( ).

 ( ) . . ( ) .1010 0101 11 0010 11 3 00102 2 2 1 2 10 1 2( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( ) .1010 0010 1 010 1 1 0102 2 2 2 2 10 2 2( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( ) .1010 010 10 10 10 2 102 2 2 3 2 10 3 2( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( )1010 10 101 0 101 5 02 2 2 4 2 10 4 2( ) = ( ) = = ( ) = ( )b c

Hence (.3125)10 is decimal equivalent of the binary fraction (.0101)2.

Convert the octal fraction (.71)8 to its equivalent decimal representation.

Ans.

Let c0 8
71= ( ).

 ( ) . . ( ) .12 71 10 72 10 8 728 8 8 1 8 10 1 8( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( ) .12 72 11 04 11 9 048 8 8 2 8 10 2 8( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( ) .12 04 0 5 0 0 58 8 8 3 8 10 3 8( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( ) .12 5 6 2 6 6 28 8 8 4 8 10 4 8( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( ) .12 2 2 4 2 2 48 8 8 5 8 10 5 8( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( )12 4 5 0 5 5 08 8 8 6 8 10 6 8( ) = ( ) = = ( ) = ( )b c

The decimal representation is (.890625)10.

Convert the hexadecimal fraction (.B4)16 to its equivalent decimal representation.

Ans.

Let c B0 16
4= ( ).

( ) . . ( ) .A B b c16 16 16 1 16 10 1 16
4 7 08 7 7 08( ) = ( ) = = ( ) = ( )

( ) . . .A b c16 16 16 2 10 2 16
08 0 5 0 5( ) = ( ) = ( ) = ( )

1.12

1.13

1.14

Example

Example

Example
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( ) . . .A b c16 16 16 3 10 3 16
5 3 2 3 2( ) = ( ) = ( ) = ( )

( ) . . .A b c16 16 16 4 10 4 16
2 1 4 1 4( ) = ( ) = ( ) = ( )

( ) . . .A b c16 16 16 5 10 5 16
4 2 8 2 8( ) = ( ) = ( ) = ( )

( ) . .A b c16 16 16 6 10 6 16
8 5 0 5 0( ) = ( ) = ( ) = ( )

The decimal representation is (.703125)10.

For conversion from one number system to another number system, one can separately convert 
the integral and fractional part and then combine them. For example, the decimal equivalent 
of the number (.B4)16 is (.703125)10 and decimal equivalent of the number (A5F)16 is (2655)10. 
Therefore decimal equivalent of the number (A5F.B4)16 is (2655.703125)10.

Exercise 1 

1. Perform the given arithmetic in the following examples, where the subscript in the number 
represents the base of the number system:

 a) (583)10 + (3057)10    b) (312)10 × (281)10

  c) (10110111)2 + (101011)2   d) (10101)2 × (1101)2 

  e) (6047)8 + (165)8    f ) (536)8 × (37)8 
  g) (3A73)16 + (E84)16    h) (85D)16 × (23)16 

Ans. a) (3640)10  b) (87672)10 c) (11100010)2 d) (100010001)2

  e) (6234)8  f ) (25142)8 g) (48F7)16 h) (124B7)16

2. Convert the following numbers into their decimal equivalents:

 a) (11011.110)2   b) (67.243)8   c) (2A7.3F)16 

Ans. a) (27.75)10  b) (55.31835938)10  c) (679.2460938)10

3. Find the binary, octal and hexadecimal forms of the following numbers:

 a) (101101.110)2   b) (573.42)8   c) (A05.9A)16

Ans. a) [(55.6)8, (2D.C)16]   b) [(101111011.10001)2, (17B.88)16]
  c) [(101000000101.10011010)2, (5005.464)8]

4. Compute the binary, octal and hexadecimal equivalents of the decimal number (5680)10.

Ans. (1011000110000)2, (13060)8, (1630)16

5. Use the algorithm 1.1 for the following conversions:

 a) (1101101)2 in decimal   b) (5691)10 in octal 
 c) (237)8 in decimal  d) (110111)2 in hexadecimal
 e) (2AD3)16 in decimal   f ) (4529)10 in hexadecimal
 g) (438)10 in binary  h) (110111)2 in octal

Ans. a) (109)10 b) (13070)8 c) (159)10  d) (37)16

  e) (10963)10 f ) (11B1)16 g) (110110110)2 h) (67)8
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6. Obtain the following conversions for the fractional numbers with the aid of recursive algorithm 1.2

 a) (.1101101)2 in decimal   b) (.50)10 in octal  
 c) (.237)8 in decimal  d) (.A3)16 in decimal 
 e) (.45)10 in hexadecimal  f ) (.325)10 in binary

Ans. a) (.8515625000)10 b) (.40)8  c) (.3105468750)10

  d) (.1367187500)10 e) (.73)16  f ) (.0101001)2

7. Obtain the decimal equivalents of the numbers (A23.4D)16, (126.54)8, (10101.11)2.

Ans. (2595.300781)10, (86.6875)10, (21.750000)10

8. Compute the binary, octal and hexadecimal equivalents of the decimal number (238.40)10.

Ans. (11101110.01100)2, (356.3146)8, (EE.6)16 

9. Calculate the decimal equivalent of the octal number (. )647 8 with the aid of the recursive 
algorithm.

Ans. (.8261718750)10 



Numerical methods use arithmetic operations to solve complex mathematical problems. 
The numerical processes are algorithmic, so these methods can be applied easily with the 
advent of high-speed computers. In fact, the development of more efficient computers 
has played a vital role in a veritable explosion in the usage of numerical techniques for 
engineering and scientific problems. The common characteristic of numerical techniques 
is that all these involve cumbersome arithmetic operations. During the implementation of 
the numerical techniques on a computer, we often come across various types of errors. The 
precisions (number of digits in the representation of a number) of a numerical solution 
can be diminished by these several possible errors. This chapter deals with various types of 
errors, and some standard remedies to trace and reduce these errors. 

In Section 2.1, measurement of the error will be discussed. Section 2.2 presents the 
various sources of errors in mathematical modeling of a real world problem. The study of 
errors during the implementation of numerical methods for the solution of a mathematical 
model is the primary objective of Section 2.3. The last section is about some interesting 
discussion on error.

2.1 Absolute, Relative and Percentage Errors 

The difference between the exact value and an approximate value of a quantity is called 
error in the measurement. Its absolute value is called absolute error. Let x be the exact value 
and x be an approximate value of a given quantity; then the absolute error is given by

Error Analysis Chapter
2

I claim to be a simple individual liable to err like any other fellow mortal. I own, however, 
that I have humility enough to confess my errors and to retrace my steps. 

Mohandas Karamchand Gandhi (Mahatma Gandhi)  
(October 2, 1869–January 30, 1948) 

He embraced non-violent civil disobedience and led India to independence  
from British rule. 
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Absolute error = E x xa = − 

Absolute error is not a complete measurement of the error. For example, let absolute error in 
any quantity be 0.1 m. This information is not complete until we define the quantity for the 
0.1 m error. If the 0.1 m error is in 10000 m, then it is small enough to be ignored. But, we 
cannot neglect 0.1 m error if it is in 1 m. In fact, the error in any quantity depends on the size 
of that quantity, so relative error and percentage error are the best measurements of the error. 

The relative and percentage errors are defined as follows

 Relative error = E x x
xr = − 

 Percentage error = E E x x
xp r= = −100 100


Let there exist a number ε > 0, such that x x− ≤ ε . Then ε is an upper limit of the absolute 
error and measures the absolute accuracy. 

The relative and percentage errors are independent of the units of the quantities used 
while the absolute error is expressed in terms of these units.

An approximation to the value of π is given by 22
7

, while its true value in 8 decimal digits 

is 3.1415926. Calculate the absolute, relative and percentage errors in the approximation.

Ans. Exact value = x = 3.1415926

Approximate value = 
x  = 22

7
 = 3.1428571

E x xa = − = − = 0 0012645 0 0012645. .

E x x
xr = − = =
 0 0012645

3 1415926
0 000402502.

.
.

E E x x
xp r= = − =100 100 0402502


. %

2.1Example

To recognize the major sources of errors and then how to quantify or minimize these errors 
in the numerical computations are the primary objectives of this chapter. 
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Revision of Model
if Necessary Modeling

Error

Obtainable for Limited Problems Error in Numerical Computation

Numerical Solution

Mathematical Model

Real World Problem

Exact Solution

Interpretation of
Solution

Implementation of
Model

Fig. 2.1 Steps in solving a real world problem 

In fact, the error is a multifaceted problem, but it mainly arises during two stages: error 
occurred during the mathematical modeling of the real world problem, and error when we 
solve the mathematical model numerically.

In this chapter, we will discuss different types of errors: those encountered during the 
first step (modeling) and the second step (mathematical model to the solution). 

Analysing any real world problem involves the following three major steps: the first step 
is to convert the real world problem into a mathematical model; the second step is to solve 
that model analytically or numerically; and the last step is to analyze the obtained solution 
for its physical and real-time significance. 

After the analysis part is complete, we implement the model for its application. 
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2.2 Errors in Modeling of Real World Problems 

The errors in modeling are not directly connected with numerical techniques, but they have 
a profound impact on the success of a model. Thus, before implementation of a numerical 
method to the mathematical model, we must have knowledge of the following errors 

1. Modeling Error
2. Error in Original Data (Inherent Error)
3. Blunder

2.2.1 Modeling Error 
Most of the physical phenomena in nature are inherently nonlinear, and the mathematical 
models governing these physical systems must be nonlinear. In real world phenomena, it 
is not possible to include nonlinearity and all other parameters in the mathematical model 
which govern the situation. For example, while introducing a model for calculating the 
force acting on the free falling body, it is not always possible to include the air resistance 
coefficient (drag coefficient) properly. It is not possible to exactly measure the magnitude 
and direction of the wind force acting on a free-falling body. We simplify the problem by 
assuming that wind force acting on the body is directly proportional to the velocity of the 
body. There are many simplifications in each mathematical model, and certainly, these 
simplifications produce errors in the mathematical model. Further, the model itself is not 
perfectly governing the situation itself. To check the validity of such models in the real 
world problem, we may need to perform sensitivity analysis. If our mathematical model is 
inadequate or inaccurate, then, in that case, obtained results are erroneous. 

To reduce such errors, we must ensure that the mathematical model must be formulated 
and refined by incorporating more features of the situation, which are essential to reduce 
the error. Simply, the error can be reduced by working with the best model.

2.2.2 Error in Original Data (Inherent Error) 
The mathematical model of any physical situation always has associated quantities which 
are imperfectly known. The reason is that the modeled problem often depends on some 
instruments whose measurements are of doubtful accuracy. For example, if we want to 
compute the area of a circular disk, then the radius of the disk is required. But, we cannot 
measure the radius of the disk with perfect accuracy as very high precision machines can 
measure up to the accuracy of maximum 5 to 6 decimal digits. Inherent errors can be 
minimized using high precision computing systems and by taking better data.

2.2.3 Blunder 
There is extensive use of the computer in applications of various numerical techniques; 
chances that the computers make mistakes are very less. But, during the implementation of 
algorithms on computers, we can make mistakes at various steps, like problem formulations, 
selection of numerical procedures, programming, and result interpretations, etc. These lead 
to blunders or gross errors. Some frequent and common types of errors are as follows
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i) Inaccurate or inadequate knowledge of the nature of the problem.
ii) Avoiding certain important features of the problem during formulation of the 

problem.
iii)  Some wrong assumptions during the formulation of the problem.
iv) Error in selecting the mathematical equation, which describes a part of the 

problem.
v) Errors in input data. 
vi) Selection of an inappropriate numerical process to determine a solution of the 

mathematical model.
vii) Implementing a wrong algorithm or avoiding certain important features of a 

mathematical model in the algorithm. 
viii) Starting with a wrong initial guess. 
ix) Other simple mistakes like misprints, wrong subscripts in variables, forgetting 

unit conversion, forgetting negative sign, etc. 
x) Implementing infinite series without having knowledge of the convergence. 

These errors can be reduced to a large extent by acquiring a hold over various intricacies of 
the real world phenomena, mathematical modeling of the phenomena and the numerical 
methods for the solutions of these mathematical models. We must carefully examine the 
results to avoid such blunders, and a test run with known results is worthwhile in this 
regard. Test problems more often reveal the mistake and permit its correction.

2.3 Errors in Implementation of Numerical Methods 

In this section, we will discuss those errors, which are due to the way that computers store 
numbers and do arithmetic. In any numerical computation, we come across following types 
of errors

i) Round-off Error
ii) Overflow and Underflow
iii) Floating Point Arithmetic and Propagated Error
iv) Truncation Error
v) Machine eps (Epsilon)
vi) Epilogue
vii) Loss of Significance: Condition and Stability

There are several potential sources of errors in numerical computation. But, round-off and 
truncation errors can occur in any numerical computation. 

2.3.1 Round-off Error 
During the implementation of a numerical algorithm with computing devices mainly 
calculator and computer, we have to work with a finite number of digits in representing 
a number. The number of digits depends on the word length of the computing device 
and software. The scientific calculations are carried out in floating point arithmetic. It is 
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necessary to have knowledge of floating point representations of numbers and the basic 
arithmetic operations performed by the computer (+, -, *, /) in these representations. 

Floating Point Representation of Numbers
To understand the major sources of error during the implementation of numerical algorithms, 
it is necessary to discuss how the computer stores the numbers.

An m -digits floating point number in the base β is of the following form

x d d d dm
n= ± ⋅⋅⋅( ). 1 2 3 β

β

where .d d d dm1 2 3 ⋅⋅⋅( )β
 is called as a mantissa and the integer n is called the exponent. A non-

zero number is said to be normalized if d1 0≠ .
All the real numbers are stored in normalized form in the computer to avoid wastage of 

computer memory on storing useless non-significant zeroes. For example, 0.002345 can be 
represented in a wasteful manner as (0.002345)100 which is wasting two important decimal 
points. However, the normalized form is (0.2345)10–2, which eliminates these useless zeroes; 
also known as spurious zeroes. 

If we want to enter the number 234.1205, then this number stored in the computer in 
normalized form, i.e., (0.2341205)103. Similarly, the number 0.00008671213 stored in the 
computer in normalized form (0.8671213)10 – 4.

The digits used in mantissa to express a number are called as significant digits or 
significant figures. More precisely, digits in the normalized form mantissa of a number are 
significant digits. 

a) All non-zero digits are significant. For examples, the numbers 3.1416, 4.7894 and 
34.211 have five significant digits each.

b) All zeroes between non-zero digits are significant. For examples, the numbers 
3.0156 and 7.5608 have five significant digits each. 

c) Trailing zeroes following a decimal point are significant. So, the numbers 3.5070 
and 76.500 have five significant digits each. 

 (Why the number 5.1 has two significant digits, and number 5.10 has three 
significant digits? To explain this, let us assume we are reading Chapter 5 of a book, 
and it contains 12 sections. The number 5.1 represents first section of Chapter 5, 
while the number 5.10 represents tenth section of Chapter 5.) 

d) Zeroes between the decimal point and preceding a non-zero digit are not significant. 
i.e., the numbers 0.0023401 and 0.00023401 have five significant digits each. 

e) Trailing zeroes are significant if the decimal point is not present, i.e., the numbers 
45067000 and 45000 have eight and five significant digits, respectively.

To compute the significant digits in a number, simply convert the number in the normalized 
form and then compute the significant digits. 

There is a limit on the mantissa (m) and exponent (n) as the storage capacity of any 
machine is finite. The precision or length m of the floating point numbers usually depends 
on the word length of the computer and software, and it may vary widely. For example, in 
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single precision (float variable, 32 bits), the C-programming allows 23 bits for mantissa 
(m), 8 bits for exponent (n), and 1 bit for sign (±). Similarly, double variable gives 52 bits 
for mantissa, 11 bits for exponent, and 1 bit for sign. Note that the calculations in double 
precision require more storage and more running time as compared to single precision.

To understand the limit on storing capacity of the computer, consider the number 10/3. 
Since the computer can enter the number only in normalized form, hence the computer 
first solves 10/3 = 3.333333…, and then stores the number. There are infinite numbers of 
3’s in the expression, but computer will store the number up to its capacity. Let the capacity 
of the computer be ten digits (i.e., mantissa limit m <= 10), then the number will store as 
(0.3333333333)101. All computing devices represent such numbers with some imprecision. 
For examples, 5/3 =1.6666666…, 2 1 414213= . ...  and π = 3 141592. ...  cannot be expressed 
by a finite number of digits, since the computer cannot store 50/3, 2, etc. These numbers 
may be approximated by rounding off the last precision to m-digits floating point number. 
For example, let m = 6, then we can approximate 50/3, 2  and π by numbers 16.6667, 
1.41421 and 3.14159, respectively. 

This process of rounding off the numbers during the computation will give rise to round off 
errors.

Rounding and Chopping
Rounding and chopping are two commonly used ways of converting a given real number x 
into its m-digits floating point representation fl(x). In the case of chopping, the number x is 
retained up to m-digits, and remaining digits are simply chopped off. For example, consider 
6-digits floating point representation, then

x fl x

x fl x
x

1 1

2 2
7

3

2
3

0 666666

3456789 345678 10
0 001

= =

= = ( )
= −

( ) .

( ) .
. 11223344 112233 103

2fl x( ) (. )= − −

In rounding, the normalized floating point number fl(x) is chosen such that it is nearest to 
the number x. In the case of a tie, some special rules such as symmetric rounding can be 
used. Rules to round off a number to m significant figures are as follows

i) Discard all digits to the right of m-th digit.
ii) If the last discarded number is 

a) less than half of base β in the (m + 1)th place, leave the m-th digit unchanged;
b) greater than half of base β in the (m + 1)th place, increase the m-th digit by 

unity;
c) exactly half of base β in the (m + 1)th place, increase the m-th digit by unity if 

it is odd, otherwise leave the m-th digit unchanged. It is known as symmetric 
rounding around even number. Similarly, we can have symmetric rounding 
about odd number. 

Consider the following numbers with 6-digits floating point representation
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x fl x

x fl x
x

1 1

2 2
7

3

2
3

0 666667

3456789 345679 10
0 001

= =

= = ( )
= −

( ) .

( ) .
. 11223344 112233 103

2fl x( ) (. )= − −

The difference between x and fl(x) is called the round-off error. If the number is correct up 
to p decimal points, then the maximum absolute error in chopping and rounding is given by

Absolute error = E x fl xa

p

p
= − ≤







−

−
( )

1
2

β

β

 in rounding

in chopping
 

For example, if the number 12.345 (β = 10) is correct up to digits mentioned, then the 
maximum absolute error in this number is .001 in the case of chopping, and it is .0005 in 
the case of rounding. 

The relative error in the floating point representation of x is as follows

Relative Error = δ = −x fl x
x

( )

Let the number be correct up to m significant digits in normalized form. Then the maximum 
relative error is given by the following expression

δ
β

β
≤







−

−

1
2

1

1

m

m

 in rounding

in chopping

For example, let us assume that the number 123.45 (β = 10) is correct up to digits mentioned. 
It contains five significant digits, so the maximum relative error in this number is .0001 in 
the case of chopping, and it is .00005 in the case of rounding. 

Note: It is worth mentioning here that generally we use rounding. Until it is not mentioned to 
use chopping specifically, we will use rounding for computational work throughout the book. 

Consider the irrational number π = 3.14159265358979... It has an infinite number of digits. 
So, computer representation of the number π will produce the round-off error depending 
on the number of significant digits in arithmetic. In Table 2.1, we are presenting the 
absolute and percentage errors for 1,2,…,6 significant digits, while considering the exact 
value of π = 3.141593.

2.2Example
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Table 2.1

Number  
of digits

Approximation  
for π (Rounding)

Absolute  
error

Percentage 
error

1 3 0.141593 4.507045%

2 3.1 0.041593 1.323946%

3 3.14 0.001593 0.050707% 

4 3.142 0.000407 0.012955% 

5 3.1416 0.000007 0.000234%

6 3.14159 0.000003 0.000095%

Compute the absolute and relative errors in the four significant digits approximations of 
the numbers 124678 and 345.635.

Ans. Four significant digits approximations of the numbers 124678 and 345.635 are as 
follows

fl x
x
x

( )
.
. .

=
( ) =

( ) =







1247 10 124678
3456 10 345 635

6

3
   rounding

fl x
x
x

( )
.
. .

=
( ) =

( ) =







1246 10 124678
3456 10 345 635

6

3
   chopping

Absolute error = E x fl xa = − =
− =
− =






( )

. . .
124678 124700 22
345 635 345 6 035

 rounding

 E x fl xa = − =
− =
− =






( )

. . .
124678 124600 78
345 635 345 6 035

 chopping

 Relative error = E
x fl x

xr =
−

=
( )
( )







−

−

( ) .
.
1764545 10
1012628 10

3

3   rounding

 E
x fl x

xr =
−

=
( )
( )







−

−

( ) .
.
6256116 10
1012628 10

3

3   chopping

2.3Example
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The true value of π correct to 8-significant digits is 3.1415926. Calculate the absolute and 
relative error.

Ans. The value is correct up to 7-decimal digits, so the maximum absolute errors in case 

of rounding and chopping are 1
2

10 7−  and 10 7− , respectively.

Relative error in rounding = E X X
Xr = − ′ = × = ×

−
−0 5 10

3 1415926
0 15915494 10

7
7.

.
.

Relative error in chopping = Er = = ×
−

−10
3 1415926

0 31830989 10
7

7

.
.

2.4Example

2.12346 2.12347

Gap between
the numbers

Fig. 2.2 Gaps between floating point numbers 

In fact, using computer, we can only represent finite numbers of real numbers and in 
between every two such numbers, we have infinite numbers, which cannot be represented 
by the computer. 

2.3.2 Overflow and Underflow 
The normalized form for an m -digits non-zero floating point number in the base β is given 
by

x d d d dm
n= ± ⋅⋅⋅( ). 1 2 3 β

β , d1 0≠

where .d d d dm1 2 3 ⋅⋅⋅( )β
 is called as mantissa and the integer n is called as exponent. 

It is easy to see that, in between every two numbers, there are infinitely many numbers, which we 
cannot represent exactly using the computer. Let us consider the machine with 6–digits floating 
point arithmetic. Consider any two numbers, say 2.12346 and 2.12347. Then, it is easy to see 
that we cannot represent the in-between numbers like 2.1234652, 2.12346521, 2.1234603112, 
etc. and these are infinitely many numbers. 



Error Analysis 23

The exponent n is restricted to a range l < n < L, for integers l and L; generally l = – L. 
This limit varies widely and depends on the computational device used. If in the floating 
point representation of a number x, the exponent n exceeds the limit, i.e., either x L≥ β
(overflow) or 0 1≤ ≤ −x lβ  (underflow), it results either in a stop or else fl(x) is represented 
by a special number (either 0 or infinity). These special numbers are not subject to the usual 
rules of arithmetic when combined with ordinary floating point numbers. 

Let a hypothetical computer with maximum ten digits mantissa and exponent range 
(–20, 20) in the decimal number system, then the overflow and underflow can be structured 
in the following figure 

Minimum
−.9999999999 × 1020

Maximum
.9999999999 × 1020

Overflow

−0.1 × 10−20 0.1 × 10−20

Overflow

Underflow
(“Gap” at zero)

Fig. 2.3 Overflow and underflow

Rather the limit is quite awesome, but it is not able to represent physical quantities like 
Avogadro’s number (6.022 × 1023) and Plank’s constant (6.626 × 10–34 J.s.), etc.

2.3.3 Floating Point Arithmetic and Error Propagation
In the last section, we have discussed the errors in number representations. These errors 
further propagate while performing basic arithmetic operations using a computer. The 
result of an arithmetic operation is usually not accurate to the same length as the numbers 
used for the operations. The floating point numbers are first converted into the normalized 
forms as soon as they enter in the computer. 

Here we will explain the arithmetic operations with 6-significant digits numbers. For 
example, let us take numbers x = 123.456 and y = 12.3456 with six significant digits. The 
various arithmetic operations (+, – , *, /) on these two numbers are as follows

x + y = (.123456)103 + (.123456)102 (Normalized form)
 = (.123456)103 + (.012346)103 (Equal exponent using symmetric rounding)
 = (.135802)103 
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 x – y = (.123456)103 – (.123456)102 
 = (.123456)103 – (.012346)103 (Equal exponent using symmetric rounding)
 = (.111110)103 

 x * y = (.123456)103 * (.123456)102 
 = (.123456) * (.123456) 103+2 (Add the exponents)
 = (.015241)105 
 = (.152410)104

 x / y = (.123456)103 / (.123456)102 
 = (.123456) / (.123456) 103–2 (Subtract the exponents)
 = (1.00000)101 
 = (0.100000)102 

Note: If two floating point numbers are added or subtracted, first they are converted into 
the numbers with equal exponents. The results in various arithmetic operations are not 
correct up to six significant digits due to rounding errors.

It is worth mentioning here that the result of subtraction of two nearly equal numbers leads 
to a very serious problem, i.e., loss of significant digits. For example, consider six significant 
digits numbers x = 123.456 and y = 123.432, then

 x – y = (.123456)103 –(.123432)103 (Normalized form)
 =  (.000024)103 (Result containing only two significant digits, four non-significant 

zeroes are appended)

This subtraction of two nearly equal numbers is called as subtractive cancellation or loss 
of significance. It is a classical example of computer handling mathematics can create a 
numerical problem. We will discuss it, in detail, in Section 2.3.7.

2.3.3.1 Propagated Error in Arithmetic Operations 

Propagated errors are the errors in the succeeding steps of a process due to an earlier error 
in the input. For example, error in the division of two numbers due to local errors in the 
numbers. In this section, we will see how errors in numbers may propagate through basic 
mathematical operations viz. addition, subtraction, multiplication, and division of two 
numbers. 

Consider any two numbers x1 and x2. Let the errors in the numbers x1 and x2 be δx1 and δx2, 
respectively. Then errors in the addition, subtraction, multiplication, and division of these 
two numbers are as follows 

i) Addition
Let X = x1 + x2 and the error in X is δX.
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X X x x x x+ = + + +δ δ δ1 1 2 2

δ δ δX x x= +1 2

Absolute Error = δ δ δX x x≤ +1 2

Relative Error = 
δ δ δX
X

x
X

x
X

≤ +1 2  (2.1)

ii) Subtraction
Similarly, the error in subtraction X = x1 – x2  is given by

δ δ δX x x= −1 2

Absolute Error = δ δ δX x x≤ +1 2

Relative Error = δ δ δX
X

x
X

x
X

≤ +1 2  (2.2)

iii) Multiplication
Let X = x1x2, then

X X x x x x
x x x x x x x x

+ = +( ) +( )
= + + +

δ δ δ
δ δ δ δ

1 1 2 2

1 2 2 1 1 2 1 2

Neglecting second order term (δx1δx2), the error in the multiplication of two numbers is as 
follows

δ δ δX x x x x= +2 1 1 2

Absolute Error = δ δ δX x x x x≤ +2 1 1 2

Relative Error = 
δ δ δX
X

x
x

x
x

≤ +1

1

2

2

 (2.3)

iv) Division

Let X
x
x

= 1

2

, then
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X X
x x
x x

x x
x x

x x
x x

x x

+ =
+
+

=
+
+







−
−







=

δ
δ
δ

δ
δ

δ
δ

1 1

2 2

1 1

2 2

2 2

2 2

1 22 2 1 1 2 1 2

2
2

2
2

+ − −
−

x x x x x x
x x

δ δ δ δ
δ

On neglecting the second order terms (δx1δx2 and δ x2
2 ), the error is given by

δ
δ δ

X
x x x x

x
=

−2 1 1 2

2
2

Absolute Error = δ
δ δ

X
x

x
x x

x
≤ +1

2

1 2

2
2

Relative error = 
δ δ δX
X

x
x

x
x

≤ +1

1

2

2

 (2.4)

The numbers x1 = 0.123 and x2 = 12.37 are correct up to the significant digits in the 
numbers. Compute the relative errors in the addition, subtraction, multiplication and 
division of these two numbers. Consider symmetric rounding. 

Ans. Absolute errors in the numbers x1 = 0.123 and x2 = 12.37 are δx1 = .0005 and  
δx2 = .005, respectively.
Using the formulae (2.1 – 2.4) for various error terms, we have 

Relative error in the addition = δ δ δX
X

x
X

x
X

≤ +1 2 , where X x x= +1 2

 = + =.
.

.
.

.0005
12 493

005
12 493

000440246538

 Relative error in subtraction = δ δ δX
X

x
X

x
X

≤ +1 2 , where X x x= −1 2

 
= + =.

.
.
.

.0005
12 247

005
12 247

000449089573

Relative error in multiplication and division = +
δ δx
x

x
x

1

1

2

2

 
= + =.

.
.

.
.0005

123
005

12 37
004469244369

2.5Example
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Calculate the absolute and relative errors in the expression a
b
c

bc+ −5 3 , if the measurements 

of a = 3.5435, b = .2588 and c = 1.0150 are possibly correct up to four decimal points. 

Ans. Let x a b
c

bc A B C= + − = + −5 3 5 3 , where A a B b
c

= =,  and C bc= .

Value of x a b
c

bc= + −5 3  = 4.03033

Error in a, b and c is δ δ δa b c= = = .00005

Absolute error in A = δ A = .00005

Absolute error in B = δ
δ δ

B
c b b c

c
=

+
=

+( ) ×
=2 2

1 015 0 2588 00005
1 015

00006182
. . .

( . )
.

Absolute error in C = δ δ δC c b b c= + = +( ) × =1 015 0 2588 00005 00006369. . . .

Absolute error in x = δ δ δ δx A B C≤ + +5 3

 = + +. (. ) (. )00005 5 00006182 3 00006369

 = .0005502

Relative error in x = 
δ x
x

= =.
.

.0005502
4 03033

0001365

Percentage error in x = 0.01365%

2.6Example

2.3.3.2 Error Propagation in Function of Single Variable 

Let us consider a function f(x) of a single variable, x. Assume that the variable x has some 
error and its approximate value is x . The effect of error in the value of x on the value of 
function f(x) is given by

∆f x f x f x( ) ( ) ( )= − 

Evaluating Δf(x) is difficult as the exact value of x is unknown and hence exact f(x) is 
unknown. But if x  is close to x and the function f(x) is infinitely differentiable in some 
interval containing the points x  and x, then Taylor series can be employed as follows 

f x f x x x f x x x f x( ) ( ) ( ) ( ) ( )
!

( ) ...= + − ′ + −
′′ +  





2

2
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Since the difference ( )x x−   is very small, hence neglecting the second and higher order 
terms of ( )x x−   will give following relation

f x f x x x f x( ) ( ) ( ) ( )− − ′


 

or ∆f x x x f x
x f x

( ) ( )
( )


 




− ′
∆ ′

 (2.5)

where ∆f x f x f x( ) ( ) ( )= −   represents the estimated error in the function value and 
∆x x x= −   is the estimated error of x.

Let x = 3 42.  be an approximate value of the variable x with an error bound ∆x = 0 003. . 
Compute the resulting error bound in the function value f x x( ) = 3.

Ans. From Eq. (2.5), the resulting error in the function f(x) is given by

∆f x( ) ( . ) ( . ) .= =0 003 3 3 42 0 10526762

Note that the approximate function value is f ( . ) .3 42 40 001688= . Therefore, the predicted 
value of f(x) must be in the range

f ( . ) . .3 42 40 001688 0 1052676= ±

Equivalent Statement for Example 2.7: Let us assume that we want to compute the volume 
of a cube. We measure its length with a machine and find out that it is 3.42m. Let us also 
assume that the machine can measure with maximum error 0.003m. Find the volume of 
the cube. 

2.7Example

2.3.3.3 Error Propagation in Function of More than One Variable

General Error Formula

The approach above can be generalized to the function of more than one independent 
variable. Let y f x x xn= ( , ,..., )1 2  be a function of n-independent variables x x xn1 2, ,..., .  Let 
δ δ δx x xn1 2, ,...,  be the errors in calculating the variables x x xn1 2, ,..., , respectively. Let error 
in y be δ y , i.e.,

y y f x x x x x xn n+ = + + +δ δ δ δ( , ,..., )1 1 2 2

When the required partial derivatives exist, then Taylor’s series expansion is given by
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y y f x x x
f
x

x
f
x

x
f
x

xn
n

n+ = + ∂
∂

+ ∂
∂

+ + ∂
∂







δ δ δ δ( , ,..., ) ...1 2
1

1
2

2 +

 + terms involving second and higher powers of δ δ δx x xn1 2, ,...,  (2.6)

The errors in the numbers x x xn1 2, ,...,  are small enough to neglect the second and higher 
degree terms of the numbers δ δ δx x xn1 2, ,..., . We can obtain the following result from Eq. 
(2.6)

δ δ δ δy f
x

x f
x

x f
x

x
n

n≈ ∂
∂

+ ∂
∂

+ + ∂
∂1

1
2

2 ...  (2.7)

Equation (2.7) is known as the general error formula. Since the error term may be of any 
sign, (+)ve or (–)ve, we can take absolute values of the terms in the expression.

δ δ δ δy f
x

x f
x

x f
x

x
n

n≈ ∂
∂

+ ∂
∂

+ + ∂
∂1

1
2

2 ...

Compute the absolute and relative errors in the function f x y z
y x

z
( , , )

sin( )
=

2

34
 at x = 1 

and y = z = 5, if the errors in the values of x, y and z are 0.05.

Ans. On using general error formula (2.7), the error δ f x y z( , , )  in f x y z( , , )  is given by

 
δ δ

δ
δ δ

δ
δ δ

δ
δf x y z

f
x

x
f
y

y
f
z

z( , , ) = + +

 
= + −

y x
z

x
y x

z
y

y x
z

z
2

3 3

2

44 2
3

4
cos( ) sin( ) sin( )δ δ δ

Absolute error = y x
z

x
y x

z
y

y x
z

z
2

3 3

2

44 2
3

4
cos( ) sin( ) sin( )δ δ δ+ +

 = .001350756 + .000841471 + .001262206

 = .003454433

 Relative error = 
δ f x y z

f x y z
( , , )

( , , )
.
.

.= =003454433
04207355

082104624

2.8Example
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2.3.4 Truncation Error 
An infinite power series (generally Taylor series) represents the local behavior of a given 
function f(x) near a given point x = a. Approximation of an infinite power series with its 
finite number of terms, while neglecting remaining terms, leads to the truncation error. If 
we approximate the power series by the n-th order polynomial, then truncation error is of 
order n + 1. 

The radius r and height h of a right circular cylinder are measured as .25 m and 2.4 m, 
respectively, with a maximum error of 5%. Compute the resulting percentage error in the 
volume of the cylinder. Assume the value of π is exact for calculation.

Ans. The value of π is exact for calculation, so the volume V r h= π 2  is dependent only on 
radius r and height h of the cylinder i.e., V V r h= ( , ) . Therefore, the error δ V r h( , ) in the 
volume is given by 

δ δ δ π δ π δV r h V
r

r V
h

h rh r r h( , ) = ∂
∂

+ ∂
∂

= ( ) + ( )2 2

The radius r and height h of the cylinder are measured with a maximum error of 5% i.e.

δ δr
r

h
h

= = 0 05.

The relative error in volume V r h( , )  is given by

R E
V r h

V

r h
rh r r h

r
r

h
h

. .
( , )

( . ) .

=

= ( ) + ( )( )
= +

= +

δ

π
π δ π δ

δ δ

1 2

2

2 0 05 0 0

2
2

55 0 15= .

Percentage error in the volume of cylinder = R.E. × 100 = 15% 

2.9Example
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Taylor series for the function f(x) at the point x = a is given by

 
f x f a x a f a x a f a x a

n
f a

n
n( ) ( ) ( ) ( ) ( )

!
( ) ( )

( )!
( )= + − ′ + −

′′ + ⋅⋅⋅+ − +( )
2

2
⋅⋅⋅⋅

(Or) f x f a x a f a x a f a x a
n

f a
n

n( ) ( ) ( ) ( ) ( )
!

( ) ( )
( )!

( )= + − ′ + −
′′ + ⋅⋅⋅+ − +( )

2

2
RR xn( )

where R x x a
n

fn

n
n( ) ( )

( )!
( )= −

+

+
+( )

1
1

1
ξ  for some ξ  between a and x. 

On replacing x a h= + , we get following form of the Taylor series

f a h f a h f a h f a h
n

f a R
n

n( ) ( ) ( ) ( ) ( )
!

( ) ( )
( )!

( )+ = + ′ + ′′ + ⋅⋅⋅⋅⋅⋅+ +( )
2

2 nn x( )

where R x h
n

f a a hn

n
n( ) ( )

( )!
( ); .=

+
< < +

+
+( )

1
1

1
ξ ξ

For a convergent series, R xn( ) → 0  as n → ∞ . Since it is not possible to compute an infinite 
number of terms, we approximate the function f x( )  by first n-terms, and neglecting higher 
order terms. Then the error is given by remainder term R xn( ) . The exact value of ξ  is not 
known, so the value of ξ  is such that the error term considered is maximum.

Use the following Taylor series expansion to compute the value of irrational number e. 

e x x xx = + + + + ⋅⋅⋅1
2 3

2 3

! !

Create a table for absolute and percentage errors with numbers of terms n = 1, 2, … 6 of 
Taylor series approximations. For the exact value of e, use e = 2.718282. 

Ans. Computation of exact value of ex  requires an infinitely long series. Approximating 
ex  with the Taylor series to n terms gives an inexact answer. Table 2.2 contains Taylor 
series approximations of e of order n = 1, 2, …6. It also contains absolute and percentage 
errors in these approximations

2.10Example
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Calculate the number of terms required in Taylor series approximation of sin(x) to 

compute the value of sin π
12







 correct up to 4-decimal places.

Ans. Using Taylor series of sin(x) at point x = 0, we have 

sin( )
! !

( )
( )!

( ) ( )x x x x x
n

R x
n

n
n= − + + ⋅⋅⋅+

−
− +

−
−

−

3 5 2 1
1

2 13 5 2 1
1

If we retain only first 2n–1 terms in this expression, then the error term is given by

R x x
n

f xn

n
n

2 1

2
2

2
0−

( )= < <( ) ( )
( )!

( ); .ξ ξ  at x = =π
12

0 2618.

The maximum value of f n2( )( )ξ  is 1. The error term must be less than .00005 for 4-decimal 
points accuracy

R x
nn

n

2 1

20 2618
2

00005− = ≤( ) ( . )
( )!

.

⇒ ≥2 5n

Hence, 4-decimal points accuracy can be achieved by computing more than five terms of 
Taylor series.

2.11Example

Table 2.2

Number  
of terms

Taylor Series of ex

Approximation  
for the function 

e

Absolute  
error

Percentage 
error

1 ex = 1 1 1.718282 63.212058%

2 e xx = +1 2 0.718282 26.424116%

3 e x
xx = + +1
2

2

!
2.500000 0.218282 8.030146% 

4 e x
x xx = + + +1
2 3

2 3

! !
2.666667 0.051615 1.898810% 

5 e x
x x xx = + + + +1
2 3 4

2 3 4

! ! !
2.708333 0.009948 0.365966% 

6 e x
x x x xx = + + + + +1
2 3 4 5

2 3 4 5

! ! ! !
2.716666 0.001616 0.059449%
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The Gauss error function erf x e dtt
x

( ) = −∫
2 2

0π
 is used widely in probability theory (e.g., 

normal distribution), statistics and partial differential equations. But the exact integral is 
not available for a finite value of x, so we use approximations. For example, one way is to 
use Taylor polynomial for the function e t− 2

 and compute the resulting integration. 

Compute the approximate value of the error function erf e dtt0 1 2 2

0

0 1

.
.

( ) = −∫π
 by using 

first four terms of the Taylor series. 

Ans. Taylor series of e t− 2

 at t = 0 is given by 

e t t tt− = − + − + ⋅⋅⋅
2

1
2 3

2
4 6

! !

Using the Taylor polynomial of first four terms, we have

erf x e dt

t t t dt

x x x

t
x

x

( ) =

= − + −






= − +

−∫

∫

2

2 1
2 3

2
3 1

2

0

2
4 6

0
3 5

π

π

π

! !

00 42

7

−






x

At x = 0.1, we have

erf e dtt0 1 2 0 112463
2

0

0 1

. .
.

( ) = =−∫π

2.12Example

2.3.5 Machine eps (Epsilon)
Machine epsilon for a given machine, for example a computer, is defined as the smallest 
positive number which, when added to 1, gives a number different from 1. In fact, the 
machine epsilon defines the lowest floating point number, which can take part in the 
arithmetic for a given machine. Machine epsilon depends on round-off of the floating point 
numbers. Since rounding is machine dependent, so machine epsilon also varies with the 
machine. Machine epsilon characterizes computer arithmetic in numerical analysis. The 
quantity is also called as macheps or unit round-off, and it has the symbol epsilon ε.
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2.3.6 Epilogue 
In following chapters, we will see that several alternative numerical methods are available 
for the solution of any problem. In the selection of any method, we have to keep in mind 
all aspects of the problems and the method itself. Only from experience can we develop the 
skill for right selection and this skill has a prominent role in effective implementation of 
the method. Following are the deciding factors for selection of a numerical method and its 
implementation to the problem.

1. Type of mathematical problem
2. Computer available
3. Development cost
4. Characteristics of the numerical method
5. Mathematical behavior of the problem
6. Ease of application
7. Maintenance

2.3.7 Loss of Significance: Condition and Stability 
In this section, we will study the two related concepts of condition and stability for function 
and process, respectively. The condition is used to describe the sensitivity of the function 
and stability is used to describe the sensitivity of the process. 

Condition:
The sensitivity of the function f(x) with the change in the argument x is described by the 
condition number (CN). It is a relative change in the function f(x) for per unit relative 
change in x. CN of the function f(x) at any point x is given by 

CN = 

f x f x
f x
x x

x

f x f x
x x

x
f x

( ) ( )
( ) ( ) ( )

( )

−

−
= −

−









For small change in x, Lagrange mean value theorem gives

f x f x

x x
f x( ) ( ) ( )−

−
≈ ′

∼

∼

So, CN is given by 

CN = xf x
f x

′( )
( )

 (2.8)

If CN ≤1, then the function f(x) is said to be well-conditioned. Otherwise, it is said to be 
ill-conditioned. The function with large CN is more ill-conditioned as compared to the 
function with small CN. 
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Note: Let us consider a mathematical model of any system, in which variable x gives input, 
and output is the function f(x). If a small relative change in x (input) produces a large relative 
change in output f(x), then the system is said to be a sensitive system as fluctuation in input 
may break the system. Mathematically, if CN is large, then the function is more sensitive to 
changes and function is ill-conditioned. 

Find the CNs of the functions f x x( ) =  and x3.

Ans. Using Eq. (2.8), we have

CN of the function x  = 
xf x

f x

x x

x
′ =







=

−

( )
( )

1
2 1

2

1
2

CN of the function x3  = xf x
f x

x x

x
′ =

( )
=

( )
( )

3
3

2

3

CN of the function x  is less than 1, so the function x  is well conditioned. The function 
x3  is an ill-conditioned function as CN > 1. 

2.13Example

Check the condition of the function f x
x x

( ) =
− +

1
1 2 2  at x = 1.01.

Ans.

f x
x x x

( )
( )

=
− +

=
−

1
1 2

1
12 2

 CN = 
xf x

f x

x
x

x
x

x

′ =

−
−( )











−( )










=
=

=

( )
( )

.

.

1 01

3

2

1 01

2
1

1
1

202

The function f x
x x

( ) =
− +

1
1 2 2

 at x = 1.01 is highly ill-conditioned function. The function 

has a singular point x = 1, so near this point, there are sharp changes in the function value, 
which make the function highly ill-conditioned.

2.14Example
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Find the CN of the function f x x x( ) = + −1  at point x = 11111.

Ans.

CN = 
xf x

f x

x
x x

x x

x

′ = +
−







+ −
≈

=

( )
( )

1
2 1

1
2

1
1
2

11111

2.15Example

Compute the function f x x x
x x

( ) = + − =
+ +

1 1
1

 by using both the formulae at 

point x = 11111. Use six significant digits floating point rounding arithmetic. 

Ans. We have two formulas f x x x( ) = + −1  and f x
x x

( ) =
+ +

1
1

 to compute the 

function f x( )  at point x = 11111. We will use both the formulas with six significant digits 
arithmetic, and see that both the processes will produce different results for the same 
function. 

Process-I: f x x x( ) = + −1

f x( )
. .

.

= −
= −
=

11112 11111
105 413 105 409
004

Process-II: f x
x x

( ) =
+ +

1
1

f x( )

. .

.
.

=
+

=
+

=

=

1
11112 11111

1
105 413 105 409

1
210 822
0 00474334

Note that, the exact result up to 6 significant digits is .00474330. 

2.16Example
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Stability of the Process: 
It is clear from Example 2.16 that computation of the same function from two different 
processes can produce different results. There are following two major phases for 
computation of the function value f x( ) :

i) First phase is to check the condition of the function by computing the CN of the 
function. 

ii) Second phase is to check the stability of the process involved in the computation 
of the function. The stability of process can be checked by calculating the 
condition of each step in the process. 

The function f x x( ) / ( )= −1 1 2  is ill-conditioned (CN 1 ) near x = ±1. If the function is 
ill-conditioned then whatever process we will use, it tends to error. So every process will 
produce an error in computation of the function value f x x( ) / ( )= −1 1 2  near x = ±1. 

The function f x x x( ) = + −1  at x = 11111 is well conditioned (CN ≈ 1/2, Example 
2.15). If the function is well conditioned, then we have to compute the function value by the 
stable process. If even a single step of the process is ill-conditioned, then the whole process 
is an unstable process, and we have to switch over to any other alternate stable process.

Discuss the stability of the Processes-I and II in Example 2.16. Hence, validate the results 
that the Processes-I yields erroneous result and Process-II produces a more accurate result 
for the same function f x( ) .

Ans. 
We will calculate the CN of each step involved in both the Processes-I and II.

Process-I: f x x x( ) = + −1

f x( )
. .

.

= −
= −
=

11112 11111
105 413 105 409
004

2.17Example

Note: Here, it is candidly seen that if we compute the function f x x x( ) = + −1  directly, 
then it is error-prone. This is due to the fact that if we subtract two approximately equal 
numbers, then there is a loss of significant digits. For example in Process-I, when we 
subtract 105.413 and 105.409, then these two numbers are correct up to six significant 
digits, but the result .004 contains only one significant digit. Since there is a loss of five 
significant digits, so the result obtained is highly erroneous. This step can be avoided by 
rationalizing the function f x( ). The result obtained in Process-II after rationalization is 
correct up to five significant digits. 
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Various computational steps in the process are as follows

x1 11111=    (f(x) = Constant, CN = 0)

x x2 1 1 11112= + =   (f(x) = x + 1, CN = 1)

x x3 2 105 413= = .   ( f x x( ) = , CN = ½)

x x4 1 105 409= = .   ( f x x( ) = , CN = ½)

x x x5 4 3 004= − = .   ( f x x x( ) = − 3  and f x x x( ) = −4 , CN  26352)

In the last step x x x5 4 3= − , we can assume the function f x( )  of variable x3  or x4 . Let 
f x x x( ) = −4 , so condition for this step is given by

CN = 
xf x

f x
x
x x

′ = −
−

= ≈
( )

( )
( ) .

.
1 105 409

004
26352

4

This step is not a stable step as CN is very large. So the whole process is an unstable process 
due to this step. That’s why the result obtained from this process is highly erroneous.

Process-II: f x
x x

( ) =
+ +

1
1

We will check the conditions of each step in Process-II, and conclude that each step in this 
process is well conditioned.

f x( )

. .

.
.

=
+

=
+

=

=

1
11112 11111

1
105 413 105 409

1
210 822
0 00474334

Various steps involved in this process are as follows

x
x x

x x

x x
x x x

1

2 1

3 2

4 1

5 4 3

11111
1 11112

105 413

105 409
21

=
= + =

= =

= =
= + =

.

.
00 822

1 0 004743346
5

.

.x
x

= =
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The first four steps in the process are well conditioned as discussed in Process-I. For the 
fifth step, let f x x x( ) = +4 . The condition for this step is given by

CN = 
xf x

f x
x

x x
′ =

+
= ≈

( )
( )

( ) .
.

1 105 409
222 822

1
24

 The last step is f x
x

( ) = 1 , and the condition for this step is given by

CN = xf x
f x

x
x

x

′ =

−





=
( )

( )

1

1
1

2

From above discussion, it is clear that all the steps in Process-II are well conditioned, and 
hence this process is a stable process. Since the process is stable, so the result obtained is 
accurate to five significant digits.

Note: Even a single step in the process can make the whole process unstable. So we have to 
be extra careful during a large process, and must avoid the steps (if possible) with the loss 
of significant digits. We can use any alternate approach like rationalization, Taylor series 
expansion, etc. to avoid loss of significant digits. 

Discuss the stability of the function f x x( ) cos( )= −1 , when x is nearly equal to zero. Find 
a stable way to compute the function f x( ) . 

Ans. If we directly compute the function f x x( ) cos( )= −1  at x ≈ 0, then it will lead to 
subtraction of two nearly equal numbers and produce loss of significance. To avoid this 
loss, we can use any of the following three alternates

 i) f x x( ) cos( )= −1

 

= − − + − + ⋅⋅⋅







= − + −⋅⋅⋅

1 1
2 4 6

2 4 6

2 4 6

2 4 6

x x x

x x x

! ! !

! ! !

2.18Example
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 ii) f x x( ) cos( )= −1

  
= −

+

=
+

1
1
2

1

2

2

cos ( )
cos( )

sin ( )
cos( )

x
x

x
x

 iii) f x x( ) cos( )= −1

    
= 2

2
2sin x

Calculate the roots of the equation x x2 123 0 5 0+ + =.  using five digits floating point 
chopping arithmetic.

Ans. The roots of the quadratic equation ax bx c2 0+ + =  are given by

x b b ac
a

= − ± −2 4
2

The roots of the equation x x2 123 0 5 0+ + =.  using five digits floating point chopping 
arithmetic are given by 

Root 1. x b b ac
a1

2 4
2

= − + −

 b2 15129=

 b ac2 4 15127− =

 
b ac2 4 122 99− = .

 
x1

123 122 99
2

0 0005= − + = −. .

Root 2. x b b ac
a2

2 4
2

123 122 99
2

122 995 122 99= − − − = − − = − = −. . .

The roots of the equation correct up to some significant digits are x1 0 004065175= − .  and 
x2 122 995934825= − . . The root x2 122 99= − .  is correctly calculated up to five significant 

2.19Example
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2.4 Some Interesting Facts about Error 

a) Let us assume we are doing six significant digits arithmetic on a hypothetical 
computer. If we want to add a small number x = 0.000123 to a large number  
y = 123.456 using this computer, then

   x+ y = (.123456)103 + (.123000)10–3 (Normalized form)
     = (.123456)103 + (.000000)103 (Equal exponent using symmetric rounding)
     = (.123456)103 (Result, we missed the addition!)

 This type of situations occurred commonly during the computations of infinite 
series. In these series, the initial terms are comparatively large. So, usually after 
adding some terms of the series, we are in a situation of adding a small term to a 
very large term. It may produce high rounding error in the computation. To avoid 
this kind of error, we can use backward sum of the series instead of forward sum, 
such that the each new term is compatible with the magnitude of accumulated 
sum. 

digits. But the root x1 0 0005= − .  is not correct even up to one significant digit. This error 
is due to loss of significant digits which occurs due to subtraction of two nearly equal 
numbers (123 and 122.99). 

To avoid the loss of significant digits, we will rationalize the formula for x1, and then 
compute the root. 

x b b ac
a

b b ac

b b ac
c

b b ac

1

2 2

2

2

4
2

4

4
2

4

= − + − × + −

+ −

= −

+ −

 = −
+

= −1
123 122 99

0040652
.

.

This value is correct up to five significant digits. 

Note: There are two ways to produce the results with desired accuracy. One way is to use 
stable processes for the computation and another way is to use the computing device 
with very high precisions. For example, we want to compute the roots of the equation 
x x2 123 0 5 0+ + =.  correct up to five significant digits. In that case, we can use the 
computing device with more than ten digits floating point arithmetic, such that the results 
can be obtained up to desired accuracy even after the loss of significance. 
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b) In the case of series with mixed signs (like Taylor series of sin(x)), sometimes 
individual terms are larger than the summation itself. For example, in Taylor series 
of sin(2.13), the first term is 2.13. It is called as smearing, and we should use these 
kinds of series with extra care.

c) While performing arithmetic computations in a numerical method, the steps 
involving large number of arithmetic operations must be computed in double 
precisions. Such operations are error-prone to round-off error. For example, in 
Gauss-Seidel method for the solution of system of linear equations, the inner 
product 

   x y x y x y x yi
i

n

i n n
=
∑ = + + ⋅⋅⋅+

1
1 1 2 2  is a common operation, and such computations 

must be made in double precisions. 

The accumulated rounding error can create the disastrous results; the following two examples 
of rounding errors are picked from the internet. 

(http://mathworld.wolfram.com/RoundoffError.html)

1. An index was started with initial value 1000.000 for Vancouver stock exchange 
(McCullough and Vinod 1999) in 1982. Three decimal digits chopping arithmetic 
has been used to compute the index for each change in market value for next 
22 months. The computed value was 524.881, while its correct value up to three 
decimal points is 1009.811. 

2. The Ariane rocket was launched on June 4, 1996 (European Space Agency 1996). 
In the 37th second of flight, a 64-bits floating point number was converted to a 
16-bits number by the inertial reference system of the rocket. It was an overflow 
error, but the guidance system interpreted it as flight data, which led the rocket to 
getting destroyed. 

Exercise 2 

1. Define normalized form and hence the number of significant digits for floating point numbers 
with examples.

2. Find out the number of significant digits in the numbers 788500, 0.4785, .003523, 0.2300, and 
7.880. 

 Ans. 6, 4, 4, 4, 4

3. Compute the absolute errors (A.E.) and relative errors (R.E.) in the four significant digits chopping 
approximations of the numbers 234168 and 64.2685.

 Ans. A.E. = 68, 0.0085; R.E. = 0.000290389, 0.000132257 
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4. If β based real number x d d d d dn n
e= ×+( . .... ....)0 1 2 3 1 β β  is chopped to n digits and fl x( ) is its 

representation, then show that 

 
0 1≤ − ≤ −x fl x

x
n( ) β

5. If x is any number in decimal number system and fl x( ) is its machine representation up to n 
digits, then for rounding, show that

 

x fl x
x

n− ≤ × −( ) 1
2

101

6. The true value of e(exponential) correct to 10-significant digits is 2.718281828. Calculate 
absolute and relative errors, if we approximate this value by 2.718.

 Ans. A.E. = .000281828, R.E. = 0.000103678

7. Find the relative errors for the following cases. Also, determine the number of significant digits 
in the approximations:

 x = 2.71828182 and x
∼

 = 2.7182

 Ans. R.E. = 0.0000301, 5 Significant Digits

 y = 28350 and y
∼

 = 28000

 Ans. R.E. = 0.0123457, At least 2 Significant Digits

 z = 0.000067 and z
∼
 = 0.00006.

 Ans. R.E. = 0.104478, 1 Significant Digits

8. Define the terms error, absolute error, relative error and significant digits. The numbers x = 1.28 
and y = 0.786 are correct to the digits specified. Find estimates to the relative errors in x + y, x – y, 
x y, and x/y.

 Ans. R.E. in x + y = 0.00266215, x – y = 0.0111336, x y and x/y = 0.00454238

9. Consider the following decimal numbers with a four digits normalized mantissas, a = 0.2473*104, 
b = 0.8125*103, c = 0.1523*101

 Perform the following operations in four significant digits symmetric rounding and indicate the 
errors in the results. 

i) a + b – c Ans. 0.3283*104, Error = 0.0000977
ii) b / c  Ans. 0.5335*103, Error = – 0.0001346 
iii) a – b  Ans. 0.1661*104, Error = – 0.00005 
iv) b / (a + c) Ans. 0.3283, Error = 0.00004611

10. The numbers x1 = 0.643 and x2 =1.631 are correct to the significant digits in the numbers. 
Compute the relative errors in the addition, subtraction, multiplication and division of these 
two numbers.

 Ans. R.E. in x1 + x2 = 0.00043975, R.E. in x1 – x2 = 0.001012145, 

    R.E. in x1x2 and x1 / x2 = 0.001084164
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11. Calculate the absolute and relative errors in the expression 3 2a bc
b
a

− + , if the measurement of 

a = 3.5435, b = .2588 and c = 1.0150 are possible only to correct up to four decimal points.

 Ans. Absolute Error = 0.0002925, Relative Error = 0.00002874

12. Estimate the error in evaluating the function f x e xx( ) sin( )= 2 2

 near the point x = 1, if the absolute 
error in value of x is 10 4− .

 Ans. Absolute Error = 0.0028863

13. The maximum error tolerance in the measurement of the area of a given circle is 0.1%. What is 
maximum relative error allowed in the measurement of the diameter? 

 Ans. 0.05

14. Compute the resulting error in the function f x x( ) = 3  for value of x
∼

= 2 38.  with an error 

∆ x
∼

= 0 005.
 Ans. Absolute Error = 0.084966 

15. Find the maximum possible error in the computed value of the hyperbolic sine function 

sinh( )x
e ex x

= − −

2
 at the point x = 1, if the maximum possible error in the value of x is dx = 0 01. .

 Ans. 0.01543

16. Let the function u
x y
z

= 4 2 3

4  and errors in the values of variables x y z, ,  are 0.001. Find the 

relative error in the function u at x y z= = =1.

 Ans. 0.009

17. The radius r and height h of a right circular cylinder are measured as 2.5 m and 1.6 m, respectively, 
with a maximum error of 2%. Compute the resulting percentage error measured in the volume 
of the cylinder by the formula V r h= π 2 . Assume the value of π is exact for calculation.

 Ans. 0.06

18. Consider a function u e y x zx= +sin( ) ln( ) . Let the variables x, y and z be measured with  

maximum possible errors of ±0 01. , ± =





2
90

o π  and ±0 5. , respectively. Estimate the maximum 

possible error in computing the function u for x = 0 1. , y = π
4

 and z = 50 .

 Ans. 0.4976

19. The voltage V in an electrical circuit satisfies the law V I R= , where I is the current and R is the 
resistance and their starting values are I = 5 amp, R = 600 ohms, respectively. Let us assume that 
after a certain time, resistance is changed 0.15% due to heating, and we changed the current I 
with 5%. Compute the percentage change in the voltage V. 

 Ans. 5.15%

20. The length of a simple pendulum measured is l = 0 362.  m, while the constants π = 3 1416.  and 
g = 9.8 m/sec2 are correct to the specified digits. Compute the relative error in the time-period 

T
l
g

= 2π .

 Ans. 0.0032575
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21. Compute the absolute and relative errors in the function f x y z y e xz( , , ) cos( )= 2  at x =1 5.
y = 2 3.  and z = 5 , if the error in the values of x, y and z are 0.05.

 Ans. Absolute Error = 44.3483, Relative Error = 0.7985

22. Calculate the number of terms required in Taylor series approximation of the function cos x( ) to 

compute the value of cos
π
12







 correct up to 4-decimal places.

 Ans. 5

23. Find the number of terms of the Taylor series expansion of the function e x  required to compute 
the value of e correct to six decimal places. 

 Ans. 10

24. Discuss CN and stability of the function y x= sec( )  in the interval 0
2

,
π





.

 Ans. CN = x xtan( ) ; as we move from 0 to 
π
2

 in the interval 0
2

,
π





, the CN increase and hence 

function y x= sec( )  become ill-conditioned.

25. Calculate the function f x x x( ) cos( ) sin( )= −  at the point x = 0.785398 using 6-decimal digits 
floating-point round-off arithmetic. Discuss the condition and stability of process involved.

 Ans. f x x x( ) cos( ) sin( )= −  = 0 at x = 0.785398 with 6-decimal digits floating-point round-off 
arithmetic.

 CN of f x x x( ) cos( ) sin( )= −  at x = 0.785398 is approximately 0, hence function is well conditioned. 
But the process is not a stable process.

 We can use any of the following stable processes for computation purpose

i) f x
x

x x
( )

cos( )
cos( ) sin( )

=
+
2

ii) f x x
x x x x x

( )
! ! ! ! !

= − − + + − − +⋅⋅⋅1
2 3 4 5 6

2 3 4 5 6

26. Discuss the condition and stability of the function f x x x( ) = − −2 1  at x =11111, using six 
significant digits floating point rounding arithmetic. Find a stable way to compute the function. 

 Ans. f x
x x

( ) =
+ −

1

12

27. Evaluate roots of the quadratic equation x x2 234 56 1 2345 0+ + =. . , with the minimum loss of 
significant digits. Use five significant digits chopping arithmetic.

 Ans. – 234.55, – 0.0052632

28. Avoiding loss of significance, find the smallest root of the quadratic equation x x2 500 2 0− + =  
by using five significant digits rounding arithmetic.

 Ans. 0.004, 500

29. Discuss the condition and stability of the function f x x x( ) sin( )= − , when x is nearly equal to 
zero. Find a stable way to compute the function f(x).

 Ans. 
x x x x3 5 7 9

3 5 7 9! ! ! !
− + − +⋅⋅⋅
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30. Subtraction of nearly equal numbers leads to loss of significant digits. Obtain equivalent 
formulas for the following functions to avoid loss of significance.

a) cos ( ) sin ( )2 2x x−  for x ≈ π
4

b) x x− sin( )  for x ≈ 0

c) x x− −2 1 for large x

d) 1 2− cos ( )x  for x ≈ 0

e) 1+ cos( )x  for x ≈ π

 Ans. a) cos( )2x , b) 
x x x x3 5 7 9

3 5 7 9! ! ! !
− + − +⋅⋅⋅, c) 

1

12x x+ −
, d) sin ( )2 x , e) 

sin ( )
cos( )

2

1
x

x−



3.1 Introduction 

Mathematical models for many problems in different branches of science and engineering 
are formulated as

f(x) = 0 (3.1)

where the variables x and f(x) may be real or complex, and scalar or vector quantities. In this 
chapter, the variables x and f(x) are real and scalar quantities. The value of x, which satisfies 
the Eq. (3.1), is called the root of the equation. It is also known as the zero of the function 
f(x). For example, the quadratic equation

x x2 3 2 0− + =
has roots 1 and 2. 

Nonlinear Equations Chapter 
3

Truth is ever to be found in simplicity, and not in the multiplicity and confusion of things. 

Sir Isaac Newton 
(December 25, 1642–March 20, 1726) 

He was a great mathematician and physicist. He pioneered ‘classical mechanics’. 

Root
x

y = f(x)

f(x)

Fig. 3.1 Root of f(x) = 0

Fig. 3.2 Root of x2 – 3x + 2 = 0

1

1 32

2

3

4

5

y

y = x2 − 3x + 2

x
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Root finding is also essential in many branches of mathematics. For example, the critical 
points of the function f(x) are the roots of the equation f '(x) = 0. Eigenvalues of a square 
matrix A are the roots of the characteristic equation.

p A( ) detλ λ= −( ) =I 0 

where p(λ) is a polynomial of degree n (order of matrix A). 

The nonlinear equations can be categorized broadly as polynomial equations and 
transcendental equations as follows

3.1.1 Polynomial Equations 
The polynomial equations are given by

y f x a x a x a x an
n

n
n= = + + + + =−

−( ) 1
1

1 0 0…

This equation is an nth degree polynomial equation, and has exactly n roots. These roots 
may be real or complex. Some examples of polynomial equations are

i) 3 9 03 2x x+ − =
ii) x x2 4 5 0− − =

3.1.2 Transcendental Equations 
An equation which is not a polynomial equation is a transcendental equation. These 
equations involve trigonometric, exponential and logarithmic functions, etc. A few 
examples of the transcendental equations are as follows

i) 3 0sin( )x e x− =−

ii) 3 2 02x x− =cos
iii) 2 0e x xx sin ln( )− =

Transcendental equations may have finite or infinite numbers of real roots or may not have 
real roots at all. 

The roots of simple equations are easy to compute by the direct methods. But in the 
case of higher order equations and transcendental equations, there is no general analytical 
method to compute the exact roots. So for this purpose, numerical techniques can be used 
to find approximate roots of the equation. The main objective of this chapter is to present 
and discuss the various numerical techniques which are useful for finding the approximate 
roots of the nonlinear equation, Eq. (3.1). 

3.2 Methods for Solutions of the Equation f(x) = 0 

So far, various methods have been developed for the solution of Eq. (3.1). All these methods 
have their advantages and disadvantages, and broadly categories as follows
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i) Direct analytical methods
ii) Graphical methods
iii) Trial and error methods
iv) Iterative methods

In this section, we shall have a brief idea of these methods and conclude that iterative 
methods for finding numerical approximations for the roots of Eq. (3.1) are the best 
methods for the complex and complicated equations. 

3.2.1 Direct Analytical Methods 
We can solve the nonlinear equation by direct analytical methods in certain simple cases.  
For example, the roots of the quadratic equation ax bx c2 0+ + =  are given by 

x b b ac
a

= − ± −2 4
2

. Similarly, roots of cubic and quartic equations can be obtained 

using Cardano and Ferrari methods, respectively. The roots obtained by direct methods 
are exact roots of the equations. But these methods can be applied to some very special 
categories of the equations. The roots of higher order polynomial equations/ transcendental 
equations (like x x x x5 3 22 3 5 6 0+ + + + =  and 2 03e x xx− + =sin ) cannot be obtained from 
direct analytical methods. We don’t have direct methods even for the solutions of simple 
transcendental equations. 

3.2.2 Graphical Methods 
Plotting of the function f(x) with x-axis gives the root of the equation f(x) = 0. The points 
where the curve f(x) crosses the x-axis, are the roots of the equation. 

Solutions obtained using graphical methods are not accurate. But graphs of some 
standard curves are helpful in tracing the interval in which the root of the equation lies and 
are also important for an initial guess about the roots, etc. Let us discuss a few examples. 

Case 1. Equations x x2 1 0+ + = , x ex− = 0, x x− =l n( ) 0 with no real roots; 

The graph (Fig. 3.3) of y x x= + +2 1 has no point of intersection with x – axis, so the 
equation x x2 1 0+ + =  has no real root. 

Any equation f(x) = 0 can be rewritten as f1(x) = f2(x), and points of intersections of the 
curves y = f1(x) and y = f2(x) provide the roots of the equation f(x) = 0. For example, consider 
the graphs of y = ex and y = x, then the points of intersection of these two curves are the 
roots of equation x – ex = 0 (x = ex). It is easy to see that there is no point of intersection  
(Fig. 3.4), so the equation x – ex = 0 has no real root. Similarly, we can easily find that 
equation x x− =l n( ) 0 also has no real root (Fig. 3.5).
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Case 2. Equations with finite numbers of real roots like x x x3 23 2 0− + = , x x− =cos 0, etc.

The points of intersection of two curves y x= cos( ) and y = x are the roots of equation 
x x− =cos 0 (Fig. 3.6). There is only one point of intersection, so the equation x x− =cos 0 
has only one real root. Similarly, the graph of the function y x x x= − +3 23 2  provides that 
the equation x x x3 23 2 0− + =  has three real roots (Fig. 3.7).

2
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4
5
6
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x
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x
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6 y = ex

y = x

y = ln(x)

y = x

y

x

1
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-2

-3

0.2 0.4 0.6 0.8
0

Fig. 3.3 x2 + x + 1 = 0

Fig. 3.6 x = cos x, Root  0.7390851322

Fig. 3.7 x3 – 5x2 + 6x = 0, Roots = 0, 2, 3

Fig. 3.4 x = ex Fig. 3.5 x – ln(x)
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2 4

1

-1

y
y = x

y = cos(x)

x

-10
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1 2 3

x

y

y = x3-5x2 + 6x

Case 3. Equations with infinite numbers of real roots like e xx − =cos 0, x x− =tan 0, 
e xx− − =sin 0, etc. The following graphs show that these equations have infinitely many 
real roots.
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3.2.3 Trial and Error Methods 
Other approaches to obtain the approximate solutions are the trial and error techniques. 
These methods involve a series of guesses for the root of the equation (3.1) and check 
whether the value of the function is close to zero. The value of x, where function is close to 
zero, is the approximate root of the equation.

The trial and error methods are cumbersome and time-consuming. These methods are 
not algorithmic, so programming is not possible. Also, approaches in these methods vary 
from problem to problem. So, these methods are no longer in use. 

Fig. 3.8 ex = cos (x), Roots  0, –1.2927, –4.7213, –7.8536, ...

Fig. 3.9 x = tan x, Roots  0, ±4.4934, ±7.7253, ...
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