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PREFACE

This book Strength of Materials: Fundamentals and Applications is brought to the readers with an 

aim to provide suffi cient information and point out ways this information can be applied to practical 

problems in the domain of mechanics, as is done by design engineers in real life situations. It is 

structured in the form of a text book for undergraduates pursuing civil engineering, mechanical 

engineering and metallurgical engineering. Our experience in teaching ‘strength of materials’ over 

the past 30 years fi nds its place in this book. Many questions frequently raised by our students, 

and are also common problems faced by a lot of other students, while attempting to understand the 

subjects ‘strength of materials’ or ‘mechanics of solids’ are addressed in this book in the form of 

worked out examples and in the detailed treatment of the theoretical aspects.

Each chapter is provided with objectives and these objectives are mapped to the worked-out 

example problems and the exercise problems. This mapping strategy will also help the teaching 

faculty in deciding the course objectives and in evaluating the course objectives.

At the end of every chapter, previous GATE examination and UPSC competitive examination 

objective-type questions are provided with solutions. This book is useful for students preparing for 

competitive examinations. 

The fi rst ten chapters are devoted to understanding the effects of basic structural actions, which 

would be suffi cient for an elementary treatment of the ‘strength of materials’ course. The remaining 

seven chapters focus on advanced topics wherein combined structural actions are considered.

Care is exercised so that mistakes or typographical errors are minimized. All the same we request 

the readers to comment and provide suggestions for improving the next edition of this book.
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1.1 INTRODUCTION

The study of strength of materials includes the understanding of internal stresses and deformations 

of members subjected to external loading. It also includes the study of failure criterion applicable for 

the solids subjected to loads. The major actions on the bodies subjected to external loading can be 

considered as axial force, which include axial compression and axial tension, shear force, bending 

moment, and torsion. Often members are subjected to the mentioned actions either individually or 

in combined state such as combined bending, torsion, and axial thrust. The internal reactions due 

to the external forces cannot be visualized, whereas the deformations can be observed, thus can be 

measured. Hence generally, the failure criterion of a body subjected to external loads depends not 

only on the internal actions but also on the deformations. To quantify the internal actions due to the 

above-said forces, the action of the forces and the corresponding deformations are to be studied in 

detail in the subsequent chapters. The different individual actions on members were presented in 

Figure 1.1(a)–(e). However, in this chapter concept of internal reactions and their effects will be 

C H A P T E R  1

STRESS–STRAIN

UNIT OBJECTIVE

This chapter provides information about the theory and derivation of formulae for stresses, 
strains, and deformations. The presentation attempts to help the student achieve the following:

Objective 1: Determine the normal stress and shear stresses.

Objective 2: Determine normal strain and shear strains.

Objective 3: Determine deformations of different structural elements under axial loads.

Objective 4: Calculate the variation in the dimensions caused due to loads.
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discussed. In the subsequent chapters, the effects of mentioned individual actions and combined 

actions will be discussed in detail.

(a) Axial tension (b) Axial compression

(c) Bending
(d) Twisting

(e) Shearing

FIGURE 1.1

1.2 NORMAL STRESS AND SHEAR STRESS

Consider a body subjected to several forces and surface tractions as shown in Figure 1.2. Take a 

section 1-1, to observe the effect of all forces on the section considered. Let ‘P’ be the net resultant 

of the forces. The resistance developed by the body to this resultant at any point within the domain 

of the body is referred as stress.

FIGURE 1.2  (a) A body acted upon by external forces; (b) resultant force ‘P’ acting on 
section 1-1.

The resultant of forces acting on one side of the section may be resolved into two components. 

One component is along the plane P cos a, whereas the other component is perpendicular to the 

plane P sin a.

Consider an elemental area Da in the plane 1-1, the internal resistance offered by this elemental 

area for the normal force P sin a may be written as 
a

D Æ
D

D0

( sin )
a

P
Lt

a
. This quantity reduces a 



STRESS–STRAIN 3

particular value called normal stress, as the direction of the component is normal to the plane. The 

letter s generally denotes this normal stress.

 
0

( sin )
.a

P
Lt

a

a
sD Æ

D
=

D
Similarly there exists internal resistance in tune of the tangential force Pcosa. The resistance to 

tangential force offered by the elemental area can be written as 
0

( cos )
a

P
Lt

a

a
D Æ

D
D

. This quantity 

also reduces to a particular value called shear stress or tangential stress. The letter t generally 

denotes this shear stress.

 0

( cos )
.a

P
Lt

a

a
tD Æ

D
=

D
In simple terms, the stress may be defi ned as the internal resistance offered by a body per unit 

area.

PROBLEM 1.1
 Objective 1

Referring to Figure 1.3, determine the normal stress and shear stress induced along the sections 1-1 
and 2-2 inclined 30° to the longitudinal axis of the bar of square section 40 mm × 40 mm and length 
0.5 m. The axial force acting on the bar is 120 kN.

SOLUTION

2
1

2

P P

1

FIGURE 1.3 Bar subjected to axial tension P.

Along section 1-1:

The resultant force normal to the section is = P = 120 kN.

Normal stress at this section s
¥

= = =
¥

120 1000
75 MPa

40 40

P

A
 (tensile stress).

Shear force along the section = 0.

Hence the shear stress at this section is zero.

Along section 2-2:

P sin q

q

P cos q

P

q

40 mm

FIGURE 1.4 Internal forces at section 2-2.

The resultant force normal to the section is = 120 sin q = 120 × sin 30 = 60 kN.
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Cross-sectional area of the normal to section 2-2 is 40 × 40/sin 30 = 3200 mm
2
.

Normal stress at this section s
¥

= = =
60 1000

18.75 MPa
3200

P

A
 (tensile stress).

Shear force along the section = P = 120 cos q = 120 × cos 30 = 103.92 kN.

Hence the shear stress at this section t
¥

= =
103.92 1000

32.48 MPa.
3200

For a general force system on a body, any plane will carry three stress components due to external 

loading. Of these three stress components, one is normal stress and the other two are shear stresses. 

To get the state of stress at a point, we shall represent the stresses over a cube, when this cube 

reduces to a point, the resulting stresses would be the stresses at point. The possible stresses over 

such a cube were shown in Figure 1.5.

Y

X

Z

syy

tzy

txy

tyx

tyz

txz

szz

sxx

tzx

FIGURE 1.5 Possible stresses on a body at a point

The nine stress components are generally represented in a tensor form.

 

s t t

s t s t

t t t

È ˘
Í ˙

= Í ˙
Í ˙
Í ˙Î ˚

[( )]

xx yx zx

xy yy zy

xz yz zz

sxx = normal stress component acting along x axis on a plane whose normal is along x axis.

tyx = shear stress component acting along y axis on a plane whose normal is along x axis.

Consider a body subjected to pure shear stress t at top in the horizontal direction of the body shown 

in Figure 1.6. Let ‘a’ be the length, ‘h’ be the height and width of the body perpendicular to the 

plane of the paper be unit.

Net force F
Æ

 acting at the top of the block = t ¥ ¥ 1a .
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The resisting force that develops at the base = F (¨).

Now the tangential force at top and bottom are same and hence produce a clockwise couple equal 

to t ¥ ¥ ¥1a h .

To maintain equilibrium, an anticlockwise couple of same intensity should develop.

The shear stress components (t*) developed on orthogonal planes gives anticlockwise couple of

t* × h × 1 × a.

Equating the clockwise couple to the anticlockwise couple

 
t t¥ ¥ ¥ = ¥ ¥ ¥*1 1a h h a

fi t = t*

in which t* is referred as complimentary shear stress.

Thus, complimentary shear stress is always equal to the 

applied shear stress and acts on a plane orthogonal to the 

plane in which the applied shear stress acts.

1.3 NORMAL STRAIN AND SHEAR STRAIN 

Normal stress and shear stress are the internal resistances 

thus cannot be visualized. The deformations are only the 

measurable quantities. Thus, normal strain is a measurable 

deformation parameter corresponding to normal stress 

and shear strain corresponds to shear stress. Consider the 

deformations of a block in a plane ABCD shown in Figure 

1.7. After the load application, let the deformed shape be 

A¢B¢C¢D¢.
Change in the length of the part AB = A¢B¢ − AB.

Normal strain is defi ned as the ratio of change in length 

of a segment to the original length of the segment.

Hence, normal strain along AB is given by 
Change in

Original length of

AB A B AB

AB AB

-¢ ¢= .

The normal strain is denoted by the letter e. As this quantity is a ratio, strain does not have any 

units.

Shear strain is defi ned as the change of angle between two planes due to loading. In Figure 

1.7, consider the plane AB and AD. Before the loading, the angle between AB and AD is 90°. After 

the loading, the included angle between AB and AD reduced by –D¢¢ AD¢. This angular change (–
D¢¢ AD¢) is referred as shear strain, generally denoted by the letter g. Shear strain also does not have 

any units like normal strain.

To represent the strain at a point, we shall represent the strains over a cube, as it was done in the 

case of stresses, when this cube reduces to a point, the resulting strains would be the stain at point. 

t * t *

t

t

a

h

FIGURE 1.6  Shear stress and 
complimentary shear stress.

Y

D
D¢¢ D¢ C

C¢

A
A¢ B B¢

X

FIGURE 1.7  Deformed shape of a block 
in a plane.
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Thus, the strain tensor at a point can be presented as 

 

[ ]

xx yx yz

xy yy yz

xz yz zz

e g g

e g e g

g g e

È ˘
Í ˙

= Í ˙
Í ˙
Í ˙Î ˚

in which exx is the normal strain along x axis. gyx is the shear strain or change in the included angle 

between the planes, which are along y and x axes.

PROBLEM 1.2
 Objective 2

Referring to Figure 1.8, determine the normal strain and shear strain along the diagonal AC in a 
strained body. The strain along X axis is 0.2 × 10−3. AB = 40 mm and AD = 30 mm. Face AD is fi xed.

FIGURE 1.8 (a)  Block ABCD before deformations; (b) deformed confi guration of block 
ABCD.

SOLUTION
The deformed confi guration of the block ABCD is shown as AB¢C¢D to an exaggerated view. Join 

AC¢. Draw a perpendicular C¢C≤ on to AC¢ from C. AC is approximately equal to AC≤.

When the deformations are very small, the following approximation holds good.

 

1
tan 36.87

BC
CAB C AB CC C

AB
- Ê ˆ– ª – = – = = ∞¢ ¢ ¢ Á ˜Ë ¯

Normal strain along AC = 
Increase in the length AC C C C C

AC AC AC

¢¢ ¢ ¢¢ ¢= =
¢¢

 C≤C¢ = CC¢ cos 36.87°.

 CC¢ = BB¢ = ex × AB = 40 × 0.2 × 10
−3

 = 0.008 mm.

 C≤C¢ = 0.008 × cos 36.87° = 0.0064 mm.

Normal strain along AC = 
0.0064

0.000128.
50

=

Shear strain between the planes AC and AB is .CACg = – ¢¢

Shear strain along AC = g
∞ ¥¢¢ ¢¢= = = =

sin36.87 0.008 0.75
0.00012

50

CC CC

AC AC
.
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1.4 RELATIONSHIP BETWEEN STRESS AND STRAIN 

The stress (may be normal stress or shear stress) is related with the corresponding strain (normal 

strain or shear strain) in terms of elastic constants called modulus of elasticity and rigidity modulus.

The modulus of elasticity is the ratio of normal stress to normal strain, whereas the rigidity 

modulus is the ratio of shear stress to shear strain. The units for modulus of elasticity or shear 

modulus are gigapascal (GPa).

Modulus of elasticity (E) = 
Normal stress ( )

Normal strain ( )

s
e

Rigidity modulus (G) = 
Shear stress ( )

Shear strain ( )

t
g

.

These elastic constants are constant for individual materials and largely depend on the crystalline 

structure, orientation, and bond energies. Table 1.1 gives the details of modulus of elasticity and 

rigidity modulus of different materials within the elastic limit.

Table 1.1 Modulus of elasticity of different materials

Sl. No. Material Modulus of Elasticity (GPa)

1 Steel 200

2 Copper 100–80

3 Aluminum 60–80

4 Concrete 25–35

5 Timber 10–15

1.5 ADDITIONAL PROBLEMS ON DIRECT OR AXIAL STRESSES

PROBLEM 1.3
 Objective *

Derive an expression for the extension of a prismatic bar subjected to axial tension.

P

DL
L

SOLUTION

Normal stress in the bar .
P

A
s =

Let ΔL be the extension of the bar.

Then, normal strain in the bar = e = 
L

L

D
.
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Let E be the modulus of elasticity of the bar.

Then, 
Normal stress /

Normal strain /

P A
E

L L
= =

D

 fi 
PL

L
AE

D =

Stiffness of the bar is defi ned as the load required for unit extension. Hence, axial stiffness of the 

bar generally denoted as ‘k’ is given by

 

P AE
k

L
= =

D

In the above expression of stiffness, the term ‘AE’ is referred as axial rigidity. It depends on the 

cross-section as well as material of the member.

A possible doubt to the reader: If the extension of the bar is DL due to P, then for additional load 

say P¢ in the expression to determine additional extension 
AE

P L¢
, should L be used or L + DL?

This possible doubt makes the reader to understand many important assumptions to be followed 

in solid mechanics.

 1. Order of loading should not have any effect on the deformations or internal stresses.
  This means that whether P is applied fi rst then P¢, or P¢ fi rst then P or P and P¢ be applied 

simultaneously should not have any effect on the deformation. This is true for the materials, 

which follow linear force–displacement relationship. This law of superposition does not hold 

well in case materials which exhibit nonlinear force–displacement relationship. This can be 

observed from the fi gures shown below.

P P¢

P P+ ¢

P P+ ¢

P P ¢

D D D+ ¢

P P+ ¢

D D+ ¢

P P+ ¢

D D D+ ¢

FIGURE 1.9 A case, where law of superposition is valid.

 2. Higher order deformations are neglected.
  This means that deformations due to deformation are very small and can be neglected. That 

is in the axial extension, if L + DL is used in place of L, then 
( )PL P L

L L
AE AE

D
D + DD = + . If 

this is accepted, the next question that may arise is should we use L + DL + D(DL) in place 
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of L? If we continue like this there will be no end for it. For most of the materials within the 

working range of loads, D(DL) is very small compared to DL, and hence D(DL) can be ignored. 

This D(DL) is referred as deformation due to deformation or second-order deformation. Thus, 

in strength of materials the effect of deformations due to deformations or second-order 

deformations is neglected.

PROBLEM 1.4
 Objective 3

Estimate the deformation of points B, C, and D of the compound bar ABCD subjected to loading as 
shown in Figure 1.10. Take modulus of elasticity of the material as 200 GPa. P = 10 kN, section at 1-1 
is 50 mm × 50 mm solid, section at 2-2 is hollow section of external dimensions 50 mm × 50 mm and 
inner dimensions 25 mm × 25 mm, and section at 3-3 is circular section of 40 mm diameter. AB = 1 m, 
BC = 1.2 m, and CD = 1.1 m.

R

A B C
D

3P

1

1 2

2

3

3

2P P

FIGURE 1.10 

SOLUTION
Structural systems or components of structural systems must be in equilibrium. This is an essential 

condition.

Consider the equilibrium of the system.

Thus, sum of the forces in X direction must be equal to zero.

fi 0xFS =

fi 3P + P – 2P – R = 0

fi R = 2P.

Consider the free body diagram of the three parts of the ABCD as shown in Figure 1.11.

R P= 2
2P 4P

A

B C

D

3P
P

3P 3P

B C

4P

FIGURE 1.11 

It is always convenient to draw the free body diagrams from free end of the member. In the 

portion CD, axial tensile load of 3P is acting at the free end. To keep the member CD in equilibrium, 

there should an axial force of 3P acting at C in the opposite direction, that is, toward left. Thus, the 

portion CD of the member is acted upon by a tensile force of 3P.

Tensile stress in the region CD of the member = s
p
¥ ¥

= = =
¥ ¥

3 3 10 1000
23.87 MPa

40 40
4

CD
CD

P

A
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Extension in the portion CD = D = ¥
Stress

Length ( )
Modulus of elasticity

CD CD

     

D = ¥ =
¥ 3

23.87
1100 0.131 mm

200 10
CD

In the portion CD, at C a tensile load of 3P was applied to maintain equilibrium. Hence, a tensile 

load of 3P at C in the portion BC should be applied. Then, apply the load P acting at C in the portion 

BC. Thus, apply a tensile load of 4P at C. Apply a tensile load of 4P at B to maintain equilibrium.

Therefore, the portion BC of the member is subjected to a tensile load of 4P.

Hence, tensile stress in the portion BC = s
¥ ¥

= = =
¥ - - ¥

4 4 10 1000
21.33 MPa

[50 50 25 25]
BC

BC

P

A
.

Extension in the portion BC = D = ¥
Stress

Length ( )
Modulus of elasticity

BC BC

     

D = ¥ =
¥ 3

21.33
1200 0.128 mm

200 10
BC

Similarly applying equilibrium for the portion AB, the tensile load acting = 2P.

Hence, tensile stress in the portion AB = s
¥ ¥

= = =
¥

2 2 10 1000
8.00 MPa

[50 50]
AB

AB

P

A

Extension in the portion AB = D = ¥
Stress

Length ( )
Modulus of elasticity

AB AB

     

D = ¥ =
¥ 3

8.00
1000 0.04 mm

200 10
AB

Finally, the displacement at A = 0.0

Displacement of B = 0.04 mm

Displacement of C = 0.04 + 0.128 = 0.168 mm

Displacement of D = 0.04 + 0.128 + 0.131 = 0.299 mm

Hence, the total extension of the member is 0.299 mm

Maximum tensile stress is 23.87 MPa in the portion CD of the member.

PROBLEM 1.5
 Objective 3

Derive an expression for the extension of a conical bar of length L fi xed at the base and hanging due 
to its own weight. Specifi c weight of the material of the bar is g and modulus of elasticity is E.

SOLUTION
Let d0 be the base diameter of the conical bar.

Consider a fi ber located at a distant x from the bottom of the bar of thickness Dx.
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FIGURE 1.12

The free body diagram of the elemental strip of length Dx is shown in Figure 1.12. The force 

acting on the elemental strip is nothing but the weight of the portion clinging to the section under 

consideration.

Diameter of the conical bar at the section under consideration dx = 0d
x

L
.

Therefore, weight of the portion of the conical bar up to the section = F = 
21

12
xd xp g

fi 

2
30

2

1
.

12

d
F x

L
pg=

Extension of this elemental strip of length Dx is D(DL) = 
x

F x

A E

D

fi pg
p

D D = ¥ ¥ D
2

30

2 2
20

2

1 1
( )

12

4

d
L x x

E L d
x

L

fi 
2

0

1

3 6

L L
L x dx

E E

g
gD = =Ú

Thus, the extension of conical bar due to its own weight is 
2

6

L

E

g
.

Similarly, it can be shown that the extension of a prismatic member (same cross-section throughout 

the length) hanging on its own weight is 
2

2

L

E

g
.

PROBLEM 1.6
 Objective 3

Derive an expression for the extension of a tapering bar of length L subjected to an axial pull of 
intensity P. Modulus of elasticity of the material of the bar is E. The diameter at one end is d1 and at 
the other end it is d2.
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P

X

L

dx
Dx

Dx

dx
P

P

FBD of the elemental strip

FIGURE 1.13 

Consider an elemental strip of length Δx, located at a distant X from the one end of the member.

Let dx be the diameter of the bar located at a distant x from one end of the bar, where the diameter 

is d1.

Then, 2 1
1x

d d
d d x

L

-
= +

Consider an elemental strip of length Dx at the section under consideration.

The free body diagram of the elemental strip of length Dx is as shown in Figure 1.13.

Extension of this elemental strip of length Dx is D(DL) = 
x

P x

A E

D

fi p
D D = ¥ ¥ D

2

1
( )

4
x

P
L x

E d

fi 
p

D = ¥ ¥
-È ˘+Í ˙Î ˚

Ú 2

0 2 1
1

1

4

L P
L dx

E d d
d x

L

 = 
p

-È ˘-Ê ˆÍ ˙+Á ˜Ë ¯Í ˙¥ -Í ˙-Ê ˆÍ ˙Á ˜Ë ¯Í ˙Î ˚

1

2 1
1

2 1

0
4

L

d d
d x

LP

d dE

L

 = 
1 2

2 1

1 1

( )
4

d dPL

E d d
p

È ˘-Í ˙
Í ˙
Í ˙-Í ˙Î ˚

 = 

1 2
4

PL

E d d
pÊ ˆ

Á ˜Ë ¯

In the above expression if d1 = d2 = d then, the expression for extension reduces to the expression 

for the extension of a solid circular uniform bar 
PL

AE
.
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PROBLEM 1.7
 Objective 4

A prismatic solid circular bar of length L is subjected to axial load. This solid bar is bored for a length 
of 0.5L, such that the inner diameter of the bored portion is 0.6 times the diameter of the solid 
portion. Estimate the percentage increase in the extension of the bored bar under same load, when 
compared with that of the solid prismatic bar.

SOLUTION
Let P be the axial load acting on the bar. Let d be the diameter of the bar.

The extension of the prismatic bar = 
2

4PL

d Ep
.

If half portion of the bar is bored then, 

P

P

P P

P

FIGURE 1.14 

Free body diagram of the two parts of the bored bar is shown in Figure 1.14.

The extension of the bored half portion of the bar = 1
2 2

(0.5 )

[ (0.6 ) ]
4

P L

d d E
p

D =
-

fi 
1 2

2

0.64

PL

d Ep
D = .

Extension of the remaining half portion = 2 2
2

(0.5 ) 2
.

4

P L PL

d Ed E
p p

D = =

The total extension of the bored bar is * 1 2D = D + D = (1.281)
2

4PL

d Ep
.

Percentage increase in the extension = 
D - D

¥ =
D

* 100 28.1% .

PROBLEM 1.8
 Objective 4

A 5-kg mass rotates in a horizontal circle with constant angular speed at the end of 1.5 m steel wire 
such that the steel wire makes 30° with the vertical. Determine the speed, stress in the steel wire due 
to the rotation, and also evaluate the extension of the steel wire taking E = 200 GPa. Diameter of the 
steel wire is 0.5 mm.
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SOLUTION

Let P be the tension in the steel wire and w be the angular speed of the steel ball. As the ball is 

rotating about a fi xed vertical axis, the ball is subjected to normal force 
2v

m
r

Ê ˆ
Á ˜Ë ¯

 and tangential 

force 
dv

m
dt

Ê ˆ
Á ˜Ë ¯

, in which v is the speed of the ball, in the present case this v is constant. Hence, the 

tangential force acting on the ball vanishes.

Velocity of the ball = v = rw
If we draw the free body diagram of the ball, the forces acting on that will be

 (a) Self-weight of the ball = mg = 5 × 9.81 = 49.5 ≈ 50 N.

 (b) Normal force (acting normal to the path) = mrw2
.

 (c) Tension in the steel wire = P inclined 30° to the vertical.

These forces were shown in the free body diagram.

F mr= w2

P

W
r

FIGURE 1.15 

Resolving the forces vertically, 

 W = P cos q

fi P cos 30 = 50

fi = = N.
50

57.735
cos 30

P

fi 
2

57.735
Normal stress in the wire 294 MPa.

(0.5)
4

s
p

= =

Extension of the steel wire = 
s ¥

D = = =
¥

294 1500
2.205 mm.

200 1000

L

E

To determine the angular speed of the steel ball, resolve the forces horizontally.

fi P sin q = F = mrw2
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fi 
2 57.735 sin 30

5 1.5 sin 30
w =

¥

fi 2.775 radians/sw =

Angular speed of the ball about the vertical axis is 
60

26.5 RPM.
2

w
p

=

PROBLEM 1.9
 Objective 1

A rigid bar of length 0.5 m and negligible weight hangs by means of two wires of length 1.2 m each, as 
shown in Figure 1.16. If a gravity load of 100 kN is applied at the left middle third point of the rigid 
bar, determine the stresses in the two wires and the inclination of the rigid bar with the horizontal. 
The cross-sectional area of aluminum bar is 1000 mm2 and that of steel bar is 500 mm2. Modulus of 
elasticity of steel bar is 202 GPa while that of aluminum is 65 GPa. 

SOLUTION

Aluminium
bar of 1.2 m
length

Fa Fs

W

Steel bar of
1.2 m length

W

L

2L/3

FIGURE 1.16 

Sketch the free body diagram of the rigid bar.

Let Fa be the force the aluminum bar and Fs be the force in the steel bar.

Use equilibrium equations to determine the forces Fa and Fs.

That is, sum of the horizontal forces is equal to zero. (Equilibrium equation (1))

fi Fa + Fs = W = 100 kN.

Sum of the moments about any arbitrary point is zero. (Equilibrium equation (2))

Taking moments about a point through which Fa is passing,

fi     ¥ - ¥ =
2

100 0
3

s

L
F L

fi Fs = 66.67 kN

fi Fa = 33.33 kN.

As the bar is rigid, the bar itself will not undergo any deformations, but aluminum and steel bars 

undergo extensions.

Extension in the aluminum bar 
¥ ¥ ¥

D = = =
¥ ¥

66.67 1000 1200
1.231 mm

1000 65 1000

a a
a

a a

F L

A E



STRENGTH OF MATERIALS16

Extension in the steel 
¥ ¥ ¥

D = = =
¥ ¥

33.33 1000 1200
0.396 mm

500 202 1000

s s
s

s s

F L

A E
.

From the extensions of steel bar and aluminum bar, it is clear that the left end of rigid bar moves 

down by 1.231 mm and the right end of the same moves down by 0.369 mm. Thus, rigid bar rotates 

in the anticlockwise direction.

Let q be the rotation of the rigid bar.

Then, 
1.231 0.396

0.00167 radians.
500

a s

L
q

D - D -
= = =

Inclination of the rigid bar in anticlockwise direction is 0.00167 radians.

PROBLEM 1.10
 Objective 3

Estimate the vertical and horizontal defl ection at the point C 
of the two-member truss shown in Figure 1.17. Take E = 200 
GPa. Cross-sectional area of each member is 2000 mm2. AC = 
1.5 m; BC = 0.9 m.

SOLUTION
The forces in the members of the truss are to be found out 

using equilibrium equations. The member AC is subjected to 

tension, whereas BC is subjected to compression.

 

1 0.9
cos 53.13

1.5
BCA q - Ê ˆ– = = =Á ˜Ë ¯

fi cos q = 0.6

fi sin q = 0.8

Resolving the forces horizontally, FAC sin q = 100 kN

fi FAC = 125 kN (tensile).

Resolving the forces vertically, FAC cos q − FBC = 0

fi FBC = 75 kN (compressive).

Normal tensile stress in the bar AC is 
¥

=
125 1000

62.5 MPa
2000

.

Normal compressive stress in the bar BC is 
¥

=
75 1000

37.5 MPa.
2000

We are required to evaluate the vertical and horizontal defl ection of point C. The force in the bar AC 

moves the point C in the direction of AC, CC1 as shown in Figure 1.18, whereas the compressive 

force in the bar BC tries to move the point C in the upward direction along CB, CC2 as shown in 

Figure 1.18. Because of this, the fi nal position of the point C will be the meeting point of arcs drawn 

to the points C1 and C2, taking centers as A and B, respectively. As the displacements are negligible, 

rather than drawing arcs, it is convenient to draw perpendiculars. Thus, draw perpendiculars at C1 to 

A B

C 100 kN

FIGURE 1.17
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AC1 (CC1) and C2 to BC2 (CC2). These perpendiculars meet at point C3. Thus, net movement of the 

point C will be from C to C3, as shown in Figure 1.18. The horizontal and vertical projection of CC3 

will be the horizontal and vertical displacement of the point C.

Free extension of AC = CC1 = 
¥

=
¥

62.5 1500
0.469 mm.

200 1000

Free extension of BC = CC2 = 
¥ =

¥
37.5 900

0.169 mm.
200 1000

Angle C2CC1 = 180° − q = 126.87°.

C1C3 is perpendicular to CC1; C2C3 is perpendicular to CC2; and CC3 is the net displacement of the 

point C.

It is clear that CC3 = CC1/cos q1 = CC2/cos q2. (1)

Moreover,

  q1 + q2 = 126.87° (2)

From equation (1)

  

1

2

cos 1.563
2.775

cos 0.169

q
q

= =

From equation (2)

     

1

1

cos
2.775

cos(126.87 )

q
q

=
-

fi   q1 = 50.2°.

Thus, CC3 = 
0.169

0.264 mm
cos(50.2)

= .

Hence, the horizontal displacement of C is CC3 sin q1 = 0.264 sin q1 = 0.768 mm. Toward right of 

C, vertical displacement of the point C is CC3 cos q1 = 0.264 × cos (50.2) = 0.169 mm (upward).

C2

A
B

C

C1

C3

C4

q1

FIGURE 1.18 
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PROBLEM 1.11
 Objective 3

A steel bar AB of length 3.5 m and diameter 25 mm are connected by four inextensible cables of length 
2.5 m each, forming a rhombus with AB as diagonal, as shown in Figure 1.19. A 100 kN forces act at 
the points C and D. Determine the decrease in the length of the strut AB and increase in the length 
between the points C and D. Take modulus of elasticity of steel as 201 GPa.

SOLUTION

The cables CA, CB, DA, and DB are inextensible means that they do not undergo any deformation 

but the points C and D move due to the deformation of the strut AB. A strut is a member subjected to 

axial compression. The axial deformation of the strut is to be found, to determine the displacement 

between the points C and DE. Using equilibrium equations, determine the force in the strut AB.

FIGURE 1.19 

Let FAC be the force in the cable AC and FCB be the force in the cable CB. Let q be the inclination of 

AC with the horizontal.

 
( /2)

sin
AB

AC
q =

fi 1 1.75
sin 44.43

2.5
q - Ê ˆ= =Á ˜Ë ¯

° .

Consider the joint equilibrium at C, that is, sum of the vertical forces is equal to zero.

fi FCA sin q – FCB sin q = 0

fi      FCA = FCB.

Sum of the horizontal forces is equal to zero.

fi FCA cos q – FCB cos q = 100 kN.

fi      
100

70.01 kN.
2cos

CA CBF F
q

= = =

To determine the force in the strut AB, consider the equilibrium of the joint A.
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Sum of the horizontal forces is equal to zero.

fi FCA cos q – FAD cos q = 0.

fi      FCA = FAD 70.01 kN.

Sum of the vertical forces is equal to zero.

fi FCA sin q + FAD sin q = FAB

fi FAB = 2FCA sin q = 98.02 kN.

Axial deformation (compression) of the strut AB is 
p

¥ ¥

¥ ¥2

98.02 1000 3500

(25) 201 1000
4

 = 3.48 mm.

To determine the displacement between the points C and D, consider the triangle ACD.

 

qÊ ˆ= ¥ ¥Á ˜Ë ¯CD 2 tan .
2

AB
L

Differentiating on both sides

 

q Ê ˆD = ¥ ¥ D Á ˜Ë ¯
( ) 2 tan

2
CD

AB
L

fi D = ¥ ¥ =
3.48

( ) 2 0.98 3.41 mm.
2

CDL

Displacement between the points C and D is 3.41 mm.

PROBLEM 1.12
 Objective 4

Two bars of length 1.5 m each are connected to a rigid bar of length L, as shown in Figure 1.20. The 
axial stiffness of the bar AB is 2.5 N/mm. Determine the axial stiffness as well as axial rigidity of the 
bar CD, if the rigid bar has to be horizontal, when a load W = 600 N is applied at L/3 distant from the 
bar AB.

SOLUTION

Let FAB and FCD be the forces in the members AB and CD. The condition is that the rigid bar should 

be horizontal. Thus, the extension of the bar AB and CD should be same.

\ CDAB

AB CD

F LF L

AE AE

Ê ˆÊ ˆ =Á ˜ Á ˜Ë ¯ Ë ¯

AE

L
 of member AB is the stiffness of AB and is given by 2.5 N/mm. Axial stiffness member CD is 

to be determined.

\ .CDAB

AB CD

FF

AE AE

L L

=
Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯
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FAB and FCD are to be determined from equilibrium equations. Consider the equilibrium of the rigid 

bar.

That is, sum of the horizontal forces is equal to zero.

fi FAB + FCD = W = 600 N.

Sum of the moments about any arbitrary point is zero.

Taking moments about a point through which Fa is passing

fi ¥ - ¥ =600 0
3

CD

L
F L

fi FCD = 200 N

fi FAB = 400 N

\ 
400 200

2.5

CD

AE

L

=
Ê ˆ
Á ˜Ë ¯

fi 1.25 N/mm.CD
CD

AE
k

L

Ê ˆ = =Á ˜Ë ¯

Axial stiffness of the member CD required is 1.25 N/mm.

Axial rigidity AE of the member CD = ¥ = ¥ = ◊ 2
1.25 1500 1875 N mm .CD CDL k

kAB = 2.5 N/mm

A

B

C

D

FAB FCD

W

W

L

2L/3

FIGURE 1.20

Statically Indeterminate Structures

Statically indeterminate structures are those which 

cannot be analyzed with the help of equilibrium 

equations alone. Most of the structures fall under the 

category of indeterminate structures. In this section, 

we consider the analysis of few statically indeterminate 

structures having axially loaded members. For example, consider a member clamped at both ends 

subjected to axial forces as shown in Figure 1.21.

Let the reactions at A and B, Ra and Rb, respectively, use the condition of equilibrium that sum of 

the horizontal force is equal to zero.

Ra RbP

C

BA
L/2 L/2

FIGURE 1.21
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fi  Ra + Rb = P. (1.1)

The two unknown quantities Ra and Rb cannot be found in equation (1.1), that is, Ra and Rb cannot 

be determined using equilibrium equation. Thus, this problem falls under the category of statically 

indeterminate problem. To solve this problem, condition pertaining to deformations shall be used.

The conditions pertaining to deformations are called ‘compatibility conditions’. In the present 

example, the compatibility condition is that the total extension of the bar AB between the fi xed 

supports is zero. That is, extension in the portion AC must be equal to the compressive deformation 

in the portion CB. From this compatibility condition, one more equation can be formed, thus Ra and 

Rb (two unknowns from two equations) can be determined.

A

Ra Rb

C P

RaRa

L/2 L/2

C A

FIGURE 1.22

 Rb = P − Ra. (1.1)

From compatibility condition,

Extension in the bar AC = Compressive deformation in the bar CB

 
( /2) ( /2)

[ ] [ ]

a b

AC CB

R L R L

AE AE
=  (1.2)

From equations (1.1) and (1.2), Ra and Rb can be evaluated.

PROBLEM 1.13
 Objective 1

A bar having cross-sectional arcs of 1500 mm2 is fi xed between two rigid walls. Two loads P1 and P2 are 
applied at points C and DE shown in Figure 1.23. Determine the stresses induced in the portions AC, 
CD, and DB. Take E = 200 GPa; P1 = 150 kN; and P2 = 100 kN.

A B

C D

P1 P2

2.0 m 2.5 m 2.0 m

FIGURE 1.23

SOLUTION
Let Ra and Rb be the reactions at A and B, respectively.

Ra

P1 P2
( – )R Pa 1

A D B

Ra Ra
Rb( – )R Pa 1

DC C

FIGURE 1.24 FBD of members AC, CD, and DB.
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From the equilibrium condition, the sum of horizontal force is equal to zero.

 Ra − P1 + P2 − Rb = 0  (1.3)

fi Ra – Rb = P1 – P2 = 150 – 100.

\ Ra − Rb = 50 (1.4)

As per the compatibility condition, total extension between A and B shall be zero.

fi dAC + dCD + dDB = 0 (1.5)

 
d

¥
= =

¥ ¥ 5

(2000)

( ) 1500 2 10

a AC a
AC

AC

R L R

AE

 
d

- - ¥
= =

¥ ¥
1

5

( ) ( 150) 2500

( ) 1500 2 10

a CD a
CD

CD

R P L R

AE

 
d

¥ ¥
= =

¥ ¥ 5

2000
.

( ) 1500 2 10

b DB b
DB

DB

R L R

AE

Substituting the above in equation (1.5)

\    
- ¥ ¥

+ + =
¥ ¥ ¥8 8 8

(2000) ( 150) 2500 2000
0

3 10 3 10 3 10

a a bR R R
 (1.6)

Using Rb value from equation (1.4) into equation (1.6)

    2Ra + 2.5(Ra − 150) + 2 × (Ra − 50) = 0

fi Ra = 475/6.5 = 73.08 kN.

 Rb = 23.08 kN

\ Stress in the portion AC = s
¥

= =
3

73.08 10
48.72 MPa

1500
AC

Stress in the portion CD = s
- - ¥

= = = -
3

1 76.92 10
51.28 MPa

1500

a
CD

R P

A
 (compressive)

Stress in the portion DB = b
DB

R

A
s =

 s
¥

= =
3

23.08 10
15.39 MPa

1500
DB  (tensile)

 sAC = 48.72 MPa (tensile)

 sCD = 51.28 MPa (compressive)

 sDB = 15.39 MPa (tensile).

Axial thrust diagram: The axial force varies in different portions of the bar AB. Diagrammatic 

representation of this variation is called thrust diagram.
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Positive
Positive

Negative

15.39 MPa

A

C D B

48.72 MPa

51.28 MPa

FIGURE 1.25

Axial tension is +ve (positive) and axial compression is −ve (negative).

PROBLEM 1.14
 Objective 4

A bar AB of length 3 m is fi xed between the rigid supports. If an axial load of 200 kN at 2 m from 
support A, determine the axial force in the portion AC and CB. Also determine the variation in the 
axial forces, if support B yields by 0.5 mm. Take cross-sectional area of the bar AB as 1000 mm2 and
E = 200 GPa.

SOLUTION

FIGURE 1.26

Case (i): supports do not yield:

 0xF =Â  (equilibrium equation)

fi Ra – Rb = 200 kN (1.7)

Total extension between A and B is zero.

fi dAC + dCB = 0

fi 
¥ ¥

+ = 0
( ) ( )

a AC b CB

AC CB

R L R L

AE AE

fi 
¥ ¥

+ =
¥ ¥ ¥ ¥5 5

2000 1000
0

1000 2 10 1000 2 10

a bR R

fi 2Ra + Rb = 0. (1.8)

Solving equations (1.7) and (1.8)

 Ra = 66.67 kN

 Rb = −133.33 kN.

In this problem, the axial rigidity of the members AC and CB is not affecting the forces in the 

portions AC and CB.
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Case (ii): If the support ‘B’ yields by 0.5 mm/yielding of support means that, the support B can relax 

(deform) by 0.5 mm; then the force in the portion AC is 200 kN and CD becomes zero.

Otherwise, the deformation over and above 0.5 mm induces different types of forces. Therefore, 

release the support B. Then

FIGURE 1.27

Free extension dB = dAC + dCB

 
d

¥ ¥
= =

¥ ¥

3

5

200 10 2000
2 mm

1000 2 10
AC

 dCB = 0

As the free extension is more than 0.5 mm, the fi xidity at ‘B’ should develop a reaction Rb to 

compensate the deformation of (dB – 0.5) = 1.5 mm.

Axial compression in the member due to

 
¥

= = 1.5 mmb
b

R L
R

AE

 

¥
=

¥ ¥ 5

3000
1.5

1000 2 10

bR

 Rb = 100 × 10
3
 = 100 kN.

Force in the portion AC = 100 kN (T)

Force in the portion CB = 100 kN (C)

Force in the Portion AC Force in the Portion CB

Case (i) 66.67 kN (T) 133.33 kN (C)

Case (ii) 100 kN (T) 100 kN (C)

PROBLEM 1.15
 Objective 4

Three bars 1, 2, and 3 of length 2, 1.5, and 2.5 m respectively, are connected to a rigid plate, 
which carries a 200 kN point load as shown in Figure 1.28. The cross-sectional area of each bar is
1000 mm2. Bars 1 and 3 are of mild steel, while the bar 2 is aluminum. Before placing 200 kN load, 
the rigid plate is horizontal. Determine the fi nal confi guration of the plate due to 200 kN load. Take
ES = 200 GPa and Ea = 60 GPa.
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A

1

2

3

B C

200 kN

D

1.0 m 1.0 m

0.5 m

FIGURE 1.28

SOLUTION

Let F1, F2, and F3 be the forces in the members 1, 2, and 3, respectively. Considering the free body 

diagram of the bar ABCD,

200 kN1.0 m

A B C
D

1.0 m 1.0 m

0.5 m

F1 F2 F3

FIGURE 1.29

Sum of the forces in vertical direction is zero.

 = F1 + F2 + F3 = 200 kN.

Sum of the moments about point ‘A’ is zero.

 = 2F3 + F2 = 200 × 2.5 = 500.

From the two equilibrium equations, the three unknown quantities F1, F2, and F3 cannot be found. 

Hence, compatibility condition is to be used.

The rigid bar ABCD cannot deform, but owing to the extensions of bars 1, 2, and 3 the rigid bar 

rotates. Let d1, d2, and d3 be the extensions of the bars 1, 2, and 3.

A B C

d1 d2 d3

FIGURE 1.30

As the rigid bar just rotates, the deformations d1, d2, and d3 adjust in such way that,

 3 1 3 22 1

1 2 1

d d d dd d - --
= =

 d2 − d1 = d3 − d2
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 = d1 + d3 = 2d2 Compatibility condition (1.9)

  = 
¥¥ ¥

¥ ¥ ¥ ¥ ¥
+

¥
=31 2

5 5 5

25002000 2 1500

1000 2 10 1000 2 10 1000 0.6 10

FF F

  = 2F1 + 2.5F3 = 10F2 Compatibility condition (1.10)

Solving equations (1), (2), and (4)

 F1 = −70.428 kN (compressive);

 F2 = 42.857 kN (tensile);

 F3 = 228.571 kN (tensile).

Rotation of the rigid bar ABCD is given by

 q = 2 1

1000

d d-
 :; d2 = 2 2

2(AE)

F L
:; d1 = 1 1

1(AE)

F L

 d1 = −0.714 mm

 d2 = 1.071 mm

\ q = 0.00179 radians.

PROBLEM 1.16
 Objective 1

A rigid bar is supplied by a pin at ‘A’ and two bars (1) and 
(2) at points B and C as shown in Figure 1.31. The bar (1) 
is copper having 100 mm2 cross-sectional area. Bar (2) is 
of steel with cross-sectional area of 120 mm2. Determine 
the stresses in bars 1 and 2 due to a 10 kN load at ‘D’. ES 
= 200 GPa and EC = 80 GPa.

SOLUTION
Let F1 and F2 be the forces in the bars 1 and 2, 

respectively. Using static equilibrium equations, that is, 

by taking moments about A,

 F1 (0.4) + F2 (0.8) = 10 × 1.0

 = F1 + 2F2 = 25. (1)

A

B

C

D

B¢

C¢

FIGURE 1.32

400 mm 400 mm
200 mm

A

B
1000 mm

FIGURE 1.31
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Bar ABCD is rigid bar. Hence, it takes confi gurations AB¢C¢D

 BB¢ = dB = 1 1

1 1

F L

A E

 CC¢ = dC = 2 2

2 2

F L

A E

 L1 = 0.4 m   
Ê ˆ

=Á ˜+ +Ë ¯
¥∵ 1

1000
400 mm

400 400 200
L

 L2 = 0.8 m

‘q’ rotation of bar is equal to

  (400/cos ) (800/cos )

cB dd
a a

=

 
 

2

C
B

d
d =

 =
¥ ¥

¥
¥ ¥ ¥ ¥
1 2

5 5

400 800 1

2100 0.8 10 120 2 10

F F
 (1.11)

 
1 2

1

3
F F=  (1.12)

From equations (1.11) and (1.12)

 F1 = 3.571 kN; F2 = 10.714 kN

Stress in the copper bar (1) = 35.71 N/mm
2
 (tensile)

Stress in the steel bar (2) = 89.28 N/mm
2
 (tensile).

PROBLEM 1.17
 Objective 1

A rigid plate form rests on two aluminum rods having 1200 mm2 cross-sectional area and length
250 mm. A third bar made of steel 249 mm long and cross-sectional area 2400 mm2 is in between the 
two aluminum bars as shown in Figure 1.33. A load of 750 kN is applied on the platform. Determine the 
stresses induced in aluminum and steel bars. Take ES = 210 GPa and EAl = 70 GPa.

Aluminium AluminiumSteel

750 kN

Rigid plate form

FIGURE 1.33
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SOLUTION
In the given system, aluminum bars alone take the load till the gap of 1 mm is closed. Once the gap 

is closed, then aluminum and steel bars resist the load. Thus, the solution of the problem can be split 

into two cases. Final stresses will be the algebraic sum of stresses from two cases.

Case (i): Load required by the aluminum bars to deform by 1 mm.

Case (ii): After the gap is closed, sharing the remaining load between aluminum and steel.

Case (i): Let s1A be the stress in aluminum, which closes the gap between aluminum and steel. In 

this stage, steel bar is not at all stressed s1S = 0.

Then 
s ¥

=1 1 mm
( )

A A

A

L

AE

fi 
1

3

250
1 mm

70 10

As
=

¥
¥

fi s1A = 280 N/mm
2

fi Load required to close the gap = s1A × 2 × AA1

 P1 = 672 kN.

\ In case (i), stress in aluminum = 280 MPa

          = 0

Case (ii): Let P2 be the load remaining after closing the gap of 1 mm.

 P2 = 750 − 672 = 78 kN.

Let s2A and s2S be the stress developed in aluminum and steel, respectively, in the second stage.

\ s2A·ASl + s2S·AS = P2 (equilibrium condition)

fi s2A(2400) + s2s(2400) = 78,000 (1.13)

fi s2A + s2S = 32.5.

Once the gap is closed, the shortcoming of aluminum bar and steel bar should be same for 

compatibility.

fi 
s ¥2 250A

AlE
 = 

s ¥2 250S

SE

\ s2A = s2s

¥
¥

È ˘
Í ˙
Î ˚

3

3

70 10

210 10

 s2A = 2

3

Ss
 (1.14)

Using equations (1.14) and (1.13)

 s2S = 24.375 MPa

 s2A = 8.125 MPa



STRESS–STRAIN 29

\ Final stress in aluminum = sA = s1A + s2A = 288.13 MPa

 Final stress in steel = sS = s1S + s2S = 24.375 MPa.

PROBLEM 1.18
 Objective 1

A concrete column of cross-section 230 mm × 230 mm carries four numbers of 12 mm diameter steel 
bars. If an axial load of 200 kN acts on the composite column, determine the stress induced in concrete 
and steel. ES/EC = modular ratio = 10.

SOLUTION

Let sS and sC be the stress developed in concrete. For static equilibrium condition

 sS × AS + sC × AC = P

in which AS is cross-sectional area of steel; AC is cross-sectional area of concrete.

 AS = 4 × 
p
4

(12
2
) = 452 mm

2

 AC = 52,447.6 mm
2

\ 452 sS + 52,447.6 sC = 200,000 (1.15)

Compatibility condition: Perfect bond exists between concrete and steel.

fi dC = dS

fi 
s ¥
 C

C

L

E
 = 

s ¥S

S

L

E

fi sS = S

C

E

E
 × sC.

Here S

C

E

E
 is called as modular ratio.

\  sS = 10sC (1.16)

From equations (1.15) and (1.16)

 sS = 35.11 MPa; sC = 3.511 N/mm
2

Load shared by concrete = 184.131 kN

Load shared by steel = 15.869 kN

% load shared by steel is 7.9% only.

Thus in reinforced concrete columns, capacity of the member can be better increased by increasing 

concrete rather than steel.

FIGURE 1.34
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PROBLEM 1.19
 Objective 1

A brass tubes of cross-sectional area 200 mm2 and length 1 m is clamped between two rigid plates as 
shown in Figure 1.35. A steel bar of cross-sectional area 150 mm2 passes centrally through the rigid 
plates and tightened by ruts. Pitch of the nut is 2 mm. If the nut is rotated by ½ revolutions, estimate 
the stresses produced in steel and brass. Take ES = 210 GPa and EB = 100 GPa.

Brass tube Steel
1000 mm

FIGURE 1.35

SOLUTION
When the nut is tightened, the steel both extend and brass bars between the rigid plates compress. 

Let Ps be the tensile force induced in the steel bolt and Pb be the compressive force induced in the 

brass tube.

For equilibrium,

 Ps = Pb = P. (1.17)

For compatibility, movement of the nut is equal to the sum of extension in the steel bolt and 

compression in the brass tube. The above compatibility condition can be explained as below. The 

steel bar can slide between the rigid plates freely.

Forget tightening of nut for the time being. Now, apply Ps force in steel bolt, the steel bolt extends 

by ds. Then, apply Pb compressive force in the brass tube. Brass tube compress by db when the nut 

is not tightened, but the force Pb and Ps were applied by external means, then the nut will be ss + db 

distant from the rigid plate. Now, rotate the nut to cover the distance Δ = ds + db freely.

This is same as tightening the nut, such that Pb and Ps forces are induced in the brass tube and bolt, 

simultaneously displacing the nut by d.

\ D = ds + db (1.18)

D = distance traveled by the nut in ½ revolution

 = pitch × 
1

2

 = 2 × 
1

2
 = 1 mm

 dS = 
¥s s

S S

P L

A E
 = 

¥
¥ ¥

s

5

1000

150 2 10

P
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 db = 
¥b b

b b

P L

A E
 = 

¥
¥ ¥ 5

1000
.

200 1 10

bP

Substituting the above in equations (2) and (1)

      
È ˘

+Í ˙
Î ˚¥ ¥ ¥ ¥5 5

1000 1000

200 1 10 150 2 10
P  = 1.0 mm

 P = 12,000 N.

Stress in the steel bolt (tensile stress) ss = 
120,00

150
 = 80 MPa (tensile)

Stress in the brass tube = ss = 
12,000

200
 = 60 MPa (compressive stress).

PROBLEM 1.20
 Objective 1

A rigid bar AB, hinged at C, is connected by two bars
(1) and (2) at A and B, respectively, as shown in Figure  
1.36. Bar (1) is 2 mm short in length. Forcibly bar (1) is 
connected to complete the form. Estimate the stresses 
induced in the bars for the following data:

A1 = 200 mm2; A2 = 400 mm2; E1 = 100 GPa; E2 = 10 GPa.

SOLUTION
To close the gap of 2 mm, say force F1 is to be applied 

for the fi rst bar. Because of F1, let F2 be the force developed in bar (2). Apply condition of equilibrium,

 
0CM =Â

 = F1 × 1 = 3F2. (1.19)

Let d1 be the extension in the bar (1) due to F1. Let d2 be the extension in the bar (2) due to F2. If B 

moves down by d1, point A moves up by 1

3

d
.

A¢
A B

d1

d2 =
3

C

d1

FIGURE 1.37

For closing the gap, d1 + 2

3

d
 = D. (1.20)

This is the compatibility condition.

Gap of 2 mm

1.0 3.0

1.51 2

A B
C

FIGURE 1.36
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 d1 = 1 1

1 1

F L

A E
; d2 = 2 2

2 2

F L

A E

\      
¥
¥ ¥

1

5

1500

200 1 10

F
 + 

1

3
 × 

¥
¥ ¥
2

5

1500

400 0.7 10

F
 = 2 mm. (1.21)

Using the value of F1 in the above equation

 F1 = 8.235 kN

 F2 = 24.706 kN

\ Stress in the bar (1) s1 = 123.53 MPa (tensile stress)

Stress in the bar (2) s2 = 20.588 MPa (tensile stress).

PROBLEM 1.21
 Objective 1

Three horizontal bars of same cross-sectional area connected between 
two rigid plates of length L between them. Because of a fabrication 
error, the central bar is 0.0005L short. Find the stress in each bar after 
the system has been mechanically closed. E = 75 GPa.

SOLUTION
P1 = P3 due to symmetry of the structure

 ÂH = 0 = P2 = 2P1 (1.22)

When the middle bar is pulled to close the gap, compressive stress is 

induced in bars (1) and (3).

Hence, as per the compatibility condition

 d2 + d1 = d2 + d3 = D.

 2 1P L P L

AE AE
+ = D  (1.23)

 

2 2 0.0005
2

P L P L
L

AE AE
+ =

Stress in the bar 2 is s2 = 2P

A

 
2 2 0.0005 L

2
L

E E

s sÊ ˆ+ =Á ˜Ë ¯

 

¥
= =

¥75 10 0.0005
25 MPa

1.5 .

Stress in the middle bar s2 = 25 MPa (T)

Stress in the bar (1) = s1 = s2/2 = 12.5 MPa (C)

Stress in the bar (3) = s3 = s1 = 12.5 MPa (C).

2

3

1

L

FIGURE 1.38

P3

P2

P1

FIGURE 1.39
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PROBLEM 1.22
 Objective 3

A rigid bar AB is pinned at A and supported by a steel rod at 
D as shown in Figure 1.40. A linear spring of stiffness
20 kN/mm is located at C and concentrated load of 30 kN at D. 
Determine the vertical displacement of the point B As = 100 
mm2, ES = 200 GPa; LS = 0.5 m.

SOLUTION
A linear spring means force–displacement response of the 

spring is linear. Let FC be the force in the spring and FS be the 

force in the string.

Taking moments about A,

 2 × FS + 1 × FC = 30 × 1.5

fi 2FS + FC = 45

Compatibility condition,

 dC/AC = dB/AB

 dC/1 = dB/2

fi 2dC = dB

dC = extension of the spring = FC/K

 =
¥ ¥

¥ ¥ 5

2 500 1000

20 100 2 10

C SF F
 (FS and FC are in kN)

 
=

4

S
C

F
F

fi FS = 20 kN; FC = 5 kN.

Displacement at B = dB = 2 × dC = 2 × FC/K = 2 × 5/20 = 0.5 mm.

1.5.1 Thermal Stress

Temperature variations cause change in the dimensions of the body depending on the material 

properties. If the deformations with change in temperature are restrained, the stress induced in the 

thermal property of the body is called ‘coeffi cient of thermal expansion’. Coeffi cient of thermal 

expansion is the increase in length per unit length of the body due to unit rise in temperature. 

Generally, temperature is expressed in Kelvin (K) or degree Celsius (°C). Coeffi cient of thermal 

expansion is denoted by ‘a’.

Increase in length with change in temperature = D = L a T

in which L = length of the body

a = coeffi cient of thermal expansion

T = rise in temperature.

20 kN/mm 0.5

30

1.0 0.5 0.5

FIGURE 1.40

30

1.0 0.5 0.5

C
B

FcFs

A

FIGURE 1.41

1.0 0.5 0.5

C B
A

dC
dB

FIGURE 1.42
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Thermal strain = ΔL/L = a · T
Thermal strain is positive, if T is rise in temperature and is negative, if T decreases in temperature.

PROBLEM 1.23
 Objective 1

A stepped steel bar shown in Figure 1.43 is fi xed between two rigid walls at room temperature of 27 
°C. If the temperature is raised to 50 °C determine the maximum stress produced in the bar. Take ES 
= 210 GPa, as = 12 × 10−6/°C.

FIGURE 1.43

SOLUTION
Release a support and allow free expansion due to rise in temperature. Then, apply compressive 

force at the released end, such that the net extension becomes zero.

Released structure

FIGURE 1.44

 D = L a T (It do not depend on cross-sectional area)

 D = 2000 × 12 × 10
−6

 × (50 − 27)

 = 0.552 mm.

Apply force ‘P’ at ‘C’ such that, the bars compress by 0.552 mm so that net extension at C due to P 

and rise in temperature is zero.

FIGURE 1.45

fi    (P × 1000)/(75 × 2.10 × 10
5
) + (P × 1000)/(150 × 2.1 × 10

5
) = 0.552

 P = 5796 N; smax = 77.28 MPa (C).

1.5.2 Thermal Stresses in Composite Members

Composite members are more common in structural members. Change in temperature induces stress 

in the composite members as the thermal properties of the individual materials vary. Consider two 
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bars of different materials say steel and brass; brazed together and subjected to rise in temperature 

by DT. To fi nd the stresses produced due to the temperature variation, release the structure and apply 

force in the bars to maintain compatibility condition; in this case steel and brass bars undergo same 

extension or strain.

STEEL BAR

BRASS BAR

L

Free expansion of steel bar

Free expansion of brass bar

STEEL BAR

BRASS BAR

L Ts sa

L Tb ba

In the absence of rigid plate at the end,

 Free expansion of steel = as(L) DT

 Free expansion of brass = ab(L) DT
in which as = coeffi cient of thermal expansion and ab = coeffi cient of thermal expansion of brass.

But as per compatibility condition, both steel and brass bars have to undergo same extension. 

Thus, steel bar extends little more than the free expansion, whereas brass undergoes extension less 

than free expansion.

STEEL BAR

L Ts sa

P Ls s

A Es s

Ps

Pb

P Lb b

A Eb bL Tb ba

L L La b= =

D = Common extension for steel and brass

FIGURE 1.46

Ps is the tensile force in the steel bar, responsible for deformation D − as(L) DT).

Pb is the compressive force in the brass bar, responsible for deformation (L) ab DT − D.

Extension due to Ps = 
¥S

s s

P L

A E
.

Compression due to Pb = 
¥b

b b

P L

A E
.
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As per equilibrium condition,

 Pb = Ps = P.

Using the compatibility,

 D − L(as) DT = S

s s

P L

A E
 (1.24)

 L(ab) DT − D = B

b b

P L

A E
 (1.25)

Equating ‘D’ from equations (1.24) and (1.25)

 
s s

PL

A E
 + L(as) DT = L(ab) DT − 

b b

PL

A E

 P 
1 1

s s b bA E A E

È ˘
+Í ˙

Î ˚
 = DT [ab – as]

 P = 
a aD - ¥

+( )

( )b s s s b b

b b s s

T A E A E

A E A E

Stress in steel (tension) = 
a a

s
D - ¥

=
+

( )

( )

b s s b b
s

b b s s

T E A E

A E A E

Stress in brass (compressive) = 
a a

s
D - ¥

=
+

( )

( )

b s b s s
b

b b s s

T E A E

A E A E

PROBLEM 1.24
 Objective 1

A rigid bar ABC is pinned at C and attached to two vertical bars (1) and (2) as shown in
Figure 1.47. Estimate the stresses in the bars, if the temperature of the bar (1) is decreased by 40°C.
Data: L1 = 0.9 m; A1 = 300 mm2; E1 = 200 GPa; a1 = 11.7 × 10–6 / °C; L2 = 1.2 m; A2 = 1200 mm2; E2 = 70 
GPa; a2 = 23 × 10–6 / °C;

0.9 m
1.2 m

1
2

0.2 m 0.4 m

FIGURE 1.47
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SOLUTION

Let P1 and P2 be the force in the members due to change in temperature.

From the condition of equilibrium

0.2 m 0.4 m

P1 P2

A B
C

FIGURE 1.48

 ÂMC = 0

fi P1 (0.2) = P2 (0.4) (1.26)

fi P1 = 2P2.

Let the displacement at A be dA and at B be dB.

 
d
0.2

A  = 
d
0.4

B  fi dA = 
d
2

B  (1.27)

dA is displacement, which is the decrease in length due to thermal variation and increase in length 

due to P1.

\ 1 1
1 1

1 1

A

P L
L T

A E
d a= -

As the bar (2) is not subjected to any thermal movement

\ 2 2

2 2

B

P L

A E
d =

 dB = 2dA (compatibility condition)

\ -Ï ¸¥ ¥Ô Ô¥ ¥ ¥ - =Ì ˝
¥ ¥ ¥ ¥Ô ÔÓ ˛

6 1 2

5 5

900 1200
2 900 11.7 10 40

300 2 10 1200 0.7 10

P P

fi 0.8424 − 0.3 × 10
−4P1 = 1.429 × 10

−5P2 (1.28)

Using equation (1.26) in equation (1.28)

 0.8424 − 0.6 × 10
−4P1 = 1.429 × 10

−5P2

fi P2 = 11,339 N

fi P1 = 22678 kN.

Stress in bar (1) s1 = 75.59 MPa.

Stress in bar (2) s2 = 9.45 MPa.
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PROBLEM 1.25
 Objective 1

A rigid bar AD pinned at ‘A’ and attached to the bars BC and ED is shown in Figure 1.49. Temperature 
of the bar CB is decreased by 25 °C and that of the bar ED is increased by 25 °C. Find the stress 
induced in the bars CB and ED. Bar ED is steel and bar CB is brass.

ES = 200 GPa; as = 12 × 10−6/°C; As = 250 mm2; Eb = 90 GPa; ab = 20 × 10−6/°C; Ab = 500 mm2

0.25 m 0.35 m

A
B

C

D

E
0.3 m

0.25 m

FIGURE 1.49

SOLUTION

0.25 m 0.35 m

A
B

D

Pa Ps

FIGURE 1.50

Let Ps and Pb be the forces developed in the steel and brass bars, respectively. As per equilibrium 

condition,

Algebraic sum of moments about A = 0

 ÂMA = 0

fi Ps × 0.6 = Pb × 0.25

fi Pb = 2.4Ps (1.29)

For compatibility condition,

A
B

D

B¢

D¢

FIGURE 1.51



STRESS–STRAIN 39

BB¢  = dB = displacement of the point B Ø
= [Extension of the bar BC due to Pb] − [ Contraction of BC due to 

drop in temperature]

 = b b
b b

b b

P L
L T

A E
a-

 

6

5

300
300 20 10 25

500 0.9 10

bP -¥
= - ¥ ¥ ¥

¥ ¥

 = 0.667 × 10
−5Pb

DD¢  = dD = displacement of the point D Ø
= [Extension of the bar ED due to Ps] − [ Extension of ED due to rise 

in temperature]

 = s s
s s

s s

P L
L T

A E
a+

 

-¥
= + ¥ ¥ ¥

¥ ¥
6

5

250
250 12 10 25

250 2 10

sP

 = 0.5 × 10
−5Ps + 0.075.

For compatibility

 
BB DD

AB AD

¢ ¢=

fi DD¢ = BB¢

\ dD = 2.4dB

\ 0.5 × 10
−5PS + 0.075 = 2.4[0.667 × 10

−5Pb − 0.15]

fi 1.60 × 10
−5Pb − 0.5 × PS = 0.435

fi 1.60 Pb − 0.5 × PS = 43,500.

From equation (1), Pb = 2.4Ps

\ Ps = 13,024 N

\ Pb = 31,257.5 N

Stress in steel bar = ss = 52.10 MPa (tensile stress)

Stress in steel bar = sb = 62.52 MPa (tensile stress).

PROBLEM 1.26
 Objective 1

A rigid bar of negligible weight is supported by two bars (1) and (2) and a change at A as shown in 
Figure 1.52. Determine the temperature change required to cause a stress of 55 MPa in bar (1) for the 
following data.
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A

1

2

B C D

W = 80 kN

1.0 m 1.5 m1.5 m

FIGURE 1.52

L1 = 1.5 m; A1 = 320 mm2; E1 = 200 GPa; a1 = 11.7 × 10−6/°C
L2 = 3.0 m; A2 = 1300 mm2; E2 = 83 GPa; a2 = 18.9 × 10−6/°C

SOLUTION

Let s1 and s2 be the tensile stress induced in bars (1) and (2), respectively.

s1 1A

B
C

80 kN

s2 2A

D
A

FIGURE 1.53

Algebraic sum of moments about A = 0

 ÂMA = 0

fi s1A1 × 1 + s2A2 × 4 = 80 × 1000 × 2.5

fi 55 × 320 × 1 + 4 × s2 × 1300 = 2 × 10
5

fi s2 = 35.08 MPa.

Let ‘T’ be the rise in temperature that develops stress in bar (1) by 55 MPa.

From compatibility consideration,

A
B

D

B¢

D¢

FIGURE 1.54
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1 4

B Dd d
=

 dD = 4dB (1.30)

dB = Displacement of point B, due to rise in temperature and s1

 1 1
1 1

1

B

L
L T

E

s
d a= +  = 0.4124 + 0.0176T

dD = Displacement of point D due to s2 and rise in temperature T

 = 2 2
2 2

2

L
L T

E

s
a+

 = 
6

5

35.08 3000
3000 18.9 10

0.83 10
T-+

¥
¥ ¥ ¥

¥

 = 1.2678 + 0.0567T.

Using dD and dB values in equation (1.30)

 1.2678 + 0.0567T = 4 × [0.4125 + 0.0176T]

fi T = −27.9 °C.

A drop in temperature about 27.9 °C is required to create tensile stress of 55 MPa in the bar (1).

PROBLEM 1.27
 Objective 1

In an assembly of brass tube and steel bolt shown in 
Figure 1.55, the pitch of the bolt thread is 1 mm. The cross-
sectional area of the tube is 1000 mm2 and that of steel 
bolt is 500 mm2. If the nut is turned by 1.5 revolutions and 
the temperature of the system is raised by 100 °C. Find the 
stresses in the tube and the bolt. Take Es = 210 GPa;
Eb = 85 GPa; as = 12 × 10−6/°C; and ab = 20 × 10−6/°C.

SOLUTION
This problem can be solved by dividing the problem into two cases.

Case (i): Stresses due problem into only nut tightening. Because of this, steel bolt will be tensioned 

and brass tube will be compressed.

Case (ii): Stresses tube due to only temperature rise. Because of this, steel bolt will be tensioned 

and brass tube will be compressed; fi nal stress in the materials will be the algebraic sum of stresses 

of case (i) and case (ii).

Case (i): Stresses due to nut tightening
Let Ps1 and Pb1 be the tensile force in the bolt and compressive force in the tube due to nut tightening 

by 1.5 revolutions.

For equilibrium,

 Ps1 = Pb1 = P1 (say).

1000 mm

FIGURE 1.55
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For compatibility

Distance traveled by the nut (D) = Extension in the steel bolt + compression in the tube

Distance traveled by the nut in 1.5 evolutions = D = 1.5 × pitch

 = 1.5 × 1

 = 1.5 mm.

\ 
1 1 1s s b

s s b b

P L P L

A E A E
+ = D

fi     
1 1

3

1000 1000
1.5

1000 85000500 210 10

s bP P
+

¥
¥

=
¥

¥ ¥

As Ps1 = Pb1 = P1

 P1 = 70,461 N.

\ ss1 = 140.92 MPa (tensile)

\ sb1 = 70.46 MPa (compressive).

Case (ii): Stresses due to only thermal variation

Let Ps2 and Pb2 be the tensile force in the steel bolt and compressive force in the brass tube, 

respectively.

For equilibrium, Ps2 = Pb2 = P2 say. (1.31)

For compatibility, extension of steel bolt and compression of brass tube should be same.

 

2 2s b
s b

s s b b

P L P L
L T L T

A E A E
a a+ = -

\      - -+ ¥ ¥ = ¥ ¥ -
¥ ¥ ¥ ¥

6 62 2

5 5
12 10 100 20 10 100

500 2.1 10 1000 0.85 10

s bP P

 Ps2 = Pb2 = P2

 P2 = 37,579 N

Stress in bolt ss2 = 
37,579

75.16 MPa
500

=  (tensile)

Stress in tube sb2 = 
37,579

37.58 MPa
1000

=  (compressive)

Final stress in the steel bolt ss = ss1 + ss2

 = 140.92 + 75.16

 = 216.08 MPa (T)

Final stress in brass tube sb = sb1 + sb2

 = 70.46 + 37.58

 = 108.04 MPa (C)
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1.5.3 Strain Energy due to Axial Loading

Work done by a force is the product of the magnitude of the force and the displacement or deformation 

of the body in the direction of the force. Thus, forces acting on deformable bodies ‘work’ as bodies 

deform, though the bodies are at rest confi guration. This work done by the external force must be 

conserved.

The internal stresses and the corresponding strains due to external force produce internal work 

(within the body). From low conservation of energy, external work must be equal to internal work. 

This internal work is defi ned as strain energy.

 We = U + I

 We = External work

 U = Strain energy

 I = Internal heat energy

In strength of materials, we assume that the system is adiabatic. Thus, no heat is given to the system 

or taken out of the system. Thus, internal heat energy becomes zero (I = 0).

\ We = U

In general, the loads applied are gradual and corresponding deformations are also gradual.

Thus, the external work done (We)

Axial load P

Extension ( )D

d P

d

L

FIGURES 1.56 AND 1.57

\ Strain energy U = 
1

2
Pd

 

1

2

PL
U P

AE
=

Rearranging the above expression,

 U = 
1

2

PL A
P

AE A
¥ ; Taking P/A as s,
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 U = 
1 1

2 2

L
A

E E

s s
s s= ¥  (Volume of the bar)

or strain energy density = U/volume = 
2

1

2 E

s

in which ‘s’ is stress and E is modulus of elasticity.

Resilience

Strain energy stored in the body, when the stress at its proportionality limit is referred as ‘resilience 

modulus’. This represents the ability of the body to absorb energy. (This value is high for springs.)

 UR = 

2
1

2

y

E

s

Toughness Modulus

Toughness modulus is the strain energy stored in the body up to complete rupture. This can be 

obtained from the area bounded by the P − D (curve) up to rupture/failure.

Strain energy concept is of great help, especially when we deal with suddenly applied loads or 

moving loads or impact loads, etc.

1.5.4 Stress and Deformation of Bars under Impact Loading

Consider a bar of length ‘L’ cross-sectional area ‘A’ and modulus 

of elasticity ‘E’, having a movable washer ‘W’ as collar in Figure 

1.58. A rigid collar present at bottom receives the washer. Let 

‘h’ be the height through which the washer falls. This is a best 

example to give an idea about impact loading and suddenly 

applied loading. If the height of fall ‘h’ is zero, then the loading 

becomes suddenly applied load, otherwise the loading is impact 

loading. Let ‘d’ be the extension of the bar due to impact loading.

 External work done by washer = W(h + d) (1.32)

Let W* be the equivalent gradually applied, which will give 

the same effect of impact loading. Then, the strain energy stored in the bar is U

 
*

1

2
U W d=

Strain energy stored in the body due to impact loading of W* = U

As W* is a gradually applied and gives the same effect of impact loading, ‘d’ should be replaced 

by *

AE

W L
.

 
*

*

1

2 AE

W L
U W=  (1.33)

FIGURE 1.58
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Equating the external work done to strain energy absorbed, that is, equating equations (1.32) and 

(1.33) and replacing d by *W L

AE
,

 

* *
*

1

2

W L W L
W W h

AE AE

È ˘= +Í ˙Î ˚

fi 2
* *2 2 0  

L WL
W W Wh

AE AE

Ê ˆ Ê ˆ- - =Á ˜ Á ˜Ë ¯ Ë ¯
 (1.34)

Solving the above quadratic equation and taking the higher value of W*

 
*

2
1 1

h
W W

WL

AE

Ï ¸
Ô ÔÔ Ô= + +Ì ˝Ê ˆÔ ÔÁ ˜Ë ¯Ô ÔÓ ˛

. (1.35)

WL

AE
 is extension for the bar considering the load ‘W’ as a gradually applied load.

Thus, 
WL

AE
 is referred as static deformation

 
*

st

2
1 1

h
W W

d

Ï ¸Ô Ô= + +Ì ˝
Ô ÔÓ ˛

. (1.36)

dst = Static deformation due to ‘W’.

The instantaneous maximum extension is given by

 

*W L

AE
d =

Instantaneous maximum stress *W

A
s =

For suddenly applied load, h = 0 and hence W* = 2W

 

* 2
.

W W

A A
s = =

In the design of energy absorbing structures, such as shock absorbers and springs, it is required 

that dst should be high. That means, body must be more fl exible. Then, the force attracted by the 

system W* is going to be less. Otherwise, if the structure is more rigid, that is, dst is very less, then 

W* force attracted by the system will be very high. Even in the case of earthquake-resistant design 

of structures, this principle holds good. In case of heavy winds, small plants will not break owing to 

their fl exibility, while very big trees break down/get uprooted because of their high rigidity.

The ratio *W

W
 is referred as impact factor.
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PROBLEM 1.28
 Objective 1

A short steel piece of length 200 mm and cross-sectional area 500 mm2 receives a falling weight of 
mass 5 kg on its top; height of the fall is 50 mm. If E = 210 GPa, estimate the instantaneous maximum 
stress induced in the steel piece. Estimate instantaneous maximum stress, if cross-sectional area of 
the piece is reduced by 20% in the top half portion of the piece.

SOLUTION
From the fi rst part of the problem, data are

 W = 5 × 9.81 = 49.05 N

 L = 200 mm

 A = 500 mm
2

 E = 210 GPa

 h = Height of the fall = 50 mm

 dSt = Static compression due to W

 = 
WL

AE

 = 
4

5

49.05 200
0.934 10

500 2.1
.

10

-¥
= ¥

¥ ¥

Equivalent gradually applied load be W*

 

*

2
1 1

st

h
W W

d

Ï ¸Ô Ô= + +Ì ˝
Ô ÔÓ ˛

 

* 4

2 50
49.05 1 1 50,802.5 N

0.934 10
W -

Ï ¸¥Ô Ô= + + =Ì ˝
¥Ô ÔÓ ˛

Instantaneous maximum stress developed

 
50802.5

101.61 MPa
500

s = =  (C)

In second part of the problem, cross-sectional area of the top 

half of the steel piece is reduced by 20%.

\ C/S area of top portion = 400 mm
2
.

Let W*2 be the statically equivalent load in second case.

dSt2 = static compression in stepped column

 

1 1 2 2
st2

1 1 2 2

P L P L

A E A E
d = +

 5 5

49.05 100 49.05 100

400 2.1 10 500 2.1 10

¥ ¥
= +

¥ ¥ ¥ ¥

 = 1.05 × 10
−4

 mm

5 kg

50 mm

200 mm

FIGURE 1.59

5 kg

A1

A2

100 mm

100 mm

50 mm

FIGURE 1.60
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 *2

st2

2
49.05 1 1

h
W

d

Ï ¸Ô Ô= ¥ + +Ì ˝
Ô ÔÓ ˛

 W*2 = 47,916.97 N

Instantaneous maximum stress developed = 
47,916.97

119.73 MPa
400

s = = .

Reduction in cross-sectional area is not much benefi cial in reducing the impact effect, but 

reduction in ‘E’ value will give lot of advantage. This can be verifi ed by decreasing the value of E 

in this problem.

PROBLEM 1.29
 Objective 1

A steel piece of height 200 mm receives an impact load of 5 kg mass falling through 50 mm height. 
Estimate the instantaneous stress produced in the steel piece. To reduce the impact effect, a short 
rubber pad of same cross-sectional area and thickness of 20 mm is used. Estimate reduction in impact 
factor with the provision of rubber pad. Take Es = 200 GPa; Er = 1.5 GPa; and A = 250 mm2.

SOLUTION

      Impact factor = 
Statically equivalent load

Falling weight

Let W* be the statically equivalent load.

 W = 9.81 × 5 = 49.05 N

 W* = 

st

2
{1 1 }

h
W

d
+ +

 dSt = 5

5 9.81 200

250 2 10

¥ ¥
¥ ¥  = 1.962 × 10

−4
 mm

 W* = 49.05{1+ 
4

2 50
1}

1.962 10
-

¥
+

¥

 = 49.05 × 714.92 = 35,067 N

\ Impact factor = *W

W
 = 714.92.

Effect of providing rubber pad

Let W*2 be the statically applied equivalent load.

 dSt = 
49.05 200

250 2 10

¥
¥ ¥

 + 
49.05 20

250 1.5 1000

¥
¥ ¥

 = 0.00281 mm

 W*2 = 49.05
2 50

1 1
0.00281

Ï ¸¥Ô Ô+ +Ì ˝
Ô ÔÓ ˛

5 kg

50 mm

200 mm

20 mm

FIGURE 1.61
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 = 49.05 × 189.65 = 9302.25 N.

Impact factor *2W

W
 = 189.65.

From this example, it is clear that provision rubber pad reduces the impact effect.

Impact factor in the absence of rubber pad = 714.92.

Impact factor with the provision of rubber pad is 189.65.

PROBLEM 1.30
 Objective 1

A rigid bar ABC, shown in Figure 1.62, is subjected to an impact load factor of 100 N, falling 
through a height of 0.2 m. A steel bar of cross-sectional area 1200 mm2 and 1.5 m long is attached 
to the rigid bar at B. Determine the instantaneous maximum stress induced in the steel bar.
Take Es = 100 GPa.

B

A C

100 N

1 m 1.5 m

0.2 m

FIGURE 1.62

SOLUTION

B

A
C

1 m 1.5 m

C¢

dC

dB

B¢

FIGURE 1.63

Let dc and db be the deformation at C and B, respectively.

From compatibility,

 2.5 1

C Bd d
=

Or                dc = 2.5 dB

External work done by falling weight

 = 100 (h + dC)

 = 100 (200 + dC)
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Energy absorbed by the steel bar
Let W* be the statically applied equivalent tensile load in the steel bar.

         Energy absorbed = * 

1
 
2

BW d

 = * 
* 

1
.

2

W L
W

AE
Equating the energy absorbed to the external work done, 

 100 (200 + dC) = 

2 
*1

2

W L

AE
Also dC = 2.5 dB (from compatibility condition)

 =2.5 × * W L

AE

\ * 100 200 2.5
E

W L

A

Ï ¸
+Ì ˝

Ó ˛
 = 

2 
*1

2

W L

AE

fi 

2
* *

5 5

2.5 1500 15001
100 200

21200 2 10 1200 2 10

W WÈ ˘¥ ¥
+ = ¥Í ˙

¥ ¥ ¥ ¥Î ˚

fi  - -¥ - ¥ - =5 2 3
* *0.3125 10 1.5625 10 20000 0W W

fi 
* 80,250.4 N.W =

\ Instantaneous maximum stress produced in steel = 66.88 MPa (tensile).

PROBLEM 1.31
 Objective 1

An unknown weight falls 4 cm on to a collar rigidly attached to the lower end of a vertical bar 4 m 
long and 8 cm2 in section. If the maximum instantaneous extension is found to be 0.42 cm, fi nd the 
corresponding stress and the value of the unknown weight. E = 200 kN/mm2.

SOLUTION

Height of fall h = 40 mm

Length of the bar L = 4 m = 4000 mm

C/S area of the bar A = 8 cm
2
 = 800 mm

2

Max. instantaneous extension d = 0.42 cm = 4.2 mm

Modulus of elasticity E = 200 GPa = 2 × 10
5
 MPa.

Let W* be the equivalent gradually applied load that gives the same effect of impact load.

Then        d = *W L

AE

fi *

3

4000
4.2

800 200 10

W ¥
=

¥ ¥

fi 
* 168,000 NW = .
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Let W be the falling weight.

Work done, that is, energy associated with falling weight  = W(h + d)

= W[40 + 4.2]

Energy absorbed by the wire U = *

1

2
W d  = 

1

2
 × 168,000 × 4.2

Energy work done to the energy absorbed W[44.2] = 
1

168,000 4.2
2

¥ ¥

fi          W = 7981.9 N.

PROBLEM 1.32
 Objective 4

An aluminum bar 60 mm diameter when subjected to an axial tensile load 100 kN elongates
0.20 mm in a gauge length 300 mm and the diameter is decreased by 0.012 mm. Calculate the modulus 
of elasticity and the Poisson’s ratio of the material.

SOLUTION

Diameter of the bar = 60 mm

Tensile load (P) = 100 kN = 100 × 10
3
 N

Extension or elongation d = 0.2

Gauge length L = 300 mm

Decrease in diameter dd = 0.012 mm

Linear strain Œ = 
d
L

 = 
0.2

300
 = 0.00067

Linear stress s = 
3

2

2

100 10
35.368 N / mm

60
4

P

A

¥
= =

P

Modulus of elasticity  
s
Œ

= 
535.368

0.5305 10  MPa
0.00067

= ¥

Poisson’s ratio 
Linear strain

Lateral strain
m =

Lateral strain = 
Change in diameter

Diameter
 = 

0.012
 

60
 = 0.0002

Poisson’s ratio m = 
0.0002

0.3
0.00067

=

m = 0.3 and E = 0.53 × 10
5
 MPa = 53 GPa.
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PROBLEM 1.33
 Objective 4

A compound bar 1 m long is 40 mm diameter for 300 mm length, 30 mm diameter for the next 350 mm 
length. Determine the diameter of the remaining length, so that its elongation under an axial load of 
100 kN does not exceed 1 mm. Take E = 2 × 105 N/mm2.

SOLUTION

A

B C
D

40 30 d

0.3 m 0.35 m 0.35 m

1.0 m

FIGURE 1.64

Length of proportion CD = 1000 – 300 – 350 = 350 mm

Total extension: dAB + dBC + dCD < 1 mm

Given that, diameter of bar in portion AB = dAB = 40 mm

 E = 200 GPa and P = 100 kN

 dBC = 30 mm

 dCD = d (to be found)

Length of proportion AB   LAB = 300 mm

 LBC = 350 mm

 LCD = 350 mm

 dAB = AB

AB

PL

A E
 = 

3

2 5

100 10 300

(40) 2 10
4

¥ ¥
P ¥ ¥

 = 0.119 mm

 dBC = BC

BC

PL

A E
 = 

3

2 5

100 10 350

(30) 2 10
4

¥ ¥
P ¥ ¥

 = 0.248 mm

 dCD = CD

CD

PL

A E
 = 

3

2 5

100 10 350

( ) 2 10
4

d

¥ ¥
P ¥ ¥

 = 
2

222.82

d

Given that, dAB + dBC + dCD ≤ 1 mm

fi        
2

222.82
0.119 0.248 1

d
+ + £

fi        
2

222.82
1

d
£

fi        d £ 18.76 mm.


