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as very basic material, it includes some elementary introductions to more advanced topics.
The advanced sections can easily be omitted for a more introductory course, as they are
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“Vallis’ insights into the fundamentals and applications
go a long way towards making otherwise complex
topics readily grasped by those willing to study. He
does not shy away from mathematics where needed,
nor does he smother the reader with mathematics
where pedagogically unnecessary. Those making it
through this book will be ready to tackle a huge
suite of research questions related to atmosphere and
ocean fluid mechanics. Hence, this book serves an
incredibly important role to the academic community.
In a nutshell, we need more smart researchers who
are adept at atmosphere and ocean dynamics to help
understand how those dynamics are increasingly being
affected by humanity’s choices.

Essentials of Atmospheric and Oceanic Dynamics
(EAOD) fills an important niche by offering an artic-
ulate and authoritative textbook to be worked through
by advanced undergraduates and/or entering graduate
students taking courses. The inclusion of exercises
in EAOD is incredibly valuable for both students
and teachers clamouring for more problem sets to
test understanding. Whereas Vallis’ previous book
Atmospheric and Oceanic Fluid Dynamics (AOFD)
is the mother reference, EAOD offers a pedagogical
entrée for those wishing to test the waters, including
some deep waters. 1 will happily keep both books
on my shelf and make use of them for personal
study and to support the teaching of geophysical fluid
dynamics.

Vallis has a clear writing style that brings the reader
into the subject in an authoritative and friendly manner.
He is a wise guru and gentle tutor. The subject of ocean
and atmosphere fluid mechanics has matured greatly
through his efforts at writing AOFD. EAOD furthers
that maturation by allowing for a broader readership to
tap into his brain. Well done Geoff!’

- Stephen M. Griffies,
Geophysical Fluid Dynamics Laboratory,
National Oceanic and Atmospheric Administration

‘The “big book” [AOFD] by Vallis is a treasure, but I
suspect that this new Essentials is destined to be used
much more widely in classrooms. Vallis does a superb
job of communicating the peculiar tensions between
deductive reasoning and physical intuition that under-
lie this science. The new book is more approachable
but no less rigorous. I especially appreciate how the
various equation sets are derived in succinct but mean-
ingful ways in the first few chapters, and then used
as tools to explore the dynamics in the chapters that
follow. It’s almost the perfect introductory textbook on
this subject, and I plan to use it in my own courses.’

- Brian E. J. Rose,
University at Albany

‘He’s done it again. In Essentials, Geoff Vallis has pro-
duced a text that is useful to the student and the expe-
rienced scientist alike. While the content is simplified
and shortened compared to its parent text, Vallis now
provides even more descriptive explanations to support
readers in their quest to navigate the physics of fluid
flows. These explanations pair well with the theory,
serving as an accessible introduction to students while
also supporting the more experienced scientist as they
put all of the pieces together. This will certainly be a
future favourite for reading groups. Even readers with
dog-eared versions of the parent book will want a copy
of Essentials, for in it Vallis has added an entirely
new chapter on planetary atmospheres, allowing the
interested reader to venture into outer space to apply
their newly honed GFD expertise.’

- Elizabeth A. Barnes,
Colorado State University

‘For the past decade, Geoff Vallis’ book Atmospheric
and Oceanic Fluid Dynamics has been the “go to”
encyclopaedic resource, but it is too lengthy and com-
prehensive to use as a course textbook. With this
superb new shorter volume, Geoff Vallis provides
us with the definitive graduate-level textbook, with
just the right balance of essential topics alongside
glimpses of more advanced topics at the cutting edge of
research. The extensive use of margin notes, diamonds
to indicate advanced topics, and a comprehensive set
of problems will ensure that Essentials of Atmospheric
and Oceanic Dynamics has much to offer students
and researchers at all levels. The book opens with
the quote: “Seek simplicity, accept complexity. Exploit
simplification, avoid complication.” On all counts, this
book succeeds magnificently!’

- David Marshall,
University of Oxford

‘As its parent book became the bible of the field, but
also grew in size and the number of topics it covered
in its latest edition, this new book provides a perfect
balance and introduction to the essential topics, giving
a quick reference without going into all the details.
In the Vallis tradition, it is presented clearly, perfectly
packaged, and is well organized for both atmospheric
and oceanic fluid dynamics. Its simplicity will make it
majestically appealing both for people outside the dis-
cipline looking for an accessible, yet complete, intro-
duction, and for students within the ficld at all levels.
The inclusion of planetary atmospheres broadens the
scope and makes it appealing to a wider and growing
audience. Anyone with a background in physics can
get the essentials using this book.’

- Yohai Kaspi,
Weizmann Institute of Science
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Preface

Seek simplicity, accept complexity.
Exploit simplification, avoid complication.

This is an introductory book on the dynamics of atmospheres and oceans,
with a healthy dose of geophysical fluid dynamics. It is written roughly
at the level of advanced or upper-division undergraduates and beginning
graduate students, but parts of it will be accessible to first- or second-year
undergraduates and I hope that practising scientists will also find it useful.
The book is designed for students and scientists who want an introduc-
tion to the subject but who may not want all the detail, at least not yet, and
its prerequisites are just familiarity with some vector calculus and basic
classical physics. Thus, it is meant to be accessible to non-specialists and
students who will not necessarily go on to become professional dynami-
cists. However, as well as very basic material the book does include some
elementary introductions to a few ‘advanced’ topics, such as the residual
circulation and turbulence theory, as well as material on the general circu-
lation of the atmosphere and ocean. The more advanced parts could easily
be omitted for a first course and, like difficult ski slopes, are marked with
a diamond, 4. Readers may explore these topics more in the references
provided, or in this book’s parent, Atmospheric and Oceanic Fluid Dynamics.
Nearly all the topics in this book, except those in the chapter on planetary
atmospheres, are dealt with in greater detail there.

What is in the book

The book is divided into three Parts. The first, and longest, provides the
foundation for the study of the dynamics of the atmosphere and ocean.
It does not assume any prior knowledge of fluid dynamics or thermo-
dynamics, although readers who have such knowledge may be able to
skim Chapter 1. The rest of Part I provides an introduction to ‘geophys-
ical fluid dynamics), the subject that remains at the heart of atmospheric
and oceanic dynamics and without which the subject would be largely
qualitative and/or computational. Here we discuss the effects of rota-

iX



PREFACE

Margin notes that are set in a
roman (i.e., upright) font em-

phasize or expand on some-
thing that is in the main text.

Margin notes set in italics are
asides or historical anecdotes.

tion and stratification, leading into shallow water theory and the quasi-
geostrophic and planetary-geostrophic equations. Rossby waves, gravity
waves, baroclinic instability and elementary treatments of wave—mean-
flow interaction and turbulence round out Part L.

Parts II and III focus on the large scale dynamics and circulation of
the atmosphere and ocean, respectively. Our main focus in both Parts
is what is sometimes called ‘the general circulation, meaning the large-
scale quasi-steady and/or time-averaged circulation, but this circulation
depends on the effects of time-dependent eddies — the atmosphere’s Fer-
rel Cell may be considered to be ‘driven’ by the effects of baroclinic insta-
bility and Rossby waves. And the El Nino phenomenon, described in the
final chapter, is explicitly time dependent. One feature of this book that
is not in the parent book is a chapter discussing some of the general prin-
ciples of planetary atmospheres, a topic of increasing interest because of
the new, sometimes quite spectacular, observations of the planets in our
Solar System and beyond.

How to use the book

The contents of the book are about enough for a two-term course in
atmosphere—ocean dynamics. A term-long, first course in geophysical
fluid dynamics could, for example, be based on Part I, omitting some of
the earlier or later chapters depending on the students’ backgrounds and
interests. A term-long course in atmospheric and/or oceanic circulation
could be based on Part IT and/or Part III, supplementing the material with
review articles or research papers as needed, perhaps using data sets to
look at the real world (and other planets, if Chapter 13 is to be studied).
Alternatively, one could combine aspects of Parts [ and I, or Parts [ and I1I,
to construct an ‘Atmospheric Dynamics’ or ‘Oceanic Dynamics’ course.

If the book is to be used for self-study it could simply be read from
beginning to end, although many other pathways are possible and may
be preferable. Parts I and III depend on the material in Part I, but the
material is reasonably self-contained, and readers who already have some
knowledge of geophysical fluid dynamics should feel free to start at a later
chapter, or with Part IT or Part III. A few problems are collected at the end
of some chapters; these are designed to test understanding as well as to fill
in gaps and extend the material in the book itself. Many other problems
at varying levels of difficulty can be found on the web site of this book,
which can easily be found with a search engine. The reader will also see a
number of margin notes throughout the book, rather like the ones to the
left. The book itself was typeset using BIEX with Crimson fonts for text,
Cronos Pro for sans serif and Minion Math for equations.

I would like to thank Matt Lloyd, Zoé Pruce and Richard Smith at
Cambridge University Press for their expert guidance through the writ-
ing and production process, as well as many colleagues and students —
too many to list, but they know who they are — for their many comments,
corrections and criticisms. If you, the reader, have other comments, ma-
jor or minor, do please contact me.
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CHAPTER

1

Fluid Fundamentals

are heated. But, unlike solids, they flow and deform. In this chapter

we establish the governing equations of motion for a fluid, with par-
ticular attention to air and seawater — the fluids of the atmosphere and
ocean, respectively. Readers who already have knowledge of fluid dynam-
ics may skim this chapter and begin reading more seriously at Chapter 2,
where we begin to look at the effects of rotation and stratification.

F LUIDS, LIKE SOLIDS, move if they are pushed and they warm if they

1.1  Time DERIVATIVES FOR FLUIDS

1.1.1 Field and Material Viewpoints

In solid-body mechanics one is normally concerned with the position and
momentum of an identifiable object, such as a football or a planet, as it
moves through space. In principle we could treat fluids the same way
and try to follow the properties of individual fluid parcels as they flow
along, perhaps getting hotter or colder as they move. This perspective
is known as the material or Lagrangian viewpoint. However, in fluid dy-
namical problems we generally would like to know what the values of
velocity, density and so on are at fixed points in space as time passes. A
weather forecast we care about tells us how warm it will be where we live
and, if we are given that, we may not care where a particular fluid parcel
comes from or where it subsequently goes. Since the fluid is a continuum,
this knowledge is equivalent to knowing how the fields of the dynamical
variables evolve in space and time. This viewpoint is known as the field
or Eulerian viewpoint.

Although the field viewpoint will often turn out to be the most prac-
tically useful, the material description is invaluable both in deriving the
equations and in the subsequent insight it frequently provides. This is
because the important quantities from a fundamental point of view are

3

The fluid dynamical equa-
tions of motion determine
the evolution of a fluid. The
equations are based on New-
ton’s laws of motion and the
laws of thermodynamics, and
embody the principles of
conservation of momentum,
energy and mass. Initial con-
ditions and boundary condi-
tions are needed to solve the
equations.
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The Lagrangian viewpoint is
named for the Franco-Italian
J. L. Lagrange (1736—1813), one
of the most renowned mathe-
maticians of his time. The Eu-
lerian point of view is named
for Leonhard Euler (1707-
1783), the great Swiss mathe-
matician. In fact, Euler is also
largely responsible for the La-
grangian view, but the attribu-
tion became tangled over time.

often those which are associated with a given fluid element: it is these
which directly enter Newton’s laws of motion and the thermodynamic
equations. It is thus important to have a relationship between the rate
of change of quantities associated with a given fluid element and the local
rate of change of a field. The material derivative (also called the advective
derivative or Lagrangian derivative) provides this relationship.

1.1.2 The Material Derivative of a Fluid Property

A fluid element is an infinitesimal, indivisible, piece of fluid — effectively
a very small fluid parcel of fixed mass. The material derivative, or the La-
grangian derivative, is the rate of change of a property (such as temperature
or momentum) of a particular fluid element or finite mass of fluid; that is,
it is the total time derivative of a property of a piece of fluid.

Let us suppose that a fluid is characterized by a given velocity field
v(x, t), which determines its velocity throughout. Let us also suppose that
the fluid has another property ¢, and let us seek an expression for the rate
of change of ¢ of a fluid element. Since ¢ is changing in time and in space
we use the chain rule,

9¢

5p = %—‘fau CUPSINCUY SR Y g—‘t"&wx-v(p. (1.1)
z

ox dy 6]

This is true in general for any 8¢, dx, etc. The total time derivative is then

dp _9¢  dx

Vo. 12
a or tar ? (1.2)

If this equation is to provide a material derivative we must identify the
time derivative in the second term on the right-hand side with the rate
of change of position of a fluid element, namely its velocity. Hence, the
material derivative of the property ¢ is

dp _d¢
& _99 .. 13
ar o UV (1.3)

The right-hand side expresses the material derivative in terms of the local
rate of change of ¢ plus a contribution arising from the spatial variation
of ¢, experienced only as the fluid parcel moves. Because the material
derivative is so common, and to distinguish it from other derivatives, we
denote it by the operator D/D¢. Thus, the material derivative of the field

@ is
Dy _9¢
— == -V)o. 1.4
D o TV 49
The brackets in the last term of this equation are helpful in reminding us

that (v - V) is an operator acting on ¢. The operator d/9t + (v - V) is the
Eulerian representation of the Lagrangian derivative as applied to a field.
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Material derivative of vector field

The material derivative may act on a vector field b, in which case

Db b

In Cartesian coordinates this is

Db ob b . ob ob

st U— FU— +w—, 1.6
Dr ot ox Yoy Vaz (1.6)

and for a particular component of b, b* say,
Db*  0b ab ab ob (17)

Dr o “ox oy Yoz

and similarly for b” and b®. In coordinate systems other than Cartesian
the advective derivative of a vector is not simply the sum of the advective
derivatives of its components, because the coordinate vectors themselves
change direction with position; this will be important when we deal with
spherical coordinates.

1.1.3 Material Derivative of a Volume

The volume that a given, unchanging, mass of fluid occupies is deformed
and advected by the fluid motion, and there is no reason why it should
remain constant. Rather, the volume will change as a result of the move-
ment of each element of its bounding material surface, and in particular
it will change if there is a non-zero normal component of the velocity at
the fluid surface. That is, if the volume of some fluid is f dV, then

RJ dV:Jv-dS, (1.8)
Dt Jv s

where the subscript V indicates that the integral is a definite integral over
some finite volume V, and the limits of the integral are functions of time
since the volume is changing. The integral on the right-hand side is over
the closed surface, S, bounding the volume. Although intuitively apparent
(to some), this expression may be derived more formally using Leibniz’s
formula for the rate of change of an integral whose limits are changing.
Using the divergence theorem on the right-hand side, (1.8) becomes

RJ dV=J V-vdV. (1.9)
Dt Jy v

The rate of change of the volume of an infinitesimal fluid element of vol-
ume AV is obtained by taking the limit of this expression as the volume
tends to zero, giving

1 Dav

im (1.10)
AV—0 AV Dt

The Eulerian derivative is the
rate of change of a property
at a fixed location in space.
The material derivative is

the rate of change of a prop-
erty of a given piece of fluid,
which may be moving and so
changing its position.
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We will often write such expressions informally as

—— =AVV-y, (1.11)
Dt
with the limit implied.

Consider now the material derivative of some fluid property, & say,
multiplied by the volume of a fluid element, AV. Such a derivative arises
when & is the amount per unit volume of £-substance — the mass density
or the amount of a dye per unit volume, for example. Then we have

DAV DE

D
—(EAV) =& — + AV —. 1.12
D $AV) =6~ +4V L (1.12)
Using (1.11) this becomes
D DE)
—(EAV) = AV [ ¢V — |, 1.13
o (€av) = 4V (§7-0+ D8 (1.13)
and the analogous result for a finite fluid volume is just
D D&
= [ gav-| ( v —) av. 114
Dt JVE A% 5 v Dt ( )

This expression is to be contrasted with the Eulerian derivative for which
the volume, and so the limits of integration, are fixed and we have

d o¢
= JVE,dV_ JV = av. (1.15)

Now consider the material derivative of a fluid property ¢ multiplied
by the mass of a fluid element, pAV, where p is the fluid density. Such
a derivative arises when ¢ is the amount of ¢-substance per unit mass
(note, for example, that the momentum of a fluid element is pvAV). The
material derivative of ppAV is given by

D¢
Dt
But pAV is just the mass of the fluid element, and that is constant — that

is how a fluid element is defined. Thus the second term on the right-hand
side vanishes and

D D
—(ppAV) = pAV —(pAV). 1.16
Dt((pp )=p +<PDt(P ) (1.16)

D 3 D¢ D 3 D¢
E(gopAV) = pAVE and D1 JV ppdV = JV v dv,
(1.17a,b)
where (1.17b) applies to a finite volume. That expression may also be de-
rived more formally using Leibniz’s formula for the material derivative
of an integral, and the result also holds when ¢ is a vector. The result is
quite different from the corresponding Eulerian derivative, in which the

volume is kept fixed; in that case we have:

d d
2 ppdv= j S (op)av. 118
dt JV ep v Ot ((PP) ( )

Various material and Eulerian derivatives are summarized in the shaded
box on the facing page.



1.2 THE MASs CONTINUITY EQUATION

Material and Eulerian Derivatives

The material derivatives of a scalar (¢) and a vector (b) field are
given by:

%:a_q).Fv.V(P, D—b:%+(vV)b (Dl)
Dt ot Dt ot

Various material derivatives of integrals are:

D Do 10
D pav- <— v. )dej <— v. )dV,
Dt JV(P JV Dt Tevev v \ Ot " ((Pv)

(D.2)
D
—J dV:J V.vdv, (D.3)
Dt Jy v
D D¢
2| ppav = j 5% qv. D4
Dt JVP(P VPDt ( )

These formulae also hold if ¢ is a vector. The Eulerian derivative
of an integral is:

d 0
[ pav- J 99 4y, D.5
dt JV(P v Ot ( )
so that
d d 0pg
L[ av=0 and —J dV=J—dV. D.6
dt ~|-V an dt Jy Pe v Ot ( )

1.2 THE MAss CONTINUITY EQUATION

In classical mechanics mass is absolutely conserved and in solid-body me-
chanics we normally do not need an explicit equation of mass conserva-
tion. However, in fluid mechanics a fluid may flow into and away from a
particular location, and fluid density may change, and we need an equa-
tion to describe that change.

1.2.1 An Eulerian Derivation

We first derive the mass conservation equation from an Eulerian point
of view; that is, our reference frame is fixed in space and the fluid flows
through it. Consider an infinitesimal, rectangular cuboid, control volume,
AV = AxAyAz that is fixed in space, as in Fig. 1.1. Fluid moves into or out
of the volume through its surface, including through its faces in the y-z
plane of area AA = AyAz at coordinates x and x + Ax. The accumulation
of fluid within the control volume due to motion in the x-direction is
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Fig. 1.1: Mass conservation
in an Eulerian cuboid con-
trol volume. The mass con-
vergence, —0(pu)/dx (plus
contributions from the y
and z directions), must

be balanced by a density
increase equal to dp/ot.

1
I
| d(pu) )
pu + Ax)Ay Az
UAy Az | ( 0x
I
D e '7 ‘
- Z
7
-
X X + Ax x
evidently

AyAz[(pu)(x, v, z) — (pu)(x + Ax, y,2)] = —% Ax Ay Az. (1.19)

X, )52

To this must be added the effects of motion in the y- and z-directions,
namely
- M +M]AxAyAz. (1.20)
oy 0z
This net accumulation of fluid must be accompanied by a corresponding

increase of fluid mass within the control volume. This is

% (density x volume) = Ax Ay Azaa—lt), (1.21)

because the volume is constant. Thus, because mass is conserved, (1.19),
(1.20) and (1.21) give

Ax Ay Az 9 + 9pu) + Apv) + d(pw)
ot ox dy 0z

=0. (1.22)

The quantity in square brackets must be zero and we therefore have

op
F . =0. 1.23
3 +V-(pv) =0 (1.23)

This is called the mass continuity equation for it recognizes the continuous
nature of the mass field in a fluid. There is no diffusion term in (1.23), no
term like kV?p. This is because mass is transported by the macroscopic
movement of molecules; even if this motion appears diffusion-like, any
net macroscopic molecular motion constitutes, by definition, a velocity
field.

Neither (1.23) nor the derivation that leads to it depends in any way on
Cartesian geometry; a more general vector derivation using an arbitrary
control volume is left as an easy exercise for the reader.

1.2.2 Mass Continuity via the Material Derivative

We now derive the mass continuity equation (1.23) from a material per-
spective. This is the most fundamental approach of all since the princi-
ple of mass conservation states simply that the mass of a given element
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of fluid is, by definition of the element, constant. Thus, consider a small
mass of fluid of density p and volume AV. Then conservation of mass may
be represented by

D
—(pAV) = 0. 1.24
o; PAV) (1.24)
Both the density and the volume of the parcel may change, so
A
AV% +pM=AV<%+PVU>=0, (125)
Dt Dt Dt

where the second expression follows using (1.11). Since the volume ele-
ment is non-zero the term in brackets must vanish and
Dp

— +pV-v=0.

D (1.26)

After expansion of the first term this becomes identical to (1.23). (A
slightly more formal way to derive this result uses (1.14) with & replaced
by p.) Summarizing, equivalent partial differential equations represent-
ing conservation of mass are

%+pv-v:0, %+V-(pv):0.

127ab
Dt ot (1.27a,b)

1.2.3 Incompressible Fluids

A near-universal property of liquids is that their density is nearly con-
stant; that is, they are essentially incompressible. 1f we write the density
as

p(x, y,2,t) = py + 0p(x, ¥, 2, 1), (1.28)

where p, is a constant, then a truly incompressible fluid has §p = 0. No
fluid is incompressible in this strict sense so we relax the meaning slightly
and simply require |§p| <« p,. When this is satisfied the mass continuity
equation, (1.27a) takes on a different form. Equation (1.27a) may be writ-
ten, without approximation, as

D—(SP+(p0+6p)V-v:O.

D (1.29)

If the fluid is incompressible then the terms involving 8 p are much smaller
than those involving p, and hence may be neglected, giving

V.-v=0. (1.30)

This is the mass continuity equation for an incompressible fluid, and its
satisfaction may be taken as the defining quality of an incompressible
fluid. The prognostic equation, (1.27) has become a diagnostic equation.

An incompressible fluid is
sometimes defined as one
whose density is not affected
by pressure. This definition
may usefully be generalized
to mean a fluid whose den-
sity is very nearly constant
(and so also not affected by
temperature or composition)
such that the mass continu-
ity equation takes the form
(1.30). That equation is nor-
mally a very good approxima-
tion for seawater, less so for
air.
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The viscous form of the fluid
dynamical equations of
motion was established by
Claude-Louis-Marie-Henri
Navier (1785-1836) a French
civil engineer, and George
Stokes (1819-1903), an Anglo-
Irish applied mathematician,
who further elucidated vis-
cous effects. Prior to their
work the great Swiss math-
ematician Leonard Euler
(1707-1783) had estab-
lished the general form of

the fluid equations for an in-
viscid incompressible flow,
namely the Euler equations.

The forces due to pressure
and viscosity are ‘contact
forces’ arising because of

the inter-molecular forces

and/or collisions in a fluid.
The net pressure force on a
fluid element is proportional
to the gradient of pressure.

1.3 THE MOMENTUM EQUATION

The momentum equation is a partial differential equation that describes
how the velocity or momentum of a fluid responds to internal and im-
posed forces. We derive it here using material methods, with a very heuris-
tic treatment of the terms representing pressure and viscous forces.

1.3.1 Advection

Let m(x, y, z, t) be the momentum-density field (momentum per unit vol-
ume) of the fluid. Thus, m = pv and the total momentum of a volume of
fluid is given by the volume integral J mdV. Now, for a fluid the rate of
change of momentum of an identifiable fluid mass is given by the material

derivative, and by Newton’s second law this is equal to the force acting on
it. Thus,
D

—J pvdV=J Fdv,
Dt Jv v

where F is the force per unit volume. Now, using (1.17b) (with ¢ replaced
by v) to transform the left-hand side of (1.31), we obtain

J (p&—F> dv =0.
v Dt

Because the volume is arbitrary the integrand itself must vanish and we
obtain

(1.31)

(1.32)

& =F or @ +@-V)v = E, (1.33a,b)
Dt ot

having used (1.5) to expand the material derivative. We have thus ob-
tained an expression for how a fluid accelerates if subject to known forces.
As well as external forces (like gravity), a stress arises from the direct con-
tact between one fluid parcel and another, giving rise to pressure and vis-
cous forces, sometimes referred to as contact forces.

1.3.2 Pressure and Viscous Forces
Pressure

Within or at the boundary of a fluid the pressure is the normal force per
unit area due to the collective action of molecular motion. Thus

dF, = -pds, (1.34)
where p is the pressure, FP is the pressure force and dS an infinitesimal
surface element. If we grant ourselves this intuitive notion, it is a simple
matter to assess the influence of pressure on a fluid, for the pressure force
on a volume of fluid is the integral of the pressure over the its boundary
and so

F,=- LpdS. (1.35)
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The minus sign arises because the pressure force is directed inwards,
whereas S is a vector normal to the surface and directed outwards. Ap-
plying a form of the divergence theorem to the right-hand side gives

F,= —L Vpdv, (1.36)

where the volume V is bounded by the surface S. The pressure gradient
force per unit volume, F,, is therefore just -V p.

Viscosity

The effects of viscosity are apparent in many situations — the flow of trea-
cle or volcanic lava are obvious examples. The viscous force per unit vol-
ume is approximately equal to 1V*v, where p is the coefficient of viscosity.
With the pressure and viscous terms the momentum equation becomes,

v +(v-V)v:—le+vV2v+Fb, (1.37)
ot P

where v = u/p is the kinematic viscosity and F, represents body forces (per
unit mass) such as gravity, g. For most large-scale flows in the atmosphere
and ocean the viscous term is, in fact, neglibly small.

1.3.3 The Hydrostatic Approximation

Neglecting viscocity, the vertical component (the component parallel to
the gravitational force, g) of the momentum equation is

Dw__1%_, (138)
Dt p 0z
where w is the vertical component of the velocity and g = —gk. If the

fluid is static the gravitational term is balanced by the pressure term and
we have

op
—£ = _pg, 1.39
dz P9 ( )

and this relation is known as hydrostatic balance, or hydrostasy. It is clear
in this case that the pressure at a point is given by the weight of the fluid
above it, provided that p = 0 at the top of the fluid. The flow need not be
static for hydrostasy to hold — equation (1.39) is a good approximation to
(1.38) provided that the vertical acceleration, Dw/Dt, is sufficiently small
compared to gravity, which is nearly always the case in both atmosphere
and ocean except in intense storms. However, because the pressure also
appears in the horizontal momentum equations, hydrostatic balance must
be very well satisfied to ensure that (1.39) provides an accurate enough
pressure to determine the horizontal pressure gradients, a point we re-
turn to in Section 3.2.

Equation (1.37) is sometimes
called the Navier—Stokes equa-
tion. If viscosity is absent the
equation is the Euler equa-
tion. Sometimes these names
are taken as applying to the
complete set of equations of
motion.

Hydrostatic balance is an ap-
proximation to the vertical
momentum equation, valid
for large-scale motion in both
atmosphere and ocean and
normally very well satisfied
for flows of horizontal scales
greater than a few tens of kilo-
metres. It is one of the most
fundamental and useful ap-
proximations in atmospheric
and oceanic dynamics.
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Table 1.1: Various ther-
modynamic parameters
used in ideal gas theory,
with the specific values

being those for dry air.

A mole is the amount of sub-
stance that contains exactly
Avogadro’s number, N, of
elementary entities (usually

atoms or molecules), and
N,y = 602214076 x 102,
by definition. The (quasi-
dimensional) Avogadro
constant, N, is the num-
ber of elementary units
per mole, that number be-
ing Avogadro’s number. A
mole is almost the same
as the atomic or molecu-
lar weight, or molar mass,
in grams. Thus, a mole of

molecular oxygen (O,) has a

mass of very nearly 32 grams.

Symbol Description Value

kg Boltzmann constant 1.38 107 JK !

Ny Avogadro constant 6.02214076 x 10* mol™!
R* universal gas constant (= k;N ) 8.31JK ' mol™!

U molar mass of dry air 29 x107° kg mol ™!

R specific gas constant (= R* /) 287 kg K!

c, specific heat capacity at const. volume 717 Jkg ' K!

< specific heat capacity at const. pressure 1004 kg ' K!

c sound speed at T = 273K 331ms™!

1.4 THE EQUATION OF STATE

In three dimensions the momentum and continuity equations provide
four equations, but contain five unknowns — three components of ve-
locity, density and pressure. Obviously other equations are needed, and
an equation of state is an expression that diagnostically relates the various
thermodynamic variables to each other. Most commonly the equation of
state is written in a form that relates temperature, density, pressure and
composition, and such an equation is known as the thermal equation of
state, and it differs from fluid to fluid. In this book we will mainly be deal-
ing with an ideal gas (for the atmosphere) or with seawater (for the ocean).
The composition of air varies slightly with water vapour content and the
composition of seawater varies slightly with salinity.

1.4.1 Ideal Gas

For an ideal gas of constant composition the equation of state is com-
monly written as

pV = NkpT = nR*T, (1.40)

where ky is Boltzmann’s constant, N is the total number of molecules in
the volume V, R* is the universal gas constant and # is the number of
moles in that volume, where a mole is the amount of substance that con-
tains Avogadro’s number of elementary units. The two expressions on the
right-hand side of (1.40) are equivalent because N = nlN, and R* = kgNy,
where N, is the Avogadro constant (see Table 1.1 and margin note). For
fluid dynamical purposes we divide (1.40) by the total mass, M = ny,
where p is the molar mass (the mass per mole, often referred to as the
molecular weight) of the gas, and obtain

p = pRT, (1.41)
where R = R*/u is the specific gas constant, which varies from substance
to substance. For dry air R = 287J kg ' K™'. Air has virtually constant
composition except for variations in water vapour; these variations make
R a weak function of the water vapour content but we regard R as a con-
stant. Finally, it is common in fluid dynamics to work with the inverse of
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Symbol  Description Value

Po reference density 1.027 x10* kg m™
o« reference specific volume 9.738 x107™* m3kg’!
T, reference temperature 283K

So reference salinity 35ppt=35gkg™

Cq reference sound speed 1490 ms™

Br thermal expansion coefficient 1.67x107*K!

Bs haline contraction coefficient 0.78 x107° ppt’!

By compressibility coefficient (= oy /cZ)) 439%x107"° ms?kg™!
o specific heat capacity at const. pressure 3986 kg K!

density, or specific volume (i.e., volume per unit mass), « = 1/p, whence
the equation of state becomes pa = RT.

1.4.2 Seawater

Water is nearly incompressible: its density changes very little with tem-
perature, salinity, or pressure. However, these variations, small as they
are, are important in oceanography for they are allow the ocean currents
to transport large quantities of heat in the great ocean gyres and in deep
abyssal currents. There is no accurate, simple equation of state but for
many purposes we can approximate it as

p=pol-Br(T =Ty +Bs(S-So)+ Bo(p—py)],  (1.42)
where f8, B and B, are empirical parameters and S, T, and p, are con-
stants, and usually we take p, = 0. (A still more accurate equation is
required for quantitative oceanography.) Typical values of these param-
eters are given in Table 1.2. The parameter 3, is related to the speed of
sound, c,, given by ¢ = (3p/dp). Using this result and (1.42) gives, to a
good approximation, f, = 1/pyc?, and ¢, = 1500 ms™!. None of the terms
in (1.42) give rise to large variations in density in the ocean.

Unfortunately (perhaps) the equation of state introduces another un-
known, temperature, into our equation set. We thus have to introduce
another physical principle — one coming from thermodynamics — to ob-
tain a complete set of equations, as we now explore.

1.5 THERMODYNAMICS

1.5.1 A Few Fundamentals

The first law of thermodynamics states that the internal energy, I, of a body
may change because of work done by or on it, or because of a heat input,
or because of a change in its chemical composition. We will neglect the
last effect so that

dI = dQ + dw, (1.43)

Table 1.2: Various thermody-
namic and equation-of-state
parameters appropriate for
seawater, as used in the equa-
tion of state (1.42) and else-
where. The unit ppt is parts
per thousand by weight, or

g/kg.

Density variations are impor-
tant for generating ocean
currents but they are not
important in the mass conti-
nuity equation for seawater,
and to a very good approxi-
mation that equation may be
writtenas V- v = 0.
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A state variable is, by defini-
tion, a function of the state
of a fluid, or more gener-
ally the state of any body.
The internal energy and
the entropy are both state
variables. Heat and work
done are not state variables;
they have meaning only as
inputs or fluxes of energy.

where dW is the work done on the body, dQ is the heat input to the body
and dI is the change in internal energy, and we take all these quantities
to be per unit mass. (Heating arises from such things as radiation and
conduction, and work done occurs when a body is compressed.) The
quantities on the right-hand side (with a d) are ‘imperfect’ differentials
or infinitesimals: Q and W are not functions of the state of a body, and
the internal energy cannot be regarded as the sum of a ‘heat’ and a ‘work’.
That is, we should think of heat and work as having meaning only as fluxes
of energy, or rates of energy input, and not as amounts of energy; their
sum changes the internal energy of a body, which is a function of its state.
However, both the heat input and the work done are related to state vari-
ables, as follows:

Heat input: Although heat is not itself a state function, there is a state
function that responds directly to heating and this is the entropy.
Specifically, in an infinitesimal quasi-static or reversible process, if
an amount of heat dQ (per unit mass) is externally supplied then the
specific entropy # will change according to

T dy = dQ. (1.44)

That is to say, the entropy changes by an amount equal to the heat
input divided by the temperature.

Work done: The work done on a body during a reversible process is
equal to the pressure times its change in volume, and if the work is
positive then the volume change is negative. Thus if an infinitesi-
mal amount of work dW (per unit mass) is applied to a body then
its thermodynamic state will change according to

- pda = dw, (1.45)

where, we recall, &« = 1/p is the specific volume of the fluid and p is
the pressure.

Putting equations (1.43)—(1.45) together we have
dI =T dy - pde. (1.46)

This expression is called the fundamental thermodynamic relation. Let’s see
how it applies to a fluid.

1.5.2 Thermodynamic Equation for a Fluid

Let us suppose that the heating of a fluid arises from external agents, such
as radiation from the sun, and that the changes in density and internal
energy are consequences of this heating. It then makes sense to write
(1.46) as

dI + pda = dQ. (1.47)
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Now, (1.47) applies to a particular fluid element, not to a particular lo-
cation. The rate of change of the internal energy and volume are thus
obtained by taking the material derivative giving

DI  Da . DI pDp O

bl St 1.48
Dt Por o Dt p?Dt (148)

where Q is the rate of heat input. We can now use the mass conservation
equation, (1.27a), to rewrite the time derivative of density to give

DI Py.,_o0. (1.49)
p

This is the ‘thermodynamic equation’ of a fluid, and it tells us how the
internal energy responds to heating.

An ideal gas

In an ideal gas the internal energy is a function of temperature alone, and
is given by

I=¢1T, (1.50)
where ¢, is the heat capacity at constant volume. For the gases in Earth’s

atmosphere, ¢, itself is, to a very good approximation, a constant and
(1.49) becomes

DT »p .
—+=V.-v=0. 1.51
Qg t oV 0= (1.51)
Equation (1.51) is perhaps the most commonly used form of the thermo-

dynamic equation in the atmospheric sciences.
We can rewrite (1.47) as

dI+d(ap)-adp = dQ or d(c, T)+d(RT)-adp = dQ, (1.52a,b)

where the second expression holds for an ideal gas. Weletc, = ¢, + Rand
(1.52b) then becomes, for constant Cpr

¢,dT —adp = dQ implying cp% - a% =Q, (1.53ab)
From (1.53a), we can see that c, is just the heat capacity at constant pres-
sure. Equation (1.53b) is equivalent to (1.51), although perhaps not as
widely used. The complete set of equations of motion for a fluid are sum-

marized on the next page.

1.6 POTENTIAL TEMPERATURE AND ENTROPY

When a fluid is heated its entropy increases, obeying T'dy = dQ as in (1.44).
Taking the material derivative gives

21

Dr Q. (1.54)

In an ideal gas, c,, ¢, and R are
functions only of tempera-
ture and they are related by
¢, — ¢, = R In Earth’s atmo-
sphere they are all in fact very

nearly constant.
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The Equations of Motion for a Fluid

The momentum equation

The momentum equation is an evolution equation for velocity and embodies Newton’s second
law, namely that force equals mass times acceleration. It is

Dv 1
— =——Vp+wW+g, F.1
Dt p prviivtg (D

where g is the gravitational force per unit mass.

The mass continuity equation

The mass continuity equation embodies the principle of conservation of mass. Two equivalent
forms are

Dp dp
— 4+ pV-v=0, L 4+ V- (pv) = 0. F.2
D TPV Y 3 TV (P (F2)

If the fluid is incompressible the above equations become
V-v=0. (F.3)

The thermodynamic equation

The thermodynamic equation is a statement of the first law of thermodynamics and is

DI »p .
Dt+ pV v=Q, (F.4)

where Q is the total heating. In an ideal gas I = ¢,T and p = pRT and the equation becomes

E+£V-U:9:KV2T+], (F5)
Dt ¢, Gy

and here we split the heating into a diffusion of temperature and an external source, J.

Equation of state
The equation of state is a diagnostic equation that connects pressure, density, temperature
and, if the constituents of the fluid vary, composition. For a single-component ideal gas the
equation of state is

p = pRT. (F.6)
For seawater an approximate equation of state that gives density as a function of pressure,
temperature and salinity is

p = po [1= Br(T = To) + Bs(S = So) + Bp(p = po)] - (E.7)

For quantitative oceanography we need a more accurate equation of state and that necessitates
the inclusion of nonlinear terms.
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This is a form of the thermodynamic equation that could be used instead of
the internal energy equation (1.49), but to do so involves relating entropy
to the other thermodynamic variables with an equation of state of the
form
n=n(T, p),

or, in general, any two of pressure, density and temperature. (Entropy
is also a function of composition but we treat that as constant.) We can
obtain such an expression for an ideal gas, as follows.

Using the ideal gas equation of state we may write the first law of ther-
modynamics in two equivalent ways, namely

¢, dT + pda = dQ or cpdT -adp =dQ. (1.56a,b)
Then, since the entropy increase obeys Tdy = dQ, we have
¢, dT + pda = Tdy or ¢,dT —adp = Tdn. (1.57a,b)

These are both forms of the fundamental thermodynamic relation, ap-
plied to an ideal gas. Using the equation of state in the form « = RT/p the
above equations may be written

cvd—T - R@ =dy or de_T - Rﬂ =dy. (1.58a,b)
T p T p
We can integrate (1.58) to give two equivalent explicit expressions for the
entropy in an ideal gas, namely

1= c¢,logT — Rlog p + constant = ¢, log T — Rlog p + constant.

(1.59)

As always in classical mechanics, entropy contains an arbitrary constant.

For convenience we now define a quantity, 6, called potential tempera-
ture such that

n=c Iné, (1.60)

so that dy = cp(d6/0). Using this expression in (1.57b) and integrating

gives
¢, log T — Rlog p = ¢, log 0 + constant. (1.61)

If we fold the constant of integration into the pressure term this equation
can be written as

R/c,
6=T(&> " (1.62)

where py is a constant. And given (1.60), we can write (1.54) as

D6 6.
Cth = TQ. (1.63)
This form of the thermodynamic equation is equivalent to (1.51) and in
some ways is a simpler expression, although it is valid only for an ideal
gas — obtaining an analogous expression for seawater is more difficult
because of the nonlinearity of the true seawater equation of state and be-
cause ¢, for seawater is not a constant.

Although entropy responds
directly to the heating, it is
not a measure of the heat
content of a body, nor does
any such measure properly
exist. Note, for example, that
the entropy increase depends
on the temperature at which
heat is added. Similarly, a
body does not contain a cer-
tain amount of work. Rather,
both work done and heating
change the internal energy.



18

CHAPTER 1. FLUID FUNDAMENTALS

Potential temperature is the
temperature that a fluid par-
cel will have if taken adia-
batically and at constant
composition to a reference
pressure. Potential density
is the analogous quantity
for density. Both of these
quantities are functions

of the entropy of a parcel,
and functions of the entropy
alone if composition is fixed.

1.6.1 Meaning of Potential Temperature

We introduced potential temperature as a measure of the entropy of a
fluid and that is how it is best regarded. However, it has a useful physi-
cal interpretation, as follows. Suppose a parcel of constant composition
is moved adiabatically from one location to another at a different pres-
sure, and by adiabatic we mean that no heat enters or leaves the parcel;
that is, Q = 0. In a reversible process (such as fluid flow) the entropy and
potential temperature are then conserved. However, the temperature of
the parcel will change, because the fluid may be compressed or expand, as
(1.56) tells us. Consider a fluid parcel at some pressure p, with tempera-
ture T} and potential temperature 68,. Now move that parcel adiabatically
to a pressure pp. The temperature of the parcel changes but its potential
temperature does not, so that the final potential temperature is just 6,.
The final temperature of the parcel, T, say, is equal to 8,, because T = 6
when p = pp. Thus, the final temperature of the parcel is equal to its ini-
tial potential temperature. We may thus say that the potential temperature
of a parcel is equal to the temperature that a parcel will acquire if taken adiabat-
ically to a standard pressure, pg. This statement is commonly taken as the
definition of potential temperature, and if we begin here the connection
with entropy is then made by realizing that in an adiabatic process at con-
stant composition the entropy also does not change, and so is a function
of potential temperature.

Potential temperature is sometimes a more convenient variable to use
than entropy, and its temperature-like quality gives it an intuitive appeal;
still, entropy is the more fundamental variable. Finally, although pp may
be chosen arbitrarily, in most atmospheric applications pp = 1000 hPa,
which is the approximate pressure at sea level. Thus, potential tempera-
ture is the temperature that a parcel achieves when adiabatically brought
to the surface; the potential temperature is higher than the in situ tempera-
ture because the parcel is compressed as it descends, and the compression
increases the internal energy, and hence increases the temperature, of the
parcel.

1.6.2 Potential Density

By analogy with potential temperature, the potential density, py, is the den-
sity that a fluid parcel would have if moved adiabatically and at constant
composition to a reference pressure, pp. It is a useful quantity because it
turns out to be a measure of the stability of a fluid parcel with respect to
convection, in both air and water, as we will discover later.

Ideal gas

Suppose a fluid with temperature T and at pressure p is moved to a pres-
sure pg, where its temperature becomes equal to 6. For an ideal gas its
potential density at pressure p is equal to the density it has at p, so that

R/c c,/c
_Pr_Pr(P\"_ (zm)“f’
P6= Ro RT(pR> P\ ’ (169
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using RT = p/p to obtain the last expression.

Seawater

There is no corresponding exact expression for potential density of sea-
water. However, we can obtain a good approximation by first noting that
density is almost constant, and then Taylor-expanding the density around
the density at the reference level, at which T = 6 and p = pg. Atfirst order
we have

d
p(p) = p(pg) + (p—p@ﬁ. (1.65)

The first term on the right-hand side is, by definition, the potential density
and the derivative in the second term is the inverse of the square of speed
of sound, which is nearly constant in seawater. Thus

1
po=p = (P~ pr) (1.66)

Because the speed of sound is a measurable quantity, (1.66) is a very use-
ful practical expression for potential density, although because there are
small variations in the speed of sound the expression is not especially ac-
curate for problems involving large depth variations.

1.7 THe ENERGY BUDGET

The total energy of a fluid includes the kinetic, potential and internal ener-
gies. Both the fluid flow and pressure forces will move energy from place
to place, but we nevertheless expect that total energy will be conserved.
Let us therefore see what form energy conservation takes in a fluid.

1.7.1  An Energy Equation
We begin with the inviscid momentum equation with a time-independent
potential @,
Dv
— =-Vp-pVO. 1.67
PD: p-p (1.67)
In a uniform gravitational field @ = gz but we can be a little more general

in our derivation. Now take the dot product of (1.67) with v and obtain
an equation for the evolution of kinetic energy,

2
%p% =—v-Vp—pv-VO=-V-(pv)+pV-v—-pv-VO. (1.68)
The internal energy equation for adiabatic flow is
DI
— =-pV-v. 1.69
Ppe =707 (169)

Finally, and somewhat trivially, the potential satisfies

p% =pv-VO. (1.70)

Energy is transported from
place to place within a fluid
both by advection and by the
pressure force, which does
work on a fluid.
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The flux of energy is given
by the velocity times the
Bernoulli function, where
the Bernoulli function is a
combination of the kinetic,
potential and internal ener-
gies and the pressure. It is
equal to the sum of the ki-
netic energy, potential energy
and enthalpy. The Bernoulli
function is constant along
streamlines in steady flow.

Adding (1.68), (1.69) and (1.70) we obtain

D /1, o
PE(Ev +I+<D>— V- (pv), (1.71)

which, on expanding the material derivative and using the mass conser-
vation equation, becomes

%[p(%v2+l+q§>]+v‘[pv(%v2+l+q)+p/p>]:0. (1.72)

This may be written

%_f +V-[0E+p)] =0, (173)

where E = p(v*/2 + I + @) is the total energy per unit volume of the fluid.
with contributions from the kinetic energy (pv?/2), the internal energy
(pI) and the potential energy (p®@). Equation (1.73) is the energy equa-
tion for an unforced, inviscid and adiabatic, compressible fluid. The en-
ergy flux term vanishes when integrated over a closed domain with rigid
boundaries, implying that the total energy is conserved. However, there
can be an exchange of energy between kinetic, potential and internal com-
ponents. It is the divergent term, V - v, that connects the kinetic energy
equation, (1.68), and the internal energy equation, (1.69). In an incom-
pressible fluid this term is absent, and the internal energy is divorced from
the other components of energy. This consideration will be important
when we consider the Boussinesq equations in Section 2.5. Note finally
that the flux of energy, F; = v(E + p) is not equal to the velocity times the
energy; rather, energy is also transferred by pressure. We may write the
energy flux as

Fy = pv(v; +D+h), (1.74)

where h = I + p/p is the enthalpy. That is, the local rate of change of
energy is determined by the fluxes of kinetic energy, potential energy and
enthalpy, not internal energy, because enthalpy can take into account the
work done by the pressure.

Bernoulli’s theorem

The quantity

B:<E+£>:<1v2+1+<b+pa>:<lv2+h+<b>, (1.75)
p 2 2

is the general form of the Bernoulli function, equal to the sum of the ki-
netic energy, the potential energy and the enthalpy. Equation (1.73) may
be written as

%—f + V- (puvB) = 0. (1.76)
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The Bernoulli function itself is not conserved, even for adiabatic flow.
However, for steady flow V - (pv) = 0, and the 0/0¢t terms vanish so that
(1.76) may be written v - VB = 0, or even DB/Dt = 0. The Bernoulli func-
tion is then a constant along streamlines, a result commonly known as
Bernoulli’s theorem. For adiabatic flow at constant composition we also
have DO/Dt = 0. Thus, steady flow is both along surfaces of constant 0
and along surfaces of constant B, and the vector

1=VOxVB (1.77)

is parallel to streamlines.

1.7.2  Energy Conservation for Constant Density Fluids

If the density of a fluid is constant the derivation goes through just as
above, but with an important simplification. The divergence of the veloc-
ity is zero, and so the V - v term does not appear on the right-hand side
of the kinetic energy equation, (1.68). The right-hand side of the inter-
nal energy equation, (1.69), is then zero and the internal energy and the
kinetic energy are then de-coupled. The kinetic energy equation straight-

forwardly becomes

0K

5 +V @B =0, (1.78)

where K = v?/2 and, here, B = ¢ + @ + v*/2 where ¢ = p/p, is the
‘kinematic pressure’. The Bernoulli function does not contain the internal
energy and the total kinetic energy is conserved.

1.7.3 Viscous Effects

We might expect that viscosity will always act to reduce the kinetic en-
ergy of a flow, and here we demonstrate this for a constant density fluid
satisfying

Dv

D -V (¢ + @) + vV, (1.79)
The energy equation becomes
dE _d
—=—| EdV= J -Viudv. 1.80
dt dt Jv # Vv v ( )

The right-hand side is negative definite. To see this we use the vector
identity
VX (Vxv)=V(V-v) -V, (1.81)

and because V - v = 0 we have V?v = -V x w, where @ = V x v. Thus,

dE_ —yj v (Vxw)dV = ‘P‘J w-(va)dV=-MI w*dv, (1.82)
dt v v v

after integrating by parts, providing v x w vanishes at the boundary. Thus,
viscosity acts to extract kinetic energy from the flow. The loss of kinetic
energy reappears as an irreversible warming of the fluid and the total en-
ergy of the fluid is still conserved. The warming effect is small in Earth’s
atmosphere but it can be large in other planets.

Bernoulli’s theorem was de-
veloped mainly by Daniel
Bernoulli (1700-1782). The
Bernoulli family produced sev-
eral (at least eight) talented
mathematicians over three
generations in the seventeenth
and eighteenth centuries, and
is often regarded as the most
mathematically distinguished
family of all time.
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Notes and References

Many books on fluid dynamics go into more detail about the equations of motion
than we have, and Kundu et al. (2015) and Acheson (1990) both provide accessible
introductions. The official definitions of the Avogadro constant and mole will
change in May 2019 (as part of a larger redefinition of various SI units) and from
then on a mole will bear no reference to carbon-12 (which it does in the old def-
inition), although the change has no consequences for us. We use the new defini-
tions in the text. The Avogadro constant is then defined as 6.02214076x 10** mol ™!

and is to be regarded as a dimensional constant; Avogadro’s number is the nondi-
mensional number with the same numerical value, and a mole is the amount of
substance containing Avogadro’s number of elementary units.

Problems

1.1 Show that the derivative of an integral is given by

x5 () X
d J ’ e(x,t)dx = j ’ a—(pdx+ dxz(p(xz,t)—

4 dx dx
dt Jx e x, Ot dt d

tl o(x,t).  (PL.1)
By generalizing to three dimensions show that the material derivative of
an integral of a fluid property is given by

D L% 1)

= ,th:J—dV J -ds:” v. }dV, P12

Dt Jv q)(x ) v Ot " s(Pv v L ot " (U(P) ( )
where the surface integral (Is) is over the surface bounding the volume V.
Hence deduce that

D D¢

D J.Vp(pdV— JVth dv. (P1.3)

1.2 (a) If molecules move quasi-randomly, why is there no diffusion term in
the mass continuity equation?

(b) Suppose that a fluid contains a binary mixture of dry air and water
vapour. Show that the change in mass of a parcel of air due to the
diffusion of water vapour is exactly balanced by the diffusion of dry
air in the opposite direction.

1.3 If it is momentum, not velocity, that responds when a force is applied (ac-
cording to Newton’s second law), why is the (inviscid) momentum equa-
tion given by pDv/Dt = —=Vp and not D(pv)/Dt = -V p?

1.4 Using the observed value of molecular diffusion of heat in water, estimate
how long it would take for a temperature anomaly to mix from the top of
the ocean to the bottom, assuming that molecular diffusion alone is respon-
sible. Comment on whether you think the real ocean has reached equilib-
rium after the last ice age (which ended about 12,000 years ago).

1.5 Show that viscosity will dissipate kinetic energy in a compressible fluid.

1.6 (a) Suppose that a sealed, insulated container consists of two compart-
ments, and that one of them is filled with an ideal gas and the other
is a vacuum. The partition separating the compartments is removed.
How does the temperature of the gas change? (Answer: it stays the
same. Explain.) Obtain an expression for the final potential tempera-
ture, in terms of the initial temperature of the gas and the volumes of
the two compartments.
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1.7

1.8

1.9

1.10

(b) A dry parcel that is ascending adiabatically through the atmosphere
will generally cool as it moves to lower pressure and expands, and its
potential temperature stays the same. How can this be consistent with
your answer to part (a)?

Reconcile your answers with the first law of thermodynamics for an ideal
gas, namely that

dQ:Tdn:cp%:dI+dW:cUdT+pdoc. (P1.4)

Beginning with the expression for potential temperature for a simple ideal
gas, 0 = T(pg/p)*, where k = R/cp, show that

d6 = (6/T)(dT - («/c,) dp), (P1.5)
and that the first law of thermodynamics may be written as
dQ =T dn = c,(T/6)de. (P1.6)

Show that adiabatic flow in an ideal gas satisfies pp™ = constant, where
Y = ¢/,

Show that for an ideal gas in hydrostatic balance, changes in dry static en-
ergy (M = ¢,T + gz) and potential temperature (6) are related by M =
c,(T/6)86. (The quantity ¢, T/6 is known as the ‘Exner function’)

Using the equation of state for seawater given in the text, or a more accurate
one obtained from the literature, estimate the fractional change in density
of the world’s oceans due to changes in pressure, salinity and temperature.

Using an accurate equation of state obtained from the literature (for exam-
ple, from Vallis (2017) or 10c et al. (2010)) estimate by how much (1.42) is
in error in the world’s oceans.
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Equations for a Rotating
Planet

how the equations of motion are affected by these facts, first by
looking at how rotation affects the dynamics and then by express-
ing the equations in spherical coordinates.

P LANETS ARE ALMOST SPHERES. They also rotate. Here we consider

2.1 EQUATIONS IN A ROTATING FRAME OF REFERENCE

Newton’s second law of motion, that the rate of change of momentum
of a body is proportional to the imposed force, applies in so-called iner-
tial frames of reference that are either stationary or moving only with a
constant rectilinear velocity relative to the distant galaxies. Now Earth
spins around its axis once a day, so the surface of the Earth is not an iner-
tial frame. Nevertheless, it is very convenient to describe the motion of
the atmosphere or ocean relative to Earth’s surface rather than in some
inertial frame. How we do that is the subject of this section.

2.1.1 Rate of Change of a Vector

Consider first a vector C of constant length rotating relative to an inertial
frame at a constant angular velocity . Then, in a frame rotating with that
same angular velocity it appears stationary and constant. If in a small
interval of time &t the vector C rotates through a small angle §A then the
change in C, as perceived in the inertial frame, is given by (see Fig. 2.1)

6C = |C| cos 9dA m, (2.1

where the vector m is the unit vector in the direction of change of C, which
is perpendicular to both C and Q. But the rate of change of the angle A is
just, by definition, the angular velocity so that §A = [Q|5¢t and

5C = |C||Q|sin9m 6t = Q x Cét, (2.2)
24
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,QA Fig. 2.1: A vector C rotat-

ing at an angular velocity
o Q. It appears to be a con-
stant vector in the rotating
frame, whereas in the inertial
frame it evolves according to
(dC/dt), = Q xC.

~—|

_

using the definition of the vector cross-product, where 9=(m/2-9is
the angle between 2 and C. Thus

(‘Z—f)l =0xC, (2.3)

where the left-hand side is the rate of change of C as perceived in the
inertial frame.

Now consider a vector B that changes in the inertial frame. In a small
time &t the change in B as seen in the rotating frame is related to the
change seen in the inertial frame by

(6B); = (6B)g + (6B) 1> (2.4

where the terms are, respectively, the change seen in the inertial frame, the
change due to the vector itself changing as measured in the rotating frame,
and the change due to the rotation. Using (2.2) (0B),,; = 2 x B§t, and so
the rates of change of the vector B in the inertial and rotating frames are

related by
(d—B) - (Q) +OxB. 2.5)
dt /; dt /p

This relation applies to a vector B that, as measured at any one time, is the
same in both inertial and rotating frames.

2.1.2  Velocity and Acceleration in a Rotating Frame

The velocity of a body is not measured to be the same in the inertial and
rotating frames, so care must be taken when applying (2.5) to velocity.
First apply (2.5) to r, the position of a particle, to obtain

dr dr
<E>I=<E)R+QXT (26)



