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Preface

The use of sophisticated mathematical tools in modern finance is now common-

place. Researchers and practitioners routinely run simulations or solve differential

equations to price securities, estimate risks, or determine hedging strategies.

Some of the most important tools employed in these computations are opti-

mization algorithms. Many computational finance problems ranging from asset

allocation to risk management, from option pricing to model calibration, can

be solved by optimization techniques. This book is devoted to explaining how

to solve such problems efficiently and accurately using the state of the art in

optimization models, methods, and software.

Optimization is a mature branch of applied mathematics. Typical optimization

problems have the goal of allocating limited resources to alternative activities in

order to maximize the total benefit obtained from these activities. Through

decades of intensive and innovative research, fast and reliable algorithms

and software have become available for many classes of optimization prob-

lems. Consequently, optimization is now being used as an effective manage-

ment and decision-support tool in many industries, including the financial

industry.

This book discusses several classes of optimization problems encountered in

financial models, including linear, quadratic, integer, dynamic, stochastic, conic,

and nonlinear programming. For each problem class, after introducing the rele-

vant theory (optimality conditions, duality, etc.) and efficient solution methods,

we discuss several problems of mathematical finance that can be modeled within

this problem class.

The second edition includes a more detailed discussion of mean–variance opti-

mization, multi-period models, and additional material to highlight the relevance

to finance.

The book’s structure has also been clarified for the second edition; it is now

organized in four main parts, each comprising several chapters. Part I guides

the reader through the solution of asset liability cash flow matching using lin-

ear programming techniques, which are also used to explain asset pricing and

arbitrage. Part II is devoted to single-period models. It provides a thorough

treatment of mean–variance portfolio optimization models, including derivations

of the one-fund and two-fund theorems and their connection to the capital asset

pricing model, a discussion of linear factor models that are used extensively
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in risk and portfolio management, and techniques to deal with the sensitivity of

mean–variance models to parameter estimation. We discuss integer programming

formulations for portfolio construction problems with cardinality constraints, and

we explain how this is relevant to constructing an index fund. The final chapters

of Part II present a stochastic programming approach to modeling measures of

risk other than the variance, including the popular value at risk and conditional

value at risk.

Part III of the book discusses multi-period models such as the iconic Kelly cri-

terion and binomial lattice models for asset pricing as well as more elaborate and

modern models for optimal trade execution, dynamic portfolio optimization with

transaction costs and taxes, and asset–liability management. These applications

showcase techniques from dynamic and stochastic programming.

Part IV is devoted to more advanced optimization techniques. We introduce

conic programming and discuss applications such as the approximation of covari-

ance matrices and robust portfolio optimization. The final chapter of Part IV

covers one of the most general classes of optimization models, namely nonlinear

programming, and applies it to volatility estimation.

This book is intended as a textbook for Master’s programs in financial engi-

neering, finance, or computational finance. In addition, the structure of chapters,

alternating between optimization methods and financial models that employ

these methods, allows the book to be used as a primary or secondary text

in upper-level undergraduate or introductory graduate courses in operations

research, management science, and applied mathematics. A few sections are

marked with a ‘∗’ to indicate that the material they contain is more technical

and can be safely skipped without loss of continuity.

Optimization algorithms are sophisticated tools and the relationship between

their inputs and outputs is sometimes opaque. To maximize the value from using

these tools and to understand how they work, users often need a significant

amount of guidance and practical experience with them. This book aims to

provide this guidance and serve as a reference tool for the finance practitioners

who use or want to use optimization techniques.

This book has benefited from the input provided by instructors and students

in courses at various institutions. We thank them for their valuable feedback

and for many stimulating discussions. We would also like to thank the colleagues

who provided the initial impetus for this book and colleagues who collaborated

with us on various research projects that are reflected in the book. We especially

thank Kathie Cameron, the late Rick Green, Raphael Hauser, John Hooker,

Miroslav Karamanov, Mark Koenig, Masakazu Kojima, Vijay Krishnamurthy,

Miguel Lejeune, Yanjun Li, François Margot, Ana Margarida Monteiro, Mustafa

Pınar, Sebastian Pokutta, Sanjay Srivastava, Michael Trick, and Lúıs Vicente.



Part I

Introduction





1 Overview of Optimization Models

Optimization is the process of finding the best way of making decisions that

satisfy a set of constraints. In mathematical terms, an optimization model is a

problem of the form

min
x

f(x)

s.t. x ∈ X ,
(1.1)

where f : Rn → R and X ⊆ Rn.

Model (1.1) has three main components, namely the vector of decision vari-

ables x :=
[
x1 · · · xn

]T ∈ Rn; the objective function f(x); and the constraint

set or feasible region X . The constraint set is often expressed in terms of equalities

and inequalities involving additional functions. More precisely, the constraint set

X is often of the form

X = {x ∈ Rn : gi(x) = bi, for i = 1, . . . ,m, and hj(x) ≤ dj , for j = 1, . . . , p},
(1.2)

for some gi, hj : Rn → R, i = 1, . . . ,m, j = 1, . . . , p. When this is the case, the

optimization problem (1.1) is usually written in the form

min
x

f(x)

s.t. gi(x) = bi, for i = 1, . . . ,m

hj(x) ≤ dj , for j = 1, . . . , p,

or in the more concise form

min
x

f(x)

s.t. g(x) = b

h(x) ≤ d.

We will use the following terminology. A feasible point or feasible solution to

(1.1) is a point in the constraint set X . An optimal solution to (1.1) is a feasible

point that attains the best possible objective value; that is, a point x∗ ∈ X
such that f(x∗) ≤ f(x) for all x ∈ X . The optimal value of (1.1) is the value

of the objective function at an optimal solution; that is, f(x∗) where x∗ is an

optimal solution to (1.1). If the feasible region X is of the form (1.2) and x ∈ X ,

the binding constraints at x are the equality constraints and those inequality

constraints that hold with equality at x. The term active constraint is also often

used in lieu of “binding constraint”. The problem (1.1) is infeasible if X = ∅. On
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the other hand, (1.1) is unbounded if there exist xk ∈ X , k = 1, 2, . . . , such that

f(xk) → −∞.

1.1 Types of Optimization Models

For optimization models to be of practical interest, their computational tractabil-

ity, that is, the ability to find the optimal solution efficiently, is a critical issue.

Particular structural assumptions on the objective and constraints of the problem

give rise to different classes of optimization models with various degrees of

computational difficulty. We should note that the following is only a partial classi-

fication based on the current generic tractability of various types of optimization

models. However, what is “tractable” in some specific context may be more

nuanced. Furthermore, tractability evolves as new algorithms and technologies

are developed.

Convex optimization: These are problems where the objective f(x) is a con-

vex function and the constraint set X is a convex set. This class of

optimization models is tractable most of the time. By this we mean that

a user can expect any of these models to be amenable to an efficient algo-

rithm. We will emphasize this class of optimization models throughout

the book.

Mixed integer optimization: These are problems where some of the variables

are restricted to take integer values. This restriction makes the con-

straint set X non-convex. This class of optimization models is somewhat

tractable a fair portion of the time. By this we mean that a model of this

class may be solvable provided the user does some judicious modeling

and has access to high computational power.

Stochastic and dynamic optimization: These are problems involving ran-

dom and time-dependent features. This class of optimization models

is tractable only in some special cases. By this we mean that, unless

some specific structure and assumptions hold, a model of this class

would typically be insoluble with any realistic amount of computational

power at our disposal. Current research is expected to enrich the class

of tractable models in this area.

The modeling of time and uncertainty is pervasive in almost every financial

problem. The various types of optimization problems that we will discuss are

based on how they deal with these two issues. Generally speaking, static models

are associated with simple single-period models where the future is modeled as

a single stage. By contrast, in multi-period models the future is modeled as a

sequence, or possibly as a continuum, of stages. With regard to uncertainty,

deterministic models are those where all the defining data are assumed to be

known with certainty. By contrast, stochastic models are ones that incorporate

probabilistic or other types of uncertainty in the data.
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A good portion of the models that we will present in this book will be convex

optimization models due to their favorable mathematical and computational

properties. There are two special types of convex optimization problems that we

will use particularly often: linear and quadratic programming, the latter being an

extension of the former. These two types of optimization models will be discussed

in more detail in Chapters 2 and 5. We now present a high-level description

of four major classes of optimization models: linear programming, quadratic

programming, mixed integer programming, and stochastic optimization.

Linear Programming

A linear programming model is an optimization problem where the objective is a

linear function and the constraint set is defined by finitely many linear equalities

and linear inequalities. In other words, a linear program is a problem of the form

min
x

cTx

s.t. Ax = b

Dx ≥ d

for some vectors c ∈ Rn,b ∈ Rm,d ∈ Rp and matrices A ∈ Rm×n,D ∈ Rp×n.

The term linear optimization is sometimes used in place of linear programming.

The wide popularity of linear programming is due in good part to the availability

of very efficient algorithms. The two best known and most successful methods

for solving linear programs are the simplex method and interior-point methods.

We briefly discuss these algorithms in Chapter 2.

Quadratic Programming

Quadratic programming, also known as quadratic optimization, is an extension

of linear programming where the objective function includes a quadratic term.

In other words, a quadratic program is a problem of the form

min
x

1
2x

TQx+ cTx

s.t. Ax = b

Dx ≥ d

for some vectors and matrices Q ∈ Rn×n, c ∈ Rn, b ∈ Rm, d ∈ Rp, A ∈ Rm×n,

D ∈ Rp×n. It is customary to assume that the matrix Q is symmetric. This

assumption can be made without loss of generality since

xTQx = xTQ̃x

where Q̃ = 1
2 (Q+QT), which is clearly a symmetric matrix.

We note that a quadratic function 1
2x

TQx + cTx is convex if and only if the

matrix Q is positive semidefinite (xTQx ≥ 0 for all x ∈ Rn). In this case the

above quadratic program is a convex optimization problem and can be solved
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efficiently. The two best known methods for solving convex quadratic programs

are active-set methods and interior-point methods. We briefly discuss these algo-

rithms in Chapter 5.

Mixed Integer Programming

A mixed-integer program is an optimization problem that restricts some or all of

the decision variables to take integer values. In particular, a mixed integer linear

programming model is a problem of the form

min
x

cTx

s.t. Ax = b

Dx ≥ d

xj ∈ Z, j ∈ J

for some vectors and matrices c ∈ Rn, b ∈ Rm, d ∈ Rp, A ∈ Rm×n, D ∈ Rp×n

and some J ⊆ {1, . . . , n}.
An important case occurs when the model includes binary variables, that is,

variables that are restricted to take values 0 or 1. As we will see, the inclusion

of this type of constraint increases the modeling power but comes at a cost in

terms of computational tractability. It is noteworthy that the computational and

algorithmic machinery for solving mixed integer programs has vastly improved

during the last couple of decades. The main classes of methods for solving

mixed integer programs are branch and bound, cutting planes, and a combination

of these two approaches known as branch and cut. We briefly discuss these

algorithms in Chapter 8.

Stochastic Optimization

Stochastic optimization models are optimization problems that account for ran-

domness in their objective or constraints. The following formulation illustrates

a generic type of stochastic optimization problem

min
x

E(F (x, ω))

x ∈ X .

In this problem the set of decisions x must be made before a random outcome

ω occurs. The goal is to optimize the expectation of some function that depends

on both the decision vector x and the random outcome ω. A variation of this for-

mulation, that has led to important developments, is to replace the expectation

by some kind of risk measure � in the objective:

min
x

�(F (x, ω))

x ∈ X .

There are numerous refinements and variants of the above two formulations. In

particular, the class of two-stage stochastic optimization with recourse has been
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widely studied in the stochastic programming community. In this setting a set

of decisions x must be made in stage one. Between stage one and stage two

a random outcome ω occurs. At stage two we have the opportunity to make

some second-stage recourse decisions y(ω) that may depend on the random

outcome ω.

The two-stage stochastic optimization problem with recourse can be formally

stated as

min
x

f(x) + E[Q(x, ω)]

x ∈ X .

The recourse term Q(x, ω) depends on the first-stage decisions x and the random

outcome ω. It is of the form

Q(x, ω) := min
y(ω)

g(y(ω), ω)

y(ω) ∈ Y(x, ω).

The second-stage decisions y(ω) are adaptive to the random outcome ω because

they are made after ω is revealed. The objective function in a two-stage stochastic

optimization problem contains a term for the stage-one decisions and a term for

the stage-two decisions where the latter term involves an expectation over the

random outcomes. The intuition of this objective function is that the stage-one

decisions should be made considering what is to be expected in stage two.

The above two-stage setting generalizes to a multi-stage context where the

random outcome is revealed over time and decisions are made dynamically at

multiple stages and can adapt to the information revealed up to their stage.

1.2 Solution to Optimization Problems

The solution to an optimization problem can often be characterized in terms of

a set of optimality conditions. Optimality conditions are derived from the math-

ematical relationship between the objective and constraints in the problem. Sub-

sequent chapters discuss optimality conditions for various types of optimization

problems. In special cases, these optimality conditions can be solved analytically

and used to infer properties about the optimal solution. However, in many cases

we rely on numerical solvers to obtain the solution to the optimization models.

There are numerous software vendors that provide solvers for optimization

problems. Throughout this book we will illustrate examples with two popular

solvers, namely Excel Solver and the MATLAB�-based optimization modeling

framework CVX. Excel and MATLAB files for the examples and exercises in the

book are available at:

www.andrew.cmu.edu/user/jfp/OIFbook/

Both Excel Solver and CVX enable us to solve small to medium-sized problems

and are fairly easy to use. There are far more sophisticated solvers such as the

http://www.andrew.cmu.edu/user/jfp/OIFbook/
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commercial solvers IBM�-ILOG� CPLEX�, Gurobi, FICO� Xpress, and the ones

available via the open-source projects COIN-OR or SCIP.

Optimization problems can be formulated using modeling languages such as

AMPL, GAMS, MOSEL, or OPL. The need for these modeling languages arises

when the size of the formulation is large. A modeling language lets people use

common notation and familiar concepts to formulate optimization models and

examine solutions. Most importantly, large problems can be formulated in a

compact way. Once the problem has been formulated using a modeling language,

it can be solved using any number of solvers. A user can switch between solvers

with a single command and select options that may improve solver performance.

1.3 Financial Optimization Models

In this book we will focus on the use of optimization models for financial problems

such as portfolio management, risk management, asset and liability management,

trade execution, and dynamic asset management. Optimization models are also

widely used in other areas of business, science, and engineering, but this will not

be the subject of our discussion.

Portfolio Management

One of the best known optimization models in finance is the portfolio selection

model of Markowitz (1952). Markowitz’s mean–variance approach led to major

developments in financial economics including Tobin’s mutual fund theorem

(Tobin, 1958) and the capital asset pricing model of Treynor
1

, Sharpe (1964),

Lintner (1965), and Mossin (1966). Markowitz was awarded the Nobel Prize in

Economics in 1990 for the enormous influence of his work in financial theory and

practice. The gist of this model is to formalize the principle of diversification

when selecting a portfolio in a universe of risky assets. As we discuss in detail in

Chapter 6, Markowitz’s mean–variance model and a wide range of its variations

can be stated as a quadratic programming problem of the form

min
x

1
2γ · xTVx− μTx

Ax = b

Dx ≥ d.

(1.3)

The vector of decision variables x in model (1.3) represents the portfolio holdings.

These holdings typically represent the percentages invested in each asset and

thus are often subject to the full investment constraint 1Tx = 1. Other common

constraints include the long-only constraint x ≥ 0, as well as restrictions related

to sector or industry composition, turnover, etc. The terms xTVx and μTx in

the objective function are respectively the variance, which is a measure of risk,

1
“Toward a theory of market value of risky assets”. Unpublished manuscript, 1961.
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and the expected return of the portfolio defined by x. The risk-aversion constant

γ > 0 in the objective determines the tradeoff between risk and return of the

portfolio.

Risk Management

Risk is inherent in most economic activities. This is especially true of financial

activities where results of decisions made today may have many possible different

outcomes depending on future events. Since companies cannot usually insure

themselves completely against risk, they have to manage it. This is a hard task

even with the support of advanced mathematical techniques. Poor risk manage-

ment led to several spectacular failures in the financial industry in the 1990s

(e.g., Barings Bank, Long Term Capital Management, Orange County). It was

also responsible for failures and bailouts of a number of institutions (e.g., Lehman

Brothers, Bear Stearns, AIG) during the far more severe global financial crisis of

2007–2008. Regulations, such as those prescribed by the Basel Accord (see Basel

Committee on Banking Supervision, 2011), mandate that financial institutions

control their risk via a variety of measurable requirements. The modeling of reg-

ulatory constraints as well as other risk-related constraints that the firm wishes

to impose to prevent vulnerabilities can often be stated as a set of constraints

RM(x) ≤ b. (1.4)

The vector x in (1.4) represents the holdings in a set of risky securities. The

entries of the vector-valued function RM(x) represent one or more measures of

risk and the vector b represents the acceptable upper limits on these measures.

The set of risk management constraints (1.4) may be embedded in a more

elaborate model that aims to optimize some kind of performance measure such

as expected investment return.

In Chapter 2 we discuss a linear programming model for optimal bank planning

under Basel III regulations. In this case the components of the function RM(x)

are linear functions of x. In Chapter 11 we discuss more sophisticated risk

measures such as value at risk and conditional value at risk that typically make

RM(x) a nonlinear function of x.

Asset and Liability Management

How should a financial institution manage its assets and liabilities? A static

model, such as the Markowitz mean–variance portfolio selection model, fails

to incorporate the multi-period nature of typical liabilities faced by financial

institutions. Furthermore, it penalizes returns both above and below the mean.

A multi-period model that emphasizes the need to meet liabilities in each

period for a finite (or possibly infinite) horizon is often more appropriate. Since

liabilities and asset returns usually have random components, their optimal

management requires techniques to optimize under uncertainty such as stochastic

optimization.
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We discuss several asset and liability management models in Chapters 3, 16,

and 17. A generic asset and liability management model can often be formulated

as a stochastic programming problem of the form

max
x

E(U(x))

Fx = L

Dx ≥ 0.

(1.5)

The vector x in (1.5) represents the investment decisions for the available assets

at the dates in the planning horizon. The vector L in (1.5) represents the

liabilities that the institution faces at the dates in the planning horizon. The

constraints Fx = L, Dx ≥ 0 represent the cash flow rules and restrictions

applicable to the assets during the planning horizon. The term U(x) in the

objective function is some appropriate measure of utility. For instance, it could

be the value of terminal wealth at the end of the planning horizon. In general,

the components F,L,D are discrete-time random processes and thus (1.5) is

a multi-stage stochastic programming model with recourse. In Chapter 3 we

discuss some special cases of (1.5) with no randomness.

1.4 Notes

George Dantzig was the inventor of linear programming and author of many

related articles as well as a classical reference on the subject (Dantzig, 1963). A

particularly colorful and entertaining description of the diet problem, a classical

linear programming model, can be found in Dantzig (1990).

Boyd and Vandenberghe (2004) give an excellent exposition of convex opti-

mization appropriate for senior or first-year graduate students in engineering.

This book is freely available at:

www.stanford.edu/~boyd/cvxbook/

Ragsdale (2007) gives a practical exposition of optimization and related

spreadsheet models that circumvent most technical issues. It is appropriate for

senior or Master’s students in business.

http://www.stanford.edu/~boyd/cvxbook/


2 Linear Programming: Theory
and Algorithms

Linear programming is one of the most significant contributions to computational

mathematics made in the twentieth century. This chapter introduces the main

ideas behind linear programming theory and algorithms. It also introduces two

easy-to-use solvers.

2.1 Linear Programming

A linear program is an optimization problem whose objective is to minimize or

maximize a linear function subject to a finite set of linear equality and linear

inequality constraints. By flipping signs if necessary, a linear program can always

be written in the generic form:

min
x

cTx

s.t. Ax = b

Dx ≥ d

for some vectors and matrices c ∈ Rn,b ∈ Rm,d ∈ Rp,A ∈ Rm×n,D ∈ Rp×n.

The terms linear programming model or linear optimization model are also used

to refer to a linear program. We will use these terms interchangeably throughout

the book.

The following two simplified portfolio construction examples illustrate the use

of linear programming as a modeling tool.

Example 2.1 (Fund allocation) You would like to allocate $80,000 among four

mutual funds that have different expected returns as well as different weights in

large-, medium- and small-capitalization stocks.

Capitalization Fund 1 Fund 2 Fund 3 Fund 4

Large 50% 30% 25% 60%
Medium 30% 10% 40% 20%
Small 20% 60% 35% 20%

Exp. return 10% 15% 16% 8%
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The allocation must contain at least 35% large-cap, 30% mid-cap, and 15%

small-cap stocks. Find an acceptable allocation with the highest expected return

assuming you are only allowed to hold long positions in the funds.

This problem can be formulated as the following linear programming model.

Linear programming model for fund allocation
Variables:

xi: amount (in $1000s) invested in fund i for i = 1, . . . , 4.

Objective:

max 0.10x1 + 0.15x2 + 0.16x3 + 0.08x4.

Constraints:

0.50x1 + 0.30x2 + 0.25x3 + 0.60x4 ≥ 0.35 ∗ 80 (large-cap)

0.30x1 + 0.10x2 + 0.40x3 + 0.20x4 ≥ 0.30 ∗ 80 (mid-cap)

0.20x1 + 0.60x2 + 0.35x3 + 0.20x4 ≥ 0.15 ∗ 80 (small-cap)

x1 + x2 + x3 + x4 = 80 (money to allocate)

x1, . . . , x4 ≥ 0 (long-only positions).

Example 2.2 (Bond allocation) A bond portfolio manager has $100,000 to

allocate to two different bonds: a corporate bond and a government bond. These

bonds have the following yield, risk level, and maturity:

Bond Yield Risk level Maturity

Corporate 4% 2 3 years
Government 3% 1 4 years

The portfolio manager would like to allocate the funds so that the average risk

level of the portfolio is at most 1.5 and the average maturity is at most 3.6 years.

Any amount not invested in the bonds will be kept in a cash account that is

assumed to generate no interest and does not contribute to the average risk level

or maturity. In other words, assume cash has zero yield, zero risk level, and zero

maturity.

How should the manager allocate funds to the two bonds to maximize yield?

Assume the portfolio can only include long positions.

This problem can be formulated as the following linear programming model.

Linear programming model for bond allocation
Variables:

x1, x2: amounts (in $1000s) invested in the corporate and government

bonds respectively.

Objective:

max 4x1 + 3x2.
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Constraints:

x1 + x2 ≤ 100 (total funds)

2x1 + x2

100
≤ 1.5 (risk level)

3x1 + 4x2

100
≤ 3.6 (maturity)

x1, x2 ≥ 0 (long-only positions)

or equivalently

max 4x1 + 3x2

s.t.

x1 + x2 ≤ 100 (total funds)

2x1 + x2 ≤ 150 (risk level)

3x1 + 4x2 ≤ 360 (maturity)

x1, x2 ≥ 0 (long-only positions).

The linear programming model in Example 2.1 can be written more concisely

using matrix–vector notation as follows:

max rTx

s.t. Ax = b

Dx ≥ d

x ≥ 0,

where r =

⎡⎢⎢⎣
0.10

0.15

0.16

0.08

⎤⎥⎥⎦, A =
[
1 1 1 1

]
, b = 80, D =

⎡⎣0.5 0.3 0.25 0.6

0.3 0.1 0.4 0.2

0.2 0.6 0.35 0.2

⎤⎦, and

d =

⎡⎣2824
12

⎤⎦.
Likewise, the linear programming model in Example 2.2 can be written as

max rTx

s.t. Ax ≤ b

x ≥ 0,

for r =

[
4

3

]
, A =

⎡⎣1 1

2 1

3 4

⎤⎦, and b =

⎡⎣100150

360

⎤⎦.
A linear programming model is in standard form if it is written as follows:

min cTx

s.t. Ax = b

x ≥ 0.

The standard form is a kind of formatting convention that is used by some

solvers. It is also particularly convenient to describe the most popular algorithms

for solving linear programming, namely the simplex and interior-point methods.
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The standard form is not restrictive. Any linear program can be rewritten in

standard form. In particular, inequality constraints (other than non-negativity)

can be rewritten as equality constraints after the introduction of a so-called slack

or surplus variable. For instance, the linear program from Example 2.2 can be

written as

max 4x1 + 3x2

s.t.

x1 + x2 + x3 = 100

2x1 + x2 + x4 = 150

3x1 + 4x2 + x5 = 360

x1, x2, x3, x4, x5 ≥ 0.

More generally, a linear program of the form

min cTx

s.t. Ax ≤ b

x ≥ 0

can be rewritten as

min cTx

s.t. Ax+ s = b

x, s ≥ 0.

It can then be rewritten, using matrix notation, in the following standard form:

min

[
c

0

]T [
x

s

]
s.t.

[
A I

] [x
s

]
= b[

x

s

]
≥ 0.

Unrestricted variables can be expressed as the difference of two new non-negative

variables. For example, consider the linear program

min cTx

s.t. Ax ≤ b.

The unrestricted variable x can be replaced by u−v where u,v ≥ 0. Hence the

above linear program can be rewritten as

min cT(u− v)

s.t. A(u− v) ≤ b

u,v ≥ 0.
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It can also be rewritten, after adding slack variables and using matrix notation,

in the following standard form:

min

⎡⎣ c

−c

0

⎤⎦T ⎡⎣uv
s

⎤⎦
s.t.

[
A −A I

] ⎡⎣uv
s

⎤⎦ = b

⎡⎣uv
s

⎤⎦ ≥ 0.

2.2 Graphical Interpretation of a Two-Variable Example

Banks need to consider regulations when determining their business strategy. In

this section, we consider the Basel III regulations (Basel Committee on Bank-

ing Supervision, 2011). We present a simplified example following the paper of

Pokutta and Schmaltz (2012). Consider a bank with total deposits D and loans

L. The loans may default and the deposits are exposed to early withdrawal. The

bank holds capital C in order to buffer against possible default losses on the

loans, and it holds a liquidity reserve R to buffer against early withdrawals on

the deposits. The balance sheet of the bank satisfies L+R = D+C. Normalizing

the total assets to 1, we have R = 1 − L and C = 1 −D. Basel III regulations

require banks to satisfy four minimum ratio constraints in order to buffer against

different types of risk:

Capital ratio:
C

L
≥ r1

Leverage ratio: C ≥ r2

Liquidity coverage ratio:
R

D
≥ r3

Net stable funding ratio:
αD + C

L
≥ r4,

where the ratios r1, r2, r3, r4, α are computed for each bank based on the riskiness

of its loans and the likelihood of early withdrawals on deposits. To illustrate,

consider a bank with r1 = 0.3, r2 = 0.1, r3 = 0.25, r4 = 0.7, α = 0.3. Expressing

the four ratio constraints in terms of the variables D and L, we get

D + 0.3L ≤ 1

D ≤ 0.9

0.25D + L ≤ 1

0.7D + 0.7L ≤ 1.

Figure 2.1 displays a plot of the feasible region of this system of inequalities in

the plane (D,L).

Given this feasible region, the objective of the bank is to maximize the margin

income mDD+mLL that it makes on its products; where mD is the margin that
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1
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Figure 2.1 Basel III regulations

the bank makes on its deposits and mL is the margin charged on its loans. For

example, if mD = 0.02 and mL = 0.03, the best solution that satisfies all the

constraints corresponds to the vertex D = 0.571, L = 0.857 on the boundary of

the feasible region, at the intersection of the lines 0.25D + L = 1 and 0.7D +

0.7L = 1. This means that the bank should have 57.1% of its liabilities in deposits

and 42.9% in capital, and it should have 85.7% of its assets in loans and the

remaining 14.3% in liquidity reserve. The fact that an optimal solution occurs

at a vertex of the feasible region is a property of linear programs that extends

to higher dimensions than 2: To find an optimal solution of a linear program,

it suffices to restrict the search to vertices of the feasible region. This geometric

insight is the basis of the simplex method, which goes from one vertex of the

feasible region to an adjacent one with a better objective value until it reaches

an optimum. An algebraic description of the simplex method that can be coded

on a computer is presented in Section 2.7.1.

2.3 Numerical Linear Programming Solvers

There are a variety of both commercial and open-source software packages for

linear programming. Most of these packages implement the algorithms described

in Section 2.7 below. Next we illustrate two of these solvers by applying them to

Example 2.1.

Excel Solver

Figure 2.2 displays a printout of an Excel spreadsheet implementation of the

linear programming model for Example 2.1 as well as the dialog box obtained

when we run the Excel add-in Solver. The spreadsheet model contains the three
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components of the linear program. The decision variables are in the range B4:E4.

The objective is in cell F3. The left- and right-hand sides of the equality con-

straint are in the cells F4 and H4 respectively. Likewise, the left- and right-

hand sides of the three inequality constraints are in the ranges F8:F10 and

H8:H10 respectively. These components are specified in the Solver dialog box.

In addition, the Solver options are used to indicate that this is a linear model

and that the variables are non-negative.

Figure 2.2 Spreadsheet implementation and the Solver dialog box for the fund
allocation model

MATLAB CVX

Figure 2.3 displays a CVX script for the same problem. The script can be run

provided the freely available CVX toolbox is installed.

Either Excel Solver or MATLAB CVX find the following optimal solution to

the problem in Example 2.1:

x∗ =

⎡⎢⎢⎣
0.0000

12.6316

46.3158

21.0526

⎤⎥⎥⎦ ,

and the corresponding optimal objective value 10.9895 (recall that the units are

in $1000s).

2.4 Sensitivity Analysis

In addition to the optimal solution, the process of solving a linear program also

generates some interesting sensitivity information via the so-called shadow prices
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Figure 2.3 MATLAB CVX code for the fund allocation model

or dual values associated with the constraints. Assume that the constraints of a

linear program, and hence the shadow prices, are indexed by i = 1, . . . ,m. The

shadow price y∗i of the ith constraint has the following sensitivity interpretation:

If the right-hand side of the ith constraint changes by Δ, then the optimal

value of the linear program changes by Δ · y∗i as long as Δ is within a

certain range.

Both Excel Solver and MATLAB CVX compute the shadow prices implicitly.

To make this information explicit in Excel Solver we request a sensitivity report

after running it as shown in Figure 2.4.

Figure 2.4 Requesting sensitivity report in Solver

Figure 2.5 displays the sensitivity report for Example 2.1.
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Figure 2.5 Sensitivity report

The values y∗i can be found in the column labeled “Shadow Price”. In addi-

tion, the “Allowable Increase” and “Allowable Decrease” columns indicate the

range of change for each right-hand side of a constraint where the sensitivity

analysis holds. For example, if the right-hand side of the large-capitalization

constraint

0.5x1 + 0.3x2 + 0.25x3 + 0.6x4 ≥ 28

changes from 28 to 28+Δ, then the optimal value changes by −0.231579·Δ. This

holds provided Δ is within the allowable range [−6.6666, 6]. If the requirement

on large-cap stocks is reduced from 35% to 30%, the change in right-hand side is

Δ = −0.05∗80 = −4, which is within the allowable range. Therefore the optimal

objective value increases by −0.231579 · (−4) = 0.926316. Because our units are

in $1000, this means that the expected return on an optimal portfolio would

increase by $926.32 if we relaxed the constraint on large-cap stocks by 5%, from

35% to 30%.

The shadow prices of the non-negativity constraints are the “Reduced Cost”

displayed in the initial part of the sensitivity report. This is also the convention

for more general lower and upper bounds on the decision variables. Observe that

in Example 2.1 the reduced costs of the non-zero variables are zero. The reduced

costs also have a deeper meaning in the context of the simplex algorithm for

linear programming as described in Section 2.7.1 below.

A linear programming model is non-degenerate if all of the allowable increase

and allowable decrease limits are positive. The above linear programming model

is non-degenerate.

In CVX this information can also be obtained by including a few additional

pieces of code to save the dual information in the dual variables y,z as shown

in Figure 2.6.
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Figure 2.6 MATLAB CVX code with dual variables

Both solvers yield the following dual values: y∗ = 0.22, z∗ =

⎡⎣−0.231579

−0.005263

0

⎤⎦ .

We note that some solvers may flip the sign of the dual values. In particular,

the output of the above CVX code yields the values −0.22 and

⎡⎣0.2315790.005263

0

⎤⎦ . It is

important to be mindful of this subtlety when interpreting the dual information.

The ambiguity can be easily resolved by thinking in terms of sensitivity analysis.

In this particular example, it is clear that the shadow price of the first constraint

should be non-negative as more capital should lead to a higher return. Likewise,

it is clear that the shadow prices of the other constraints should be non-positive

as more stringent diversification constraints, e.g., higher percentage in large cap,

reduces the set of feasible portfolios and hence can only lead to portfolios with

return less than or equal to the optimal return of the original problem.

2.5 *Duality

Every linear program has an associated dual linear programming problem. The

properties of these two linear programs and how they are related to each other

have deep implications. In particular, duality enables us to answer the following

kinds of questions:

• Can we recognize an optimal solution?

• Can we construct an algorithm to find an optimal solution?

• Can we assess how suboptimal a current feasible solution is?

The attentive reader may have noticed that dual variables were already men-

tioned in Section 2.4 when discussing sensitivity analysis with CVX. This is not a
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coincidence. There is a close connection between duality and sensitivity analysis.

The vector of shadow prices of the constraints of a linear program corresponds

precisely to the optimal solution of its dual.

Consider the following linear program in standard form, which we shall refer

to as the primal problem:

min cTx

s.t. Ax = b

x ≥ 0.

(2.1)

The following linear program is called the dual problem:

max bTy

s.t. ATy ≤ c.
(2.2)

Sometimes it is convenient to rewrite the constraints in the dual problem as

equality constraints by means of slack variables. That is, problem (2.2) can also

be written as

max bTy

s.t. ATy + s = c

s ≥ 0.

(2.3)

There is a deep connection between the primal and dual problems. The next

result follows by construction.

Theorem 2.3 (Weak duality) Assume x is a feasible point for (2.1) and y is a

feasible point for (2.2). Then

bTy ≤ cTx.

Proof Under the assumptions on x and y it follows that

bTy = (Ax)Ty = (ATy)Tx ≤ cTx.

The following (not so straightforward) result also holds.

Theorem 2.4 (Strong duality) Assume one of the problems (2.1) or (2.2) is

feasible. Then this problem is bounded if and only if the other one is feasible. In

that case both problems have optimal solutions and their optimal values are the

same.

We refer the reader to Bertsimas and Tsitsiklis (1997) or Chvátal (1983) for

a proof of Theorem 2.4. This result is closely related to the following classical

properties of linear inequality systems.

Theorem 2.5 Assume A ∈ Rm×n and b ∈ Rm. In each of the following cases

exactly one of the systems (I) or (II) has a solution but not both.

(a) Farkas’s lemma

Ax = b, x ≥ 0, (I)

ATy ≤ 0, bTy < 0. (II)
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(b) Gordan’s theorem

Ax = 0, x � 0, (I)

ATy > 0. (II)

(c) Stiemke’s theorem

Ax = 0, x > 0, (I)

ATy � 0. (II)

The equivalence between Theorems 2.4 and 2.5 is explored in Exercises 2.11

and 2.12.

We next present a derivation of the dual problem via the so-called Lagrangian

function. This derivation has the advantage of introducing an important concept

that we will encounter again in later chapters. Associated with the optimization

problem (2.1) consider the Lagrangian function defined by

L(x,y, s) := cTx+ yT(b−Ax)− sTx.

The constraints of (2.1) can be encoded using the Lagrangian function via the

following observation: For a given vector x

max
y,s
s≥0

L(x,y, s) =

{
cTx if Ax = b and x ≥ 0

+∞ otherwise.

Therefore the primal problem (2.1) can be written as

min
x

max
y,s
s≥0

L(x,y, s). (2.4)

On the other hand, observe that L(x,y, s) = bTy+ (c−ATy− s)Tx. Hence for

a given pair of vectors (y, s)

min
x

L(x,y, s) =

{
bTy if ATy + s = c

−∞ otherwise.

The dual problem is obtained by flipping the order of the min and max operations

in (2.4). Indeed, observe that the dual problem (2.3) can be written as

max
y,s
s≥0

min
x

L(x,y, s).

A similar procedure can be applied to obtain the dual of a linear program that

is not necessarily in standard form. For example, the primal problem

min cTx

s.t. Ax ≥ b

x ≥ 0

(2.5)

can be written as

min
x

max
y≥0, s≥0

L(x,y, s),


