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PREFACE

Astronomy compels the soul to look upwards
and leads us from this world to another.

Plato (427–347 BCE), The Republic

The wonders of the night sky, the Moon and the
Sun have fascinated mankind for many millennia.
We now know that objects akin to the Earth that
we walk on are to be found in the heavens. What
are these bodies like? What shaped them? How are
they similar to our Earth, and how do they differ?
And are any of them inhabited by living beings?

This text is written to provide college students
majoring in the sciences with an overview of cur-
rent knowledge in these areas, and the context
and background to seek out and understand more
detailed treatments of particular issues. We discuss
what has been learned and some of the unanswered
questions that remain at the forefront of planetary
sciences and astrobiology research today. Topics
covered include:

• the orbital, rotational and bulk properties of
planets, moons and smaller bodies

• gravitational interactions, tides and resonances
between bodies

• thermodynamics and other basic physics for
planetary sciences

• properties of stars and formation of elements

• energy transport
• vertical structure, chemistry, dynamics and

escape of planetary atmospheres
• planetary surfaces and interiors
• magnetospheres
• giant planets
• terrestrial planets
• moons
• meteorites, asteroids and comets
• planetary rings
• the new and rapidly blossoming field of extra-

solar planet studies

We then combine this knowledge of current Solar
System and extrasolar planet properties and pro-
cesses with astrophysical data and models of ongo-
ing star and planet formation to develop models for
the origin of planetary systems. Planetary science
is a key component in the new discipline of astro-
biology, and a basic understanding of life is use-
ful to planetary scientists. We therefore conclude
with:

• fundamental properties of living organisms
• the relationship that life has to the planet(s) on

which it forms and evolves

Parts of this book are based on the recently
published second edition of our graduate textbook

xiii



Preface xiv

Planetary Sciences. However, we have substan-
tially modified the presentation to be more suitable
for undergraduate students.

One year of calculus is required to understand all
of the equations herein. Basic high school classes
in physics; chemistry; and, for the final chapter of
this book, biology are assumed. A college-level
class designed for majors in at least one of these
sciences (or in geology/geophysics or meteorol-
ogy) is also expected. A small number of sections
and subsections require additional background or
are especially difficult; these sections are denoted
with an asterisk following the section number.

The learning of concepts in the physical sciences
is greatly enhanced when students get their ‘hands
dirty’ by solving problems. Working through such
exercises enables students to obtain a deeper under-
standing of Solar System properties. Thus, we have
included an extensive collection of exercises at the
end of each chapter in this text. We denote prob-
lems with a higher degree of conceptual difficulty
with an asterisk.

We have used black-and-white illlustrations
throughout the book, augmented with a section
of color plates that repeats figures for which color
is most essential to show the appearance of an
object or to convey other important information.
Color versions of many of the illustrations within
the book are also available on the book’s webpage
at www.cambridge.org/lissauer. This website also
includes updates, answers to selected problems (for
instructors only) and links to various Solar System
information sites.

Various symbols are commonly used to repre-
sent variables and constants in both equations and
the text. Some variables are represented by a sin-
gle standard symbol throughout the literature, and
other variables are represented by differing sym-
bols by different authors; many symbols have mul-
tiple uses. The interdisciplinary nature of the plan-
etary sciences and astrobiology exacerbates the
problem because standard notation differs between

fields. We have endeavored to minimize confusion
within the text and to provide the student with
the greatest access to the literature by using stan-
dard symbols, sometimes augmented by nonstan-
dard subscripts or printed using calligraphic fonts
in order to avoid duplication of meanings when
practical.

A list of the symbols used in this book is pre-
sented as Appendix A. Acronyms are common in
our field, so we list the ones used in this book in
Appendix B. Tables of physical and astronomical
constants are provided in Appendix C. Appendix
D is the Periodic Table of Elements. Tabulations
of various properties of Solar System objects are
presented in Appendix E. Because the resurgence
in planetary studies during the past half century
is due primarily to spacecraft sent to make close-
up observations of distant bodies, we present an
introduction to rocketry and list the most signifi-
cant lunar and planetary missions in Appendix F.
Planetary science is a rapidly advancing field, so
Appendix G shows a selection of Solar System
images released in 2012; we plan to update this
appendix with a summary of recent developments
in future printings.

The breadth of the material covered in the text
extends well beyond the areas of expertise of the
authors. As such, we benefitted greatly from com-
ments by many of our colleagues. Those who
provided input for the first fifteen chapters are
acknowledged in our graduate text Planetary Sci-
ences, but the following group either provided sig-
nificant new comments for this book or were so
helpful on that text that they merit recognition here
as well: Larry Esposito, Ron Greeley, Andy Inger-
sol, Mark Marley and Bert Vermeersen. Especially
helpful suggestions for Chapter 16 were provided
by Roger Linfield, Rocco Mancinelli, Frances
Westall and, last but not least, Kevin Zahnle.

Jack J. Lissauer and Imke de Pater
Menlo Park, California
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CHAPTER 1

Introduction

There are in fact two things, science and opinion; the
former begets knowledge, the latter ignorance.

Hippocrates, Law, 460–377 BCE

1



Introduction 2

Why are we so fascinated by planets? After all,
planets make up a tiny fraction (probably sub-
stantially less than 1%) of ordinary matter in the
Universe[1]. And why do terrestrial planets, which
contain less than 1% of the planetary mass within
our Solar System, hold a particular place in our
hearts? The simple answer is that we live on a ter-
restrial planet. But there is a broader, more inclu-
sive, version of that answer: To the best of our
knowledge, planets or moons with solid surfaces
are the only places where life can begin and evolve
into advanced forms.

In this chapter, we introduce the subject of plane-
tary sciences and provide some background needed
for the remainder of the book. The history of plan-
etary observations dates back thousands of years,
and the prehistory likely extends much, much fur-
ther back; we present a brief overview in the next
section. We then give an inventory of objects in
our Solar System in §1.2. This is followed in §1.3
by a discussion of definitions of the word ‘planet’
and of words describing various smaller and larger
objects.

Despite the far larger number of planets known
around other stars, most of our knowledge of plan-
etary sciences was developed from observations
of bodies within our own planetary system. This
information is far from complete, and understand-
ing observables is key to assessing the reliability
of data; §1.4 discusses what aspects of planetary
bodies we can observe.

Many lower-level planetary textbooks begin
by covering the formation of our Solar System
because that makes the most sense from a chrono-
logical perspective. However, although we can
observe distant circumstellar disks that appear to
be planetary nurseries, our observations of these

[1] Dark matter, most of which is nonbaryonic (i.e., not com-
posed of protons or neutrons), is an order of magnitude more
abundant than ordinary matter, which is also referred to as
luminous matter. Dark energy has more than twice the
mass-energy density of all types of matter in the Universe
combined.

disks are far less precise than those of objects orbit-
ing the Sun. Furthermore, the accretion of planets
takes a long time compared with the few decades
since such observations began. Therefore, most of
our understanding of planetary formation comes
from a synthesis of theoretical modeling with data
from our own Solar System and extrasolar planets.
We thus defer our main discussion of this subject,
which is among the most intellectually challenging
in planetary science, until near the end of this book.
Nonetheless, scientists have modeled the origin of
planets for hundreds of years, and our understand-
ings of this process have provided the best esti-
mates of certain planetary properties that are not
directly observable, such as interior composition.
Because interpretation of data and planetary for-
mation models often go hand in hand, we present
a brief summary of current models of planetary
formation in the final section of this chapter.

1.1 A Brief History of the Planetary
Sciences

The sky appears quite spectacular on a clear night
away from the light of modern cities. Ancient civ-
ilizations were particularly intrigued by several
brilliant ‘stars’ that move among the far more
numerous ‘fixed’ (stationary) stars. The Greeks
called these objects planets, or wandering stars.
Old drawings and manuscripts by people from all
over the world, including the Chinese, Greeks and
Anasazi, attest to their interest in comets, solar
eclipses and other celestial phenomena. And obser-
vations of planets surely date to well before the
dawn of writing and historical records, perhaps
predating humanity itself. Some migratory birds
use the patterns of stars in the night sky to guide
their journeys and might be aware that a few of
these objects move relative to the others. Indeed,
some sharp-eyed and keen-witted dinosaurs may
have realized that a few points of light in the night
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sky moved relative to the fixed pattern produced
by most ‘stars’ more than 100 million years ago,
but as dinosaurs never (to our knowledge) devel-
oped a written language, it is unlikely that such
speculation will ever be confirmed.

The Copernican–Keplerian–Galilean–Newto-
nian revolution in the sixteenth and seventeenth
centuries completely changed humanity’s view of
the dimensions and dynamics of the Solar System,
including the relative sizes and masses of the bod-
ies and the forces that make them orbit about one
another. Gradual progress was made over the next
few centuries, but the next revolution had to await
the space age.

The age of planetary exploration began in Octo-
ber of 1959, with the Soviet Union’s spacecraft
Luna 3 returning the first pictures of the farside
of Earth’s Moon (Fig. F.1). Over the next three
decades, spacecraft visited all eight known terres-
trial and giant planets in the Solar System, includ-
ing our own. These spacecraft have returned data
concerning the planets, their rings and moons.
Spacecraft images of many objects showed details
never suspected from earlier Earth-based pictures.
Spectra from γ -rays to radio wavelengths revealed
previously undetected gases and geological fea-
tures on planets and moons, and radio detectors
and magnetometers transected the giant magnetic
fields surrounding many of the planets. The plan-
ets and their satellites have become familiar to us
as individual bodies. The immense diversity of
planetary and satellite surfaces, atmospheres and
magnetic fields has surprised even the most imag-
inative researchers. Unexpected types of structure
were observed in Saturn’s rings, and whole new
classes of rings and ring systems were seen around
all four giant planets. Some of the new discoveries
have been explained, but others remain mysterious.

Five comets and ten asteroids have thus far been
explored close up by spacecraft (Table F.2), and
there have been several missions to study the Sun
and the solar wind. The Sun’s gravitational domain
extends thousands of times the distance to the

farthest known planet, Neptune. Yet the vast outer
regions of the Solar System are so poorly explored
that many bodies remain to be detected, possibly
including some of planetary size.

Hundreds of planets are now known to orbit stars
other than the Sun. Although we know far less
about any of these extrasolar planets than we do
about the planets in our Solar System, it is clear that
many of them have gross properties (orbits, masses,
radii) quite different from any object orbiting our
Sun, and they are thus causing us to revise some of
our models of how planets form and evolve.

Biologists have redrawn the tree of life over the
past few decades. We have learned of the inter-
relationships between all forms of life on Earth
and of life’s great diversity. This diversity enables
some species to live in environments that would be
considered quite extreme to humans and suggests
that conditions capable of sustaining life exist on
other planets and moons in our Solar System and
beyond.

The renewed importance of the planetary sci-
ences as a subfield of astronomy implies that some
exposure to Solar System studies is an important
component to the education of astronomers. Plan-
etary sciences’ close relationship to geophysics,
atmospheric and space sciences means that the
study of the planets offers the unique opportunity
for comparison available to Earth scientists. The
properties of planets are key to astrobiology, and
understanding the basics of life is useful to plane-
tary scientists.

1.2 Inventory of the Solar System

What is the Solar System? Our naturally geocen-
tric view gives a highly distorted picture; thus, it
is better to phrase the question as: What is seen
by an objective observer from afar? The Sun, of
course; the Sun has a luminosity 4 × 108 times as
large as the total luminosity (reflected plus emitted)
of Jupiter, the second brightest object in the Solar
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Figure 1.1 The orbits of (a) the four terrestrial planets and (b) all eight major planets in the Solar System and Pluto, are
shown to scale. The axes are in AU. The movies show variations in the orbits over the past 3 million years; these changes
are caused by mutual perturbations among the planets (see Chapter 2). Figure 2.12 presents plots of the variations in
planetary eccentricities from the same integrations. (Illustrations courtesy Jonathan Levine)

System. The Sun also contains >99.8% of the mass
of the known Solar System. By these measures,
the Solar System can be thought of as the Sun
plus some debris. However, by other measures,
the planets are not insignificant. More than 98%
of the angular momentum in the Solar System
lies in orbital motions of the planets. Moreover,
the Sun is a fundamentally different type of body
from the planets – a ball of plasma powered by
nuclear fusion in its core – but the smaller bodies
in the Solar System are composed of molecular
matter, some of which is in the solid state. This
book focusses on the debris in orbit about the Sun,
although we do include a summary of the prop-
erties of stars, including our Sun, in §3.3, and an
overview of the outer layers of the Sun and its effect
on the interplanetary medium in §§7.1 and 7.2. The
debris encircling the Sun is composed of the giant
planets, the terrestrial planets and numerous and
varied smaller objects.

Figures 1.1 to 1.3 present three differing views
of the Solar System. The orbits of the major plan-
ets and Pluto are diagrammed in Figure 1.1. Two
different levels of reduction are displayed because
of the relative closeness of the four terrestrial plan-
ets and the much larger spacings in the outer Solar
System. Note the high inclination of Pluto’s orbit
relative to the orbits of the major planets. Figure 1.2

plots the sizes of various classes of Solar System
objects as a function of location. The jovian (giant)
planets dominate the outer Solar System, and the
terrestrial planets dominate the inner Solar System.
Small objects tend to be concentrated in regions
where orbits are stable or at least long lived. Images
of the planets and the largest planetary satellites are
presented to scale in Figure 1.3. Figure 1.4 shows
close-up views of those comets and asteroids that
had been imaged by interplanetary spacecraft as of
2010.

1.2.1 Giant Planets

Jupiter dominates our planetary system. Its mass,
318 Earth masses (M⊕), exceeds twice that of all
other known Solar System planets combined. Thus,
as a second approximation, the Solar System can
be viewed as the Sun, Jupiter and some debris. The
largest of this debris is Saturn, with a mass of
nearly 100 M⊕. Saturn, similar to Jupiter, is made
mostly of hydrogen (H) and helium (He). Each
of these planets probably possesses a heavy ele-
ment ‘core’ of mass ∼10 M⊕. The third and fourth
largest planets are Neptune and Uranus, each
having a mass roughly one-sixth that of Saturn.
These planets belong to a different class, with most
of their masses provided by a combination of three



1.2 Inventory of the Solar System 5

1000 000

Jovian planets

Terrestrial planets

Ju
pi

te
r 

tr
oj

an
s

Main-belt
asteroids

Near-Earth
asteroids

Centaurs
Kuiper belt

objects

100 000

10 000

1 000

100

10

1
0.1 1.0 10.0 100.0

Average distance from the Sun (Earth = 1)

D
ia

m
et

er
, k

m

1000.0

Figure 1.2 Inventory of objects orbiting the Sun. Small bodies are discussed in Chapter 12. The orbits of Jupiter Trojans
are described in §2.2.1 and those of Centaurs are discussed in §12.2.2. (Courtesy John Spencer)

common astrophysical ‘ices’, water (H2O), ammo-
nia (NH3), methane (CH4), together with ‘rock’,
high temperature condensates consisting primarily
of silicates and metals, yet most of their volumes
are occupied by relatively low mass (1–4 M⊕) H–
He dominated atmospheres. The four largest plan-
ets are known collectively as the giant planets;
Jupiter and Saturn are called gas giants, with radii
of ∼70 000 km and 60 000 km, respectively, and
Uranus and Neptune are referred to as ice giants
(although the ‘ices’ are present in fluid rather than
solid form), with radii of ∼25 000 km. All four
giant planets possess strong magnetic fields. These
planets orbit the Sun at distances of approximately
5, 10, 20 and 30 AU, respectively. (One astronom-
ical unit, 1 AU, is defined to be the semimajor axis
of a massless [test] particle whose orbital period
about the Sun is one year. As our planet has a finite
mass, the semimajor axis of Earth’s orbit is slightly
larger than 1 AU.)

1.2.2 Terrestrial Planets

The mass of the remaining known ‘debris’ totals
less than one-fifth that of the smallest giant planet,
and their orbital angular momenta are also much
smaller. This debris consists of all of the solid bod-
ies in the Solar System, and despite its small mass,
it contains a wide variety of objects that are inter-
esting chemically, geologically, dynamically, and,
in at least one case, biologically. The hierarchy
continues within this group, with two large ter-
restrial[2] planets, Earth and Venus, each with
a radius of about 6000 km, at approximately 1
and 0.7 AU from the Sun, respectively. Our Solar
System also contains two small terrestrial planets,

[2] In this text, the word ‘terrestrial’ is used to mean Earth-like
or related to the planet Earth, as is the convention in planetary
sciences and astronomy. Geoscientists and biologists gener-
ally use the same word to signify a relationship with land
masses.
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(a)

(b)

Figure 1.3 COLOR PLATE (a) Images of the planets with radii depicted to scale, ordered by distance from the Sun. (Courtesy
International Astronomical Union/Martin Kornmesser) (b) Images of the largest satellites of the four giant planets and
Earth’s Moon, which are depicted in order of distance from their planet. Note that these moons span a wide range of size,
albedo (reflectivity) and surface characteristics; most are spherical, but some of the smallest objects pictured are quite
irregular in shape. (Courtesy Paul Schenk)

Mars with a radius of ∼3500 km and orbiting at
∼1.5 AU and Mercury with a radius of ∼2500 km
orbiting at ∼0.4 AU.

All four terrestrial planets have atmospheres.
Atmospheric composition and density vary widely

among the terrestrial planets, with Mercury’s atmo-
sphere being exceedingly thin. However, even
the most massive terrestrial planet atmosphere,
that of Venus, is minuscule by giant planet stan-
dards. Earth and Mercury each have an internally



1.2 Inventory of the Solar System 7

Figure 1.4 Views of the first four comets (lower right) and nine asteroid systems that were imaged close-up by interplane-
tary spacecraft, shown at the same scale. The object name and dimensions, as well as the name of the imaging spacecraft
and the year of the encounter, are listed below each image. Note the wide range of sizes. Dactyl is a moon of Ida.

generated magnetic field, and evidence suggests
that Mars possessed one in the distant past.

1.2.3 Minor Planets and Comets

The Kuiper belt is a thick disk of ice/rock bod-
ies beyond the orbit of Neptune. The two largest
members of the Kuiper belt to have been sighted
are Eris, whose heliocentric distance, the distance
from the Sun, oscillates between 38 and 97 AU,
and Pluto, whose heliocentric distance varies from
29 to 50 AU. The radii of Eris and Pluto exceed
1000 km. Pluto is known to possess an atmo-
sphere. Numerous smaller members of the Kuiper
belt have been cataloged, but the census of these
distant objects is incomplete even at large sizes.

Asteroids, which are minor planets that all have
radii <500 km, are found primarily between the
orbits of Mars and Jupiter.

Smaller objects are also known to exist else-
where in the Solar System, for example as moons
in orbit around planets, and as comets. Comets are
ice-rich objects that shed mass when subjected to
sufficient solar heating. Comets are thought to have
formed in or near the giant planet region and then
been ‘stored’ in the Oort cloud, a nearly spherical
region at heliocentric distances of ∼1–5 × 104 AU,
or in the Kuiper belt or the scattered disk. Scat-
tered disk objects (SDOs) have moderate to high
eccentricity orbits that lie in whole or in part within
the Kuiper belt. Estimates of the total number of
comets larger than 1 km in radius in the entire Oort
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cloud range from ∼1012 to ∼1013. The total num-
ber of Kuiper belt objects (KBO) larger than 1 km
in radius is estimated to be ∼108 –1010. The total
mass and orbital angular momentum of bodies in
the scattered disk and Oort cloud are uncertain by
more than an order of magnitude. The upper end
of current estimates place as much mass in dis-
tant unseen icy bodies as is observed in the entire
planetary system.

The smallest bodies known to orbit the Sun, such
as the dust grains that together produce the faint
band in the plane of the planetary orbits known
as the zodiacal cloud, have been observed collec-
tively but not yet individually detected via remote
sensing.

1.2.4 Satellite and Ring Systems

Some of the most interesting objects in the Solar
System orbit about the planets. Following the ter-
restrial planets in mass are the seven major moons
of the giant planets and Earth. Two planetary satel-
lites, Jupiter’s moon Ganymede and Saturn’s moon
Titan, are slightly larger than the planet Mercury,
but because of their lower densities, they are less
than half as massive. Titan’s atmosphere is denser
than that of Earth. Triton, by far the largest moon
of Neptune, has an atmosphere that is much less
dense, yet it has winds powerful enough to strongly
perturb the paths of particles ejected from geysers
on its surface. Very tenuous atmospheres have been
detected about several other planetary satellites,
including Earth’s Moon, Jupiter’s Io and Saturn’s
Enceladus.

Natural satellites have been observed in orbit
about most of the planets in the Solar System, as
well as many Kuiper belt objects and asteroids.
The giant planets all have large satellite systems,
consisting of large- and/or medium-sized satellites
(Fig. 1.3b) and many smaller moons and rings.
Most of the smaller moons orbiting close to their
planet were discovered from spacecraft flybys. All
major satellites, except Triton, orbit the respective
planet in a prograde manner (i.e., in the direction

that the planet rotates) close to the planet’s equa-
torial plane. Small, close-in moons are also exclu-
sively in low-inclination, low-eccentricity orbits,
but small moons orbiting beyond the main satel-
lite systems can travel around the planet in either
direction, and their orbits are often highly inclined
and eccentric. Earth and Pluto each have one large
moon: our Moon has a little over 1% of Earth’s
mass, and Charon’s mass is just over 10% that of
Pluto. These moons probably were produced by
giant impacts on the Earth and Pluto when the
Solar System was a small fraction of its current
age. Two tiny moons travel on low-inclination,
low-eccentricity orbits about Mars.

The four giant planets all have ring systems,
which are primarily located within about 2.5 plan-
etary radii of the planet’s center. However, in other
respects, the characters of the four ring systems
differ greatly. Saturn’s rings are bright and broad,
full of structure such as density waves, gaps and
‘spokes’. Jupiter’s ring is very tenuous and com-
posed mostly of small particles. Uranus has nine
narrow opaque rings plus broad regions of tenu-
ous dust orbiting close to the plane defined by the
planet’s equator. Neptune has four rings, two nar-
row ones and two faint broader rings; the most
remarkable part of Neptune’s ring system is the
ring arcs, which are bright segments within one of
the narrow rings.

1.2.5 Tabulations

The orbital and bulk properties of the eight ‘major’
planets are listed in Tables E.1 to E.3. Symbols
for each of these planets, which we often use as
subscripts on masses and radii, are also given in
Table E.1. Table E.4 gives orbital elements and
brightnesses of all inner moons of the eight plan-
ets, as well as those outer moons whose radii are
estimated to be �10 km. Many of the orbital
parameters listed in the tables are defined in §2.1.
Rotation rates and physical characteristics of these
satellites, whenever known, are given in Table E.5.
Properties of some the largest ‘minor planets’,
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Figure 1.5 Sketch of the teardrop-shaped heliosphere. Within the heliosphere, the solar wind flows radially outwards
until it encounters the heliopause, the boundary between the solar wind–dominated region and the interstellar medium.
Weak cosmic rays are deflected away by the heliopause, but energetic particles penetrate the region down to the inner
Solar System. (Adapted from Gosling 2007)

asteroids and Kuiper belt objects are given in
Tables E.6 and E.7, and densities of some minor
planets are listed in Table E.8.

The brightness of a celestial body is generally
expressed as the apparent magnitude at visual
wavelengths, mv. A 6th magnitude (mv = 6) star
is just visible to the naked eye in a dark sky.
The magnitude scale is logarithmic (mimicking the
perception of human vision), and a difference of
5 magnitudes equals a factor of 100 in brightness
(i.e., a star with mv = 0 is 100 times brighter than
one with mv = 5). The apparent magnitudes of

planetary satellites are listed in Table E.4. Those
moons with mv > 20 can only be detected with a
large telescope or nearby spacecraft.

1.2.6 Heliosphere

All planetary orbits lie within the heliosphere, the
region of space containing magnetic fields and
plasma of solar origin. Figure 1.5 diagrams key
components of the heliosphere. The solar wind
consists of plasma (ionized gas) traveling out-
ward from the Sun at supersonic speeds. The solar
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wind merges with the interstellar medium at the
heliopause, the boundary of the heliosphere.

The composition of the heliosphere is domi-
nated by solar wind protons and electrons, with
a typical density of 5 × 106 protons m−3 at 1 AU
from the Sun, decreasing as the reciprocal distance
squared. These particles move outwards at speeds
of ∼400 km s−1 near the solar equator but ∼700–
800 km s−1 closer to the solar poles. In contrast,
the local interstellar medium, at a density of less
than 1 × 105 atoms m−3, contains mainly hydro-
gen and helium atoms. The Sun’s motion rela-
tive to the mean motion of neighboring stars is
roughly 18 km s−1. Hence, the heliosphere moves
through the interstellar medium at about this speed.
The heliosphere is thought to be shaped like a
teardrop, with a tail in the downwind direction
(Fig. 1.5). Interstellar ions and electrons gener-
ally flow around the heliosphere because they can-
not cross the solar magnetic fieldlines. Neutrals,
however, can enter the heliosphere, and as a result
interstellar H and He atoms move through the Solar
System in the downstream direction with a typical
speed of ∼15–20 km s−1.

Just interior to the heliopause is the termi-
nation shock, where the solar wind is slowed
down. Because of variations in solar wind pres-
sure, the location of this shock moves radially
with respect to the Sun in accordance with the
11-year solar activity cycle. The Voyager 1 space-
craft crossed the termination shock in Decem-
ber 2004 at a heliocentric distance of 94.0 AU;
Voyager 2 crossed the shock (multiple times) in
August 2007 at ∼83.7 AU. The spacecraft are now
in the heliosheath, between the termination shock
and the heliopause. They are expected to reach the
heliopause around the year 2015.

1.3 What Is a Planet?

The ancient Greeks referred to all moving objects
in the sky as planets. To them, there were seven

such objects, the Sun, the Moon, Mercury, Venus,
Mars, Jupiter and Saturn. The Copernican revolu-
tion removed the Sun and Moon from the planet
club, but added the Earth. Uranus and Neptune
were added as soon as they were discovered in the
eighteenth and nineteenth centuries, respectively.

Pluto, by far the brightest Kuiper belt object
(KBO) and the first that was discovered, was offi-
cially classified as a planet from its discovery in
1930 until 2006; 1 Ceres, the first detected (in
1801) and by far the largest member of the aster-
oid belt, was also once considered to be a planet, as
were the next few asteroids that were discovered.
With the detection of other KBOs, debates began
with regard to the classification of Pluto as a planet,
culminating in August 2006 with the resolution by
the International Astronomical Union (IAU):

• A planet is a celestial body that (1) is in orbit
around the Sun, (2) has sufficient mass for its
self-gravity to overcome rigid body forces so
that it assumes a hydrostatic equilibrium (nearly
round) shape, and (3) has cleared the neighbor-
hood around its orbit.

• A dwarf planet is a celestial body that (1) is in
orbit around the Sun, (2) has sufficient mass for
its self-gravity to overcome rigid body forces so
that it assumes a hydrostatic equilibrium (nearly
round) shape, (3) has not cleared the neighbour-
hood around its orbit, and (4) is not a satellite.

Just as the discoveries of small bodies orbit-
ing the Sun have forced astronomers to decide
how small an object can be and still be worthy
of being classified as a planet, detections of sub-
stellar objects orbiting other stars have raised the
question of an upper size limit to planethood. We
adopt the following definitions, which are consis-
tent with current IAU nomenclature:

• Star: self-sustaining fusion is sufficient for ther-
mal pressure to balance gravity (�0.075 M�
≈ 80 M� for solar composition; the minimum
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mass for an object to be a star is often referred
to as the hydrogen burning limit)

• Stellar remnant: dead star – no more fusion
(or so little that the object is no longer supported
primarily by thermal pressure)

• Brown dwarf: substellar object with substan-
tial deuterium fusion – more than half of the
object’s original inventory of deuterium is ulti-
mately destroyed by fusion

• Planet: negligible fusion (�0.012 M� ≈ 13 M�,
with the precise value again depending on initial
composition), plus it orbits one or more stars
and/or stellar remnants.

1.4 Planetary Properties

All of our knowledge regarding specific charac-
teristics of Solar System objects, including plan-
ets, moons, comets, asteroids, rings and interplan-
etary dust, is ultimately derived from observations,
either astronomical measurements from the ground
or Earth-orbiting satellites, or from close-up (often
in situ) measurements obtained by interplanetary
spacecraft. One can determine the following quan-
tities more or less directly from observations:

(1) Orbit
(2) Mass, distribution of mass
(3) Size
(4) Rotation rate and direction
(5) Shape
(6) Temperature
(7) Magnetic field
(8) Surface composition
(9) Surface structure

(10) Atmospheric structure and composition

With the help of various theories, these observa-
tions can be used to constrain planetary properties
such as bulk composition and interior structure,
two attributes that are crucial elements in model-
ing the formation of the Solar System.

1.4.1 Orbit

In the early part of the seventeenth century,
Johannes Kepler deduced three ‘laws’ of planetary
motion directly from observations:

(1) All planets move along elliptical paths with
the Sun at one focus.

(2) A line segment connecting any given planet
and the Sun sweeps out area at a constant rate.

(3) The square of a planet’s orbital period about
the Sun, Porb, is proportional to the cube of its
semimajor axis, a, i.e., P2

orb ∝ a3.

A Keplerian orbit is uniquely specified by six
orbital elements: a (semimajor axis), e (eccen-
tricity), i (inclination), ω (argument of periapse;
or � for the longitude of periapse), � (longitude
of ascending node), and f (true anomaly). These
orbital elements are defined graphically in Figure
2.1 and discussed in more detail in §2.1. The first
few of these elements are more fundamental than
the last: a and e fully define the size and shape
of the orbit, i gives the tilt of the orbital plane
to some reference plane, the longitudes � and �

determine the orientation of the orbit, and f (or,
indirectly, t� , the time of periapse passage) tells
where the planet is along its orbit at a given time.
Alternative sets of orbital elements are also possi-
ble; for instance, an orbit is fully specified by the
planet’s location and velocity relative to the Sun at
a given time (again, six independent scalar quan-
tities), provided the masses of the Sun and planet
are known.

Kepler’s laws (or more accurate versions
thereof) can be derived from Newton’s laws of
motion and of gravity, which were formulated
later in the seventeenth century (§2.1). Relativis-
tic effects also affect planetary orbits, but they are
small compared with the gravitational perturba-
tions that the planets exert on one other (Prob-
lem 2-5).

All planets and asteroids revolve around the
Sun in the direction of solar rotation. Their orbital
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planes generally lie within a few degrees of each
other and close to the solar equator. For observa-
tional convenience, inclinations are usually mea-
sured relative to the Earth’s orbital plane, which is
known as the ecliptic plane. The Sun’s equatorial
plane is inclined by 7◦ with respect to the ecliptic
plane. Among the eight major planets, Mercury’s
orbit is the most tilted, with i = 7◦. (However,
because inclination is effectively a vector, the sim-
ilarity of these two inclinations does not imply that
Mercury’s orbit lies within the plane of the solar
equator. Indeed, Mercury’s orbit is inclined by 3.4◦

relative to the Sun’s equatorial plane.) Similarly,
most major satellites orbit their planet close to its
equatorial plane. Many smaller objects that orbit
the Sun and the planets have much larger orbital
inclinations. In addition, some comets, minor satel-
lites and Neptune’s large moon Triton orbit the Sun
or planet in a retrograde sense (opposite to the
Sun’s or planet’s rotation). The observed ‘flatness’
of most of the planetary system is explained by
planetary formation models that hypothesize that
the planets grew within a disk that was in orbit
around the Sun (see Chapter 15).

1.4.2 Mass

The mass of an object can be deduced from the
gravitational force that it exerts on other bodies.

• Orbits of moons: The orbital periods of natu-
ral satellites, together with Newton’s general-
ization of Kepler’s third law (eq. 2.18), can be
used to solve for mass. The result is actually
the sum of the mass of the planet and moon
(plus, to a good approximation, the masses of
moons on orbits interior to the one being consid-
ered), but except for the Earth/Moon and various
minor planets, including Pluto/Charon, the sec-
ondaries’ masses are very small compared with
that of the primary. The major source of uncer-
tainty in this method results from measurement
errors in the semimajor axis; timing errors are
negligible.

• What about planets without moons? The grav-
ity of each planet perturbs the orbits of all other
planets. Because of the large distances involved,
the forces are much smaller, so the accuracy
of this method is not high. Note, however, that
Neptune was discovered as a result of the per-
turbations that it forced on the orbit of Uranus.
This technique is still used to provide the best
(albeit in some cases quite crude) estimates of
the masses of some large asteroids. The per-
turbation method can actually be divided into
two categories: short-term and long-term per-
turbations. The extreme example of short-term
perturbations includes single close encounters
between asteroids. Trajectories can be computed
for a variety of assumed masses of the body
under consideration and fit to the observed path
of the other body. Long-term perturbations are
best exemplified by masses derived from peri-
odic variations in the relative positions of moons
locked in stable orbital resonances (§2.3.2).

• Spacecraft tracking data provide the best means
of determining masses of planets and moons vis-
ited because the Doppler shift and periodicity of
the transmitted radio signal can be measured
very precisely. The long time baselines afforded
by orbiter missions allow much higher accu-
racy than flyby missions. The best estimates for
the masses of some of the outer planet moons
are those obtained by combining accurate short-
term perturbation measurements from Voyager
images with Voyager tracking data and/or res-
onance constraints from long timeline ground-
based observations.

• The best estimates of the masses of some
of Saturn’s small inner moons were derived
from the amplitude of spiral density waves
they resonantly excite in Saturn’s rings or of
density wakes that they produce in nearby
ring material. These processes are discussed
in §13.4.

• Crude estimates of the masses of some comets
have been made by estimating nongravitational
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Figure 1.6 COLOR PLATE Simulated 3-D renderings of the
eight planets within our Solar System. (www.lesud.com c©
2011)

forces, which result from the asymmetric escape
of released gases and dust (§12.2.4), and com-
paring them with observed orbital changes.

The gravity field of a mass distribution that is not
spherically symmetric differs from that of a point
source of identical mass. Such deviations, com-
bined with the knowledge of the rotation period,
can be used to estimate the degree of central con-
centration of mass in rotating bodies (§6.2.2). The
deviation of the gravity field of an asymmetric
body from that of a point mass is most pronounced,
and thus most easily measured, closest to the body
(§2.6). To determine the precise gravity field, one
can make use of both spacecraft tracking data and
the orbits of moons and/or eccentric rings.

1.4.3 Size

Bodies in the Solar System exhibit a wide range
of sizes and shapes. Figure 1.6 illustrates the vast
dynamic range of just the bodies considered to be
planets. The size of an object can be measured in
various ways:

• The diameter of a body is the product of its
angular size (measured in radians) and its dis-
tance from the observer. Solar System distances
are simple to estimate from orbits; however,
limited resolution from Earth results in large

uncertainties in angular size. Thus, other tech-
niques often give the best results for bodies that
have not been imaged at close distances by inter-
planetary spacecraft.

• The diameter of a Solar System body can be
deduced by observing a star as it is occulted by
the body. The angular velocity of the star rel-
ative to the occulting body can be calculated
from orbital data, including the effects of the
Earth’s orbit and rotation. Multiplying the dura-
tion of an occultation as viewed from a partic-
ular observing site by both its angular veloc-
ity and its distance gives the length of a chord
of the body’s projected silhouette. Three well-
separated chords suffice for a spherical planet.
Many chords are needed if the body is irregu-
lar in shape, and observations of the same event
from many widely spaced telescopes are nec-
essary. This technique is particularly useful for
small bodies that have not been visited by space-
craft. Occultations of sufficiently bright stars are
infrequent and require appropriate predictions as
well as significant observing campaigns in order
to obtain enough chords.

• Radar echoes can be used to determine radii and
shapes. The radar signal strength drops as 1/r4

(1/r2 going to the object and 1/r2 returning to
the antenna), so only relatively nearby objects
may be studied with radar. Radar is especially
useful for studying solid planets, asteroids and
cometary nuclei.

• An excellent way to measure the radius of an
object is to send a lander and triangulate using it
together with an orbiter. This method, as well as
the radar technique, also works well for terres-
trial planets and satellites with substantial atmo-
spheres.

• The size and the albedo of a body can be esti-
mated by combining photometric observations
at visible and infrared (IR) wavelengths. At
visible wavelengths, one measures the sunlight
reflected off the object, but at infrared wave-
lengths, one observes the thermal radiation from
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the body itself (see Chapter 4 for a detailed dis-
cussion).

The mean density of an object can be trivially
determined after its mass and size are known. The
density of an object gives a rough idea of its compo-
sition, although compression at the high pressures
that occur in planets and large moons must be taken
into account, and the possibility of significant void
space should be considered for small bodies. The
low density (∼1000 kg m−3) of the four giant plan-
ets, for example, implies material with low mean
molecular weight. Terrestrial planet densities of
3500–5500 kg m−3 imply rocky material, includ-
ing some metal. Most of the medium and large
satellites around the giant planets have densities
between 1000 and 2000 kg m−3, suggesting a com-
bination of ices and rock. Comets have densities of
roughly 1000 kg m−3 or less, indicative of rather
loosely packed dirty ices.

In addition to the density, one can also calcu-
late the escape velocity using the mass and size of
the object (eq. 2.24). The escape velocity, together
with temperature, can be used to estimate the abil-
ity of the planetary body to retain an atmosphere.

1.4.4 Rotation

Simple rotation is a vector quantity, related to spin
angular momentum. The obliquity (or axial tilt) of
a planetary body is the angle between its spin angu-
lar momentum and its orbital angular momentum.
Bodies with obliquity <90◦ are said to have pro-
grade rotation, and planets with obliquity >90◦

have retrograde rotation. The rotation of an object
can be determined using various techniques:

• The most straightforward way to determine a
planetary body’s rotation axis and period is
to observe how markings on the surface move
around with the disk. Unfortunately, not all plan-
ets have such features; moreover, if atmospheric
features are used, winds may cause the deduced
period to vary with latitude, altitude and time.

• Planets with sufficient magnetic fields trap
charged particles within their magnetospheres.
These charged particles are accelerated by
electromagnetic forces and emit radio waves.
Because magnetic fields are not uniform in lon-
gitude and because they rotate with (presumably
the bulk of) the planet, these radio signals have a
periodicity equal to the planet’s rotation period.
For planets without detectable solid surfaces, the
magnetic field period is viewed as more funda-
mental than the periods of cloud features (see,
however, §7.3.4).

• The rotation period of a body can often be
determined by periodicities observed in its
lightcurve, which gives the total disk brightness
as a function of time. Lightcurve variations can
be the result of differences in albedo or, for irreg-
ularly shaped bodies, in projected area. Whereas
irregularly shaped bodies produce lightcurves
with two very similar maxima and two very
similar minima per revolution, albedo variations
have no such preferred symmetry. Thus, ambi-
guities of a factor of two sometimes exist in
spin periods determined by lightcurve analysis.
Most asteroids have double-peaked lightcurves,
indicating that the major variations are due to
shape, but the peaks are distinguishable from
each other because of minor variations in hemi-
spheric albedo and local topography.

• The measured Doppler shift across the disk can
give a rotation period and a crude estimate of
the rotation axis, provided the body’s radius is
known. This can be done passively in visible
light or actively using radar.

The rotation periods of most objects orbiting
the Sun are of the order of three hours to a few
days. Mercury and Venus, both of whose rotations
have almost certainly been slowed by solar tides,
form exceptions with periods of 59 and 243 days,
respectively. Six of the eight planets rotate in a pro-
grade sense with obliquities of 30◦ or less. Venus
rotates in a retrograde direction with an obliquity
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of 177◦, and the rotation axis of Uranus is so tilted
that it lies close to this planet’s orbital plane. Most
planetary satellites rotate synchronously with their
orbital periods as a result of planet-induced tides
(§2.7.2).

1.4.5 Shape

Figure 1.7a shows a close-up image of the jagged
small martian moon Phobos in silhouette against
the smooth limb of Mars. Many different forces
together determine the shape of a body. Self-
gravity tends to produce bodies of spherical shape,
a minimum for gravitational potential energy.
Material strength maintains shape irregularities,
which may be produced by accretion, impacts or
internal geological processes. Because self-gravity
increases with the size of an object, larger bodies
tend to be rounder. Typically, bodies with mean
radii larger than ∼200 km are fairly round. Smaller
objects may be quite oddly shaped.

There is a relationship between a planet’s rota-
tion and its oblateness because the rotation intro-
duces a centrifugal pseudo-force, which causes a
planet to bulge out at the equator and to flatten
at the poles. A perfectly fluid planet would be
shaped as an oblate spheroid. Polar flattening is
greatest for planets that have a low density and
rapid rotation. In the case of Saturn, the flatten-
ing parameter, ε ≡ (Re − Rp)/Re, where Re and Rp

are the equatorial and polar radii, respectively, is
∼0.1, and polar flattening is easily discernible on
some images of the planet, such as that shown in
Figure 1.7b.

The shape of an object can be determined from:

• Direct imaging, either from the ground or space-
craft

• Length of chords observed by stellar occultation
experiments at various sites (see §1.4.3)

• Analysis of radar echoes
• Analysis of lightcurves. Several lightcurves

obtained from different viewing angles are
required for accurate measurements.

(a)

(b)

Figure 1.7 (a) Image of the small irregularly shaped moon
Phobos against the background of the limb of the nearly
spherical planet Mars. Phobos appears much larger rela-
tive to Mars than it actually is because the Soviet space-
craft Phobos 2 was much closer to the moon than to the
planet when it took this image. (b) Hubble Space Telescope
image of Saturn taken on 24 February 2009 less than five
months before saturnian equinox passage. The rings are
seen at a low tilt angle, with the ring shadow appearing
across the planet just above the rings. Four moons are seen
to be transiting (partially eclipsing the planet); from left
to right, they are Enceladus, Dione, Titan and Mimas; the
shadows of Enceladus and Dione can also be seen. Note the
pronounced oblateness of this low-density, rapidly rotating
planet. (NASA/STSci/Hubble Heritage)
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• The shape of the central flash, which is
observed when the center of a body with an
atmosphere passes in front of an occulted star.
The central flash results from the focusing of
light rays refracted by the atmosphere and can
be seen only under fortuitous observing circum-
stances.

1.4.6 Temperature

The equilibrium temperature of a planet can be
calculated from the energy balance between solar
insolation and reradiation outward (see Chapter 4).
However, internal heat sources provide a signifi-
cant contribution to the energy balance of many
planets. Moreover, there may be diurnal, latitu-
dinal and seasonal variations in the temperature.
The greenhouse effect, a thermal ‘blanket’ caused
by an atmosphere that is more transparent to vis-
ible radiation (the Sun’s primary output) than
to infrared radiation from the planet, raises the
surface temperature on some planets far above
the equilibrium blackbody value. For example,
because of the high albedo of its clouds, Venus
actually absorbs less solar energy per unit area
than does Earth; thus (as internal heat sources on
these two planets are negligible compared with
solar heating), the effective radiating temperature
of Venus is lower than that of Earth. Nonetheless,
as a consequence of the greenhouse effect, Venus’s
surface temperature is raised up to ∼730 K, well
above the surface temperature on Earth.

Direct in situ measurements with a thermome-
ter can provide an accurate estimate of the tem-
perature of the accessible (outer) parts of a body.
The thermal infrared spectrum of a body’s emitted
radiation is also a good indicator of the temperature
of its surface or cloud tops. Most solid and liquid
planetary material can be characterized as a nearly
perfect blackbody radiator with its emission peak
at near- to mid-infrared wavelengths. Analysis of
emitted radiation sometimes gives different tem-
peratures at differing wavelengths. This could be
attributable to a combination of temperatures from

different locations on the surface, such as pole-to-
equator differences, albedo variations, or volcanic
hot spots such as those seen on Io (§10.2.1). Also,
the opacity of an atmosphere varies with wave-
length, which allows us to remotely probe different
altitudes in a planetary atmosphere.

1.4.7 Magnetic Field

Magnetic fields are created by moving charges.
Currents moving through a solid medium decay
quickly (unless the medium is a superconductor,
which is unreasonable to expect at the high tem-
peratures found in planetary interiors). Thus, inter-
nally generated planetary magnetic fields must
either be produced by a (poorly understood)
dynamo process, which can only operate in a fluid
region of a planet (§7.4.2) or be caused by rema-
nent ferromagnetism, which is a result of charges
that are bound to atoms of a solid locked in an
aligned configuration. Remanent ferromagnetism
is not viewed to be a likely cause of large fields
because, in addition to the fact that it is expected
to decay away on timescales short compared with
the age of the Solar System, it would require the
planet to have been subjected to a nearly constant
(in direction) magnetic field during the long period
in which the bulk of its iron cooled through its
Curie point. (At temperatures below the Curie
point of a ferromagnetic material, the magnetic
moments are partially aligned within magnet
domains.) Magnetic fields may also be induced
through the interaction between the solar wind
(which is composed predominantly of charged
particles) and conducting regions within the planet
or its ionosphere.

A magnetic field may be detected directly using
an in situ magnetometer or indirectly via radia-
tion (radio emissions) produced by accelerating
charges. The presence of localized aurorae, lumi-
nous disturbances caused by charged particle pre-
cipitation in a planet’s upper atmosphere, is also
indicative of a magnetic field. The magnetic fields
of the planets can be approximated by dipoles,
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with perturbations to account for their irregular-
ities. All four giant planets, as well as Earth,
Mercury and Jupiter’s moon Ganymede, have mag-
netic fields generated in their interiors. Venus and
comets have magnetic fields induced by the inter-
action between the solar wind and charged parti-
cles in their atmosphere/ionosphere, whereas Mars
and the Moon have localized crustal magnetic
fields. Perturbations in Jupiter’s magnetic field near
Europa and Callisto are indicative of salty oceans
in the interiors of these moons (§10.2). Geyser
activity on Enceladus perturbs Saturn’s magnetic
field (§10.3.3).

1.4.8 Surface Composition

The composition of a body’s surface can be derived
from:

• Spectral reflectance data. Such spectra may be
observed from Earth; however, spectra at ultra-
violet wavelengths can only be obtained above
the Earth’s atmosphere.

• Thermal infrared spectra and thermal radio data.
Although difficult to interpret, these measure-
ments contain information about a body’s com-
position.

• Radar reflectivity. Such observations can be car-
ried out from Earth or from spacecraft that are
near the body.

• X-ray and γ -ray fluorescence. These measure-
ments may be conducted from a spacecraft in
orbit around the planet (or, in theory, even a
flyby spacecraft) if the body lacks a substan-
tial atmosphere. Detailed measurements require
landing a probe on the body’s surface.

• Chemical analysis of surface samples. This can
be performed on samples brought to Earth by
natural processes (meteorites) or spacecraft, or
(in less detail) by in situ analysis using space-
craft. Other forms of in situ analysis include
mass spectroscopy and electrical and thermal
conductivity measurements.

The compositions of the planets, asteroids and
satellites show a dependence on heliocentric dis-
tance, with the objects closest to the Sun having the
largest concentrations of dense materials (which
tend to be refractory, i.e., have high melting and
boiling temperatures) and the smallest concentra-
tion of ices (which are much more volatile, i.e.,
have much lower melting and boiling tempera-
tures).

1.4.9 Surface Structure

The surface structure varies greatly from one planet
or moon to another. There are various ways to
determine the structure of a planet’s surface:

• Structure on large scales (e.g., mountains) can be
detected by imaging, either passively in the vis-
ible/infrared/radio or actively using radar imag-
ing techniques. It is best to have imaging avail-
able at more than one illumination angle in order
to separate tilt-angle (slope) effects from albedo
differences.

• Structure on small scales (e.g., grain size) can
be deduced from the radar echo brightness and
the variation of reflectivity with phase angle,
the angle between the illuminating Sun and the
observer as seen from the body. The bright-
ness of a body with a size much larger than
the wavelength of light at which it is observed
generally increases slowly with decreasing
phase angle. For very small phase angles,
this increase can be much more rapid, a phe-
nomenon referred to as the opposition effect.

1.4.10 Atmosphere

Most of the planets and some satellites are sur-
rounded by significant atmospheres. The giant
planets Jupiter, Saturn, Uranus and Neptune are
basically huge fluid balls, and their atmospheres
are dominated by H2 and He. Venus has a very
dense CO2 atmosphere, with clouds so thick that
one cannot see its surface at visible wavelengths;
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Earth has an atmosphere consisting primarily of
N2 (78%) and O2 (21%), and Mars has a more
tenuous CO2 atmosphere. Saturn’s satellite Titan
has a dense nitrogen-rich atmosphere, which is
intriguing because it contains many kinds of
organic molecules. Pluto and Neptune’s moon Tri-
ton each have a tenuous atmosphere dominated by
N2, and the atmosphere of Jupiter’s volcanically
active moon Io consists primarily of SO2. Mer-
cury and the Moon each have an extremely tenuous
atmosphere (�10−12 bar); Mercury’s atmosphere is
dominated by atomic O, Na and He, and the main
constituents in the Moon’s atmosphere are He and
Ar. The gaseous components of cometary comae
are essentially temporary atmospheres in the pro-
cess of escaping.

The composition and structure (temperature–
pressure profile) of an atmosphere can be deter-
mined from spectral reflectance data at visible
wavelengths, thermal spectra and photometry at
infrared and radio wavelengths, stellar occultation
profiles, in situ mass spectrometers and attenua-
tion of radio signals sent back to Earth by atmo-
spheric/surface probes.

1.4.11 Interior

The interior of a planet is not directly accessible
to observations. However, with help of the observ-
able parameters discussed earlier, one can derive
information on a planet’s bulk composition and its
interior structure.

The bulk composition is not an observable
attribute, except for extremely small bodies, such
as meteorites, that we can actually take apart and
analyze (see Chapter 11). Thus, we must deduce
bulk composition from a variety of direct and indi-
rect clues and constraints. The most fundamental
constraints are based on the mass and the size of the
planet. Using only these constraints together with
material properties derived from laboratory data
and quantum mechanical calculations, it can be
shown that Jupiter and Saturn are composed mostly

of hydrogen, simply because all other elements are
too dense to fit the constraints (unless the inter-
nal temperature is much higher than is consistent
with the observed effective temperature in a quasi-
steady state). However, this method only gives
definitive results for planets composed primarily
of the lightest element. For all other bodies, bulk
composition is best estimated from models that
include mass and radius as well as the composition
of the surface and atmosphere, the body’s helio-
centric distance (location is useful because it gives
us an idea of the temperature of the region during
the planet-formation epoch and thus which ele-
ments were likely to condense), together with rea-
sonable assumptions of cosmogonic abundances
(§1.5, Table 3.1 and Chapters 11 and 15).

The internal structure of a planet can be
derived to some extent from its gravitational field
and rotation rate. From these parameters, one can
estimate the degree of concentration of the mass
at the planet’s center. The gravitational field can
be determined from spacecraft tracking and the
orbits of satellites or rings. Detailed information
on the internal structure of a planet with a solid
surface may be obtained if seismometers can be
placed on its surface, as was done for the Moon by
Apollo astronauts. The velocities and attenuations
of seismic waves propagating through the planet’s
interior depend on density, rigidity and other phys-
ical properties, which in turn depend on composi-
tion, as well as on pressure, temperature and time.
Reflection and refraction off internal boundaries
provide information on layering. The free oscil-
lation periods of gaseous planets can, in theory,
also provide clues to internal properties, just as
helioseismology, the study of solar oscillations,
now provides important information about the
Sun’s interior. Evidence of volcanism and plate
tectonics constrain the thermal environment below
the surface. Energy output provides information on
the thermal structure of a planet’s interior.

The response of moons that are subject to signif-
icant time-variable tidal deformations depends on
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their internal structure. Repeated observations of
such moons can reveal internal properties, includ-
ing in some cases the presence of a subterranean
fluid layer. Combining altitude and gravity field
measurements could give indications about lateral
inhomogeneities under the surface of icy moons
and thus, for instance, indicate volcanic sources
and tectonic structures.

Magnetic fields are produced by moving
charges. Although a small magnetic field such as
the Moon’s may be the result of remanent ferro-
magnetism, substantial planetary magnetic fields
are thought to require a conducting fluid region
within the planet’s interior. Whereas centered
dipole fields are probably produced in or near the
core of the planet, highly irregular offset fields are
likely to be produced closer to the planet’s surface.

1.5 Formation of the Solar System

The nearly planar and almost circular orbits of
the planets in our Solar System argue strongly for
planetary formation within a flattened circumso-
lar disk. Astrophysical models suggest that such
disks are a natural byproduct of star formation
from the collapse of rotating cores of molecular
clouds. Observational evidence for the presence of
disks of Solar System dimensions around young
stars has increased substantially in recent years,
and infrared excesses in the spectra of young stars
suggest that the lifetimes of protoplanetary disks
range from 106 –107 years.

Our galaxy contains many molecular clouds,
most of which are several orders of magni-
tude larger than our Solar System. Molecular
clouds are the coldest and densest parts of the
interstellar medium. They are inhomogeneous, and
the densest parts of molecular clouds are referred
to as cores. These are the sites in which star for-
mation occurs at the current epoch. Even a very
slowly rotating molecular cloud core has far too
much spin angular momentum to collapse down

to an object of stellar dimensions, so a signifi-
cant fraction of the material in a collapsing core
falls onto a rotationally supported disk orbiting the
pressure-supported (proto)star. Such a disk has the
same initial elemental composition as the growing
star. At sufficient distances from the central star, it
is cool enough for ∼1%–2% of this material to be
in solid form, either remnant interstellar grains or
condensates formed within the disk. This dust is
primarily composed of rock-forming compounds
within a few AU of a 1 M� star, but in the cooler,
more distant regions, the amount of ices (e.g., H2O,
CH4, CO) present in solid form is comparable to
that of rocky solids.

During the infall stage, the disk is very active
and probably highly turbulent as a result of the
mismatch of the specific angular momentum of the
gas hitting the disk with that required to maintain
Keplerian rotation. Gravitational instabilities and
viscous and magnetic forces may add to this activ-
ity. When the infall slows substantially or stops, the
disk becomes more quiescent. Interactions with the
gaseous component of the disk affect the dynam-
ics of small solid bodies, and the growth from
micrometer-sized dust to kilometer-sized planetes-
imals remains poorly understood. Meteorites (see
Chapter 11), minor planets and comets (see Chap-
ter 12), most of which were never incorporated
into bodies of planetary dimensions, best preserve
a record of this important period in Solar System
development.

The dynamics of larger solid bodies within pro-
toplanetary disks are better characterized. The
primary perturbations on the Keplerian orbits of
kilometer-sized and larger planetesimals in pro-
toplanetary disks are mutual gravitational inter-
actions and physical collisions. These interac-
tions lead to accretion (and in some cases erosion
and fragmentation) of planetesimals. Eventually,
solid bodies agglomerated into the terrestrial plan-
ets in the inner Solar System and into planetary
cores several times the mass of the Earth in the
outer Solar System. These massive cores were
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able to gravitationally attract and retain substantial
amounts of gaseous material from the solar neb-
ula. In contrast, terrestrial planets were not mas-
sive enough to attract and retain such gases, and the
gases in their current thin atmospheres are derived
from material that was incorporated in solid plan-
etesimals.

The planets in our Solar System orbit close
enough to one another that the final phases of plan-
etary growth could have involved the merger or
ejection of planets or planetary embryos on unsta-
ble orbits. However, the low eccentricities of the
orbits of the outer planets imply that some damp-
ing process, such as accretion/ejection of numerous
small planetesimals or interactions with residual
gas within the protoplanetary disk, must also have
been involved.

As researchers learn more about the individual
bodies and classes of objects in our Solar System,
and as simulations of planetary growth become
more sophisticated, theories about the formation
of our Solar System are being revised and (we
hope) improved. The detection of planets around
other stars has presented us with new challenges
to develop a unified theory of planet formation
that is more generally applicable. We discuss these
theories in more detail in Chapter 15.

Key Concepts

• Planets are the wanderers of the night sky,
changing in position relative to the ‘fixed’ stars.

• The study of the motions of the planets dates
back thousands of years, but most of our knowl-
edge about planets and smaller bodies within
our Solar System has been obtained during the
space age.

• The Sun dominates our Solar System in most
respects, followed by Jupiter, then Saturn and
after that the pair Uranus and Neptune.

• A wide variety of techniques are used to observe
the properties of planetary bodies. However,
some planetary characteristics, such as inte-
rior composition, cannot at present be directly
observed and can only be deduced from theoret-
ical modeling.

• When a molecular cloud core collapses, the
inner portion becomes a star. Molecular cloud
material with high angular momentum falls into
a disk around that star and is available for planet
formation.

• Whereas planets grow by accretion of small bod-
ies into larger ones, stars form via the collapse
of large clouds into smaller objects.

Further Reading

More extensive and technical accounts of most of the
topics presented in this book (other than those
connected to life) can be found in our
graduate-level textbook:

de Pater, I., and J.J. Lissauer, 2010. Planetary
Sciences, 2nd Edition. Cambridge University
Press, Cambridge. 647pp.

A good nontechnical overview of our planetary
system, complete with many beautiful color pictures,
is given by:

Beatty, J.K., C.C. Peterson, and A. Chaikin, Eds.,
1999. The New Solar System, 4th Edition. Sky
Publishing Co., Cambridge, MA and Cambridge
University Press, Cambridge. 421pp.
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A terse but detailed overview, including
reproductions of paintings of various Solar System
objects by the authors, is provided by:

Miller, R., and W.K. Hartmann, 2005. The Grand
Tour: A Traveler’s Guide to the Solar System, 3rd
Edition. Workman Publishing, New York. 208pp.

An overview of the Solar System emphasizing
atmospheric and space physics is given by:

Encrenaz, T., J.-P. Bibring, M. Blanc, M.-A. Barucci,
F. Roques, and Ph. Zarka, 2004. The Solar System,
3rd Edition. Springer-Verlag, Berlin. 512pp.

Two good overview texts aimed at college students
not majoring in science are:

Morrison, D., and T. Owen, 2003. The Planetary
System, 3rd Edition. Addison-Wesley Publishing
Company, New York. 531pp.

Hartmann, W.K., 2005. Moons and Planets, 5th
Edition. Brooks/Cole, Thomson Learning,
Belmont, CA. 428pp.

Short summaries of a multitude of topics, ranging
from mineralogy to black holes, at a level of
sophistication a bit higher than that of this book,
are provided by:

Cole, G.H.A., and M.M. Woolfson, 2002. Planetary
Science: The Science of Planets Around Stars,

Institute of Physics Publishing, Bristol and
Philadelphia. 508pp.

Chemical processes on planets and during planetary
formation are covered in some detail by:

Lewis, J.S., 2004. Physics and Chemistry of the Solar
System, 2nd Edition. Elsevier, Academic Press,
San Diego. 684pp.

The following encyclopedia forms a nice complement
to this book:

McFadden, L., P. R. Weissman, and T.V. Johnson,
Eds., 2007. Encyclopedia of the Solar System,
2nd Edition. Academic Press, San Diego.
982pp.

Extensive planetary data tables can be found in:

Yoder, C.F., 1995. Astrometric and geodetic
properties of Earth and the Solar System. In Global
Earth Physics: A Handbook of Physical Constants.
AGU Reference Shelf 1, American Geophysical
Union, 1–31.

For updated information, see http://ssd.jpl.nasa.gov.

A collection of beautiful images of planets
and astrobiology can be found at
http://fettss.arc.nasa.gov/collection/.

Problems

1-1. Because the distances between the planets
are much larger than planetary sizes, very
few diagrams or models of the Solar Sys-
tem are completely to scale. However, imag-
ine that you are asked to give an astronomy
lecture and demonstration to your niece’s
second-grade class, and you decide to
illustrate the vastness and near emptiness of
space by constructing a scale model of the

Solar System using ordinary objects. You
begin by selecting a (1-cm-diameter) mar-
ble to represent the Earth.
(a) What other objects can you use, and how
far apart must you space them?
(b) Proxima Centauri, the nearest star to
the Solar System, is 4.2 light years dis-
tant; where, in your model, would you place
it?
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1-2. The satellite systems of the giant planets
are often referred to as ‘miniature solar sys-
tems’. In this problem, you will make some
calculations comparing the satellite systems
of Jupiter, Saturn and Uranus with the Solar
System.
(a) Calculate the ratio of the sum of the
masses of the planets with that of the Sun and
similar ratios for the jovian, saturnian and
uranian systems using the respective planet
as the primary mass.
(b) Calculate the ratio of the sum of the
orbital angular momenta of the planets to
the rotational angular momentum of the Sun.
You can assume circular orbits at zero incli-
nation for all planets and ignore the effects of
planetary rotation and the presence of satel-
lites. The Sun rotates differentially, with a
mean rotation period of 25.4 days.
(c) Repeat the calculation in (b) for the
jovian, saturnian and uranian systems using
the respective planet as the primary mass.
(d) Calculate the orbital semimajor axes of
the planets in terms of solar radii and the
orbital semimajor axes of Jupiter’s moons in
jovian radii. How would a scale model of
the jovian system compare with the model
of the Solar System in Problem 1-1?

1-3. (a) Standing on the surface or floating in
the atmosphere of which Solar System
body would you see the brightest object
in the nighttime sky? Justify your
answer.
(b) Same question but assume that you are
standing on a body with a solid surface and
a significant atmosphere.

1-4. A planet that keeps the same hemisphere
pointed towards the Sun must rotate once
per orbit in the prograde direction.

(a) Draw a diagram to demonstrate this
fact. Whereas the rotation period (in an
inertial frame) or sidereal day for such a
planet is equal to its orbital period, the length
of a solar day on such a planet is infinite.
(b) Earth rotates in the prograde direction.
How many times must Earth rotate per orbit
for there to be 365.24 solar days per year?
Verify your result by comparing the length of
Earth’s sidereal rotation period (Table E.2)
with the length of a mean solar day.
(c) If a planet rotated once per orbit in the
retrograde direction, how many solar days
would it have per orbit?
(d)∗ Determine a general formula relating
the lengths of solar and sidereal days on
a planet. Use your formula to compute the
lengths of solar days on Mercury, Venus,
Mars and Jupiter.
(e)∗ For a planet on an eccentric orbit, the
length of either the solar day or the sidereal
day varies on an annual cycle. Which one
varies, and why? Calculate the length of the
longest such day on Earth. This longest day
is how much longer than the mean day of its
type?
(Note: The Earth’s obliquity causes varia-
tions in the rate of apparent motion of the
Sun along the equator, which also produce
variations in the length of the day. The equa-
tion of time accounts for both types of varia-
tions and enables accurate calculation of the
time using a sundial.)

1-5. A total solar eclipse occurs when the Moon
blocks the entire disk of the Sun, allowing
the observer to view only the Sun’s extended
atmosphere, the corona. An annular eclipse
occurs when the Moon obscures the central
portion of the Sun but a narrow annulus of
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the Sun’s photosphere can be seen surround-
ing the Moon.
(a) Using the data in Tables E.4, E.5 and
C.5, show that the eccentricities of the orbits
of Earth about the Sun and the Moon about

the Earth make it possible for both types
of eclipse to be viewed from the surface of
Earth.
(b) Which occur more frequently, total solar
eclipses or annular eclipses? Why?



CHAPTER 2

Dynamics

The Planets move one and the same way in Orbs
concentric, some inconsiderable Irregularities excepted,

which may have arisen from the mutual Actions of Planets
upon one another, and which will be apt to increase, till

this System wants a Reformation.
Isaac Newton, Opticks

24
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Dynamical studies of planetary bodies characterize
their motions, including rotation and deformation
of bodies resulting from tidal distortions. Dynam-
ics is the oldest of the planetary sciences. Grav-
itational interactions determine how the distance
of a planet from the Sun varies with time and
thus how much solar radiation the planet inter-
cepts. Rotation rates determine the length of the
day; obliquity influences pole-equator temperature
differences and seasonal variations. Tidal heating
produces extensive volcanism on bodies such as
Jupiter’s moon Io (see Fig. 10.4).

The history of observational studies of, and kine-
matical models for, planetary motions dates back
to antiquity. Modern planetary dynamics began
in the seventeenth century. In the first decades
of that century, Johannes Kepler conducted an
extensive analysis of planetary observations that
had been made in the previous decades by Tycho
Brahe. Towards the end of the seventeenth century,
Isaac Newton provided a firm basis for dynami-
cal studies by discovering physical laws that gov-
ern the motions of objects on Earth as well as in
the heavens. Albert Einstein’s (twentieth century)
theory of relativity fundamentally modified the
underlying theories of motion and gravity, but the
magnitude of relativistic corrections to planetary
motions is generally quite small (Problems 2-4 and
2-5).

In 1687, Newton showed that the relative motion
of two spherically symmetric bodies resulting from
their mutual gravitational attraction is described by
simple conic sections: ellipses for bound orbits and
parabolas and hyperbolas for unbound trajecto-
ries. However, the introduction of additional grav-
itating bodies produces a rich variety of dynami-
cal phenomena even though the basic interactions
between pairs of objects can be straightforwardly
described.

In this chapter, we describe the basic orbital
properties of Solar System objects (planets, moons,
minor bodies and dust) and their mutual interac-

tions. We also provide several examples of impor-
tant dynamical processes that occur in the Solar
System and lay the groundwork for describing
some of the phenomena that are considered in other
chapters of this book.

We begin in §2.1 with an overview of the two-
body problem, i.e., the relative motion of an iso-
lated pair of spherically symmetric objects that are
gravitationally attracted to one another. Our dis-
cussion introduces Kepler’s laws, Newton’s laws
and the terminology used to describe planetary
orbits. In the next three sections, we discuss the
consequences of gravitational interactions among
larger numbers of bodies. We consider the dynam-
ics of spherically symmetric objects of finite size
in §2.5. We relax the assumption of spherical sym-
metry in §2.6 to analyze the dynamics of rotating
planets and of orbits about them, and we consider
the effects of tidal forces on deformable bodies in
§2.7. Although gravity is the dominant force on
the motions of large bodies in the Solar System,
electromagnetic forces such as radiation pressure
substantially affect the motions of small objects,
which have larger surface area to mass ratios than
do large objects; we discuss such forces in §2.8.
We conclude the chapter with a brief overview
of orbits about a mass-losing star, which may be
important for very young and very old planetary
systems.

2.1 The Two-Body Problem

All bodies in the Universe are subject to the gravi-
tational attraction of all other bodies. But for many
planetary science applications, the trajectory of one
body is well approximated by considering just the
gravitational force exerted on it by a single other
body. We describe the analysis of this elementary
yet nontrivial problem and various applications in
this section.
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(a) (b)

Figure 2.1 (a) Geometry of an elliptical orbit. The Sun is at one focus, and the vector r� denotes the instantaneous
heliocentric location of the planet (i.e., r� is the planet’s distance from the Sun). The semimajor axis of the ellipse is a,
e denotes its eccentricity, and bm is the ellipse’s semiminor axis. The true anomaly, f , is the angle between the planet’s
perihelion and its instantaneous position. (b) Geometry of an orbit in three dimensions; i is the inclination of the orbit,
� is the longitude of the ascending node and ω is the argument of periapse. (Adapted from Hamilton 1993)

2.1.1 Kepler’s Laws of Planetary Motion

By careful analysis of the observed orbits of the
planets, Kepler deduced his three ‘laws’ of plane-
tary motion:

(1) All planets move along elliptical paths with
the Sun at one focus. We can express the
heliocentric distance, r� (i.e., the planet’s
distance from the Sun), as

r� = a(1 − e2)

1 + e cos f
, (2.1)

with a the semimajor axis (average of the
minimum and maximum heliocentric
distances). The eccentricity of the orbit,
e ≡ (1 − b2

m/a2)1/2, where 2bm is the minor
axis of the ellipse. The true anomaly, f , is
the angle between the planet’s perihelion
(where it is closest to the Sun) and its
instantaneous position. These quantities are
displayed graphically in Figure 2.1a.

(2) A line connecting any given planet and the
Sun sweeps out area, A, at a constant rate:

dA
dt

= constant. (2.2)

The value of this constant rate differs from
one planet to the next. Kepler’s second law is
illustrated in Figure 2.2.

(3) The square of a planet’s orbital period about
the Sun (in years), Pyr, is equal to the cube of
its semimajor axis (in AU), aAU:

P2
yr = a3

AU. (2.3)

A2

A1

A3

Figure 2.2 Schematic illustration of Kepler’s second law.
(Murray and Dermott 1999)
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2.1.2 Newton’s Laws of Motion
and Gravity

Isaac Newton developed the first physical model
that explained the motion of objects on Earth
and in the heavens using a single, unified theory.
Newton’s theory includes four ‘laws’, three
explaining motion and the fourth quantifying the
gravitational force.

Newton’s first law concerns inertia: A body
remains at rest or in uniform motion unless a force
is exerted upon it.

Consider a body of mass m1 at instanta-
neous location r1 with instantaneous velocity v1 ≡
dr1/dt and hence momentum m1v1. The accel-
eration produced by a net force F1 is given by
Newton’s second law of motion:

d(m1v1)

dt
= F1. (2.4)

Newton’s third law states that for every action
there is an equal and opposite reaction; thus, the
force on each object of a pair due to the other object
is equal in magnitude but opposite in direction:

F12 = −F21, (2.5)

where Fij represents the force exerted by body j
on body i .

Newton’s universal law of gravity states that a
second body of mass m2 at position r2 exerts an
attractive force on the first body given by

Fg12 = −Gm1m2

r2
r̂, (2.6)

where r ≡ r1 − r2 is the vector distance from par-
ticle 2 to particle 1, G is the gravitational constant
and r̂ ≡ r/r .

Although Kepler’s laws were originally deduced
from careful observation of planetary motion, they
were subsequently shown to be derivable from
Newton’s laws of motion together with his uni-
versal law of gravity. We present portions of this
derivation (using modern mathematics and nota-
tion) below.

2.1.3 Reduction of the Two-Body Problem
to the One-Body Problem

The equation for the relative motion of two
mutually gravitating bodies can be derived from
Newton’s laws. Consider two mutually gravitating
bodies of masses m1 and m2 and positions r1 and
r2. Newton’s second law of motion (eq. 2.4) can be
combined with his law of gravitation (eq. 2.6) to
yield the following two equations that govern the
motion of these bodies:

m1
d2r1

dt2
= − Gm1m2

|r1 − r2|3
(r1 − r2) , (2.7)

m2
d2r2

dt2
= − Gm1m2

|r2 − r1|3
(r2 − r1) . (2.8)

To separate the motion of the center of mass
from the relative motion of the two bodies, we
apply the coordinate transformation x ≡ (m1r1 +
m2r2)/(m1 + m2), r ≡ r1 − r2. Substitution and
simple algebraic manipulation yields:

(m1 + m2)
d2x
dt2

= 0, (2.9)

and

d2r
dt2

= −GM

r2
r̂, (2.10)

where M ≡ m1 + m2. Equation (2.9) implies that
the center of mass of the system does not acceler-
ate and therefore moves at constant velocity. Equa-
tion (2.10) describes the acceleration of the relative
position of the two bodies, r.

Thus, the relative motion of the two bodies is
completely equivalent to that of a particle orbiting
a fixed central mass M. This reduces the two-body
problem to an equivalent one-body problem.

2.1.4∗ Generalization of Kepler’s Laws

Having reduced the two-body problem to an equiv-
alent one-body problem, we proceed with the
derivation of (Newton’s generalization of) Kepler’s
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laws. As v ≡ dr/dt , vector calculus manipulation
implies that

d

dt
(r × v) = r × dv

dt
+ dr

dt
× v

= r × d2r
dt2

+ v × v = 0, (2.11)

where the first two equalities in equation (2.11)
are valid in general and the last equality uses the
force law given by equation (2.6). Equation (2.11)
implies that the angular momentum, L, which is
given by:

L ≡ r × mv, (2.12)

is conserved, i.e.,

dL
dt

= 0. (2.13)

In polar coordinates, the expression for the mag-
nitude of the angular momentum is just L = mrvθ .
The rate of sweeping is

dA
dt

= rvθ

2
= L

2m
. (2.14)

Conservation of angular momentum (eq. 2.12) thus
yields the Newtonian generalization of Kepler’s
second law:

(2) A line connecting two bodies (as well as lines
from each body to the center of mass) sweeps
out area at a constant rate. The value of this
constant is given by equation (2.14).

The derivation of the generalized versions of
Kepler’s first and third laws is mathematically
straightforward but rather tedious. The details of
these derivations are presented in many books and
are available on the web. We therefore only sketch
the procedure and quote the results below.

To derive Kepler’s first law, take the dot product
of v with equation (2.10) to derive the equation
of conservation of energy per unit mass. Integrate
your result to determine an expression for the spe-
cific energy of the system, E. Express your answer

in polar coordinates and solve for dr/dt . Take the
reciprocal; multiply both sides by dθ/dt ; and then
use the magnitude of the specific angular momen-
tum, L, to eliminate the angular velocity from your
expression, yielding the following purely spatial
relationship for the orbit:

dθ

dr
= 1

r

(
2Er2

L2
+ 2GMr

L2
− 1

)−1/2

. (2.15)

Integrate equation (2.15) and solve for r .
Set the constant of integration equal to −π/2,
define r0 ≡ L2/(GM) and use the relationship e =(
1 + (2EL2)/(G2M2)

)1/2
to obtain:

r = r0

1 + e cos θ
. (2.16)

For 0 ≤ e < 1, equation (2.16) represents an
ellipse in polar coordinates. Thus, Kepler’s first law
is also precise in the two-body Newtonian approxi-
mation, although the Sun itself is not fixed in space.
Note that if E = 0, then e = 1 and equation (2.16)
describes a parabola, and if E > 0, then e > 1 and
the orbit is hyperbolic. The generalized form of
Kepler’s first law reads:

(1) The two bodies move along elliptical paths,
with one focus of each ellipse located at the
center of mass (CM) of the system,

rCM = m1r1 + m2r2

M
. (2.17)

To derive Kepler’s third law, begin by show-
ing that the semimajor and semiminor axes of the
ellipse given by equation (2.16) are a = r0/(1 −
e2) and b = r0/(1 − e2)1/2, respectively. Deter-
mine the orbital period, P, by setting the integral
of dA/dt equal to the area of the ellipse, πab. The
resulting generalized form of Kepler’s third law is:

(3) The orbital period of a pair of bodies about
their mutual center of mass is given by

P2
orb = 4π2a3

GM
. (2.18)
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Note that the result given in equation (2.18) dif-
fers from Kepler’s third law by replacing the Sun’s
mass, m1, by the sum of the masses of the Sun and
the planet, M.

2.1.5 Orbital Elements

The Sun contains more than 99.8% of the mass of
the known Solar System. The gravitational force
exerted by a body is proportional to its mass
(eq. 2.6), so to an excellent first approximation
we can regard the motion of the planets and many
other bodies as being solely influenced by a fixed
central pointlike mass. For objects such as the plan-
ets, which are bound to the Sun and hence cannot
go arbitrarily far from the central mass, the general
solution for the orbit is the ellipse described by
equation (2.1).

The orbital plane, although fixed in space, can be
arbitrarily oriented with respect to whatever refer-
ence plane we have chosen. This reference plane is
usually taken to be either the Earth’s orbital plane
about the Sun, which is called the ecliptic, or the
equatorial plane of the largest body in the system,
or the invariable plane (the plane perpendicular
to the total angular momentum of the system). The
Solar System’s invariable plane is nearly coinci-
dent with the plane of Jupiter’s orbit, which is
inclined by 1.3◦ relative to the ecliptic. In this
book, we follow standard conventions and mea-
sure inclinations of heliocentric orbits with respect
to the ecliptic plane and inclinations of planeto-
centric orbits relative to the planet’s equator.

The terminology and variables used to describe
orbits are shown in Figure 2.1. The inclination,
i , of the orbit is the angle between the reference
plane and the orbital plane; i can range from 0◦ to
180◦. Conventionally, secondaries orbiting in the
same direction as the primary rotates are defined
to have inclinations from 0◦ to 90◦ and are said
to be on prograde (or direct) orbits. Secondaries
orbiting in the opposite direction are defined to

have 90◦ < i ≤ 180◦ and said to be on retrograde
orbits. For heliocentric orbits, the Earth’s orbital
plane rather than the Sun’s equator is usually taken
as the reference. The intersection of the orbital and
reference planes is called the line of nodes, and the
orbit pierces the reference plane at two locations –
one as the body passes upward through the plane
(the ascending node) and one as it descends (the
descending node). A fixed direction in the refer-
ence plane is chosen, and the angle to the direction
of the orbit’s ascending node is called the longi-
tude of the ascending node, �.

The angle between the line to the ascending node
and the line to the direction of periapse (the point
on the orbit when the two bodies are closest, which
is referred to as perihelion for orbits about the Sun
and perigee for orbits about the Earth) is called the
argument of periapse, ω. For heliocentric orbits,
� and ω are measured eastward from the vernal
equinox. The vernal equinox is the great circle
through the celestial poles that crosses the equator
at the location of the Sun on the first day of spring.
Finally, the true anomaly, f , specifies the angle
between the planet’s periapse and its instantaneous
position. Thus, the six orbital elements, a, e, i , �,
ω and f , uniquely specify the location of the object
in space (Fig. 2.1). The first three quantities, a, e,
and i , are often referred to as the principal orbital
elements because they describe the size, shape and
tilt of the orbit.

For two bodies with known masses, specifying
the elements of the relative orbit and the positions
and velocities of the center of mass is equivalent to
specifying the positions and velocities of both bod-
ies. Alternative (sets of) orbital elements are often
used for convenience. For example, the longitude
of periapse,

� ≡ � + ω, (2.19a)

can be used in place of ω. The time of perihelion
passage, t� , is commonly used instead of f as an
alternative way by which to specify the location
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of the particle along its orbital path. The mean
motion (average angular speed),

n ≡ 2π

Porb
, (2.19b)

and the mean longitude,

λ = n(t − t� ) + �, (2.19c)

are also used to specify orbital properties.

2.1.6 Bound and Unbound Orbits

For a pair of bodies to travel on a circular orbit
about their mutual center of mass, they must be
pulled towards one another enough to balance iner-
tia. Quantitatively, gravity must balance the cen-
trifugal pseudoforce that is present if the problem
is viewed as a steady state in the frame rotating
with the angular velocity of the two bodies, n. The
centripetal force necessary to keep an object of
mass m in a circular orbit of radius r with speed vc

is

Fc = mn2r = mvc
2

r
r̂. (2.20)

Equating this to the gravitational force exerted by
the central body of mass M, we find that the speed
of a circular orbit is

vc =
√

GM

r
. (2.21)

The total energy of the system, E, is a conserved
quantity:

E = 1

2
mv2 − GMm

r
= −GMm

2a
, (2.22)

where the first term in the middle expression is the
kinetic energy of the system and the second term
is potential energy. For circular orbits, the second
equality in equation (2.22) follows immediately
from equation (2.21).

If E < 0, the absolute value of the potential
energy of the system is larger than its kinetic
energy, and the system is bound: The body orbits

the central mass on an elliptical path. Simple
manipulation of equation (2.22) yields an expres-
sion for the velocity along an elliptical orbit at each
radius r :

v2 = GM

(
2

r
− 1

a

)
. (2.23)

Equation (2.23) is known as the vis viva equa-
tion. If E > 0, the kinetic energy is larger than the
absolute value of the potential energy, and the sys-
tem is unbound. The orbit is then described math-
ematically as a hyperbola. If E = 0, the kinetic
and potential energies are equal in magnitude, and
the orbit is a parabola. By setting the total energy
(eq. 2.22) equal to zero, we can calculate the escape
velocity (alternatively referred to as the escape
speed) at any separation:

ve =
√

2GM

r
=

√
2 vc. (2.24)

As noted earlier, the orbit in the two-body prob-
lem is an ellipse, parabola or hyperbola corre-
sponding to the energy being negative, zero or
positive, respectively. These curves are known col-
lectively as conic sections and are illustrated in
Figure 2.3. The generalization of equation (2.1) to
include unbound as well as bound orbits is

r = ζ

1 + e cos f
, (2.25)

where r and f have the same meaning as in equa-
tion (2.1), e is the generalized eccentricity and
ζ is a constant. Bound orbits have e < 1 and
ζ = a(1 − e2), but the generalized eccentricity can
take any non-negative value. For elliptical orbits,
the generalized eccentricity is no different from
the eccentricity defined in §2.1.1. For a parabola,
e = 1 and ζ = 2q , where q is the pericentric sep-
aration, i.e., the distance of closest approach. For
a hyperbola, e > 1 and ζ = q(1 + e); e � 1 sig-
nifies a hyperbola with only a slight bend, nearly
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ellipse circle

parabola

hyperbola

Figure 2.3 Conic sections. (Murray and Dermott 1999)

a straight line. For all orbits, the three orientation
angles i , � and ω are defined as in the elliptical
case.

Whereas the energy of an orbit is uniquely spec-
ified by its semimajor axis (eq. 2.22), the angular
momentum also depends on the orbit’s eccentri-
city:

|L| = m
√

GMa(1 − e2). (2.26)

As with energy, the angular momentum of a circu-
lar orbit follows immediately from equation (2.21).
For a given semimajor axis, a circular orbit con-
tains the maximum possible amount of angular
momentum (eq. 2.26). This occurs because when
r = a for an eccentric orbit, the magnitude of the
velocity is the same as that for a circular orbit (by
conservation of energy), but not all of this velocity
is directed perpendicular to the line connecting the
two bodies.

2.2 The Three-Body Problem

Gravity is not restricted to interactions between the
Sun and the planets or individual planets and their
satellites, but rather all bodies feel the gravitational
force of one another. The motion of two mutu-
ally gravitating bodies is completely integrable
(i.e., there exists one independent integral or con-
straint per degree of freedom), and the relative
trajectories of the two bodies are given by sim-
ple conic sections, as discussed earlier. However,
when more bodies are added to the system, addi-
tional constraints are needed to specify the motion;
not enough integrals of motion are available, so the
trajectories of even three gravitationally interact-
ing bodies cannot be deduced analytically except
in certain limiting cases. The general three-body
problem is quite complex, and little progress can
be made without resorting to numerical integra-
tions. Fortunately, various approximations based
on large differences between the masses of the
bodies and nearly circular and co-planar orbits
(which are quite accurate for most Solar System
applications) simplify the problem sufficiently
that some important analytic results may be
obtained.

If one of the bodies is of negligible mass (e.g.,
a small asteroid, a ring particle or an artificial
satellite), its effects on the other bodies may be
ignored; the simpler system that results is called
the restricted three-body problem, and the small
body is referred to as a test particle. If the rel-
ative motion of the two massive particles is a
circle, we refer to the situation as the circular
restricted three-body problem. An alternative to
the restricted three-body problem is Hill’s prob-
lem, in which the mass of one of the bodies is much
greater than the other two, but there is no restric-
tion on the masses of the two small bodies relative
to one another. An independent simplification is to
assume that all three bodies travel within the same
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plane, the planar three-body problem. Various,
but not all, combinations of these assumptions are
possible.

Most of the results presented in this section are
rigorously true only for the circular restricted three-
body problem. However, they are valid to a good
approximation for many configurations that exist
in the Solar System.

2.2.1 Jacobi’s Constant and Lagrangian
Points

Our study of the three-body problem begins by
considering an idealized system in which two mas-
sive bodies move on circular orbits about their
common center of mass. A third body is intro-
duced that is much less massive than the smaller
of the first two, so that to good approximation, it
has no effect on the orbits of the other bodies. Our
analysis is performed in a noninertial frame that
rotates about the z-axis at a rate equal to the orbital
frequency of the two massive bodies. We choose
units such that the distance between the two bod-
ies, the sum of the masses and the gravitational
constant are all equal to one; this implies that the
angular frequency of the rotating frame also equals
unity (Problem 2-6). The origin is given by the cen-
ter of mass of the pair, and the two bodies remain
fixed at points on the x-axis, r1 = (−m2/(m1 +
m2), 0) and r2 = (m1/(m1 + m2), 0). By conven-
tion, m1 ≥ m2; in most Solar System applications,
m1 � m2. The (massless) test particle is located at
r, so |r − ri| is the distance from mass m i to the
test particle. The velocity of the test particle in the
rotating frame is denoted by v.

By analyzing a modified energy integral in the
rotating frame, Carl Jacobi deduced the following
constant of motion for the circular restricted three-
body problem:

CJ = x2 + y2 + 2m1

|r − r1| + 2m2

|r − r2| − v2. (2.27)

The first two terms on the right-hand side of
equation (2.27) represent twice the centrifugal

potential energy, the next two twice the gravi-
tational potential energy and the final one twice
the kinetic energy; CJ is known as Jacobi’s con-
stant. Note that a body located far from the two
masses and moving slowly in the inertial frame
has small CJ because the gravitational potential
energy terms are small and the centrifugal poten-
tial almost exactly cancels the kinetic energy of
the test particle’s motion viewed in the rotating
frame.

For a given value of Jacobi’s constant, equation
(2.27) specifies the magnitude of the test parti-
cle’s velocity (in the rotating frame) as a func-
tion of position. Because v2 cannot be negative,
surfaces at which v = 0 bound the trajectory of
a particle with fixed CJ (note that the allowed
region need not be finite). Such zero-velocity sur-
faces, or in the case of the planar problem zero-
velocity curves, are quite useful in discussing
the topology of the circular restricted three-body
problem.

Joseph Lagrange found that in the circular
restricted three-body problem there are five points
where test particles placed at rest would feel no
net force in the rotating frame. The locations of
three of these so-called Lagrangian points (L1,
L2 and L3) lie along a line joining the two masses
m1 and m2. Zero-velocity curves intersect at each
of the three collinear Lagrangian points, which are
saddle points of the total (centrifugal + gravita-
tional) potential in the rotating frame. The other
two Lagrangian points (L4 and L5) form equilat-
eral triangles with the two massive bodies. All five
Lagrangian points are in the orbital plane of the two
massive bodies. Figure 2.4 illustrates the positions
of the Lagrangian points as well as trajectories and
zero-velocity curves of various orbits that are close
to these equilibrium positions.

Particles displaced slightly from the three
collinear Lagrangian points will continue to
move away; hence, these locations are unstable.
The triangular Lagrangian points are potential
energy maxima, but the Coriolis force stabilizes
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Figure 2.4 Schematic diagrams illustrating various properties of orbits in the circular restricted three-body problem. All
cases are shown in the frame that is centered on the primary and rotating at the orbital frequency of the two massive
bodies (corotating with the secondary). (a) Example of a tadpole orbit of a test particle viewed in the rotating frame.
(b) Similar to (a) but for a horseshoe orbit with small eccentricity. (c) As in (b) but the particle has a larger eccentricity.
(Panels a–c adapted from Murray and Dermott 1999) (d) The Lagrangian equilibrium points and various zero-velocity curves
for three values of the Jacobi’s constant, CJ. The mass ratio m1/m2 = 100. The locations of the Lagrangian equilibrium points
L1–L5 are indicated by small open circles. The white region centered on the secondary is the secondary’s Hill sphere. The
dashed line denotes a circle of radius equal to the secondary’s semimajor axis. The letters T (tadpole), H (horseshoe) and
P (passing) denote the type of orbit associated with the curves. The regions enclosed by each curve (shaded) are excluded
from the motion of a test particle that has the corresponding CJ. The largest horseshoe curve actually passes through L2,
and the largest tadpole curve passes through L3. Horseshoe orbits can exist between these two extremes. (Courtesy Carl
Murray) (e) Schematic diagram showing the relationship between a horseshoe orbit and its associated zero-velocity curve.
The particle’s velocity in the rotating frame drops as it approaches the zero-velocity curve, and it cannot cross the curve.
(Adapted from Dermott and Murray 1981)

them for m1/m2 �25, which is the case for all
known examples in the Solar System that are
more massive than the Pluto–Charon system.
If a particle at L4 or L5 is perturbed slightly,
it will start to librate about these points (i.e.,

oscillate back and forth, without circulating past
the secondary).

The L4 and L5 points are important in the
Solar System. For example, the Trojan asteroids
are located near Jupiter’s triangular Lagrangian
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points, several asteroids are known to librate about
Neptune’s L4 point, and several small asteroids,
including 5261 Eureka, are martian Trojans. There
are also small moons in the saturnian system near
the triangular Lagrangian points of Tethys and
Dione (Table E.4). The L4 or L5 points in the
Earth–Moon system have been suggested as pos-
sible locations for a future space station.

2.2.2 Horseshoe and Tadpole Orbits

Consider a moon on a circular orbit about a planet.
A particle just interior to the moon’s orbit has a
higher angular velocity and moves with respect
to the moon in the direction of corotation. A par-
ticle just outside the moon’s orbit has a smaller
angular velocity and moves relative to the moon
in the opposite direction. When the outer parti-
cle approaches the moon, the particle is pulled
towards the moon and consequently loses angu-
lar momentum. Provided the initial difference in
semimajor axis is not too large, the particle drops
to an orbit lower than that of the moon. The par-
ticle then recedes in the forward direction. Simi-
larly, the particle on the lower orbit is accelerated
as it catches up with the moon, resulting in an
outward motion towards a higher, and therefore
slower, orbit. Orbits like these encircle the L3, L4

and L5 points and appear shaped like horseshoes in
the rotating frame (Fig. 2.4b); thus they are called
horseshoe orbits. Saturn’s small moons Janus and
Epimetheus execute just such a dance, changing
orbits every 4 years, as illustrated schematically
in Figure 2.5. Because Janus and Epimetheus are
comparable in mass, Hill’s approximation is more
accurate than is the restricted three-body formal-
ism used earlier, but the dynamical interactions are
essentially the same.

Because the Lagrangian points L4 and L5 are
stable, material can librate about these points
individually; such orbits are called tadpole orbits
after their asymmetric elongated shape in the
rotating frame (Fig. 2.4a). The Trojan asteroids

Figure 2.5 Diagram of the librational behavior of the Janus
and Epimetheus co-orbital system in a frame rotating with
the average mean motion of both satellites. The system is
shown to scale, apart from the radial extent of the libra-
tional arcs being exaggerated by a factor of 500 and the
radii of the moons inflated by a factor of 50. The ratio of
the radial widths (as well as the azimuthal extents) of the
arcs is equal to the Janus/Epimetheus mass ratio (∼0.25).
The numbered points represent a temporal sequence of
positions of the two moons over approximately one-fourth
of a libration cycle. (Tiscareno et al. 2009)

librate about Jupiter’s L4 and L5 points. The
tadpole libration width at L4 and L5 is proportional
to (m2/m1)1/2r , and the horseshoe width varies as
(m2/m1)1/3r , where m1 is the mass of the primary,
m2 the mass of the secondary and r the distance
between the two objects. For a planet of Saturn’s
mass, M� = 5.7 × 1026 kg, and a typical moon of

mass m2 = 1017 kg (a 30-km-radius object with
density of ∼1000 kg m−3) at a distance of 2.5 R�,
the tadpole libration half-width is ∼3 km and the
horseshoe half-width ∼60 km.

2.2.3 Hill Sphere

The approximate limit to a secondary’s (e.g.,
planet’s or moon’s) gravitational dominance is
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Figure 2.6 The trajectories of 80 test particles in the vicinity
of a secondary of mass m2 � m1 are shown in the frame
rotating with the secondary’s (circular) orbit about the pri-
mary. The scale of the plot is expanded in the radial (x)
direction relative to that in the azimuthal (y) direction, with
numerical values in both directions given in units of the
radius of the secondary’s Hill sphere. The secondary mass is
located at the origin and the L1 and L2 points are at y = 0,
x = ±1. The particles were all started with dx/dt = 0 (i.e.,
circular orbits) at y = ± 200. The arrows indicate their direc-
tion of motion before encountering the secondary. The pri-
mary is located at y = 0, x = −∞. In an inertial frame, the
secondary and the test particles all move from right to left.
(Adapted from Murray and Dermott 1999)

given by the extent of its Hill sphere,

RH =
(

m2

3(m1 + m2)

)1/3

a, (2.28)

where m2 is the mass of the secondary and m1

the primary’s (e.g., Sun’s or planet’s) mass. The
Hill sphere stretches out to the L1 point and essen-
tially circumscribes the Roche lobe (§13.1) in the
limit m2 � m1. Planetocentric orbits that are sta-
ble over long periods of time are those well within
the boundary of a planet’s Hill sphere; all known
natural satellites lie in this region. As illustrated
in Figure 2.6, stable heliocentric orbits are always
well outside the Hill sphere of any planet. Comets
and other bodies that enter the Hill sphere of a
planet at very low velocity can remain gravitation-
ally bound to the planet for some time as tempo-
rary satellites, an example of which is shown in
Figure 2.7.

The orbits of moons that lie in the inner part of
a planet’s Hill sphere are classified as prograde if
the moons move in the sense that the planet rotates
and retrograde if they travel in the opposite sense.

(a)

(b)

800

600

600

400

400

200

200

Y
 (

Ju
pi

te
r 

ra
di

i)
Z

 (
Ju

pi
te

r 
ra

di
i)

X (Jupiter radii)

0

0

600 800400200

Y (Jupiter radii)

0

0

500

Figure 2.7 Trajectory relative to Jupiter of a test particle
initially orbiting the Sun that was temporarily captured
into an unusually long duration (140 years) unstable orbit
about Jupiter. (a) Projected into the plane of Jupiter’s orbit
about the Sun. (b) Projected into a plane perpendicular to
Jupiter’s orbit. (Kary and Dones 1996)
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However, for very distant satellites, the more
important dynamical criterion is whether they
travel in the same direction as the planet orbits
the Sun (prograde) or in the opposite sense (retro-
grade). Retrograde orbits are stable to larger dis-
tances from a planet than are prograde ones, and
moons on retrograde orbits are found at greater
distances (Table E.4).

2.3 Perturbations and Resonances

Within the Solar System, one body typically pro-
duces the dominant gravitational force on any
given object, and the resultant motion can be
thought of as a Keplerian orbit about a primary,
subject to small perturbations by other bodies.
Although perturbations on a body’s orbit are often
small, they cannot always be ignored. They must
be included in short-term calculations if high accu-
racy is required, e.g., for predicting stellar occulta-
tions or targeting spacecraft. Most long-term per-
turbations are periodic in nature, their directions
oscillating with the relative longitudes of the bod-
ies or with some more complicated function of the
bodies’ orbital elements. Small perturbations can
produce large effects if the forcing frequency is
commensurate or nearly commensurate with the
natural frequency of oscillation of the responding
elements. Under such circumstances, perturbations
add coherently, and the effects of many small tugs
can build up over time to create a large-amplitude,
long-period response. This is an example of res-
onance forcing, which occurs in a wide range of
physical systems. In this section, we consider some
important examples of the effects of these pertur-
bations on the orbital motion.

2.3.1 Resonant Forcing

An elementary example of resonance forcing is
given by the one-dimensional forced harmonic

oscillator, for which the equation of motion is

m
d2x

dt2
+ mω2

ox = Ff cos ωft, (2.29)

where m is the mass of the oscillating particle, Ff is
the amplitude of the driving force, ωo is the natural
frequency of the oscillator and ωf is the forcing
frequency. The solution to equation (2.29) is

x = Ff

m
(
ω2

o − ω2
f

) cos ωf t+C1 cos ωot+C2 sin ωot,

(2.30)

where C1 and C2 are constants determined by the
initial conditions. Note that if ωf ≈ ωo, a large-
amplitude, long-period response can occur even if
Ff is small. Moreover, if ωo = ωf , equation (2.30)
is invalid. In this (resonant) case, the solution is
given by

x = Ff

2mωo
t sin ωot + C1 cos ωot + C2 sin ωot .

(2.31)

The t in the middle of the first term at the right-
hand side of equation (2.31) leads to secular (i.e.,
steady rather than periodic) growth. Often this lin-
ear growth is moderated by the effects of nonlinear
terms that are not included in the simple exam-
ple provided above. However, some perturbations
have a secular component.

2.3.2 Mean Motion Resonances

The simplest celestial resonances to visualize are
so-called mean motion resonances, in which the
orbital periods of two bodies are commensurate
(e.g., have a ratio of the form N/(N + 1) or
N/(N + 2), where N is an integer). Some examples
of the consequences of mean motion resonance are
given below. Almost exact orbital commensurabil-
ities exist at many places in the Solar System. As
illustrated in Figure 2.8, Io orbits Jupiter twice
as frequently as Europa does, and Europa in turn
orbits Jupiter in half of the time that Ganymede
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Figure 2.8 Schematic illustration of the orbital resonances between the three inner Galilean satellites of Jupiter. Successive
views represent the system at times separated by one orbital period of the moon Io, PI. The configuration at 4 PI is identical
to that at t = 0. (From Perryman 2011)

takes. Conjunction (the moons being at the same
longitude in their orbits about the planet) between
Io and Europa always occurs when Io is at its peri-
jove (the point in its orbit that is closest to Jupiter).
How can such commensurabilities exist? After all,
the rational numbers form a set of measure zero
on the real line, which means that the probabil-
ity of randomly picking a rational from the real
number line is nil! The answer lies in the fact that
orbital resonances may be held in place by sta-
ble ‘locks’ that result from nonlinear effects not
represented in the simple mathematical example of
the harmonic oscillator. Differential tidal recession
(§2.7.2) brings moons into resonance, and nonlin-
ear interactions between the moons can keep them
there.

Other examples of resonance locks include the
Hilda and Trojan asteroids with Jupiter, Neptune–
Pluto, and several pairs of moons orbiting Saturn,
such as Janus–Epimetheus, Mimas–Tethys and
Enceladus–Dione. Resonant perturbations can
force bodies into eccentric and/or inclined orbits,
which may lead to collisions with other bodies;
this is thought to be the dominant mechanism for
clearing the Kirkwood gaps in the asteroid belt
(see below). Several moons of Jupiter and Saturn
have significant resonantly produced forced
eccentricities, which are denoted by the symbol
f in Table E.4.

Spiral waves can be produced in a self-gravita-
ting disk of particles by resonant perturbations of a

satellite. Spiral density waves resonantly excited
by moons are observed in Saturn’s rings (§13.4.2).
Analogous waves in protoplanetary disks can alter
the orbits of young planets (§15.7.1).

2.3.3 Secular Resonances

Although many interactions among planets depend
on their relative azimuthal positions, some impor-
tant long-term effects are produced by the shapes
and orientations of their orbits (eccentricities, apse
locations, inclinations and nodes). Secular pertur-
bation theory averages over orbital timescales and
treats planets as elliptical wires of nonuniform den-
sity, with density corresponding to the time spent
at a given phase of the orbit according to Kepler’s
second law (§2.1.1). Secular perturbations can alter
the eccentricity and inclination of an orbit but not
its semimajor axis. A secular resonance occurs
when the apses or nodes of two orbits precess at
the same rate.

In the restricted circular three-body problem,
secular perturbations can change the small body’s
eccentricity and its inclination relative to the
orbit of the two massive bodies, but the quantity√

1 − e2 cos i remains constant. Orbital inclination
can thus be traded for eccentricity. For high values
of inclination, cos2 i < 3/5, the Kozai mechanism
forces the argument of periapse to remain fixed,
and large periodic variations in eccentricity and
inclination are produced. The Kozai mechanism
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causes some asteroids and comets to approach
closely to and even collide with the Sun (§12.3.5)
and highly inclined irregular satellites to col-
lide with their planets. It is also likely to be
one of the mechanisms responsible for the high
observed eccentricities of some extrasolar planets
(Fig. 14.22) and the high inclinations some of these
planets’ orbits have relative to the planes of their
star’s equator (§14.2.3).

2.3.4 Resonances in the Asteroid Belt

There are obvious patterns in the distribution of
asteroidal semimajor axes that appear to be asso-
ciated with mean motion resonances with Jupiter
(Fig. 12.2a). At these resonances, a particle’s
period of revolution about the Sun is a small inte-
ger ratio multiplied by Jupiter’s orbital period.
The Trojan asteroids travel in a 1:1 mean motion
resonance with Jupiter. Trojan asteroids execute
small-amplitude (tadpole) librations about the L4

and L5 points 60◦ behind or ahead of Jupiter and
therefore never have a close approach to Jupiter.
Another example of a protection mechanism pro-
vided by a resonance is the Hilda group of aster-
oids at Jupiter’s 3:2 mean motion resonance and
the asteroid 279 Thule at the 4:3 resonance. The
Hilda asteroids have a libration about 0◦ of their
critical argument (the combination of orbital ele-
ments that signifies the resonant configuration),
3λ′ − 2λ − � , where λ′ is Jupiter’s longitude, λ

is the asteroid’s longitude and � is the asteroid’s
longitude of perihelion. In this way, whenever the
asteroid is in conjunction with Jupiter (λ = λ′), the
asteroid is close to perihelion (λ′ ≈ � ) and well
away from Jupiter.

Most orbits starting with small eccentricity in
the general vicinity of the 3:1 mean motion reso-
nance with Jupiter appear regular and show very
little variation in eccentricity or semimajor axis
over timescales of 5 × 104 yrs. However, orbits
near the resonance can maintain a low eccentricity
(e < 0.1) for nearly a million years and then have a

‘sudden’ increase in eccentricity to e > 0.3. Aster-
oids that begin on near-circular orbits in the gap
acquire sufficient eccentricities to cross the orbits
of Mars and the Earth and in some cases become so
eccentric that they hit the Sun, so the perturbative
effects of the terrestrial planets are probably capa-
ble of clearing out the 3:1 gap in a time equivalent
to the age of the Solar System.

The ν6 secular resonance occurs where the peri-
apse angle of an asteroid precesses at the rate of
the sixth secular frequency of our Solar System,
which is essentially the same as the precession rate
of Saturn’s periapse. Perturbations resulting from
the ν6 resonance can excite asteroidal eccentricities
to such high values that the ν6 resonance is largely
responsible for the inner edge of the asteroid belt
near 2.1 AU.

2.3.5 Regular and Chaotic Motion

Direct integrations of multi-body systems on com-
puters demonstrate that for some initial conditions,
the trajectories are regular with variations in their
orbital elements that seem to be well described by
the perturbation series, but for other initial condi-
tions, the trajectories are found to be chaotic and
are not as confined in their motions. The evolution
of a system that is chaotic depends so sensitively on
the system’s precise initial state that the behavior
is in effect unpredictable even though it is strictly
determinate in a mathematical sense.

Figure 2.9 shows a key feature of chaotic orbits
that we use here as a definition of chaos: Two tra-
jectories that begin arbitrarily close in phase space
(which can be defined using coordinates such as
positions and velocities, or a more complicated
set of orbital elements) within a chaotic region
typically diverge exponentially in time. Within a
given chaotic region, the timescale for this diver-
gence does not typically depend on the precise
values of the initial conditions! The distance, d(t),
between two particles having an initially small sep-
aration, d(0), increases slowly for regular orbits,
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Figure 2.9 Distinction between regular (lower curve, nearly
straight) and chaotic trajectories (upper curve) as character-
ized by the Lyapunov characteristic exponent, γc. Both tra-
jectories are near the 3:1 resonance with Jupiter, and they
have been integrated using the elliptic restricted three-
body problem. For chaotic trajectories, a plot of log γc ver-
sus log t eventually levels off at a value of γc that is the
inverse of the Lyapunov timescale for the divergence of ini-
tially adjacent trajectories. For regular trajectories, γc → 0
as t → ∞. (Adapted from Duncan and Quinn 1993)

with d(t) − d(0) growing as a power of time t (typ-
ically linearly). In contrast, for chaotic orbits,

d(t) ∼ d(0)eγct , (2.32)

where γc is the Lyapunov characteristic expo-
nent and γ −1

c is the Lyapunov timescale. From
this definition of chaos, we see that chaotic orbits
show such a sensitive dependence on initial con-
ditions that the detailed long-term behavior of the
orbits is lost within several Lyapunov timescales.
Even a fractional perturbation as small as 10−10 in
the initial conditions will result in a 100% discrep-
ancy in about 20 Lyapunov times. However, one
of the interesting features of much of the chaotic
behavior seen in simulations of the orbital evo-
lution of bodies in the Solar System is that the
timescale for large changes in the principal orbital
elements is often many orders of magnitude longer
than the Lyapunov timescale.

In dynamical systems such as the Solar System,
chaotic regions do not appear randomly; rather,
many of them are associated with trajectories in

which the ratios of characteristic frequencies of
the original problem are sufficiently well approx-
imated by rational numbers, i.e., near resonances.
Figure 2.10 shows that the outer boundaries of the
chaotic zone coincide well with the boundaries of
the 3:1 Kirkwood gap.

The above discussion applies to orbits that do not
closely approach any massive secondaries. Close
approaches can lead to highly chaotic and unpre-
dictable orbits, such as the possible future behav-
iors of the giant, distant cometary centaur Chiron
shown in Figure 2.11 (see §12.2.2.). These planet-
crossing trajectories do not require resonances to
be unstable and generally are not well character-
ized by a constant Lyapunov exponent.

For nearly circular and coplanar orbits, the
strongest mean motion resonances occur at loca-
tions where the ratio of test particle orbital peri-
ods to the massive body’s period is of the form

e
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Figure 2.10 The outer boundaries of the chaotic zone sur-
rounding Jupiter’s 3:1 mean motion resonance in the a–e
plane are shown as lines. Locations of numbered asteroids
are shown as circles and Palomar–Leiden survey asteroids
(whose orbits are less well determined) are represented
as plus signs. Note the excellent correspondence of the
observed 3:1 Kirkwood gap with theoretical predictions.
(Adapted from Wisdom 1983)
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Figure 2.11 COLOR PLATE The future evolution of the semimajor axis of P/Chiron’s orbit according to 11 numeri-
cal integrations. The initial orbital elements of the simulated bodies differed by about 1 part in 106. The orbit of
Chiron currently crosses the orbits of both Saturn and Uranus, and is not protected from close approaches with
either planet by any resonance. Chiron’s orbit is highly chaotic, with gross divergence of trajectories in <104 years.
(Courtesy L. Dones)

N:(N ± 1), where N is an integer. At these loca-
tions, conjunctions (closest approaches) always
occur at the same phase in the orbit, and tugs
add coherently. (The locations of these strong res-
onances are shifted slightly when the primary is
oblate; see §§2.6 and 13.4 for details.) The strength
of these first-order resonances increases as N grows
because the magnitudes of the perturbations are
larger closer to the secondary. First-order reso-
nances also become closer to one another near the
orbit of the secondary (Problem 2-7). Sufficiently
close to the secondary, the combined effects of
greater strength and smaller spacing cause reso-
nance regions to overlap; this overlapping can lead
to the onset of chaos as particles shift between the
nonlinear perturbations of various resonances. The
region of overlapping resonances is approximately

symmetric about the planet’s orbit and has a half-
width, �aro, given by

�aro ≈ 1.5

(
m2

m1

)2/7

a, (2.33)

where a is the semimajor axis of the planet’s orbit.
Whereas the functional form of equation (2.33)
has been derived analytically, the coefficient 1.5 is
a numerical result.

2.4 Stability of the Solar System

We turn now to one of the oldest problems in
dynamical astronomy: whether or not the planets
will continue indefinitely in almost circular, almost
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Figure 2.12 The eccentricities
of the eight major planets are
shown for 6 × 106 years cen-
tered on the present epoch.
Mercury’s eccentricity is dis-
played in the top panel fol-
lowed by that of each of the
other planets in order of their
heliocentric distance. Note the
relatively large amplitudes of
the variations of the two small-
est planets, Mercury and Mars,
and the correlated oscillations
of e⊕ with those of e♀ and of e�
with those of e�. (Courtesy Tom
Quinn; see Laskar et al. 1992
for an explanation of the inte-
gration used to compute these
values)

coplanar orbits. From an astronomical viewpoint,
stability implies that the system will remain bound
(no ejections), that no mergers of planets will occur
for the possibly long but finite period of interest
and that this result is robust against (most if not
all) sufficiently small perturbations.

2.4.1 Orbits of the Eight Planets

Figure 2.12 shows the behavior of the eccentrici-
ties of all eight planets for 3 million years into the
past as well as into the future. Mercury’s eccentric-
ity reaches higher values on 108-year timescales,

as can be seen in Figure 2.13, but the eccen-
tricities of the other planets do not extend much
beyond their range shown in Figure 2.12 over this
time interval. Variations in the semimajor axis of
Earth’s orbit over ±3 Myr are shown in Figure
2.14. The small fractional changes in semima-
jor axis relative to the variations in eccentricity
evident for Earth are characteristic of all eight
planets.

Long-duration numerical integrations show
a surprisingly high Lyapunov exponent,
∼(5 Myr)−1. Such large Lyapunov exponents
certainly suggest chaotic behavior. However, the
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Figure 2.13 Variations in the eccentricity of Mercury’s orbit over the past 100 million years. Integrations included the Sun,
all eight planets and first-order post-Newtonian effects of general relativity; the eccentricities of all of the planets over the
past 3 million years look the same in the integration used to produce this figure as those shown in Figure 2.12. (Courtesy
Julie Gayon)

apparent regularity of the motion of the Earth,
and indeed the fact that the Solar System has
survived for 4.5 billion years, implies that any
pathways through phase space that might lead
to (highly chaotic) close approaches must be
narrow. Nonetheless, the exponential divergence
seen in all long-term integrations implies that the
accuracy of the deterministic equations of celestial
mechanics to predict the future positions of the
planets will always be limited by the accuracy
with which their orbits can be measured. For
example, even if the position of Earth along its
orbit were to be known to within 1 cm today and

all other planetary masses, positions and velocities
were known exactly, the exponential propagation
of errors that is characteristic of chaotic motion
implies that we would still have no knowledge of
Earth’s orbital longitude 200 million years in the
future.

The situation is even less predictable when
the gravitational influence of smaller bodies is
accounted for. Asteroids exert small perturbations
on the orbits of the major planets. These pertur-
bations can be accounted for and do not adversely
affect the precision to which planetary orbits can
be simulated on timescales of tens of millions of

0.0
0.5
1.0

0
Myr from present

1 2 3

Figure 2.14 Variations in the semimajor axis of Earth’s orbit (more precisely, the semimajor axis of the center of mass
of the Earth–Moon system) over a time interval of 6 million years centered on the present epoch. Note the scale of the
vertical axis, which indicates that the Earth’s semimajor axis varies by only a few kilometers over timescales of millions
of years. These data were taken from the integrations used to produce the plot of eccentricities of the planets shown in
Figure 2.12. (Courtesy Tom Quinn)
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years. However, unlike the major planets, aster-
oids suffer close approaches to one another and
thus are subject to the types of chaos depicted in
Figure 2.11. Close approaches between the two
largest and most massive asteroids, 1 Ceres and
4 Vesta (Tables E.6 and E.8), lead to exponential
growth in uncertainty for backwards integrations
of planetary orbits with doubling times of <106

years prior to 50–60 million years ago.
It is also worth bearing in mind the lessons

learned from integration of test particle trajecto-
ries, namely that the timescale for macroscopic
changes in the system can be many orders of mag-
nitude longer than the Lyapunov timescales. Thus,
the apparent stability of the current planetary sys-
tem on billion-year timescales may simply be a
manifestation of the fact that the Solar System
is in the chaotic sense a dynamically young sys-
tem. Indeed, there is a small but nontrivial chance
that Mercury’s orbit will become so eccentric that
it will cross the orbit of Venus before the Sun
evolves off the main sequence 6 billion years from
now.

Because planetary perturbations appear to be
capable of bringing the Solar System to the verge
of instability on geological timescales, the plan-
ets within our Solar System may be about as
closely spaced as can be expected for a mature
planetary system containing planets as massive as
those orbiting the Sun. Although somewhat more
crowded configurations can be long lived, it may
well be that the planet formation process (see
Chapter 15) is unlikely to produce more densely
packed systems of similar planets that survive on
gigayear timescales.

2.4.2 Survival Lifetimes of Small Bodies

Interplanetary space is vast, yet few bodies orbit
within this great expanse. And those few bodies are
far from randomly distributed. Rather, minor plan-
ets are concentrated within a few regions (§12.2):
the Kuiper belt beyond Neptune’s orbit, the main

asteroid belt between the orbits of Mars and Jupiter,
the regions surrounding the triangular Lagrangian
points of the Sun–Jupiter system (§2.2.1), and
probably around the regions surrounding the
triangular Lagrangian points of the Sun–Neptune
system. Dynamical analyses show that orbits
within these regions remain stable for far longer
than trajectories passing through most other loca-
tions in the Solar System. What causes the removal
of bodies from other regions of the Solar System?
How rapidly are they removed?

Trajectories crossing the paths of one or more of
the major planets are rapidly destabilized by scat-
terings resulting from close planetary approaches
unless they are protected by some type of reso-
nance (as is Pluto). Small bodies can remain on
orbits between a pair of terrestrial planets or a
pair of giant planets for much longer, but most are
perturbed into planet-crossing paths in less than
the age of the Solar System by the same reso-
nance overlap-induced chaos that makes planetary
orbits unpredictable on long timescales. Lifetimes
of orbits vary greatly, and collections of test parti-
cles spread randomly over even fairly small regions
of phase space last for quite diverse amounts of
time. Figure 2.15 illustrates stability times for test
particles located exterior to 5 AU; note the loga-
rithmic scale for the time axis. Loss rates are rapid
early on, but as particles near the stronger res-
onances are removed, it takes longer and longer
for a given fraction of the remaining bodies to be
destabilized. This decay rate is more gradual than
that of other natural processes, such as radioactivity
(§3.4), in which the population drops exponentially
with time (§11.6.1).

2.5∗ Dynamics of Spherical Bodies

Thus far we have approximated Solar System bod-
ies as point masses for the purpose of calculating
their mutual gravitational interactions. Self-gravity
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Figure 2.15 Stability map for test particles in the outer Solar System based on numerical integrations that include the Sun
and the four giant planets. The time that each particle survived is plotted as a function of particle initial semimajor axis.
For each semimajor axis bin, six particles were started at differing longitudes. The vertical bars mark the minimum of the
six termination times. The points mark the termination times of the other five particles. The scatter of points gives an
idea of the spread in particle lifetimes at each semimajor axis. The locations of the planets are denoted on the top of the
figure; the spikes in particle lifetimes near these semimajor axes represent particles initially in tadpole or horseshoe orbits.
The integrations extend to 4.5 × 109 years for particles initially interior to Neptune and to 109 years for those farther out.
Only a few particles initially interior to Neptune survived the entire integrations, but many particles exterior to 33 AU and
all particles beyond about 43 AU remained on non–planet-crossing orbits for the entire time interval simulated. (Courtesy
Matt Holman; see Holman 1997 for details on the calculations)

causes most large celestial bodies to be approxi-
mately spherically symmetric.

2.5.1 Moment of Inertia

The moment of inertia, I, of a body about a partic-
ular axis is defined as

I ≡
∫ ∫ ∫

ρ(r)r2
c dr, (2.34)

where rc is the distance from the axis and the
integral is taken over the entire body. The rota-
tional angular momentum of a simply rotating rigid

body is given by

L =
∫ ∫ ∫

ρ(r)(r × v) dr

=
∫ ∫ ∫

ρ(r)r2
c ωrotdr = Iωωωrot, (2.35)

whereωωωrot is its spin angular velocity. Orbital angu-
lar momentum is given by equations (2.12) and
(2.26). Analogously, the kinetic energy of rotation
is given by

Erot = 1

2
Iω2

rot = 1

2
ωrotL. (2.36)
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The moment of inertia of a uniform density
sphere of radius R and mass m about its center
of mass can be computed directly by performing
the integration specified in equation (2.34) over the
sphere. However, a more elegant and less tedious
method exploits the symmetry of the sphere as
follows. Note that to compute I about the z-axis, we
have r2

c = x2 + y2; about the x-axis, r2
c = y2 + z2;

and about the y-axis, r2
c = x2 + z2. By symme-

try, these three integrals are equal, so adding them
gives:

3I =
∫ ∫ ∫

ρ(2x2 + 2y2 + 2z2)dr. (2.37)

The quantity in parentheses in equation (2.37) is
equal to 2r2, so the integral can most easily be
performed using spherical coordinates. Dividing
both sides by 3 and noting that the integrations in
the angular coordinates give the surface area of a
spherical shell, 4πr2, yields:

I = 8πρ

3

∫ R

0
r4dr = 2

5
mR2. (2.38)

Centrally condensed bodies have moment of
inertia ratios I/(mR2) < 2/5 (Problem 2-10). The
moment of inertia ratios for the planets are listed
in Table E.15.

2.5.2 Gravitational Interactions

Newton showed that the gravitational force exerted
by a spherically symmetric body exterior to its
surface is identical to the gravitational force of a
pointlike particle of the same mass located at the
body’s center. We derive this result below using
multiple integration of the gravitational potential,
which is defined in the next paragraph.

For many applications, it is convenient to
express the gravitational field in terms of a poten-
tial, �g(r), defined as:

�g(r) ≡ −
∫ r

∞

Fg(r′)
m

· dr′. (2.39)

By inverting equation (2.39), one can see that the
gravitational force is the gradient of the potential
and

d2r
dt2

= −∇�g. (2.40)

In general, �g(r) satisfies Poisson’s equation:

∇2�g = 4πρG. (2.41a)

In empty space, ρ = 0, so �g(r) satisfies Laplace’s
equation:

∇2�g = 0. (2.41b)

A spherically symmetric body can be viewed
as the sum of thin concentric shells, each of uni-
form surface density. Without loss of generality,
consider a shell of radius R and surface density
unity centered at the origin and evaluate the poten-
tial at a location r, where r > R. Subdivide the
shell into rings that are oriented perpendicular to
the direction from the center of the sphere to the
point at which the potential is being evaluated. As
illustrated in Figure 2.16, let θ denote the angle
between lines from the origin to a point on the
ring and to r. The mass of the ring is given by
2πR sin θ . The potential of the shell at the point
under consideration is given by:

�g =
∫ π

0
2πR sin θ

1

r ′ Rdθ, (2.42)

where r ′ denotes the distance from the point at
which the potential is being evaluated. The law of
cosines gives the square of r ′ as:

r ′2 = R2 + r2 − 2rR cos θ. (2.43)

Because r and R are constant, we may differentiate
equation (2.43) and rearrange the terms to obtain:

sin θ

r ′ dθ = dr ′

Rr
. (2.44)

Substituting equation (2.44) into equation (2.42)
yields:

�g = 2πR2
∫ r+R

r−R

dr ′

Rr
= 4πR2

r
. (2.45)



Dynamics 46

m

m

r

r

R dθ

R

Fg

r'

R sin θ

θ

m

Figure 2.16 Diagram showing the notation used in the cal-
culation of the gravitational potential exterior to a uniform
sphere.

The value of �g given in equation (2.45) is equal
to the area of the sphere (and thus to its mass if
surface density of unity is assumed) divided by the
distance from its center to the point at which the
potential is being evaluated. This value is identical
to the potential of a point particle of the same mass

located at the center of the sphere, completing the
proof.

2.6 Orbits about an Oblate Planet

Several forces act to produce distributions of mass
that deviate from spherical symmetry. In the Solar
System, rotation, physical strength and tides pro-
duce important departures from spherical symme-
try in some bodies. The gravitational field near
an aspherical body differs from that near a point-
mass. The gravity field can be determined to quite
high accuracy by tracking the orbits of spacecraft
close to the body or from the rate of precession
of the periapses of moons and rings orbiting the
planet. The gravity field of a planet or moon con-
tains information on the body’s internal density
structure.

Most planets are very nearly axisymmetric, with
the major departure from sphericity being due to a
rotationally induced equatorial bulge. Thus, in this
section, we analyze the effects of an axisymmetric
body’s deviation from spherical symmetry on the
gravitational force that it exerts and on its response
to external torques.

2.6.1∗ Gravity Field

The analysis of the gravitational field of an
axisymmetric planet is most conveniently done by
using the Newtonian gravitational potential, �g(r),
which is defined in equation (2.39). Because �g(r)
in free space satisfies Laplace’s equation (2.41b),
the gravitational potential exterior to a planet can
be expanded in terms of Legendre polynomials:

�g(r,φ,θ )=−Gm

r

[
1−

∞∑
n=2

JnPn(cos θ )

(
R

r

)n
]
.

(2.46)

Equation (2.46) is written in standard spherical
coordinates, with φ the longitude and θ represent-
ing the angle between the planet’s symmetry axis


