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Preface

>Αρχὴ γὰρ λέγεται μὲν ἥμισυ παντὸς

“For it is said that the beginning is the half of every work”

Plato1

This book is about devices that convert electrical to mechanical energy and vice versa.

In the former case, we have an electric motor; in the latter case, an electric generator.

Motors, generators, and transformers (which lack moving parts) are what we commonly

call “electric machines.” A tremendous number of electric machines have been invented

over the last 200 years, so it would be futile to attempt a detailed analysis of each differ-

ent type. Instead, we should provide engineers with an understanding of how common

operating principles are obtained from classical laws of electromagnetism, regardless of

rating, size, or application domain.

Hence, in this text everything is explained based on the electromagnetic field perme-

ating a machine, which is governed by Maxwell’s partial differential equations. So the

field plays the leading role, but the Oscar for supporting role unquestionably goes to

the finite element method (FEM) that computes the field. The FEM is a game changer

because it allows us to take a look inside real machines with unparalleled resolution and

accuracy. This textbook presents a fields-based theory of electric machines jointly with

the FEM and its implementation using the Python programming language, in a bid to

approach this subject in a pedagogical and, hopefully, more entertaining manner.

Electric Machines in the Twenty-First Century

The scientific area of electromechanical energy conversion is as vibrant as ever. Cost-

effective, efficient, and reliable electric machines play a key role in addressing modern

society’s grand challenge of electrifying our energy and transportation infrastructures to

combat climate change. Rotating generators still produce most of our electricity world-

wide, while the penetration of semiconductor-based photovoltaic generation remains

relatively low. In addition, the proliferation of new hydro, wind, and marine energy ap-
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plications has increased demand for innovative generator designs. On the other hand,

it is estimated that electric motors, such as pumps or fans in industrial, commercial, or

residential settings, consume ultimately half of the electricity in the power grid. Stricter

regulations concerning motor efficiencies are thus driving advances in motor designs

and power electronics. In parallel with this unprecedented power-grid transformation,

the transportation sector is undergoing rapid electrification. The commercial success

of hybrid and all-electric vehicles, trains, marine vessels, drones, and next-generation

aircraft hinges on continuous advancements in motor technology.

The design of electric machinery often begins with empirical rules of thumb or sim-

ple formulas that are derived after approximations. This approach is often adequate for

obtaining “first-order” estimates of basic dimensions and parameters that come close

to meeting nominal specifications. Nevertheless, novel machine designs and stringent

performance requirements are challenging conventional wisdom and the validity of

such methods. For more accuracy, industry practitioners rely on finite element analysis

(FEA), which is the application of the FEM theory to a particular problem. Numerous

sophisticated software packages have been developed that help us conduct FEA over

multiple physical domains (e.g., electromagnetic, thermal, and mechanical). FEA is of-

ten embedded in an optimization loop that adjusts geometric and material parameters

to maximize performance. However, FEA-based machine design is computationally de-

manding even with today’s technology, but advances in optimization algorithms and

computing hardware are changing this landscape very rapidly.

This text explains the operation of electric machines under a new light, bridging elec-

tromagnetic fields, electric circuits, numerical analysis, and computer programming. We

do not shy away from presenting fundamental concepts in a rigorous fashion. In doing

so, we emphasize underlying physical modeling assumptions and limitations. And all

this is tightly integrated with nitty-gritty details of implementing the FEM using a mod-

ern language (Python) for programming on today’s hardware. We have included exam-

ples covering several major classes of electric machines, which increase in complexity

as new material is presented. From a simple linear-motion and constant-permeability

electromagnet, we progress to devices with nonlinear ferromagnetic materials, and then

introduce devices with rotational motion. We eventually reach the point where it be-

comes possible to analyze realistic permanent-magnet and wound-rotor synchronous

machines, switched reluctance machines, and induction machines in the steady state

and during transients. Each chapter includes a set of practice exercises, which are of a

theoretical or programming nature.

Overview of Contents

The primary focus of this textbook is on the electromagnetic analysis of electric ma-

chines rather than their thermal or mechanical aspects. In Chapter 1, we recall relevant

concepts from mathematics (vector calculus) and physics (classical electromagnetism).

The reader may have encountered these during the course of an undergraduate degree.

Nevertheless, they are reviewed to help progress smoothly throughout the material.
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Chapter 1 also highlights basic Python syntax, which is the programming language that

we use to implement the FEM.

We begin Chapter 2 with a concise presentation of the calculus of variations. It has

been our experience that this material is new to electrical engineering students. We

prove that Maxwell’s equations can be equivalently formulated as a variational prob-

lem, namely, the minimization of an energy-related functional, which inherently ac-

counts for interface conditions due to material discontinuities. This approach, which

forms the basis of the FEM, also provides useful physical insights into the principles

of operation of electrical machinery. The second part of Chapter 2 is thus dedicated to

an energy-oriented analysis of the magnetic field. These considerations naturally extend

into theoretical results regarding the creation of electromagnetic force from the fields.

In Chapter 3, we introduce the FEM gently using elementary two-dimensional (2-

D) problems involving Laplace and Poisson equations. We then adapt the method to

the analysis of simple magnetic devices. We provide a thorough treatment of both mag-

netically linear and nonlinear problems, while emphasizing programming details. The

chapter ends with further insights about Galerkin’s method, setting forth the theoretical

foundations of the FEM.

Practical FEA implementation guidelines for electric machines are offered next in

Chapter 4. These include force and torque calculations, handling moving boundaries

due to rotation without remeshing, and exploiting multi-pole symmetry by enforcing

periodic boundary conditions. Detailed FEA examples are provided for wound-rotor

synchronous machines, surface-mounted and interior permanent-magnet synchronous

machines, and switched reluctance machines. These serve as a means to explain various

important concepts, such as the magnetomotive force of distributed windings, the cal-

culation of flux linkage and torque waveforms, Park’s transformation in qd variables,

and the derivation of equivalent circuits from FEA results.

Chapter 5 presents the analysis of time-varying fields with phasor-based FEA (under

sinusoidal steady-state conditions) as well as time-stepping FEA (under arbitrary tran-

sients). This material begins with an overview of the physics of induced eddy currents.

Finally, we provide details of coupling FEA models with external circuit equations,

which is necessary in the analysis of squirrel-cage induction machines, transformer in-

rush currents, or the short-circuit transients of a synchronous generator.

The end-of-chapter problems (roughly 20 problems in each chapter) are a key peda-

gogical feature of our book and are tightly integrated with the material. The solutions

manual accompanying the text provides answers to exercises that can be solved analyti-

cally, such as derivations and mathematical proofs. The programming exercises involve

replicating results found in the main text; the reader is asked to write Python programs

gluing together the various building blocks of code that are provided. We do not provide

solutions to these exercises because there are many ways that such programs can be im-

plemented, and we certainly do not wish to limit the creativity of the reader. Boxes are

also sprinkled around the book, highlighting the most significant theoretical results and

key equations.
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Who Could Benefit by Reading this Book

This book is suitable for graduate-level students pursuing advanced engineering degrees

with specialization in electric power systems, power electronics, or machines; and for

practicing engineers who may be interested in understanding, analyzing, and designing

electric motors, generators, and transformers. An undergraduate student at the senior

level should have all the prerequisite knowledge to pick up this book, although our

treatment is certainly more demanding than one typically encounters in introductory

machine texts. The book contains a wealth of background information on vector cal-

culus, variational calculus, and basic electromagnetism. Based on our experience with

teaching this material, it is helpful to devote a few weeks at the beginning of a semester

(or an independent study) to review these subjects before proceeding with the FEM and

the analysis of electric machines.

The readers of this textbook will be fully capable of programming their own 2-D

FEA program using Python, which is freely available and widely used by the scientific

community. Apart from the personal satisfaction and sense of achievement gained from

reaching this milestone demonstrating a solid grasp of the underlying concepts, such a

tool could be useful for educational or research activities. Furthermore, a custom 2-D

FEA program could feature the required flexibility for rapidly testing novel machine

concepts that may be difficult to analyze using commercial software. This type of anal-

ysis (in contrast to a full-scale 3-D study) is lightweight and more than sufficient for

obtaining accurate results over a broad range of applications. A reader will also gain a

deeper understanding of what takes place “under the hood” of commercial FEA pack-

ages, and will be better informed regarding the limitations imposed by our imperfect

modeling of the associated physical phenomena.

By trying to make the FEM more accessible, we aim to impart an appreciation for the

numerical analysis of electromechanical devices, and perhaps to inspire further study of

this subject. Our hope is that this book will serve for the years to come a new generation

of engineers who are dedicated to changing our world for the better.



Nomenclature

This is a list of the main variables and mathematical operators encountered throughout

this text. Ambiguity in notation may be resolved from context.

Greek-Letter Variables

α Element basis function

α Resistivity temperature coefficient

α Scaling parameter of variation

αp, βp, γp, δp Coefficients of p-pole-pair air-gap magnetic field

β Generalized trapezoidal rule parameter

δ Dirac delta function

δ Skin depth

δi j Kronecker delta

∆ Area of triangle

ǫ Permittivity

ζ Radii ratio (inner over outer)
#»η , η Variation shape vector, scalar (test function)

θ Angular or linear position

θ Polar angle

θ̂ Polar angle unit vector

θr Rotor angle

λ Flux linkage of winding

µ Permeability

µ0 Permeability of free space

µh Hysteretic permeability

µr Relative permeability

ν Reluctivity

ξ Relaxation factor

ρ Charge density

ρ Resistivity

ρm Magnetic charge density

σ Conductivity

σ Maxwell stress tensor

τ Thickness
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#»τ , τ Torque vector, scalar value

τ̃ Torque per unit depth

φ Azimuthal angle

φ Hat function

φ̂ Azimuthal angle unit vector

φpi, φpo Phase angle of p-pole-pair air-gap magnetic potential at inner, outer

boundary

ϕ Scalar potential

Φ Magnetic flux

Φ̃ Magnetic flux phasor

χm Magnetic susceptibility

ψ Flux linkage of filament

ω Electrical frequency

ω Surface charge density
#»ω, ω Angular velocity vector, scalar value

ωm Rotor angular velocity (mechanical)

ωp Angular velocity of p-pole-pair field (mechanical)

Ω Region in space (the domain of a vector or scalar field)

Latin-Letter Variables

A Cross-sectional area

A Array of magnetic potential values
#»

A, A Magnetic potential vector, magnitude

Ã, Ã Magnetic potential complex vector, phasor

Ã, Ã Modified magnetic potential function, array of values (for axisym-

metric problems)

Ap Function of p-pole-pair air-gap magnetic potential

Api, Apo Amplitude of p-pole-pair air-gap magnetic potential at inner, outer

boundary

b Source vector for linear FEA
#»

B , B Magnetic flux density vector, magnitude

B̃, B̃ Magnetic flux density complex vector, phasor

Bpr, Bpφ Radial, tangential component of p-pole-pair air-gap B-field

Bpri, Bpro Amplitude of radial component of p-pole-pair air-gap B-field at in-

ner, outer boundary

D Density

D Domain in 2-D or 3-D space
#»

D, D Electric displacement field vector, magnitude

e Error
#»

E , E Electric field vector, magnitude

Ẽ, Ẽ Electric field complex vector, phasor

f Frequency
#»

f Force density vector

F Scalar field



Nomenclature xvii

#»

F Vector field
#»

F , F Force vector, magnitude

F̃ Force per unit depth

F MMF vector

g Acceleration of gravity

g Air-gap width

g Gradient

h Height

h Time step

H Hessian matrix
#»

H, H Magnetic field vector, magnitude

H̃, H̃ Magnetic field complex vector, phasor

H1 Hilbert space of functions with square integrable first derivatives

i or I Current

ĩ or Ĩ Current phasor

î x-Axis unit vector of a Cartesian coordinate system

I Functional

I Moment of inertia

Iν Modified Bessel function of the first kind of order ν

j The imaginary unit, j =
√
−1

ĵ y-Axis unit vector of a Cartesian coordinate system

J Jacobian matrix
#»

J , J Current density vector, magnitude
#»

J m, Jm Magnetization current density vector, magnitude

ke Coefficient of eddy current loss

kh Coefficient of hysteresis loss

kp f Packing factor

kst Stacking factor

k̂ z-Axis unit vector of a Cartesian coordinate system

K Reference frame transformation matrix
#»

K, K Surface current density vector, magnitude
#»

Km, Km Magnetization surface current density vector, magnitude

ℓ Length

L Inductance

L Lagrangian
#»

L Angular momentum

L2 Space of square integrable functions

m Energy density of magnetic field

m Mass
#»m Magnetic dipole moment
#»

M, M Magnetization vector, magnitude

n Number of slots

n̂ Unit normal vector

N Number of turns
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p Basis function coefficient

p Number of pole-pairs

p Volumetric power

p Time-averaged volumetric power
#»p Momentum per unit volume

P Power

P Permeance
#»

P Momentum

Pmp Mechanical power of p-pole-pair field

Pr→s Air-gap power flow from rotor to stator

q Basis function coefficient

q Array of basis function coefficients

qe Electric charge of an electron

Q Electric charge

Q Reactive power

r Basis function coefficient

r Radial distance

r Residual

r Array of basis function coefficients

r, #»r Displacement from the origin vector

r̂ Unit radial vector

ṙ Derivative of displacement vector r with respect to time

ri Inner radius

ro Outer radius

R Radius of a circle through the middle of the air gap

R Resistance

R Reluctance

ŝ Unit tangential vector

sp Slip of p-pole-pair field

S Surface

S Complex Poynting vector

S Stiffness matrix
#»

S Poynting vector

t Time

t Step length

t̂ Unit tangential vector
#»

t Maxwell stress

T Kinetic energy

T Matrix multiplying vector of time derivatives of magnetic potentials

v, V Voltage
#»v , v Velocity vector, magnitude

V Potential energy

V Region (volume) in 2-D or 3-D space

Ṽ Voltage phasor
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w Solution guess

w Width

w∗ True solution

W Work or energy

Wag Energy stored in the air gap

Wc Coenergy

W f Coupling field energy

X Reactance

XN N-dimensional trial space

Z Impedance

Mathematical Operators

∂Ω Boundary of region Ω

∂y/∂x Partial derivative of y with respect to x

ẋ Derivative of x with respect to time

‖ #»a ‖ Norm of vector

‖w‖ Norm of function

‖w‖E Energetic norm of function

A⊤ Transpose of vector or matrix

f Time average of function

∇F Gradient of scalar field

∇ · #»

F Divergence of vector field

∇ × #»

F Curl of vector field

∇2F Laplacian of scalar field

∇2 #»

F Laplacian of vector field

a · b Dot product
#»a × #»

b Cross product

δx Small change in x

δw Variation of solution

dx Differential of x

da Differential surface area

da Differential surface area vector

dr Differential displacement vector

ds Differential arc length

dv Differential volume

dy/dx Total derivative of y with respect to x

(u, v) Inner product of functions

(u, v)E Energetic inner product of functions





1 Review of Vector Calculus and
Electromagnetic Fields

Μηδείς ἀγεωμέτρητος εἰσίτω μοι τῇ θύρᾳ

“Let no one ignorant of geometry enter through this door”

Inscription on entrance of Plato’s Academy2

In this chapter, we will be highlighting fundamental concepts of vector calculus, which

is the branch of mathematics concerned with the differentiation and integration of vec-

tor fields. In doing so, we have assumed that the reader is already familiar with the main

concepts of algebra, vectors, mechanics, and classical electromagnetism, most likely

in the course of satisfying the requirements of an undergraduate collegiate degree. The

material is self-contained to the extent possible, but it is not intended as a rigorous treat-

ment. We will not be attempting to explain ideas such as: What is a derivative and an

integral? What is force? What is energy? What is electricity? What is the electromag-

netic field? . . . Instead, we will emphasize the underlying mathematics (vector calculus)

that enables us to quantify and correlate the physical variables in space.

Our exposition will progress from simple to more complicated ideas. To refresh our

memory and support this material, we will be invoking many examples. Whenever pos-

sible, these will be based on electromagnetic field problems. The examples will also

include relevant results that are necessary for a fields-based understanding and analy-

sis of electric machines, while underpinning the mathematical formalism that we will

adhere to for the remainder of this book.

As we set forth these wonderful concepts, we will not remain on a purely theoreti-

cal plane. Rather, we will immediately apply these ideas to perform relatively simple

computational tasks using Python. These examples should be accessible by anyone with

a basic knowledge of computer programming. We will thereby introduce Python (ver-

sion 3) syntax and some key capabilities, and familiarize the reader with the program-

ming language that we will use to code the finite element method (FEM) calculations.

At the end of this chapter, we shall have a working knowledge of Python.
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1.1 Overview of Maxwell’s Equations

The equations that govern the electromagnetic field are known as Maxwell’s equations.3

They involve two vector variables, namely the electric field
#»

E and the magnetic flux

density
#»

B . The fields are created by the presence of a charge density ρ or a current

density
#»

J throughout space. In this first form, Maxwell’s equations are applicable for

problems in vacuum or free space.

Since we are primarily interested in the analysis of devices where the fields perme-

ate matter, we need an alternate formulation of the equations, namely, a formulation

in macroscopic form. In such form, the equations should capture the aggregate (i.e.,

space-averaged over many atoms) behavior of matter that is subject to an electromag-

netic field. To this end, two additional fields are introduced. These are the electric dis-

placement field
#»

D and the magnetic field
#»

H, which help us model the effect of electric

and magnetic polarization, respectively. We also introduce phenomenological, consti-

tutive laws, such as
#»

B = f (
#»

H) and
#»

E = g(
#»

D) , (1.1)

to describe the relationships of fields within materials.

The macroscopic variant of Maxwell’s equations comes in two equivalent forms,

namely, differential and integral. In differential form, the equations are

Gauss’4 law for the electric field: ∇ · #»

D = ρ , (1.2a)

Gauss’ law for the magnetic field: ∇ · #»

B = 0 , (1.2b)

Faraday’s5 law: ∇ × #»

E = −∂
#»

B

∂t
, (1.2c)

Ampère’s6 law: ∇ × #»

H =
#»

J +
∂

#»

D

∂t
. (1.2d)

In integral form, the equations are

Gauss’ law for the electric field:

	

∂V

#»

D · da =

$

V

ρ dv , (1.3a)

Gauss’ law for the magnetic field:

	

∂V

#»

B · da = 0 , (1.3b)

Faraday’s law:

∮

∂S

#»

E · dr = −
"

S

∂
#»

B

∂t
· da , (1.3c)

Ampère’s law:

∮

∂S

#»

H · dr =

"

S

#»

J · da +

"

S

∂
#»

D

∂t
· da . (1.3d)

These are supplemented by an equation describing the conservation of charge:

∇ · #»

J = −∂ρ
∂t
. (1.4)

When the sources are constant or changing “slowly” with time, we obtain simpler
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versions of Maxwell’s equations by setting ∂/∂t = 0:

∇ · #»

D = ρ , (1.5a)

∇ · #»

B = 0 , (1.5b)

∇ × #»

E = 0 , (1.5c)

∇ × #»

H =
#»

J , (1.5d)

∇ · #»

J = 0 . (1.5e)

Clearly, this leads to a decoupling of the equations, so the electric and magnetic fields

can be determined separately.

In practice, we encounter two types of problems, differentiated based on the main

field source. If the field is created by a static or quasi-static distribution of charge, we

obtain an electrostatic problem, where
#»

B = 0 or
#»

B ≈ 0, and

∇ · #»

D = ρ , (1.6a)

∇ × #»

E = 0 . (1.6b)

If the field is created by a static or quasi-static distribution of current, we obtain a mag-

netostatic problem, where
#»

E = 0 or
#»

E ≈ 0, and

∇ · #»

B = 0 , (1.7a)

∇ × #»

H =
#»

J . (1.7b)

All this may already seem overwhelming, but we hope that the material that follows

will be helpful. In the subsequent sections, we will present background information on

vector calculus that will enable us to comprehend what these formulas mean. We will

start in §1.2 by defining vectors and mathematical operations on vectors, such as the

dot and cross products. We will proceed in §1.3 by defining scalar and vector fields.

In §1.4, we will define line, surface, and volume integrals, like the ones appearing in

the integral form of Maxwell’s equations. §1.5 will set forth differential operators on

scalar and vector fields, whereas §1.6 will present various integral laws that are widely

employed in vector calculus. We will conclude by putting a focus on the magnetic field

in §1.7.

1.2 Vectors

Vector calculus entails the manipulation of vectors in three-dimensional (3-D) space,

which are commonly used to describe physical quantities like force or velocity. These

physical vectors are geometric objects that are associated with a magnitude and a direc-

tion. They are denoted using boldface notation and an arrow. For example, the magnetic

flux density at a point (x, y, z) may be the vector

#»

B = −0.5 î + 1.2 ĵ + 0.5 k̂ T, (1.8)
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where T stands for tesla,7 which is the SI8 unit for field density. Here, î, ĵ, and k̂ are

commonly used symbols for the three unit vectors of a Cartesian9 coordinate system.

Unit vectors will be denoted by hats throughout this text. In Equation (1.8), the vector

was written as a vector sum of three components. A different way to express a vector is

by listing three scalar coefficients in a given coordinate system as a tuple, e.g.

B = (−0.5, 1.2, 0.5) , (1.9)

or as a column vector

B =





−0.5

1.2

0.5





. (1.10)

Note that we did not use an arrow. The distinction is subtle, and often these two notations

are used interchangeably. For instance, we may also write
#»

B = (−0.5, 1.2, 0.5).

The length or magnitude or Euclidean10 norm of a vector #»v will be denoted as ‖ #»v ‖.
The norm is calculated using the Pythagorean11 theorem. For instance, the magnitude

of the above B-vector is

‖ #»B‖ =
√

(−0.5)2 + 1.22 + 0.52 ≈ 1.393 T. (1.11)

We may also define vectors in higher dimensions; however, these may not be rep-

resentative of physical vector fields. These high-dimensional vectors will be denoted

using a boldface symbol but without an arrow. For example, the solution of a linear sys-

tem of equations with 100 unknowns, which is a column vector of dimension 100 × 1,

may be denoted as x. Strictly speaking, placing an arrow on top of a physical vector

is not necessary since a boldface symbol should suffice. Nevertheless, this notational

distinction is made for added clarity because in this book we will encounter both physi-

cal and higher-dimensional vectors stemming from the numerical solution of Maxwell’s

equations. The Euclidean norm for such vectors is denoted similarly by ‖x‖. If x has n

components, then

‖x‖ =
√

x2
1
+ x2

2
+ · · · + x2

n . (1.12)

1.2.1 Dot Product

The dot product or inner product between two vectors a = (a1, a2, . . . , an) and b =

(b1, b2, . . . , bn) from the same n-dimensional space (in Cartesian coordinates) is defined

algebraically as

a · b = a⊤b =

n∑

i=1

aibi = a1b1 + a2b2 + · · · + anbn . (1.13)

The dot product returns a scalar, that is, a · b ∈ R. Note that the vector dimension n is

arbitrary. Using this definition, we can see that

a · a = ‖a‖2 . (1.14)
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An equivalent geometric definition is

#»a · #»

b = ‖ #»a ‖ ‖ #»b ‖ cos θ , (1.15)

where θ is the angle between the two vectors, such that 0 ≤ θ ≤ 180° (see Figure 1.1).

The latter definition is easier to visualize in two or three dimensions, hence the arrow

notation. Note that

a · b = b · a . (1.16)

This is called the commutative property. Another important property of the dot product

is related to orthogonality: Two vectors are orthogonal if and only if their dot product

is zero.

x

#»a

#»

b

φa

φb

θ

φa = 40°, φb = −30°,

θ = 70°, #»a · #»

b > 0

x

#»a

#»

b

φa

φb
θ

φa = 150°, φb = −100°,

θ = 110°, #»a · #»

b < 0

Figure 1.1 Dot product examples. Note that vector angles are positive when measured

counterclockwise, and negative in the clockwise direction.

Example 1.1 Equivalence of dot product definitions.

Confirm that the algebraic and geometric definitions of the dot product are equivalent.

Proof For simplicity, we will solve this problem in two dimensions. (Even in 3-D

space, without loss of generality we can always use a 2-D coordinate system that sits on

the plane defined by the two vectors.) The trick is to express the vectors

#»a = a1 î + a2 ĵ , (1.17a)
#»

b = b1 î + b2 ĵ (1.17b)

using their polar coordinates, that is, using their magnitudes and angles:

a = (a1, a2) = (‖ #»a ‖ cos φa, ‖ #»a ‖ sin φa) , (1.18a)

b = (b1, b2) = (‖ #»b ‖ cos φb, ‖
#»

b ‖ sin φb) . (1.18b)

Let us limit the vector angles to the interval (−180°, 180°]. Without loss of generality,
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we will assume that φa ≥ φb, as in Figure 1.1. Hence

#»a · #»

b = a1b1 + a2b2 (1.19a)

= ‖ #»a ‖ ‖ #»b ‖ (cos φa cos φb + sin φa sin φb) (1.19b)

= ‖ #»a ‖ ‖ #»b ‖ cos(φa − φb) , (1.19c)

where ∆φ = φa − φb is in the interval [0°, 360°). It suffices to show that cos∆φ = cos θ,

where the angle between vectors θ ∈ [0°, 180°]. There are two cases to consider: (i) if

0° ≤ ∆φ ≤ 180°, then θ = ∆φ; (ii) if 180° < ∆φ < 360°, then θ = 360° − ∆φ. In both

cases, we obtain cos∆φ = cos θ. �

Example 1.2 Invariance of dot product to axes rotation or reflection.

Confirm that the algebraic definition of the dot product yields the same answer regard-

less of the choice of coordinate system.

Proof It is convenient to use 2-D Cartesian coordinate systems lying on the plane

defined by the two vectors. We need to verify that the dot product remains the same

in a rotated and possibly reflected coordinate system that maintains the length of the

vectors. The more general case where the new coordinate system is such that all three

components are present is left as an exercise for the reader. (The geometric dot product

definition does not employ the coordinates of the vectors, implying that the result should

indeed be independent of choice of axes. Nevertheless, this example is instructive be-

cause such coordinate system changes are fundamental to electric machine analysis.) In

linear algebra, this is called a change of basis from one orthonormal basis to another,

also termed an orthogonal transformation.

As depicted in Figure 1.2, a vector #»a can be expressed in terms of the unit vectors of

the two coordinate systems as

#»a = a1 î + a2 ĵ = a′1 î′ + a′2 ĵ′ . (1.20)

x

y

x′

y′

γ

#»a

a1

a2

a′1

a′2

(a) Rotation of the axes by γ in

the counterclockwise direction

(a′2 < 0).

x

y

x′

y′

γ

#»a

a1

a2

a′1

a′2

(b) Rotation by γ and subse-

quent reflection of the y′-axis

across the x′-axis (a′2 > 0).

Figure 1.2 Cartesian coordinate system orthogonal transformation: from xy to x′y′.
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By inspection, we can relate the unit vectors as

î′ = cos γ î + sin γ ĵ , (1.21a)

ĵ′ = − sin γ î + cos γ ĵ (1.21b)

for a pure rotation, or

î′ = cos γ î + sin γ ĵ , (1.22a)

ĵ′ = sin γ î − cos γ ĵ (1.22b)

for a rotation followed by a reflection of the y′-axis. Substitution of these equations in

Equation (1.20) yields

#»a = a1 î + a2 ĵ = (a′1 cos γ ∓ a′2 sin γ) î + (a′1 sin γ ± a′2 cos γ) ĵ . (1.23)

By equating coefficients, we obtain
[

a1

a2

]

=

[

cos γ − sin γ

sin γ cos γ

] [

a′1
a′2

]

(1.24)

and
[

a1

a2

]

=

[

cos γ sin γ

sin γ − cos γ

] [

a′1
a′2

]

, (1.25)

respectively, for the two cases. It is convenient to introduce a 2 × 2 transformation

matrix M that defines the transformation from the original to the new coordinates,

which is found by taking the inverse of the above matrices. For case (a), which involves

only a rotation, we have
[

a′1
a′2

]

=

[

cos γ sin γ

− sin γ cos γ

]

︸              ︷︷              ︸

Ma

[

a1

a2

]

, (1.26)

whereas for case (b), which involves rotation and reflection, we have
[

a′1
a′2

]

=

[

cos γ sin γ

sin γ − cos γ

]

︸              ︷︷              ︸

Mb

[

a1

a2

]

. (1.27)

The components of a second vector
#»

b are transformed in the same manner. Hence, the

dot product using the new coordinates becomes

#»a · #»

b = a′1b′1 + a′2b′2 =
[

a′1 a′2

]
[

b′1
b′2

]

(1.28a)

=
([

a1 a2

]

M⊤
)
(

M

[

b1

b2

])

(1.28b)

=
[

a1 a2

]

(M⊤M)

[

b1

b2

]

, (1.28c)

where M⊤ is the transpose of M. It can be readily verified that M⊤M = I, the identity

matrix, for both cases. Hence, the dot product is invariant to orthogonal transformations.

�
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1.2.2 Cross Product

We will define the cross product or vector product between two vectors #»a and
#»

b in

3-D space. The cross product yields a vector that satisfies the following conditions: (i) it

is perpendicular to both #»a and
#»

b ; (ii) its direction is decided by the right-hand rule; and

(iii) its magnitude is equal to the area of the parallelogram defined by #»a and
#»

b as its

sides, as illustrated in Figure 1.3. We can write, therefore

#»a × #»

b = ‖ #»a ‖ ‖ #»b ‖ sin θ n̂ . (1.29)

Here, θ is the angle between the two vectors, so that 0 ≤ θ ≤ 180°. Also, n̂ is a unit

normal vector that is perpendicular to the plane defined by #»a and
#»

b , and points to a

direction dictated by the right-hand rule. See Figure 1.4 for two examples. Note that

#»a × #»

b = − #»

b × #»a . (1.30)

Hence, the cross product is anti-commutative. In contrast to the dot product, the magni-

tude of the cross product becomes zero when the vectors are parallel or antiparallel (i.e.,

when θ = 0 or θ = 180°, respectively). Examples of formulas from physics that employ

the cross product are the torque, −→τ = #»r × #»

F , and the Poynting12 vector,
#»

S =
#»

E × #»

H.

#»a

#»

b

‖ #»b ‖ sin θ

θ

Figure 1.3 Geometric interpretation of the cross-product magnitude as the area of a

parallelogram (base times height) formed by two vectors.

In Cartesian coordinates, the cross product can be evaluated as a determinant. If
#»a = (a1, a2, a3) and

#»

b = (b1, b2, b3), then

#»a × #»

b =

∣
∣
∣
∣
∣
∣
∣
∣
∣

î ĵ k̂

a1 a2 a3

b1 b2 b3

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (1.31)

Using a cofactor expansion along the top row, this determinant evaluates to

#»a × #»

b =

∣
∣
∣
∣
∣
∣

a2 a3

b2 b3

∣
∣
∣
∣
∣
∣
î −

∣
∣
∣
∣
∣
∣

a1 a3

b1 b3

∣
∣
∣
∣
∣
∣
ĵ +

∣
∣
∣
∣
∣
∣

a1 a2

b1 b2

∣
∣
∣
∣
∣
∣
k̂ (1.32a)

= (a2b3 − a3b2) î + (a3b1 − a1b3) ĵ + (a1b2 − a2b1) k̂ . (1.32b)

Strictly speaking, this is not a determinant of an actual matrix, but merely a mnemonic.

A special case of particular interest for us is the multiplication of vectors that sit on
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x

y

#»a

#»

b

θ

φa

φb

#»a × #»

b

φa = 20°, φb = 70°,

θ = 50°, #»a × #»

b = c k̂, c > 0

x

y
#»a

#»

b

φa
θ

φb

#»a × #»

b

φa = 120°, φb = 10°,

θ = 110°, #»a × #»

b = c k̂, c < 0

Figure 1.4 Cross-product examples. The vectors #»a and
#»

b are on the x–y plane.

the x–y plane, as shown in Figure 1.4. This means that a3 = b3 = 0, so the first two

terms in the previous expression vanish, and we are left with

#»a × #»

b = (a1b2 − a2b1) k̂ . (1.33)

Example 1.3 Cross product as a determinant.

Confirm the validity of the formal determinant expression (1.31).

Proof Note that the standard basis vectors are defined such that

î × ĵ = k̂ , (1.34a)

ĵ × k̂ = î , (1.34b)

k̂ × î = ĵ . (1.34c)

This is the usual case for right-handed systems. Also, recall that the vector product is

distributive, i.e.

#»a × (
#»

b + #»c ) = #»a × #»

b + #»a × #»c . (1.35)

Evaluating the cross product yields

#»a × #»

b = (a1 î + a2 ĵ + a3k̂) × (b1 î + b2 ĵ + b3k̂) . (1.36)

Multiplying out the terms will lead to a sum of nine cross products. Three of these

terms will be zero, since î × î = ĵ × ĵ = k̂ × k̂ =
#»

0 . The remaining six terms will

contain cross products as in Equations (1.34a)–(1.34c), or in reverse order. Using the
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anti-commutative property (1.30) will lead to Equation (1.32b), which is the expansion

of the determinant in Equation (1.31). �

Example 1.4 The area of a triangle.

Derive a formula for the area of a triangle based on the coordinates of its vertices.

Proof This result is invoked repeatedly in the FEM, so it is worthwhile taking a closer

look. The proof hinges on the definition of the cross product. Consider the triangle

ABC on the x–y plane, shown in Figure 1.5. The triangle vertices are located at (x1, y1),

(x2, y2), and (x3, y3). In the ensuing analysis, it is necessary to assume that the vertices

are ordered counterclockwise. Hence, if we define the vectors #»c and #»a as the sides AB

and BC of the triangle, respectively, then #»c × #»a will be pointing along the positive

z-axis. (To see this, you may translate #»c mentally so that its origin coincides with the

origin of #»a .) In turn, this implies that ‖ #»c × #»a ‖, which is the area of the parallelogram

ABCD, equals the z-component of #»c × #»a , as given by Equation (1.33). Denoting the

triangle area by ∆, we have

∆ =
1

2
‖ #»c × #»a ‖ = 1

2
( #»c × #»a ) · k̂ (1.37a)

=
1

2
(c1a2 − c2a1) (1.37b)

=
1

2

[

(x2 − x1)(y3 − y2) − (y2 − y1)(x3 − x2)
]

. (1.37c)

What if we had chosen another pair of sides? For instance, take
#»

b to be the side CA.

Then,
#»

b × #»c points towards the positive z-axis as well, and

∆ =
1

2
‖ #»b × #»c ‖ = 1

2
(
#»

b × #»c ) · k̂ (1.38a)

=
1

2
(b1c2 − b2c1) (1.38b)

=
1

2

[

(x1 − x3)(y2 − y1) − (y1 − y3)(x2 − x1)
]

. (1.38c)

A

B

C

D

#»c = (x2 − x1 , y2 − y1 )

#»a = (x3 − x2, y3 − y2)

#»

b =
(x1
− x3,

y1
− y3)

θ

x

y

Figure 1.5 Calculating the area of a triangle on the x–y plane based on the cross product.
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The last combination we could take is #»a × #»

b . This yields

∆ =
1

2
‖ #»a × #»

b ‖ = 1

2
( #»a × #»

b ) · k̂ (1.39a)

=
1

2
(a1b2 − a2b1) (1.39b)

=
1

2

[

(x3 − x2)(y1 − y3) − (y3 − y2)(x1 − x3)
]

. (1.39c)

Note that these three formulas are similar in the sense that one leads to the other via

cyclic permutation of the indices, i.e., replacing 1 by 2, 2 by 3, and 3 by 1. �

1.2.3 Vectors in Python

We proceed with a few examples that illustrate the application of the basic vector con-

cepts we have presented using the Python programming language.

Example 1.5 Vector operations in Python.

In Python, calculations with vectors can be performed efficiently using the NumPy li-

brary. NumPy functions can operate on n-dimensional arrays, or ndarray objects. We

present a simple Python program that calculates the length of the B-field vector intro-

duced in Equation (1.8):

1 import numpy as np

# Define a vector as a NumPy array

B = np.array([-0.5, 1.2, 0.5])

5 print(’B =’,B)

# Calculate the norm of the vector

normB = np.linalg.norm(B)

print(’||B|| =’,normB)

Since this is our first encounter with a Python script, we note the following:

• To run this program, we may type each line successively in a Python interpreter,

which can be started by typing python at the Unix shell or a Windows command

prompt. Alternatively, these commands can be saved into a file that we can run by

typing python <filename.py>.

• The line numbers are only shown for convenience when referring to certain parts of

the code. They are not part of a Python program, unlike BASIC or FORTRAN.

• Single-line comments are preceded by a # character.
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• NumPy commands are not loaded by default in Python. This is why we first import

the NumPy library in line 1. All NumPy commands are then preceded by the np

prefix, e.g., see the definition of the B-field in line 4. This naming convention is com-

monly followed in NumPy programs. In later examples, even though this command

may not be always explicitly shown, you may rest assured that it is always there.

• The B-vector could have been defined more simply as B = [-0.5, 1.2, 0.5]. In

Python this creates a list object, which is quite different from a NumPy ndarray. The

program would still run without error, as NumPy would convert internally this list to

an ndarray.

• Even though this is not shown in the program, it is noteworthy that Python lists and

arrays are indexed starting at zero. To access the first element in the vector, we

would type B[0], for the second element, we would type B[1], and so on. We can

also access the last element as B[-1], the second to last as B[-2], etc. Note the use

of brackets (rather than parentheses).

• In line 8, the norm command is defined inside the linear algebra (linalg) package of

NumPy, so it is accessed by typing np.linalg.norm.

• The output of the script, which is generated by the two print commands, is

B = [-0.5 1.2 0.5]

||B|| = 1.39283882772

Without these commands, nothing would appear on the screen. In a Matlab program,

the absence of a semicolon after a variable definition leads to the variable being dis-

played in the command window. However, as you can see from this example, semi-

colons are not used in Python to terminate commands.

Example 1.6 Dot product using NumPy.

Suppose we want to calculate the inner product of two vectors, a = (1, 2, 3, 4, 5) and

b = (6, 7, 8, 9, 10). This can be achieved using the NumPy dot command. By running

the following program, the reader can verify that c = a · b = 130.

a = np.array([1, 2, 3, 4, 5])

b = np.array([6, 7, 8, 9, 10])

c = np.dot(a,b)

NumPy also provides a cross command, which can be invoked to evaluate cross

products of vectors in R2 or R3.

Example 1.7 Element-wise operations on vectors in Python.

When programming the FEM, it is often required to operate element-wise on high-

dimensional vectors. To this end, we may use various built-in NumPy functions, such

as sin and sqrt (i.e., square root). For instance, suppose we have stored the x and

y-components of a 2-D B-field at some points in our device in two vectors. Here is a

Python program that calculates the magnitude of the B-field at each point. Arbitrary

values have been set for the B-field at three points.
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Bx = np.array([ 1, 0, 3])

By = np.array([-1, 2, 4])

normB = np.sqrt(np.square(Bx) + np.square(By))

print(’||B|| =’,normB)

The program returns

||B|| = [ 1.41421356 2. 5. ]

The reader may readily verify that the mathematical operations were performed ele-

ment-wise.

1.2.4 Triple Products

The following triple-product identities are useful for manipulating vector fields.

The scalar triple product involves the dot and cross products of three vectors, in the

sense #»a · ( #»

b × #»c ). Using elementary geometry, we can show that

#»a · ( #»

b × #»c ) = ±(volume of parallelepiped) , (1.40)

where the parallelepiped is the one defined by the three vectors as 3 (of its 12) edges, as

shown in Figure 1.6. The parentheses may be dropped since there can be no ambiguity

in the order of these operations, and we could write instead #»a · #»

b × #»c . (We cannot

dot-multiply #»a and
#»

b first because this yields a scalar that cannot be subsequently

cross-multiplied with #»c .) It is easy to show that the scalar triple product is unaffected

by circular permutation of its arguments:

#»a · ( #»

b × #»c ) =
#»

b · ( #»c × #»a ) = #»c · ( #»a × #»

b ) . (1.41)

This is left as an exercise for the reader.

The vector triple product is given by #»a × (
#»

b × #»c ). It can be shown that

#»a × (
#»

b × #»c ) = ( #»a · #»c )
#»

b − ( #»a · #»

b ) #»c . (1.42)

First, we evaluate
#»

b × #»c , which is a vector perpendicular to both
#»

b and #»c . Let us

#»

b × #»c

θ

#»a

#»

b

#»c

The parallelepiped volume is base

times height. The gray-shaded base

area is ‖ #»b × #»c ‖. The height is

‖ #»a ‖ · | cos θ |, where θ is the angle

between #»a and (
#»

b × #»c ), which could

be greater than 90° (for instance, this

would happen if
#»

b and #»c were

reversed).

Figure 1.6 The scalar triple product as the volume of a parallelepiped.
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denote this normal direction by n̂. Then, we cross multiply by #»a , which returns a vector

that is perpendicular to n̂, i.e., it is on the plane defined by
#»

b and #»c . Hence, the formula

makes sense: it expresses the triple product as a linear combination of
#»

b and #»c . A proof

is provided in Example 1.10.

Example 1.8 Scalar triple product as a determinant.

Let #»a = (a1, a2, a3),
#»

b = (b1, b2, b3), #»c = (c1, c2, c3). Show that

#»a · ( #»

b × #»c ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (1.43)

Proof Using the expansion of Equation (1.32b), we have

#»a · ( #»

b × #»c ) = (a1 î + a2 ĵ + a3 k̂)

· [(b2c3 − b3c2) î + (b3c1 − b1c3) ĵ + (b1c2 − b2c1) k̂] (1.44a)

= a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1) . (1.44b)

By inspection, we can confirm that this is the cofactor expansion of the determinant

along its first row. �

Example 1.9 Mechanical power from rotational motion.

Suppose a force
#»

F acts on a mass that is displaced by #»r from the origin. The mass

moves with velocity #»v = d #»r /dt. Find an expression for the mechanical power under

rotational motion.

Solution

From physics, we know that the mechanical power exerted by the force is the dot product

between force and velocity:

Pm =
dWm

dt
=

#»

F · #»v . (1.45)

In other words, within a small time interval δt, where the body moves by δ #»r = #»v δt, the

force has done work equal to

δWm =
#»

F · δ #»r . (1.46)

Now suppose that the mass is rotating around an axis that passes through the origin

so that its speed is given by

#»v = #»ω × #»r , (1.47)

where #»ω = ω â (rad/s) is an angular velocity vector. Here, â is a unit vector that defines

the axis of rotation. Hence, the mechanical power can be expressed as the scalar triple

product

Pm =
#»

F · ( #»ω × #»r ) . (1.48)
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Invoking the identity (1.41), we have

Pm =
#»ω · ( #»r × #»

F ) , (1.49)

or

Pm =
#»ω · −→τ , (1.50)

where #»τ = #»r × #»

F is the torque.

Example 1.10 Vector triple-product expansion.

Prove the identity (1.42).

Proof We have

#»a × (
#»

b × #»c ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

î ĵ k̂

a1 a2 a3

(b2c3 − b3c2) (b3c1 − b1c3) (b1c2 − b2c1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (1.51)

Let us work with the î-component of the product:

a2(b1c2 − b2c1) − a3(b3c1 − b1c3) = (a2c2 + a3c3)b1 − (a2b2 + a3b3)c1 . (1.52)

To bring it to the required form, we add and subtract a1b1c1, which is incorporated into

the existing b1 and c1 terms:

a2(b1c2 − b2c1) − a3(b3c1 − b1c3) = (a1c1 + a2c2 + a3c3)b1

− (a1b1 + a2b2 + a3b3)c1 (1.53a)

= ( #»a · #»c )b1 − ( #»a · #»

b )c1 . (1.53b)

Manipulating in a similar manner the other two components, and then combining all

three terms to form a vector, yields the desired result. �

1.3 Scalar and Vector Fields

We use the concept of a field to describe quantities throughout space, e.g., the effects

of electric or magnetic sources. A scalar field is a function that assigns a real number

value at each point of a domainΩ, where this could be the whole space or only a subset.

On the other hand, a vector field is a function that assigns a vector at each point in Ω.

Primarily, we are interested in fields in 3-D space that describe physical quantities of

interest, such as magnetic fields.

In a more formal manner, we denote a scalar field as F : Ω ⊆ R3 → R, whereas

a vector field is denoted as
#»

F : Ω ⊆ R3 → R3. If r is a vector from the origin to

an arbitrary point in Ω, we shall write F(r) or
#»

F (r) to obtain the scalar or vector field

function value, respectively.

The vector r is still a vector in 3-D space, so we could have denoted it by #»r , and the

vector field could be denoted as
#»

F ( #»r ). Invoking our poetic license, we will often choose
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to drop the arrow from #»r so as to avoid cumbersome notation, especially when deal-

ing with function arguments or differentials, such as the differential displacement dr.

However, arrows will always be used on top of electromagnetic vector fields or other

physical quantities, such as the flux density
#»

B or the force
#»

F .

Example 1.11 Magnetic field of infinitely long, straight wire (part a: external field).

Determine the magnetic field that is created by an infinitely long, straight, and thin

wire in free space that carries a constant current i, measured in A (amperes). Of course,

infinitely long wires do not exist in practice, but they are useful from a pedagogical

perspective. (This could also be a reasonable approximation of the field that exists very

close to a wire, even if the wire is curved.)

Solution

From physics, recall that the magnetic flux density in this case is given by

B(r) =
µ0i

2πr
, (1.54)

where the physical constant

µ0 = 4π10−7 H/m (henries13 per meter) (1.55)

is the magnetic permeability of free space, and r is the distance (in m) from an ar-

bitrary point of interest to the wire. In SI units, the B-field is measured in T (teslas).

Another commonly encountered unit for the B-field is the gauss: 1 T = 10,000 gauss.

The above formula yields the magnitude of the vector field
#»

B : R3 → R3 at any point

in space (except on the wire itself) as a function of r. Clearly, to complete the definition

of the vector field, we also need to define the direction of the vectors, which we will do

descriptively (rather than algebraically): Each vector is perpendicular to both the wire

and to the shortest line segment between the point of interest and the wire (whose length

equals the distance r); its direction is determined by the right-hand rule.

Example 1.12 Vector field visualization using Python.

We can visualize vector fields using the built-in plotting capabilities of Python. For

instance, let us consider the electric field in free space created by two point charges

positioned at r1 = (−0.5, 0, 0) and r2 = (0.5, 0, 0), respectively, in m. The charge on the

left is Q1 = +2 C (coulomb14), and the charge on the right is Q2 = −1 C.

The total electric field at an arbitrary point in space (displaced by r from the origin)

is obtained by superposition:

#»

E(r) =
1

4πǫ0

(

Q1
r − r1

‖r − r1‖3
+ Q2

r − r2

‖r − r2‖3

)

, (1.56)

where the physical constant

ǫ0 ≈ 8.854 · 10−12 F/m (farads per meter) (1.57)

is the permittivity of free space. The E-field is measured in V/m (volts15 per meter).
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Below is a Python program that plots the vector field on the plane z = 0, where all

vectors are horizontal (i.e., Ez = 0). Its output is shown in Figure 1.7, where two kinds

of plots are illustrated, namely, a quiver plot and a streamline plot. The quiver plot

consists of vectors at discrete user-specified points throughout the domain of interest.

The streamline plot function uses the numerical data to produce a set of smooth lines,

which have the property of being always tangent to the field. The streamlines originate

from points that are selected internally by the plotting algorithm.

−2 −1 0 1 2
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 1.7 The electric field of two point charges. This figure was created by a superposition of

a quiver and a streamline plot.

1 import numpy as np

import matplotlib.pyplot as plt

# Problem parameters

5 Q1 = 2

Q2 = -1

r1 = np.array([-0.5, 0, 0])

r2 = np.array([ 0.5, 0, 0])

z = 0 # we plot the projection of the E-field on this plane

10

# Calculate the electric field

nx = ny = 30

xv = np.linspace(-2, 2, nx)

yv = np.linspace(-1.5, 1.5, ny)

15 Ex = np.zeros((yv.size,xv.size))

Ey = np.zeros((yv.size,xv.size))

for i in range(xv.size):

x = xv[i]

20 for j in range(yv.size):

y = yv[j]

r = np.array([x, y, z])

d1 = np.linalg.norm(r-r1)
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d2 = np.linalg.norm(r-r2)

25

# We will not plot the field too close to the charges

# because the quiver plot will be dominated by these

# arrows. We define a minimum distance to exclude points

# within a sphere of radius dmin around the charges.

30 dmin = 0.15

if d1 < dmin or d2 < dmin:

E1 = [0, 0, 0]

E2 = [0, 0, 0]

else:

35 E1 = Q1*(r-r1)/d1**3

E2 = Q2*(r-r2)/d2**3

E = E1 + E2

Ex[j,i] = E[0]

Ey[j,i] = E[1]

40

# Make the grid

xx, yy = np.meshgrid(xv, yv)

# Plot

45 fig = plt.figure()

ax = fig.gca()

ax.streamplot(xx, yy, Ex, Ey, color=’0.75’)

ax.quiver(xx, yy, Ex, Ey, width=.005, pivot = ’mid’)

plt.axis(’equal’)

50 plt.show()

Let us dissect the script:

• NumPy is imported in line 1. Matplotlib Pyplot, which is a Matlab-like plotting li-

brary, is imported in line 2.

• Lines 5–9 contain self-explanatory problem-specific parameter definitions.

• Lines 12–16 contain array definitions. In Python, the chained assignment of line 12

is permitted, and saves us a bit of time defining the size of the arrays xv and yv. The

arrays contain evenly spaced points created by a NumPy linspace command. (Here,

the streamline plot function requires the grid points to be evenly spaced.) Note that it

would have been incorrect to define Ey = Ex in line 16. In Python, this would create

a single object in memory (at line 15), which both parameters would refer to, and

would lead to a bug in the code.

• The double for loop in lines 18–39 calculates and stores a normalized electric field

(we are ignoring the 4πǫ0 term since it does not affect this plot). In Python, the

range(x) command creates a list of integers starting at zero and ending at x-1.

Note the absence of end keywords to delimit the for loops. We need, however, to

ensure proper indentation (typically, each level is indented by 4 spaces), otherwise

the Python interpreter will complain.

• It is important to note the inverse order of indexing the electric field arrays: they are

first indexed by y and then by x. This is how they were defined in lines 15 and 16

as well. This syntax is due to how the meshgrid function (line 42) works by default

(similar to Matlab, although NumPy allows one to change this back to “normal” with

an optional argument).
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• The magnitude of
#»

E close to the charges grows very fast and would dominate the plot

(due to a 1/d2 term, d denoting distance); hence, we decide not to plot vectors in the

vicinity of charges (see lines 26–33).

• Finally, plotting takes place in lines 44–50. First, a figure is created, and then a handle

to its axes is obtained. The quiver and streamplot functions have similar syntax.

The xy axes are drawn with equal scaling in line 49. The show command displays

the plot.

For more information on the various differences between NumPy and Matlab, the

reader is advised to consult online resources on this topic.

Example 1.13 Scalar field visualization using Python.

Let us plot contours (also called isolines or level sets) of the electrostatic potential based

on the charges in the previous example. The potential is a scalar field measured in V,

and is given by

ϕ(r) =
1

4πǫ0

(

Q1
1

‖r − r1‖
+ Q2

1

‖r − r2‖

)

. (1.58)

The following Python code snippet illustrates the use of the built-in Matplotlib Pyplot

contour function. The result is shown in Figure 1.8.

1 # Define contour values

V = [-12, -6, -2, -1, -0.5, -0.25, 0, \

0.25, 0.5, 0.75, 1, 1.5, 2, 6, 12]

5 # Plot

fig = plt.figure()

−2 −1 0 1 2
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.7
5

1.0
0

1.5
0

2.0
0

6.0
0

12
.0
0

0.75

1.00

1.50

0.
50

0.
50

0.2
5

0.25

0.00

0.00

-0.25-0.50-1.00-2.00-6.00

Figure 1.8 The electric potential of two point charges, generated by a contour plot. The potential

values are normalized; the true potential (in V) is obtained after division by 4πǫ0.
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ax = fig.gca()

CS = ax.contour(xx, yy, Phi, V, colors=’k’)

plt.axis(’equal’)

10 plt.clabel(CS, inline=1, fontsize=12, fmt = ’%.2f’, manual=True)

plt.show()

The code for computing the potential is not shown because it is similar to the previous

example, and is performed over a regularly spaced grid. In line 2, we are defining which

contour lines to plot. Note that the contours are not evenly distributed in this case. The

contours look smooth because a relatively fine grid has been used. Also observe that

negative potential values correspond to the dashed lines.

1.4 Integrals of Scalar and Vector Fields

We present several types of scalar and vector field integrals that we will encounter in

this text, which are fundamental in understanding the properties of the magnetic field.

1.4.1 Line Integrals

The line integral of a scalar field F : Ω→ R is defined over a piecewise smooth curve

C ⊂ Ω (i.e., some curve within the space where the field exists) as
∫

C

F(r) ds , (1.59)

where ds represents a differential (infinitesimal) arc length along the curve. Note that

the result does not depend on the direction of travel. For example, if ρ(r) represents the

density per unit length (kg/m) of a thin wire (which is not necessarily constant), its mass

can be found as
∫

C
ρ(r) ds.

On the other hand, the line integral of a vector field
#»

F : Ω → R3 is defined over a

piecewise smooth curve C ⊂ Ω as
∫

C

#»

F (r) · dr =

∫

C

#»

F (r) · t̂ dr , (1.60)

where dr = dr t̂ is a differential displacement vector that points in the direction that

we traverse the path, t̂ being a unit tangent vector. Note that the line integral is based

on the dot product, so it accounts only for the component of
#»

F that is tangent to the

integration path. In a sense, we are measuring the degree to which
#»

F is aligned with

the integration path. As a result, the answer is a scalar. Also, the answer depends on

the direction that we travel on the curve C; the result changes sign if we move in the

opposite direction (since dr will become −dr). Examples from physics are the work of

a force, W =
∫

C

#»

F (r) · dr, and the electric field potential, ϕ = −
∫

C

#»

E(r) · dr.

A special case is when the path C is closed, that is, when it starts and ends at the same

point. We call this kind of line integral a circulation of the vector field, and we denote
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it as
∮

C

#»

F (r) · dr . (1.61)

Furthermore, if this happens to be zero for any path, we call the field conservative.

In general, to evaluate a line integral, we need to define a bijective parametrization of

the curve, r : [a, b] → C, such that r(a) and r(b) are the two endpoints of C. The line

integral of a scalar field is then

∫

C

F(r) ds =

∫ b

a

F(r(t)) ‖r′(t)‖ dt , (1.62)

whereas the line integral of a vector field is

∫

C

#»

F (r) · dr =

∫ b

a

#»

F (r(t)) · r′(t) dt . (1.63)

Without getting too technical, we remind the reader that the line integral can be inter-

preted as a Riemann16 sum, i.e., by splitting the curve into a finite number of segments,

and then letting their width approach zero. The displacement between two adjacent

points on the curve is

δr(t) = r(t + δt) − r(t) ≈ r′(t) δt , (1.64)

where we used a first-order approximation based on a Taylor17 expansion. This also

implies that the derivative r′(t) should be a vector that is tangent to the curve. The incre-

mental arc length is

δs = ‖r′(t)‖ δt (for δt > 0) . (1.65)

At the limit, the deltas become differentials (e.g., δs becomes ds), and the Riemann

sums become the integrals (1.62) and (1.63).

An alternative notation for the line integral of a vector field, which is obtained by

taking the dot product between
#»

F = (Fx, Fy, Fz) and dr = (dx, dy, dz), is

∫

C

#»

F (r) · dr =

∫

C

Fx dx + Fy dy + Fz dz . (1.66)

The reader is cautioned that this should not be evaluated as three separate integrals.

Rather, we should express the differential lengths based on the parametrization of the

curve; for instance, we would substitute dx = x′(t) dt, etc.

If the curve is not smooth, that is, if there is a point, say r(c), where the curve changes

direction abruptly, then the tangent directions right before and right after r(c) will be dif-

ferent. In this case, the line integral should be evaluated in two parts, as
∫ b

a
=

∫ c

a
+

∫ b

c
.

This process may have to be repeated if the curve has a finite number of such disconti-

nuities.
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Example 1.14 Line integral calculation.

Consider the vector field
#»

F (x, y) = − sgn(y)F î , (1.67)

where F > 0 is a constant. The field reverses direction across the x-axis. This situation

is illustrated in Figure 1.9. Calculate the line integral of
#»

F along the semicircular path C

starting at −90° and ending at 90° in the counterclockwise direction.

x

y

R

C

#»

F

#»

F

dr

Figure 1.9 The geometry for the line integral of Example 1.14.

Solution

Note that
#»

F (r) · dr ≥ 0 throughout the path C, so we expect the answer to be positive.

Let R be the radius of the semicircle. The integration path parametrization is

r(t) = (x(t), y(t)) = (R cos t,R sin t) , (1.68)

with parameter t ∈ [−π/2, π/2] representing the angle with respect to the x-axis. To

integrate, we need the derivative

r′(t) = (−R sin t,R cos t) . (1.69)

Hence
∫

C

#»

F (r) · dr =

∫ π/2

−π/2
[− sgn (y(t))F î ] · (−R sin t î + R cos t ĵ ) dt (1.70a)

= −FR

∫ 0

−π/2
sin t dt + FR

∫ π/2

0

sin t dt (1.70b)

= 2FR . (1.70c)
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1.4.2 Surface Integrals

The surface integral of a scalar field F : Ω → R is defined on a surface S ⊂ Ω as the

double integral
"

S

F(r) da . (1.71)

To evaluate such an integral for a given surface, we need to parametrize the surface

similarly to what we did for the line integral. A surface in R3 is parametrized with two

variables; let us call them u and v. This means that we define a function r : U × V → S

(so that u ∈ U and v ∈ V), and we write r(u, v) for the function value at each point on

the surface. The partial derivatives ∂r/∂u and ∂r/∂v yield vectors that are tangent to the

surface at each point, pointing in the direction of increasing u and v, respectively.

We can approximate the surface integral as a Riemann sum of contributions from

small surface elements:
∑

k

F(rk) δak , (1.72)

where k is an element index, F(rk) is the vector field value inside the element (since

the elements are small, it can be assumed that F has approximately the same value

within each element), and δak is the area of element k. Such a surface parametrization

is depicted in Figure 1.10. Therefore, each surface element k resembles a parallelogram

with sides

sk =
∂r

∂u

∣
∣
∣
∣
∣
r=rk

δuk and tk =
∂r

∂v

∣
∣
∣
∣
∣
r=rk

δvk , (1.73)

where the partial derivatives are evaluated inside the element k (e.g., rk could be the

parallelogram center). In general, elements do not have to be equal, so we kept the

subscript k in δuk and δvk. The element area is found by taking a cross product:

δak = ‖sk × tk‖ =
∥
∥
∥
∥
∥

∂r

∂u
× ∂r

∂v

∥
∥
∥
∥
∥
δuk δvk , (1.74)

∂S ∂S

n̂
#»

F

Figure 1.10 The integral of a vector field over the surface S is approximated by a Riemann sum

of dot products.
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assuming δuk > 0 and δvk > 0. Hence, the surface integral can be evaluated by
"

S

F(r) da =

"

U×V

F(r(u, v))

∥
∥
∥
∥
∥

∂r

∂u
× ∂r

∂v

∥
∥
∥
∥
∥

du dv . (1.75)

If the surface is piecewise smooth, e.g., a cube, we break the integral into pieces, one

for each smooth part.

The surface integral of a vector field
#»

F : Ω→ R3 is defined on a surface S ⊂ Ω as

the double integral
"

S

#»

F (r) · da =

"

S

#»

F (r) · n̂ da , (1.76)

where da = da n̂ is a differential area vector whose direction is determined by n̂, that is,

a normal vector of unit length at each point r on the surface. (We could have denoted

this as a function n̂(r), but this would quickly become cumbersome.) The direction of n̂

is obtained from the assumed orientation of the surface.

This kind of surface integral can also be visualized as a Riemann sum of dot product-

based contributions from small elements on the surface, as shown in Figure 1.10. Taking

the dot product ensures that we account only for the component of
#»

F that is normal to

the surface. Therefore, this kind of vector field integral is essentially a surface integral

of a scalar field! If the vector field has a physical meaning of flow density, which is often

the case, the surface integral may be interpreted as the aggregate vector field flow or flux

through the surface S . Examples from physics are the magnetic flux, Φ =
!

S

#»

B(r) · da,

and the current, i =
!

S

#»

J (r) · da.

The surface S shown in Figure 1.10 has a boundary that is denoted by ∂S . However,

a surface can be closed, that is, it may not have a boundary itself, but it could be the

boundary of a region in space (e.g., the surface that bounds a sphere). Then we use a

special integral sign:
	

S

#»

F (r) · da . (1.77)

Using a parametrization of the surface, the surface integral can be evaluated using

"

S

#»

F (r) · da =

"

U×V

#»

F (r(u, v)) ·
(

∂r

∂u
× ∂r

∂v

)

du dv . (1.78)

The partial derivatives yield vectors that are tangent to the surface at each point. There-

fore, their cross product will be normal to the surface. Hence, to avoid the appearance of

a minus sign, the parametrization needs to be defined so that this normal vector points

in the desired direction.

Although the previous case is typically what one refers to as a “surface integral of a

vector field,” it is also possible to define a different kind of such an integral. In particular,

we can take the surface integral

#»

G =

"

S

#»

F (r) da . (1.79)

This should be interpreted as the component-wise integration of three scalar fields,
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which results in the vector
#»

G. For instance, the x-component of
#»

G is

Gx =

"

S

Fx(r) da . (1.80)

In any case, the type of integral that we are dealing with should be apparent from the

context.

Example 1.15 Surface integral calculation.

Calculate a surface integral on a half-sphere of radius R (i.e., without integrating over

its base), as shown in Figure 1.11. The surface is oriented such that the normal vector

points outwards.

Solution

This surface may be described by the parametrization

r(θ, φ) = R sin θ cos φ î + R sin θ sin φ ĵ + R cos θ k̂ = R r̂ , (1.81)

where θ ∈ U = [0, π/2] and φ ∈ V = (−π, π] are the polar and azimuthal angles of a

spherical coordinate system, respectively, and r̂ is the unit radial vector. In this example,

the unit normal vector of the integration surface is n̂ = n̂(θ, φ) = r̂. Hence

∂r

∂θ
= R cos θ cos φ î + R cos θ sin φ ĵ − R sin θ k̂ = R θ̂ (1.82)

and

∂r

∂φ
= −R sin θ sin φ î + R sin θ cos φ ĵ = R sin θ φ̂ . (1.83)

The tangential property may be readily verified since ∂r/∂θ · n̂ = ∂r/∂φ · n̂ = 0. Using

y

x

z

R

r̂

θ̂

φ̂

θ

φ

Figure 1.11 The geometry of a half-sphere displaying a spherical coordinate system.
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a bit of elementary trigonometry, we obtain

∂r

∂θ
× ∂r

∂φ
= R2(sin2 θ cos φ î + sin2 θ sin φ ĵ + sin θ cos θ k̂) = R2 sin θ n̂ . (1.84)

Once the surface parametrization is complete, we can proceed with the evaluation

of the integral. Suppose that
#»

F (r) = n̂. We would then expect the integral to yield the

surface area of the half-sphere (i.e., 2πR2). Let us verify this:

"

U×V

#»

F (r(θ, φ)) ·
(

∂r

∂θ
× ∂r

∂φ

)

dθ dφ =

"

U×V

n̂ · (R2 sin θ n̂) dθ dφ

=

∫ π

φ=−π

∫ π/2

θ=0

R2 sin θ dθ dφ = 2πR2 . (1.85)

As a second example, consider the case where
#»

F = F k̂, F > 0. In this case, it is

more convenient to work with the expansion in Cartesian coordinates:
"

U×V

#»

F (r(θ, φ)) ·
(

∂r

∂θ
× ∂r

∂φ

)

dθ dφ (1.86a)

=

"

U×V

F k̂ · R2(sin2 θ cos φ î + sin2 θ sin φ ĵ + sin θ cos θ k̂) dθ dφ

(1.86b)

=

∫ π

φ=−π

∫ π/2

θ=0

FR2 sin θ cos θ dθ dφ (1.86c)

= πFR2

∫ π/2

0

sin 2θ dθ (1.86d)

= πFR2 . (1.86e)

As an interesting observation, consider what would have happened if we had extended

the integration to the base of the half-sphere, thus forming a closed surface. In this case,

we would have obtained an additional term equal to

(area of base)(−F) = −πR2F , (1.87)

where the minus sign appears since the vector field Fk̂ is entering the half-sphere from

below, thereby opposing the outwards-pointing normal vector. Hence, the integral over

the closed surface would have been
�

S

#»

F · da = 0. This is not unexpected since the

considered vector field has zero divergence, and we could have applied Gauss’ law.

More on this later in §1.6.

1.4.3 Volume Integrals

The volume integral of a scalar field F : Ω → R is defined on a volume V ⊂ Ω as the

triple integral
$

V

F(r) dv , (1.88)
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where dv represents the differential volume. For instance, in Cartesian coordinates, dv =

dx dy dz. In physics, this type of integral is often used when F represents some kind of

density function, so integrating over a volume yields the total value of the quantity of

interest, such as mass or energy. Again, the volume integral may be approximated by a

Riemann sum over small volumes that cover the entire space V .

The volume integral of a vector field
#»

F : Ω → R
3 is obtained by performing

component-wise volume integration on
#»

F . It is denoted by

#»

G =

$

V

#»

F (r) dv . (1.89)

For instance, the x-component of
#»

G is

Gx =

$

V

Fx(r) dv , (1.90)

so it is a volume integral of the scalar field Fx.

1.5 Differential Operators on Scalar and Vector Fields

In this section, we recall the various differential operators that we will encounter in this

text while manipulating Maxwell’s equations. Our approach here will be conceptual

rather than numerical.

These operators will be associated with formulas that involve partial derivatives. For

these to have meaning, it is required that the fields are differentiable (smooth) with

respect to position. This will typically be the case within the volume of a single ma-

terial whose properties change smoothly with position. However, discontinuities will

be present across material boundaries. Since electric machines are constructed using

materials of different properties, we need to be mindful of this fact.

1.5.1 Gradient

The gradient of a scalar field F : Ω ⊂ R3 → R is defined as

∇F(r) =
∂F

∂x
î +

∂F

∂y
ĵ +

∂F

∂z
k̂ , (1.91)

where the partial derivatives (assuming they exist) are evaluated at r = (x, y, z). If the

scalar field is only defined in two dimensions, then we drop the third term in the above

equation. For example, the electric field is defined as the (negative) gradient of the

potential,
#»

E = −∇ϕ; see Examples 1.12 and 1.13.

The symbol ∇ is called the nabla or del. It plays the role of an operator, and can be

defined as

∇ = ∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂ . (1.92)

The nabla operator is also used in the divergence and the curl, which will be introduced

subsequently. Note that the gradient operates on a scalar function and returns a vector.
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The expression (1.91) is valid only in Cartesian coordinates. In other coordinate systems

(e.g., spherical or cylindrical) the expressions are different; these are not listed here, but

they can be found in calculus texts or online.

For an interpretation of the gradient, consider two points, P1, P2 ∈ Ω, displaced by r1

and r2 from the origin O, respectively, as shown in Figure 1.12. Let us fix P1, allowing

P2 to move arbitrarily close to P1, and denote by δr = r2−r1 their relative displacement.

Suppose that δr = δx î + δy ĵ + δz k̂. Then, using a Taylor expansion of F at r1, the field

changes by

δF = F(r2) − F(r1) ≈ ∂F

∂x
δx +

∂F

∂y
δy +

∂F

∂z
δz , (1.93)

as a first-order approximation, with partial derivatives evaluated at r1; hence,

δF ≈ ∇F(r1) · δr . (1.94)

In the special case where P1 is a local maximum or minimum point of F, the gradient

is zero (i.e., all partial derivatives are zero). Otherwise, a nontrivial-level curve through

P1 exists (as shown in Figure 1.12). Suppose that both points are on this curve, F(r1) =

F(r2) = C, so that δF = 0. As P2 comes arbitrarily close to P1, the displacement δr

becomes tangent to the curve C. If t̂ is a unit tangent vector at r1, then r2 = r1 + h t̂.

So, we have δF = 0 = ∇F(r1) · h t̂ + O(h2), as h → 0. Therefore, we can argue that the

gradient has to be normal to the level set at P1 since a small (but nonzero) step of length

h in the tangent direction would lead to ∇F(r1) · t̂ ≈ 0. Figures 1.7 and 1.8 on pages 17

and 19, respectively, provide an illustration of this property using the electrostatic field

as an example: the E-field is normal to the equipotential surfaces.

Furthermore, this line of thinking can lead us to the conclusion that the gradient

points at the direction where the field increases the most. To see this, note that the

dot product in Equation (1.94), δF = ‖∇F‖ ‖δr‖ cos θ, becomes maximum when the

angle θ between the displacement and the gradient is zero (maintaining a displacement

of fixed length). In Figure 1.7, the electric field points towards the direction of maximum

potential decrease due to the presence of the minus sign in its definition.

In general, the gradient is related to the directional derivative along the direction v,

level sets: C C + δF

P1

P2

O

∇F(r1)
r1

r2 δr
θ

Figure 1.12 Geometrical interpretation of the gradient in two dimensions.
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where it is customary to use a unit vector v (i.e., ‖v‖ = 1). This is defined as

∇Fv(r) =
d

dh
F(r + hv)

∣
∣
∣
∣
∣
h=0

(1.95a)

= lim
h→0

F(r + hv) − F(r)

h
(1.95b)

= lim
h→0

∇F(r) · (hv) + (high-order terms O(h2))

h
(1.95c)

= ∇F(r) · v . (1.95d)

Example 1.16 Gradient calculation.

Calculate the gradient of the scalar field F : R2 → R given by

F(x, y) = x2 + y2 . (1.96)

Solution

The level sets of F are circles centered at the origin. The gradient of F is

∇F(x, y) =
∂F

∂x
î +

∂F

∂y
ĵ = 2x î + 2y ĵ . (1.97)

This vector points radially away from the origin, so it is perpendicular to the level sets,

as expected. Note that ∇F = 0⇒ x = y = 0. The gradient is zero at the origin, where F

obtains its minimum value.

Example 1.17 Conservative vector fields.

Suppose that a vector field
#»

F : Ω→ R3 is the gradient of a scalar field ϕ : Ω→ R, that

is,
#»

F (r) = ∇ϕ(r). For any (piecewise) smooth path C within Ω, which is parametrized

by t ∈ [a, b] so that r(t) = (x(t), y(t), z(t)), we have

∫

C

#»

F (r) · dr =

∫ b

a

∇ϕ(r(t)) · r′(t) dt (1.98a)

=

∫ b

a

(

∂ϕ

∂x

dx

dt
+
∂ϕ

∂y

dy

dt
+
∂ϕ

∂z

dz

dt

)

dt (1.98b)

=

∫ b

a

dϕ(r(t))

dt
dt (1.98c)

= ϕ(r(b)) − ϕ(r(a)) , (1.98d)

where we used the chain rule for the derivative dϕ/dt, and the fundamental theorem of

calculus in the last step. This means that the line integral does not depend on the path

but only on its two endpoints. The integral, in other words, is path independent. Also,

if the two endpoints coincide so that the path is closed, the integral is zero. It can be

shown that the converse is also true, i.e., if
#»

F is path independent, then it is the gradient

of some scalar field. This type of vector field is called conservative. For example, the

electrostatic field is conservative since
#»

E = −∇ϕ (a minus sign is added by convention).
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1.5.2 Divergence

Often a vector field
#»

F : Ω → R3 has a physical meaning of flow density (i.e., flow

per m2), in which case we may be interested in calculating the total flow out of a given

volume V ∈ Ω surrounding a point of interest P. This would be the case if there exist

sources or sinks of the flow; for instance, this happens around point charges as shown

in Figure 1.7 on page 17.

Hence, we define a scalar quantity called the divergence as the ratio

∇ · #»

F (r) = lim
|V |→0

total outwards flow

|V | , (1.99)

where |V | =
#

V
dv denotes the volume size. Therefore, the divergence has units of flow

per m3. Examples from physics are the divergence of the electric displacement field,

∇ · #»

D = ρ, and the divergence of the magnetic field, ∇ · #»

B = 0. A vector field that

has zero divergence everywhere, like the magnetic field, is called incompressible or

solenoidal.

In Cartesian coordinates, when the vector field
#»

F = (Fx, Fy, Fz) is differentiable, the

divergence is given by the formula

∇ · #»

F (r) =
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
, (1.100)

where the partial derivatives are evaluated at r = (x, y, z), that is, the displacement of P

from the origin. For a 2-D field, we drop the last term. (In spherical or cylindrical co-

ordinates, different formulas apply.) Note how the divergence can be obtained formally

by taking the dot product between the nabla operator in Equation (1.92) and the vector

field.

Proof Let us illustrate this concept using a small cube surrounding a center point P =

(x′, y′, z′) = (a, a, a)/2, as shown in Figure 1.13. For computational convenience, the

P

x

z

y

a

a

a

Figure 1.13 Illustration of the divergence as an outwards flow from a cube surrounding a point P

at its center.


