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Preface

In 1915 Godfrey Harold Hardy, in a famous paper published in the Proceedings
of the London Mathematical Society, answered in the affirmative a question of
Landau [7]. In this paper, not only did Hardy generalize Hadamard’s three-circle
theorem, but he also put in place the first brick of a new branch of mathematics
which bears his name: the theory of Hardy spaces. For three decades afterwards
Hardy, alone or with others, wrote many more research articles on this subject.

The theory of Hardy spaces has close connections to many branches of math-
ematics, including Fourier analysis, harmonic analysis, singular integrals, proba-
bility theory and operator theory, and has found essential applications in robust
control engineering. I have had the opportunity to give several courses on Hardy
spaces and some related topics. A part of these lectures concerned the various
representations of harmonic or analytic functions in the open unit disc or in the
upper half plane. This topic naturally leads to the representation theorems in
Hardy spaces.

There are excellent books [5, 10, 13] and numerous research articles on Hardy
spaces. Our main concern here is only to treat the representation theorems.
Other subjects are not discussed and the reader should consult the classical
textbooks. A rather complete description of representation theorems of Hp(D),
the family of Hardy spaces of the open unit disc, is usually given in all books.
To study the corresponding theorems for Hp(C+), the family of Hardy spaces
of the upper half plane, a good amount of Fourier analysis is required. As a
consequence, representation theorems for the upper half plane are not discussed
thoroughly in textbooks mainly devoted to Hardy spaces. Moreover, quite often
it is mentioned that they can be derived by a conformal mapping from the
corresponding theorems on the open unit disc. This is a useful technique in
certain cases and we will also apply it at least on one occasion. However, in the
present text, our main goal is to give a complete description of the representation
theorems with direct proofs for both classes of Hardy spaces. Hence, certain
topics from Fourier analysis have also been discussed. But this is not a book
about Fourier analysis, and we have been content with the minimum required
to obtain the representation theorems. For further studies on Fourier analysis
many interesting references are available, e.g. [1, 8, 9, 15, 21].

I express my appreciation to the many colleagues and students who made
valuable comments and improved the quality of this book. I deeply thank Colin
Graham and Mostafa Nasri, who read the entire manuscript and offered several



xii

suggestions and Masood Jahanmir, who drew all the figures. I am also grateful
to Roger Astley of the Cambridge University Press for his great management
and kind help during the publishing procedure.

I have benefited from various lectures by Arsalan Chademan, Galia Dafni,
Paul Gauthier, Kohur GowriSankaran, Victor Havin, Ivo Klemes and Paul
Koosis on harmonic analysis, potential theory and the theory of Hardy spaces.
As a matter of fact, the first draft of this manuscript dates back to 1991, when
I attended Dr Chademan’s lectures on the theory of Hp spaces. I take this
opportunity to thank them with all my heart.

Thanks to the generous support of Kristian Seip, I visited the Norwegian
University of Science and Technology (NTNU) in the fall semester of 2007–
2008. During this period, I was able to concentrate fully on the manuscript and
prepare it for final submission to the Cambridge University Press. I am sincerely
grateful to Kristian, Yurii Lyubarski and Eugenia Malinnikova for their warm
hospitality in Trondheim.

I owe profound thanks to my friends at McGill University, Université Laval
and Université Claude Bernard Lyon 1 for their constant support and encour-
agement. In particular, Niky Kamran and Kohur GowriSankaran have played
a major role in establishing my mathematical life, Thomas Ransford helped me
enormously in the early stages of my career, and Emmanuel Fricain sends me
his precious emails on a daily basis. The trace of their efforts is visible in every
single page of this book.

Québec
August 2008
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Chapter 1

Fourier series

1.1 The Laplacian

An open connected subset of the complex plane C is called a domain. In par-
ticular, C itself is a domain. But, for our discussion, we are interested in two
special domains: the open unit disc

D = { z ∈ C : |z| < 1 }

whose boundary is the unit circle

T = { ζ ∈ C : |ζ| = 1 }

Fig. 1.1. The open unit disc D and its boundary T.

1



2 Chapter 1. Fourier series

and the upper half plane

C+ = { z ∈ C : �z > 0 }

whose boundary is the real line R (see Figures 1.1 and 1.2). They are essential
domains in studying the theory of Hardy spaces.

Fig. 1.2. The upper half plane C+ and its boundary R.

The notations

D(a, r) = { z ∈ C : |z − a| < r },
D(a, r) = { z ∈ C : |z − a| ≤ r },
∂D(a, r) = { z ∈ C : |z − a| = r }

for the open or closed discs and their boundaries will be used frequently too.
We will also use Dr for a disc whose center is the origin, with radius r.

The Laplacian of a twice continuously differentiable function U : Ω −→ C is
defined by

∇2 U =
∂2U

∂x2 +
∂2U

∂y2 .

If 0 �∈ Ω and we use polar coordinates, then the Laplacian becomes

∇2 U =
∂2 U

∂ r2
+

1
r

∂ U

∂ r
+

1
r2

∂2 U

∂ θ2
.

We say that U is harmonic on Ω if it satisfies the Laplace equation

∇2 U = 0 (1.1)

at every point of Ω. By direct verification, we see that

U(reiθ) = rn cos(nθ), (n ≥ 0),
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and
U(reiθ) = rn sin(nθ), (n ≥ 1),

are real harmonic functions on C. Since (1.1) is a linear equation, a complex-
valued function is harmonic if and only if its real and imaginary parts are real
harmonic functions. The complex version of the preceding family of real har-
monic functions is

U(reiθ) = r|n| einθ, (n ∈ Z).

A special role is played by the constant function U ≡ 1 since it is the only
member of the family whose integral means

1
2π

∫ π

−π
U(reiθ) dθ

are not zero. This fact is a direct consequence of the elementary identity

1
2π

∫ π

−π
einθ dθ =




1 if n = 0,

0 if n �= 0,
(1.2)

which will be used frequently throughout the text.
Let F be analytic on a domain Ω and let U and V represent respectively its

real and imaginary parts. Then U and V are infinitely continuously differen-
tiable and satisfy the Cauchy–Riemann equations

∂U

∂x
=
∂V

∂y
and

∂U

∂y
= −∂V

∂x
. (1.3)

Using these equations, it is straightforward to see that U and V are real har-
monic functions. Hence an analytic function is a complex harmonic function.
In the following we will define certain classes of harmonic functions, and in each
class there is a subclass containing only analytic elements. Therefore, any rep-
resentation formula for members of the larger class will automatically be valid
for the corresponding subclass of analytic functions.

Exercises

Exercise 1.1.1 Let F be analytic on Ω and let U = 
F and V = �F . Show
that U and V are real harmonic functions on Ω.
Hint: Use (1.3).

Exercise 1.1.2 Let F : Ω �−→ C be analytic on Ω, and suppose that F (z) �= 0
for all z ∈ Ω. Show that log |F | is harmonic on Ω.
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Exercise 1.1.3 Let U be harmonic on the annular domain

A(R1, R2) = { z ∈ C : 0 ≤ R1 < |z| < R2 ≤ ∞}.

Show that U(1
r e

iθ) is harmonic on the annular domain A( 1
R2
, 1
R1

).

Exercise 1.1.4 Let F : Ω1 �−→ Ω2 be analytic on Ω1, and let U : Ω2 �−→ C
be harmonic on Ω2. Show that U ◦ F : Ω1 �−→ C is harmonic on Ω1.

Exercise 1.1.5 Define the differential operators

∂ =
1
2

(
∂

∂x
− i ∂

∂y

)
,

∂̄ =
1
2

(
∂

∂x
+ i

∂

∂y

)
.

Show that
∇2 = 4∂∂̄.

Exercise 1.1.6 Let F = U+ iV be analytic. Show that the Cauchy–Riemann
equations (1.3) are equivalent to the equation

∂̄F = 0.

Remark: We also have F ′ = ∂F .

Exercise 1.1.7 Let U1 and U2 be real harmonic functions on a domain Ω.
Under what conditions is U1 U2 also harmonic on Ω?
Remark: We emphasize that U1 and U2 are real harmonic functions. The answer
to this question changes dramatically if we consider complex harmonic functions.
For example, if F1 and F2 are analytic functions, then, under no extra condition,
F1 F2 is analytic. Note that an analytic function is certainly harmonic.

Exercise 1.1.8 Let U be a real harmonic function on a domain Ω. Suppose
that U2 is also harmonic on Ω. Show that U is constant.
Hint: Use Exercise 1.1.7.

Exercise 1.1.9 Let F be analytic on a domain Ω, and let Φ be a twice
continuously differentiable function on the range of F . Show that

∇2(Φ ◦ F ) =
(
(∇2Φ) ◦ F

)
|F ′|2.
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Exercise 1.1.10 Let F be analytic on a domain Ω, and let α ∈ R. Suppose
that F has no zeros on Ω. Show that

∇2(|F |α) = α2 |F |α−2 |F ′|2.

Hint: Apply Exercise 1.1.9 with Φ(z) = |z|α.

Exercise 1.1.11 Let F be analytic on a domain Ω. Under what conditions is
|F |2 harmonic on Ω?
Hint: Apply Exercise 1.1.10.

Exercise 1.1.12 Let F be a complex function on a domain Ω such that F
and F 2 are both harmonic on Ω. Show that either F or F̄ is analytic on Ω.
Hint: Use Exercise 1.1.7.

1.2 Some function spaces and sequence spaces

Let f be a measurable function on T, and let

‖f‖p =
(

1
2π

∫ π

−π
|f(eit)|p dt

) 1
p

, (0 < p <∞),

and
‖f‖∞ = inf

M>0

{
M : |{ eit : |f(eit)| > M }| = 0

}
,

where |E| denotes the Lebesgue measure of the set E. Then Lebesgue spaces
Lp(T), 0 < p ≤ ∞, are defined by

Lp(T) = { f : ‖f‖p <∞}.

If 1 ≤ p ≤ ∞, then Lp(T) is a Banach space. In particular, L2(T), equipped
with the inner product

〈f, g〉 =
1
2π

∫ π

−π
f(eit) g(eit) dt,

is a Hilbert space. It is easy to see that

L∞(T) ⊂ Lp(T) ⊂ L1(T)

for each p ∈ (1,∞). In the following, we will mostly study Lp(T), 1 ≤ p ≤ ∞,
and their subclasses and thus L1(T) is the largest function space that enters
our discussion. This simple fact has important consequences. For example, we
will define the Fourier coefficients of functions in L1(T), and thus the Fourier
coefficients of elements of Lp(T), for all 1 ≤ p ≤ ∞, are automatically defined
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too. We will appreciate this fact when we study the Fourier transform on the
real line. Spaces Lp(R) do not form a chain, as is the case on the unit circle,
and thus after defining the Fourier transform on L1(R), we need to take further
steps in order to define the Fourier transform for some other Lp(R) spaces.

A continuous function on T, a compact set, is necessarily bounded. The
space of all continuous functions on the unit circle C(T) can be considered as a
subspace of L∞(T). As a matter of fact, in this case the maximum is attained
and we have

‖f‖∞ = max
eit∈T

|f(eit)|.

On some occasions we also need the smaller subspace Cn(T) consisting of all
n times continuously differentiable functions, or even their intersection C∞(T)
consisting of functions having derivatives of all orders. The space Cn(T) is
equipped with the norm

‖f‖Cn(T) =
n∑
k=1

‖f (k)‖∞
k!

.

Lipschitz classes form another subfamily of C(T). Fix α ∈ (0, 1]. Then
Lipα(T) consists of all f ∈ C(T) such that

sup
t,τ∈R

τ �=0

|f(ei(t+τ))− f(eit)|
|τ |α <∞.

This space is equipped with the norm

‖f‖Lipα(T) = ‖f‖∞ + sup
t,τ∈R

τ �=0

|f(ei(t+τ))− f(eit)|
|τ |α .

The space of all complex Borel measures on T is denoted by M(T). This
space equipped with the norm

‖µ‖ = |µ|(T),

where |µ| denotes the total variation of µ, is a Banach space. Remember that
the total variation |µ| is the smallest positive Borel measure satisfying

|µ(E)| ≤ |µ|(E)

for all Borel sets E ⊂ T. To each function f ∈ L1(T) there corresponds a Borel
measure

dµ(eit) =
1
2π

f(eit) dt.

Clearly we have ‖µ‖ = ‖f‖1, and thus the map

L1(T) −→ M(T)
f �−→ f(eit) dt/2π
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is an embedding of L1(T) intoM(T).
In our discussion, we also need some sequence spaces. For a sequence of

complex numbers Z = (zn)n∈Z, let

‖Z‖p =
( ∞∑

n=−∞
|zn|p

) 1
p

, (0 < p <∞),

and
‖Z‖∞ = sup

n∈Z

|zn|.

Then, for 0 < p ≤ ∞, we define

�p(Z) = {Z : ‖Z‖p <∞}

and
c0(Z) = {Z ∈ �∞(Z) : lim

|n|→∞
|zn| = 0 }.

If 1 ≤ p ≤ ∞, then �p(Z) is a Banach space and c0(Z) is a closed subspace of
�∞(Z). The space �2(Z), equipped with the inner product

〈Z,W〉 =
∞∑

n=−∞
zn wn,

is a Hilbert space. The subspaces

�p(Z+) = {Z ∈ �p(Z) : z−n = 0, n ≥ 1 }

and
c0(Z+) = {Z ∈ c0(Z) : z−n = 0, n ≥ 1 }

will also appear when we study the Fourier transform of certain subclasses of
Lp(T).

Exercises

Exercise 1.2.1 Let f be a measurable function on T, and let

fτ (eit) = f(ei(t−τ)).

Show that
lim
τ→0
‖fτ − f‖X = 0

if X = Lp(T), 1 ≤ p < ∞, or X = Cn(T). Provide examples to show that this
property does not hold if X = L∞(T) or X = Lipα(T), 0 < α ≤ 1. However,
show that

‖fτ‖X = ‖f‖X
in all function spaces mentioned above.
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Exercise 1.2.2 Show that �p(Z+), 0 < p ≤ ∞, is closed in �p(Z).

Exercise 1.2.3 Show that c0(Z) is closed in �∞(Z).

Exercise 1.2.4 Show that c0(Z+) is closed in c0(Z).

Exercise 1.2.5 Let cc(Z) denote the family of sequences of compact support,
i.e. for each Z = (zn)n∈Z ∈ cc(Z) there is N = N(Z) such that zn = 0 for all
|n| ≥ N . Show that cc(Z) is dense in c0(Z).

1.3 Fourier coefficients

Let f ∈ L1(T). Then the nth Fourier coefficient of f is defined by

f̂(n) =
1
2π

∫ π

−π
f(eit) e−int dt, (n ∈ Z).

The two-sided sequence f̂ = ( f̂(n) )n∈Z is called the Fourier transform of f .
We clearly have

|f̂(n)| ≤ 1
2π

∫ π

−π
|f(eit)| dt, (n ∈ Z),

which can be rewritten as f̂ ∈ �∞(Z) with

‖f̂‖∞ ≤ ‖f‖1.

Therefore, the Fourier transform

L1(T) −→ �∞(Z)
f �−→ f̂

is a linear map whose norm is at most one. The constant function shows that
the norm is indeed equal to one. We will show that this map is one-to-one and
its range is included in c0(Z). But first, we need to develop some techniques.

The Fourier series of f is formally written as
∞∑

n=−∞
f̂(n) eint.

The central question in Fourier analysis is to determine when, how and toward
what this series converges. We will partially address these questions in the
following. Any formal series of the form

∞∑
n=−∞

an e
int
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is called a trigonometric series. Hence a Fourier series is a special type of
trigonometric series. However, there are trigonometric series which are not
Fourier series. In other words, the coefficients an are not the Fourier coefficients
of any integrable function. Using Euler’s identity

eint = cos(nt) + i sin(nt),

a trigonometric series can be rewritten as

α0 +
∞∑
n=1

αn cos(nt) + βn sin(nt).

It is easy to find the relation between αn, βn and an.
An important example which plays a central role in the theory of harmonic

functions is the Poisson kernel

Pr(eit) =
1− r2

1 + r2 − 2r cos t
, (0 ≤ r < 1). (1.4)

(See Figure 1.3.)

x
K3 K2 K1 0 1 2 3

1

2

3

4

5

6
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9

Fig. 1.3. The Poisson kernel Pr(eit) for r = 0.2, 0.5, 0.8.

Clearly, for each fixed 0 ≤ r < 1,

Pr ∈ C∞(T) ⊂ L1(T).

Direct computation of P̂r is somehow difficult. But, the following observation
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makes its calculation easier. We have

1− r2
1 + r2 − 2r cos t

=
1− r2

1 + r2 − r(eit + e−it)

=
1− r2

(1− reit)(1− re−it)

=
1

1− reit +
1

1− re−it − 1

and thus, using the geometric series

1 + w + w2 + · · · = 1
1− w, (|w| < 1),

we obtain

Pr(eit) =
∞∑

n=−∞
r|n| eint. (1.5)

Moreover, for each fixed r < 1, the partial sums are uniformly convergent to
Pr. The uniform convergence is the key to this shortcut method. Therefore, for
each n ∈ Z,

P̂r(n) =
1
2π

∫ π

−π
Pr(eit) e−int dt

=
1
2π

∫ π

−π

( ∞∑
m=−∞

r|m| eimt
)
e−int dt

=
∞∑

m=−∞
r|m|

(
1
2π

∫ π

−π
ei(m−n)t dt

)

= r|n|. (1.6)

(See Figure 1.4.)

Fig. 1.4. The spectrum of Pr.
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We emphasize that the uniform convergence of the series enables us to change
the order of

∑
and

∫
in the third equality above. This phenomenon will appear

frequently in our discussion. The identity (1.5) also shows that Pr is equal to
its Fourier series at all points of T.

It is rather easy to extend the definition of Fourier transform for Borel mea-
sures on T. Let µ ∈M(T). The nth Fourier coefficient of µ is defined by

µ̂(n) =
∫

T

e−int dµ(eit), (n ∈ Z),

and the Fourier transform of µ is the two-sided sequence µ̂ = (µ̂(n))n∈Z. Con-
sidering the embedding

L1(T) −→ M(T)
f �−→ f(eit) dt/2π,

if we think of L1(T) as a subspace of M(T), it is easy to see that the two
definitions of Fourier coefficients are consistent. In other words, if

dµ(eit) =
1
2π

f(eit) dt,

where f ∈ L1(T), then we have

µ̂(n) = f̂(n), (n ∈ Z).

Lemma 1.1 Let µ ∈M(T). Then µ̂ ∈ �∞(Z) and

‖ µ̂ ‖∞ ≤ ‖µ ‖.

In particular, for each f ∈ L1(T),

‖ f̂ ‖∞ ≤ ‖ f ‖1.

Proof. For each n ∈ Z, we have

|µ̂(n)| =
∣∣∣∣

∫
T

e−int dµ(eit)
∣∣∣∣

≤
∫

T

|e−int| d|µ|(eit)

=
∫

T

d|µ|(eit) = |µ|(T) = ‖µ‖.

The second inequality is a special case of the first one with dµ(eit) = f(eit) dt/2π.
In this case, µ̂(n) = f̂(n) and ‖µ‖ = ‖f‖1. It was also proved directly at the
beginning of this section.
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Based on the preceding lemma, the Fourier transform

M(T) −→ �∞(Z)
µ �−→ µ̂

is a linear map whose norm is at most one. The Dirac measure δ1 shows that
the norm is actually equal to one. We will show that this map is also one-to-one.
However, since

δ̂1(n) = 1, (n ∈ Z),

its range is not included in c0(Z).

Exercises

Exercise 1.3.1 Let f ∈ Lp(T), 1 ≤ p ≤ ∞. Show that ‖ f̂ ‖∞ ≤ ‖ f ‖p.

Exercise 1.3.2 Let z = reiθ ∈ D. Show that

Pr(ei(θ−t)) = 

(
eit + z

eit − z

)
.

Exercise 1.3.3 Let f ∈ L1(T). Define

F (z) =
1
2π

∫ π

−π

eit + z

eit − z f(eit) dt, (z ∈ D).

Show that

F (z) = f̂(0) + 2
∞∑
n=1

f̂(n) zn, (z ∈ D).

Hint: Note that
eit + z

eit − z = 1 + 2
∞∑
n=1

zn e−int.

Exercise 1.3.4 Let f ∈ L1(T) and define

g(eit) = f(ei2t).

Show that

ĝ(n) =




f̂(n2 ) if 2|n,

0 if 2 � |n.
Consider a similar question if we define

g(eit) = f(eikt),

where k is a fixed positive integer.
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Exercise 1.3.5 Let f ∈ Lipα(T), 0 < α ≤ 1. Show that

f̂(n) = O(1/nα),

as |n| → ∞.
Hint: If n �= 0, we have

f̂(n) =
1
4π

∫ π

−π

(
f(eit)− f(ei(t+π/n))

)
e−int dt.

1.4 Convolution on T
Let f, g ∈ L1(T). Then we cannot conclude that fg ∈ L1(T). Indeed, it is easy
to manufacture an example such that∫ π

−π
|f(eit) g(eit)| dt =∞.

Nevertheless, by Fubini’s theorem,∫ π

−π

( ∫ π

−π
|f(eiτ ) g(ei(t−τ))| dτ

)
dt

=
∫ π

−π
|f(eiτ )|

( ∫ π

−π
|g(ei(t−τ))| dt

)
dτ

=
( ∫ π

−π
|f(eiτ )| dτ

) ( ∫ π

−π
|g(eis)| ds

)
<∞.

Therefore, we necessarily have∫ π

−π
|f(eiτ ) g(ei(t−τ))| dτ <∞

for almost all eit ∈ T. This observation enables us to define

(f ∗ g)(eit) =
∫ π

−π
f(eiτ ) g(ei(t−τ)) dτ

for almost all eit ∈ T, and besides the previous calculation shows that

f ∗ g ∈ L1(T)

with
‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1. (1.7)

The function f ∗ g is called the convolution of f and g. It is straightforward to
see that the convolution is

(i) commutative: f ∗ g = g ∗ f ,
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(ii) associative: f ∗ (g ∗ h) = (f ∗ g) ∗ h,

(iii) distributive: f ∗ (g + h) = f ∗ g + f ∗ h,

(iv) homogenous: f ∗ (αg) = (αf) ∗ g = α(f ∗ g),

for all f, g, h ∈ L1(T) and α ∈ C. In technical terms, L1(T), equipped with
the convolution as its product, is a Banach algebra. As a matter of fact, this
concrete example inspired most of the abstract theory of Banach algebras.

Let f, g ∈ L1(T) and let ϕ ∈ C(T). Then, by Fubini’s theorem,∫
T

ϕ(eis) (f ∗ g)(eis) ds

2π
=

∫
T

∫
T

ϕ(eis)
(
f(ei(s−τ)) g(eiτ )

dτ

2π

)
ds

2π

=
∫

T

∫
T

ϕ(ei(t+τ))
(
f(eit)

dt

2π

) (
g(eiτ )

dτ

2π

)
.

This fact enables us to define the convolution of two Borel measures on T such
that if we consider L1(T) as a subset ofM(T), the two definitions are consistent.
Let µ, ν ∈M(T), and define Λ : C(T) −→ C by

Λ(ϕ) =
∫

T

∫
T

ϕ(ei(t+τ)) dµ(eit) dν(eiτ ), (ϕ ∈ C(T)).

The functional Λ is clearly linear and satisfies

|Λ(ϕ) | ≤ ‖µ‖ ‖ν‖ ‖ϕ‖∞, (ϕ ∈ C(T)),

which implies
‖Λ ‖ ≤ ‖µ‖ ‖ν‖.

Therefore, by the Riesz representation theorem for bounded linear functionals
on C(T), there exists a unique Borel measure, which we denote by µ ∗ ν and call
the convolution of µ and ν, such that

Λ(ϕ) =
∫

T

ϕ(eit) d(µ ∗ ν)(eit), (ϕ ∈ C(T)),

and moreover,
‖Λ‖ = ‖µ ∗ ν‖.

Hence, µ ∗ ν is defined such that∫
T

ϕ(eit) d(µ ∗ ν)(eit) =
∫

T

∫
T

ϕ(ei(t+τ)) dµ(eit) dν(eiτ ), (1.8)

for all ϕ ∈ C(T), and it satisfies

‖µ ∗ ν ‖ ≤ ‖µ‖ ‖ν‖. (1.9)

The following result is easy to prove. Nevertheless, it is the most funda-
mental connection between convolution and the Fourier transform. Roughly
speaking, it says that the Fourier transform changes convolution to multiplica-
tion.
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Theorem 1.2 Let µ, ν ∈M(T). Then

µ̂ ∗ ν(n) = µ̂(n) ν̂(n), (n ∈ Z).

In particular, if f, g ∈ L1(T), then

f̂ ∗ g(n) = f̂(n) ĝ(n), (n ∈ Z).

Proof. Fix n ∈ Z and put
ϕ(eit) = e−int

in (1.8). Hence,

µ̂ ∗ ν(n) =
∫

T

e−int d(µ ∗ ν)(eit)

=
∫

T

∫
T

e−in(t+τ) dµ(eit) dν(eiτ )

=
∫

T

e−int dµ(eit) ×
∫

T

e−inτ dν(eiτ ) = µ̂(n) ν̂(n).

We saw that if we consider L1(T) as a subset of M(T), the two definitions
of convolution are consistent. Therefore,M(T) contains L1(T) as a subalgebra.
But, we can say more in this case. We show that L1(T) is actually an ideal in
M(T).

Theorem 1.3 Let µ ∈M(T) and let f ∈ L1(T). Let

dν(eit) = f(eit) dt.

Then µ ∗ ν is also absolutely continuous with respect to Lebesgue measure and
we have

d(µ ∗ ν)(eit) =
( ∫

T

f(ei(t−τ)) dµ(eiτ )
)
dt.

Proof. According to (1.8), for each ϕ ∈ C(T) we have∫
T

ϕ(eit) d(µ ∗ ν)(eit) =
∫

T

∫
T

ϕ(ei(t+τ)) dµ(eit) dν(eiτ )

=
∫

T

∫
T

ϕ(ei(t+τ)) dµ(eit) f(eiτ ) dτ

=
∫

T

ϕ(eis)
( ∫

T

f(ei(s−t)) dµ(eit)
)
ds.

Therefore, by the uniqueness part of the Riesz representation theorem,

d(µ ∗ ν)(eis) =
( ∫

T

f(ei(s−t)) dµ(eit)
)
ds.
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Let µ ∈ M(T) and f ∈ L1(T). Considering f as a measure, by the preceding
theorem, µ ∗ f is absolutely continuous with respect to Lebesgue measure and
we may write

(µ ∗ f)(eit) =
∫

T

f(ei(t−τ)) dµ(eiτ ). (1.10)

Theorem 1.3 ensures that (µ ∗ f)(eit) is well-defined for almost all eit ∈ T,
µ ∗ f ∈ L1(T) and, by (1.9),

‖µ ∗ f‖1 ≤ ‖f‖1 ‖µ‖. (1.11)

We will need a very special case of (1.10) where f ∈ C(T). In this case, (µ∗f)(eit)
is defined for all eit ∈ T.

Exercises

Exercise 1.4.1 Let χn(eit) = eint, n ∈ Z. Show that

f ∗ χn = f̂(n)χn

for any f ∈ L1(T).

Exercise 1.4.2 Show that M(T), equipped with convolution as its product,
is a commutative Banach algebra. What is its unit?

Exercise 1.4.3 Are you able to show that the Banach algebra L1(T) does not
have a unit?
Hint: Use Theorem 1.2. Come back to this exercise after studying the Riemann–
Lebesgue lemma in Section 2.5.

1.5 Young’s inequality

Since Lp(T) ⊂ L1(T), for 1 ≤ p ≤ ∞, and since the convolution was defined on
L1(T), then a priori f ∗ g is well-defined whenever f ∈ Lr(T) and g ∈ Ls(T)
with 1 ≤ r, s ≤ ∞. The following result gives more information about f ∗ g,
when we restrict f and g to some smaller subclasses of L1(T).

Theorem 1.4 (Young’s inequality) Let f ∈ Lr(T), and let g ∈ Ls(T), where
1 ≤ r, s ≤ ∞ and

1
r

+
1
s
≥ 1.

Let
1
p

=
1
r

+
1
s
− 1.

Then f ∗ g ∈ Lp(T) and
‖f ∗ g‖p ≤ ‖f‖r ‖g‖s.
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Fig. 1.5. The level curves of p.

Proof. (Figure 1.5 shows the level curves of p.) If p = ∞, or equivalently
1/r + 1/s = 1, then f ∗ g is well-defined for all eiθ ∈ T and Young’s inequality
reduces to Hölder’s inequality. Now, suppose that 1/r + 1/s > 1. We need a
generalized form of Hölder’s inequality. Let 1 < p1, . . . , pn <∞ such that

1
p1

+ · · ·+ 1
pn

= 1,

and let f1, . . . , fn be measurable functions on a measure space (X,M, µ). Then

∫
X

|f1 · · · fn| dµ ≤
( ∫

X

|f1|p1 dµ
) 1

p1

· · ·
( ∫

X

|fn|pn dµ

) 1
pn

.

This inequality can be proved by induction and the ordinary Hölder’s inequality.

Let r′ and s′ be respectively the conjugate exponents of r and s, i.e.

1
r

+
1
r′ = 1 and

1
s

+
1
s′ = 1.

Then, according to the definition of p, we have

1
r′ +

1
s′ +

1
p

= 1.

Fix eiθ ∈ T. To apply the generalized Hölder’s inequality, we write the integrand
|f(eit) g(ei(θ−t))| as the product of three functions respectively in Lr

′
(T), Ls

′
(T)
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and Lp(T). Write

|f(eiτ ) g(ei(t−τ))| =
(
|g(ei(t−τ))|1− s

p

)

×
(
|f(eiτ )|1− r

p

)

×
(
|f(eiτ )| rp |g(ei(t−τ))| sp

)
.

Hence, by the generalized Hölder’s inequality,

1
2π

∫ π

−π
|f(eiτ ) g(ei(t−τ))| dτ ≤

(
1
2π

∫ π

−π
|g(ei(t−τ))|r

′(1− s
p ) dτ

) 1
r′

×
(

1
2π

∫ π

−π
|f(eiτ )|s

′(1− r
p ) dτ

) 1
s′

×
(

1
2π

∫ π

−π
|f(eiτ )|r |g(ei(t−τ))|s dτ

) 1
p

.

But r′(1− s/p) = s and s′(1− r/p) = r. Thus

|(f ∗ g)(eit)| ≤ ‖g‖s/r′
s ‖f‖r/s′

r

(
1
2π

∫ π

−π
|f(eiτ )|r |g(ei(t−τ))|s dτ

) 1
p

for almost all eit ∈ T. Finally, by Fubini’s theorem,

‖f ∗ g‖p =
(

1
2π

∫ π

−π
|(f ∗ g)(eit)|p dt

) 1
p

≤ ‖g‖s/r′
s ‖f‖r/s′

r

(
1

(2π)2

∫ π

−π

∫ π

−π
|f(eiτ )|r |g(ei(t−τ))|s dt dτ

) 1
p

= ‖g‖s/r′
s ‖f‖r/s′

r × ‖g‖s/ps ‖f‖r/pr = ‖f‖r ‖g‖s.

Another proof of Young’s inequality is based on the Riesz–Thorin interpolation
theorem and will be discussed in Chapter 8. The following two special cases of
Young’s inequality are what we need later on.

Corollary 1.5 Let f ∈ Lp(T), 1 ≤ p ≤ ∞, and let g ∈ L1(T). Then f ∗ g ∈
Lp(T), and

‖f ∗ g‖p ≤ ‖f‖p ‖g‖1.

Corollary 1.6 Let f ∈ Lp(T), and let g ∈ Lq(T), where q is the conjugate
exponent of p. Then (f ∗ g)(eit) is well-defined for all eit ∈ T, f ∗ g ∈ C(T), and

‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖q.
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Proof. As we mentioned in the proof of Theorem 1.4, Hölder’s inequality ensures
that (f ∗ g)(eit) is well-defined for all eit ∈ T. The only new fact to prove is
that f ∗ g is a continuous function on T.

At least one of p or q is not infinity. Without loss of generality, assume that
p �=∞. This assumption ensures that C(T) is dense in Lp(T) (see Section A.4).
Thus, given ε > 0, there is ϕ ∈ C(T) such that

‖f − ϕ‖p < ε.

Hence

|(f ∗ g)(eit)− (f ∗ g)(eis)| ≤ |
(
(f − ϕ) ∗ g

)
(eit)|+ |

(
(f − ϕ) ∗ g

)
(eis)|

+ |(ϕ ∗ g)(eit)− (ϕ ∗ g)(eis)|
≤ 2 ‖f − ϕ‖p ‖g‖q + ωϕ(|t− s|) ‖g‖q,

where

ωϕ(δ) = sup
|t−s|≤δ

|ϕ(eit)− ϕ(eis)|

is the modulus of continuity of ϕ. Since ϕ is uniformly continuous on T,

ωϕ(δ) −→ 0

as δ → 0. Therefore, if |t− s| is small enough, we have

|(f ∗ g)(eit)− (f ∗ g)(eis)| ≤ 3ε ‖g‖q.

Exercises

Exercise 1.5.1 What can we say about f ∗g if f ∈ Lr(T) and g ∈ Ls(T) with
1 ≤ r, s ≤ ∞ and

1
r

+
1
s
≤ 1?

(See Figure 1.6.)
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Fig. 1.6. The region 1
r + 1

s ≤ 1.

Exercise 1.5.2 Show that Young’s inequality is sharp in the following sense.
Given r, s with 1 ≤ r, s ≤ ∞ and

1
r

+
1
s
≥ 1,

there are f ∈ Lr(T) and g ∈ Ls(T) such that f ∗ g ∈ Lp(T), where

1
p

=
1
r

+
1
s
− 1,

but f ∗ g �∈ Lt(T) for any t > p.
Hint: Start with the case r = s = 1 and a function ϕ ∈ L1(T) such that
ϕ �∈ Lt(T) for any t > 1.



Chapter 2

Abel–Poisson means

2.1 Abel–Poisson means of Fourier series

Let {Fr}0≤r<1 be a family of functions on the unit circle T. Define

F (reit) = Fr(eit), (reit ∈ D).

Hence, instead of looking at the family as a collection of individual functions Fr
which are defined on T, we deal with one single function defined on the open
unit disc D. On the other hand, if F (reit) is given first, for each fixed r ∈ [0, 1),
we can define Fr by considering the values of F on the circle {|z| = r}. This dual
interpretation will be encountered many times in what follows. An important
example of this phenomenon is the Poisson kernel which was defined as a family
of functions on the unit circle by (1.4). This kernel can also be considered as
one function

P (reit) =
1− r2

1 + r2 − 2r cos t

on D.
Let µ ∈M(T). Then, by (1.10), we have

(Pr ∗ µ)(eiθ) =
∫

T

1− r2
1 + r2 − 2r cos(θ − t) dµ(eit) (2.1)

which is called the Poisson integral of µ. Moreover, by (1.6) and Theorem 1.2,
the Fourier coefficients of Pr ∗ µ are given by

P̂r ∗ µ (n) = r|n| µ̂(n), (n ∈ Z).

Thus the formal Fourier series of Pr ∗ µ is

∞∑
n=−∞

µ̂(n) r|n| einθ.

21
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These sums are called the Abel–Poisson means of the Fourier series
∞∑

n=−∞
µ̂(n) einθ.

The Fourier series of µ is not necessarily pointwise convergent. However, we
show that its Abel–Poisson means behave much better. The following theo-
rem reveals the relation between the Abel–Poisson means of µ and its Poisson
integral.

Theorem 2.1 Let µ ∈M(T), and let

U(reiθ) = (Pr ∗ µ)(eiθ) =
∫

T

1− r2
1 + r2 − 2r cos(θ − t) dµ(eit), (reiθ ∈ D).

Then

U(reiθ) =
∞∑

n=−∞
µ̂(n) r|n| einθ, (reiθ ∈ D).

The series is absolutely and uniformly convergent on compact subsets of D, and
U is harmonic on D.

Proof. Since
| µ̂(n) r|n| einθ | ≤ ‖µ‖ r|n|,

the series
∑
µ̂(n) r|n| einθ is absolutely and uniformly convergent on compact

subsets of D. Fix 0 ≤ r < 1 and θ. Then, by (1.5),

U(reiθ) =
∫

T

1− r2
1 + r2 − 2r cos(θ − t) dµ(eit)

=
∫

T

( ∞∑
n=−∞

r|n| ein(θ−t)
)
dµ(eit).

Since the series is uniformly convergent (as a function of eit), and since |µ| is a
finite positive Borel measure on T, we can change the order of summation and
integration. Hence,

U(reiθ) =
∞∑

n=−∞

( ∫
T

e−int dµ(eit)
)
r|n| einθ =

∞∑
n=−∞

µ̂(n) r|n| einθ.

There are several ways to verify that U is harmonic on D. We give a
direct proof. Fix k ≥ 0. Then the absolute and uniform convergence of∑∞
n=−∞ nkµ̂(n) r|n| einθ on compact subsets of D enables us to change the order

of summation and any linear differential operator. In particular, let us apply the
Laplace operator. Hence, remembering that each term r|n| einθ is a harmonic
function, we obtain

∇2U = ∇2
( ∞∑

n=−∞
µ̂(n) r|n| einθ

)
=

∞∑
n=−∞

µ̂(n)∇2(r|n| einθ) = 0.
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As a special case, if the measure µ in Theorem 2.1 is absolutely continuous with
respect to the Lebesgue measure, i.e. dµ(eit) = u(eit) dt/2π with u ∈ L1(T),
then

U(reiθ) =
1
2π

∫ π

−π

1− r2
1 + r2 − 2r cos(θ − t) u(e

it) dt

=
∞∑

n=−∞
û(n) r|n| einθ, (2.2)

where the series is absolutely and uniformly convergent on compact subsets of
D, and U represents a harmonic function there.

Exercises

Exercise 2.1.1 Let (an)n≥0 be a sequence of complex numbers. Suppose that
the series

S =
∞∑
n=0

an

is convergent. For each 0 ≤ r < 1, define

S(r) =
∞∑
n=0

an r
n.

Show that S(r) is absolutely convergent and moreover

lim
r→1

S(r) = S.

Hint: Let

Sm =
m∑
n=0

an, (m ≥ 0).

Then

S(r) = S + (1− r)
∞∑
n=0

(Sn − S) rn.

Exercise 2.1.2 Let (an)n≥0 be a bounded sequence of complex numbers and
let

S(r) =
∞∑
n=0

an r
n, (0 ≤ r < 1).

Find (an)n≥0 satisfying the following properties:

(i) the series
∑∞
n=0 an is divergent;

(ii) for each 0 ≤ r < 1, S(r) is absolutely convergent;
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(iii) limr→1 S(r) exists.

Exercise 2.1.3 Let (an)n≥0 be a sequence of complex numbers. Suppose that
the series

S =
∞∑
n=0

an

is convergent. Let

Sn =
n∑
k=0

ak

and define

Cn =
S0 + S1 + · · ·+ Sn

n+ 1
=

n∑
k=0

(
1− k

n+ 1

)
ak.

Show that
lim
n→∞ Cn = S.

Remark: The numbers Cn, n ≥ 0, are called the Cesàro means of Sn.

Exercise 2.1.4 Let (an)n≥0 be a sequence of complex numbers and define

Cn =
n∑
k=0

(
1− k

n+ 1

)
ak.

Find (an)n≥0 such that
lim
n→∞ Cn

exists, but the sequence
∞∑
n=0

an

is divergent.

Exercise 2.1.5 Let (an)n≥0 be a sequence of complex numbers and define

Cn =
n∑
k=0

(
1− k

n+ 1

)
ak.

Suppose that the series
∞∑
n=0

Cn is convergent and

∞∑
n=0

n|an|2 <∞.

Show that the series
∞∑
n=0

an is also convergent.

Remark: Compare with Exercises 2.1.3 and 2.1.4.
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2.2 Approximate identities on T

We saw that L1(T), equipped with convolution, is a commutative Banach al-
gebra. This algebra does not have a unit element since such an element must
satisfy

f̂(n) = 1, (n ∈ Z),

and we will see that the nth Fourier coefficient of any integrable function tends to
zero as |n| → ∞. To overcome this difficulty, we consider a family of integrable
functions {Φι} satisfying

lim
ι

Φ̂ι(n) = 1 (2.3)

for each fixed n ∈ Z. The condition (2.3) alone is not enough to obtain a family
that somehow plays the role of a unit element. For example, the Dirichlet kernel
satisfies this property but it is not a proper replacement for the unit element
(see Exercise 2.2.2). We choose three other properties to define our family and
then we show that (2.3) is fulfilled.

Let Φι ∈ L1(T), where the index ι ranges over a directed set. In the examples
given below, it ranges either over the set of integers {1, 2, 3, . . . } or over the
interval [0, 1). Therefore, in the following, limι means either limn→∞ or limr→1− .
Similarly, ι � ι0 means n > n0 or r > r0. The family {Φι} is called an
approximate identity on T if it satisfies the following properties:

(a) for all ι,
1
2π

∫ π

−π
Φι(eit) dt = 1;

(b)

CΦ = sup
ι

(
1
2π

∫ π

−π
|Φι(eit)| dt

)
<∞;

(c) for each fixed δ, 0 < δ < π,

lim
ι

∫
δ≤|t|≤π

|Φι(eit)| dt = 0.

The condition (a) forces CΦ ≥ 1. If Φι(eit) ≥ 0, for all ι and for all eit ∈ T, then
{Φι} is called a positive approximate identity. In this case, (b) follows from (a)
with

CΦ = 1.

We give three examples of a positive approximate identity below. Further exam-
ples are provided in the exercises. Our main example of a positive approximate
identity is the Poisson kernel

Pr(eit) =
1− r2

1 + r2 − 2r cos θ
=

∞∑
n=−∞

r|n| eint, (0 ≤ r < 1).


