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Geometric Tomography, second edition

Geometric tomography deals with the retrieval of information about a geometric
object from data concerning its projections (shadows) on planes or cross-sections
by planes. It is a geometric relative of computerized tomography, which recon-
structs an image from X-rays of a human patient. The subject overlaps with con-
vex geometry and employs many tools from that area, including some formulas
from integral geometry. It also has connections to discrete tomography, geometric
probing in robotics, and stereology.

This comprehensive study provides a rigorous treatment of the subject. Al-
though primarily meant for researchers and graduate students in geometry and
tomography, brief introductions, suitable for advanced undergraduates, are pro-
vided to the basic concepts. More than 70 illustrations are used to clarify the text.
The book also presents 66 unsolved problems. Each chapter ends with extensive
notes, historical remarks, and some biographies. This new edition includes nu-
merous updates and improvements, with some 50 extra pages of material and 300
new references, bringing the total to more than 800.

Richard J. Gardner has been Professor of Mathematics at Western Washington
University since 1991. He is the author of 70 papers and founded geometric
tomography as a subject in its own right with the publication of the first edition of
this book in 1995.
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P R E F A C E T O T H E S E C O N D E D I T I O N

This second edition incorporates some 60 extra pages of material, including seven
new figures, another 21 chapter notes, the new Sections 4.4 and A.4, and about
300 additional references. This expansion indicates the amazingly rapid develop-
ment of geometric tomography over the decade since the first edition appeared.
Despite this, the list of 66 open problems is of roughly the same length.

Many corrections have been made. The most significant amendment appears
in Chapter 8, written for the first edition very shortly after the pioneering work
was published. Alex Koldobsky’s work described in Note 8.9 brought to light
an error in the solution of the Busemann–Petty problem. The revised Chapter 8
contains the corrected solution, while the six new notes for Chapter 8 struggle
to keep pace with the incredible activity around intersection bodies. The task of
surveying recent developments would have been a great deal more difficult but
for the publication of Koldobsky’s fine book [465]. This takes an almost entirely
analytic point of view, whereas in Chapter 8 the original geometrical approach is
retained as far as possible.

The new Section 4.4 describes an algorithm constructed by the author and an
electrical engineer, Peyman Milanfar. It employs another algorithm designed for
the reconstruction of a convex body from its surface area measure, the topic of
the new Section A.4. Two reasons lie behind the choice of this material. Firstly,
the first edition was noticeably short of algorithms and devoid of any that apply to
the sort of noisy measurements encountered in practice. There is still plenty to be
done in this direction. Secondly, it is much easier to tailor one’s own work to suit
a book than those of others! But if time, energy, and publisher allowed a complete
rewriting, there would be a very different book with the same title and author as
this one, stating and proving in the text many results of others here only briefly
mentioned in chapter notes.

xv



xvi Preface to the second edition

The collaboration with Milanfar followed a web search for the phrase “geo-
metric tomography” made in 1996. I discovered to my surprise that the term had
been used independently at least twice after I introduced it at the Oberwolfach
meeting on tomography in 1990. The usage in [683, Chapter 7] has essentially
no overlap with ours, but that of Thirion [802] is quite close in spirit; he defines
geometric tomography to be the process of reconstructing the external or inter-
nal boundaries of objects from their X-rays. The same web search led me to the
program of Alan Willsky, an electrical engineer at MIT, outlined in Note 1.5.

Much of the work represented by the additional references was presented at
various meetings on convex geometry or discrete tomography during the past
decade, but several international meetings have featured geometric tomography
specifically. Two Summer Schools on Local Stereology and Geometric Tomog-
raphy were organized by Eva Vedel Jensen at the Sandbjerg Estate, Denmark,
the first in 2000 and the second in 2002. In 2004, Salvador Gomis organized the
Workshop on Geometric Tomography in Alicante, Spain. It is wonderful to have
such energetic and capable friends in beautiful locations.

Terminology and notation are constantly changing in mathematics. Currently
“origin symmetric” seems to be favored over “centered,” and Rn is used more and
more instead of En as this part of geometry moves into the mainstream. One would
think that a notion as basic as volume would enjoy a standard notation, but V , Vol,
and vol, with or without subscripts, are all common. In the end I decided to retain
most of the terminology and notation of the first edition, so that at least the two
editions would be compatible. There are a couple of exceptions: the notation for
Radon and Fourier transform has been interchanged, and the definition of Fourier
transform is slightly different.

I am obliged to Hugh Murrell for permission to use his Mathematica program
that produced Figure 1.11, and to Ulrich Brehm for providing Figure 7.3. To the
list of people in the preface to the first edition to whom I owe thanks should be
added Robert Huotari, Alex Koldobsky, and Maria Moszyńska. I am especially
grateful to Paolo Gronchi, Markus Kiderlen, Wolfgang Weil, and Gaoyong Zhang
for their very helpful comments on this edition.

Department of Mathematics
Western Washington University
Bellingham, WA 98225-9063
E-mail: Richard.Gardner@wwu.edu
Web page: http://www.ac.wwu.edu/˜gardner



P R E F A C E

The title of this book, Geometric Tomography, is designed to cover the area of
mathematics dealing with the retrieval of information about a geometric object
from data about its sections, or projections, or both. The term “geometric object”
is deliberately vague; a convex polytope or body would certainly qualify, as would
a star-shaped body, or even, when appropriate, a compact set or measurable set.

The word “tomography” originates from the Greek τ óµoς , meaning a slice.
Mathematical computerized tomography is already a recognized subject with an
enormously important application in the medical CAT scanner, with which an
image of a section of a human patient can be reconstructed from X-rays. Math-
ematically, the object being reconstructed is a density function, and since it is
known that the solution is not unique, no matter how (finitely) many X-rays are
taken, the reconstructed picture is always an approximation. When density func-
tions are replaced by geometric objects, there is some hope of a unique solution,
and this gives geometric tomography a rather different flavor.

Despite this, there is a point where geometric tomography and computerized
tomography merge, and both utilize integral transforms such as the Radon trans-
form. Our definition of geometric tomography is also reminiscent of definitions
of stereology or geometric probing. These subjects each have their own distinct
viewpoint, while sharing common features with geometric tomography. For ex-
ample, stereology focuses on random data and statistical methods, but also draws
on integral geometry (as do two other related subjects, image analysis and math-
ematical morphology).

Via these connections and others discussed in the chapter notes, geometric
tomography does not lack possible applications.

In computerized tomography, the term “projection” is routinely used for an X-
ray. In this book, we adhere to the accepted mathematical definition of a projection
as a shadow. In this sense, projections are of little or no interest in computerized
tomography. In geometry, however, the well-known polar duality provides a link

xvii
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between sections and projections. There is, in fact, a remarkable correspondence
between results concerning projections and those concerning sections through a
fixed point, and it would be quite inappropriate to consider the one without con-
sidering the other.

Since projections are only shadows, the convex sets are a natural class of
objects with which to work. Aristotle’s argument, that the earth must be spher-
ical since its shadows on the moon are circular during a lunar eclipse, is in the
spirit of geometric tomography. Such matters can often be settled with standard
geometrical arguments, but more sophisticated methods are required when only
the areas, rather than the exact shapes, of the projections of a convex set are
available. Then the Brunn–Minkowski theory, which includes Minkowski’s the-
ory of mixed volumes and which forms the core of classical convexity, becomes
the ideal framework. In this way, geometric tomography absorbs concepts such
as the support function of a convex body, sets of constant width and bright-
ness, zonoids and projection bodies, and projection functions; results such as
Aleksandrov’s projection theorem and the solution to Shephard’s problem; and
tools such as Aleksandrov’s area measures, the Aleksandrov–Fenchel inequality,
and the cosine transform.

Geometric tomography overlaps with convexity, but is not subsumed under it.
When the data concern sections through a fixed point, the sets that are star-shaped
with respect to that point form a more appropriate class than the convex sets.
Within the past three decades or so, a “dual Brunn–Minkowski theory” has arisen,
including Erwin Lutwak’s dual mixed volumes, and again providing a natural
setting. As a consequence, geometric tomography assimilates concepts such as
the radial function of a star body, sets of constant section, intersection bodies,
and section functions; results such as Funk’s section theorem and the solution to
the Busemann–Petty problem; and tools such as the i-chord functions, the dual
Aleksandrov–Fenchel inequality (a suitable form of Hölder’s inequality), and the
spherical Radon transform.

The items in the last sentences of the previous two paragraphs are in some
sense dual to each other. There is a quite mysterious correspondence in concepts,
results, and tools, which polar duality hardly begins to explain.

A parallel X-ray of a body (see Table 1 at the end of this preface) carries
more information than a projection. Challenged by P. C. Hammer’s 1963 problem,
the author and Peter McMullen showed in 1980 that parallel X-rays in certain
sets of four directions suffice to determine the shape of any convex body. Later,
Aljoa Volčič proved that X-rays emanating from certain sets of four points suffice
to determine the shape of any planar convex body. Again, there are two sets of
results, for parallel and point X-rays, which are in some sense dual to each other.
However, a point X-ray is just a special section function. This provides a bridge
to the material described earlier, and dual mixed volumes and the spherical Radon
transform are seen in action again.
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When the areas of projections, or sections through a point, of a set do not de-
termine it uniquely, one can still hope to estimate its volume. For projections of
a convex body, such an estimate is provided by the isoperimetric inequality and
Cauchy’s surface area formula, but much better estimates are known. For exam-
ple, Lutwak applied the affinely invariant Petty projection inequality to obtain
an estimate in which equality holds for ellipsoids rather than balls. Other affine
isoperimetric inequalities furnish corresponding estimates which similarly have
the advantage of being invariant under affine transformations.

Geometric tomography houses a zoo of strange geometric bodies, powerful
integral transforms, and exotic but highly effective inequalities. Teeming with
open problems, it appears an extraordinarily fertile area for research. It resembles
particle physics in that symmetry – for example, the duality alluded to before –
sometimes allows missing theorems to be predicted, though proofs are not always
easy to find. It is too much to expect a Grand Unified Theory, but a more satisfying
synthesis is surely within reach.

Some of the open problems listed at the end of each chapter require advanced
knowledge and may be very difficult, but others should be quite accessible to un-
dergraduate students. With this in mind, considerable effort has been made to cater
to those who have not attended courses in real analysis or convexity. We assume
knowledge of calculus, linear algebra, and the basic geometry and topology of two
and three dimensions, that is, terms such as scalar product, norm, subspace, interior,
boundary, open set, compact set, and connected set. A student with these prereq-
uisites should start with Chapter 1 and, with occasional reference to Chapter 0, be
capable of understanding most of it, and nearly all if also familiar with complex
numbers and the idea of a metric space. Later chapters involve more advanced
topics, but gentle introductions are provided in Chapter 0 and the appendixes. The
beginner can make inroads by consulting these and the illustrations, though even
without them there should be much that can be absorbed. For example, Chapter 2
follows the same footpath as Chapter 1, with a few brambles created by the appear-
ance of some measure theory. The rest of the book can be read independently of
these first two chapters. Chapters 3 and 4 are largely classical convexity; the support
function,mixedvolumes, andareameasuresenterhere, in suchaway that these tools
are motivated, rather than required in advance. With Chapters 5 and 6, a new route
is followed, needing some measure theory, but mostly set in the plane and again
mostly independent of the previous chapters. This route continues in Section 7.2,
where dual mixed volumes can be seen at work for the first time. Though much
of Chapters 7 and 8 mirrors Chapters 3 and 4, little hangs on the earlier material.
Chapter 9, however, draws substantially from both Chapter 4 and Chapter 8.

Many different books could have been written with the title of this one. Here
one theme unfolds, supported by the sort of detailed proofs appreciated by most
students. Inevitably several important topics, such as Dvoretzky’s theorem and
others from the local theory of Banach spaces, and the Crofton intersection
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formulas of integral geometry, are relegated to the chapter notes. Furthermore,
Euclidean space and the projective plane hold enough difficulties for us here,
though many of the concepts introduced carry over to the more general homoge-
neous spaces, as in [388], for example.

To add some historical perspective, several biographies have been included
in the chapter notes. The history of mathematics is a fascinating subject and a
powerful but largely unexploited spur to the learning process. However, accurate
historical writing requires special expertise together with careful examination of
original documents. The author cheerfully admits his incompetence in this area;
the biographies are merely thumbnail sketches pasted together from secondary
material.

Though the main text of the book is almost entirely self-contained, the sup-
porting material in Chapter 0 and the appendixes makes frequent reference to the
literature. Such references have been limited, when possible, to suitable books
(rather than journal articles). There is no escaping the fact that much of the
heavy machinery from the Brunn–Minkowski theory eventually comes into play.
In the early stages of writing no text contained all the necessary material, and
it seemed that the pedestal might be too big for the statue. By great good for-
tune, Rolf Schneider’s comprehensive – and pedagogically sound – treatise [737]
on the Brunn–Minkowski theory appeared. The reader who wishes to consult
Schneider’s volume for more information will find that our notation and termi-
nology are very similar to his.

There are many friends and colleagues to thank. The book evolved from notes
of weekly lectures given in late 1989 and early 1990 at the Istituto Matem-
atico “U. Dini” in Florence, during a visit to the Istituto di Analisi Globale
e Applicazioni, directed by Professor C. Pucci. This lecture series was con-
fined to Chapter 1 and small parts of Chapters 2 and 5, but was the spark
that lit the fire. As work progressed, various assistance was lent by A. D.
Aleksandrov, H. Antosiewicz, Keith Ball, John Beem, Yuri Burago, Stefano
Campi, Branko Curgus, Hans Debrunner, Hans Goertz, Vladimir Golubyatnikov,
Marco Longinetti, Luis Montejano, Frank Morgan, Alain Pajor, Washek Pfeffer,
Hans Sagan, Steven Skiena, Alan Thompson, and Tohru Uzawa. Parts of drafts
were read by Edoh Amiran, Don Chakerian, Lauren Cowles, Ken Falconer, Paul
Goodey, Eric Grinberg, Peter Gritzmann, Helmut Groemer, Peter Gruber, Daniel
Hug, Bob Jewett, Hans Kellerer, Joop Kemperman, Dan Klain, Vic Klee, Attila
Kuba, Árpád Kurusa, Erwin Lutwak, Horst Martini, Peter McMullen, Frank
Natterer, Rolf Schneider, Aljoa Volčič, Wolfgang Weil, and Gaoyong Zhang. Be-
tween them they made many valuable suggestions and caught copious mistakes
and misprints. (There are infinitely many of these in every manuscript, since each
time you look, you find another one.)

Most of the pictures were drawn with Aldus Freehand by Jill Skeels, in a
project supported by a grant from the U.S. National Science Foundation. Others
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were made by the author, with Mathematica and Virtuoso, and four of these used
programs written by Don Chalice (Figure 7.2, the original of which appears in
the paper [96] of Ulrich Brehm), Alfred Gray (Figure 3.9, see [330, p. 427]),
Branko Grünbaum (Figure 2.1), and Fred Pickel (Figure 8.3, intersection body
of the cube). The book was written in LATEX, part of the wonderful TEX package
invented and donated to the world by Donald Knuth.

Several of those already mentioned deserve extra thanks. During a visiting year
at the University of California at Davis, Don Chakerian lent his friendly help and
encyclopedic knowledge of convexity. At this time the book was to be a joint work
with Aljoa Volčič; though circumstances forced him to withdraw from the project,
he wrote a first draft of Chapter 5, and our collaboration continued in research
incorporated in the text. (This and some other research of the author, mostly also
published elsewhere, were partly supported by a grant from the U.S. National
Science Foundation.) Rolf Schneider kindly gave me a preprint of his book, which
immediately became indispensable. Constant encouragement and expert advice
from Erwin Lutwak became a pillar of support as the truth dawned of Gian-Carlo
Rota’s maxim: When you write a research paper, you are afraid that your results
might already be known, but when you write an expository work, you discover
that nothing is known.
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ṽ
i,

K
vo

lu
m

es
of

se
ct

io
ns

of
K

by
ea

ch
i-

di
m

en
si

on
al

su
bs

pa
ce

i-
ch

or
da

ls
ym

m
et

ra
l

∇̃ i
K

1s
t

se
ct

io
n

fu
nc

tio
n

of
K

,
or

X
-r

ay
of

K
at

th
e

or
ig

in
X

o
K

=
ṽ
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Background material

This chapter introduces notation and terminology and summarizes aspects of the
theories of affine and projective transformations, convex and star sets, and mea-
sure and integration appearing frequently in the sequel.

Some passages are designed to ease the beginner into these areas, but not all the
material is elementary. It is intended that the reader start with Chapter 1, and use
the present chapter as a reference manual. For Chapter 1, the requisite material
is included in the first four sections of this chapter only, and for Chapter 2, the
requisite material is included in the first five sections only.

0.1. Basic concepts and terminology
This section is a brief review of some basic definitions and notation. Any unex-
plained notation can be found in the list at the end of the book.

Almost all the results in this book concern Euclidean n-dimensional space En .
The origin in En is denoted by o, and if x ∈ En , we usually label its coordinates
by x = (x1, . . . , xn). (In E2 and E3 we often use a different letter for a point
and label its coordinates in the traditional way by x , y, and z.) The Euclidean
norm of x is denoted by ‖x‖, and the Euclidean scalar product of x and y by
x · y. The closed line segment joining x and y is [x, y]. Points are identified
with vectors, and are always denoted by lowercase letters. For sets we usually
employ capitals, although we also use lowercase for straight lines. Script capitals
are used for classes of sets; an exception is the S we use for sets of directions
in Chapters 1 and 2, but here we are really identifying a direction with the line
through the origin parallel to it. The natural numbers, real numbers, and complex
numbers have the usual symbols N, R, and C. The letters i , j , k, m, and n denote
integers unless it is stated otherwise (in parts of the book i often represents a
real number), or unless we are working with complex numbers, when i2 = −1

1



2 Background material

as usual. In particular, the default meaning of an expression such as 1 ≤ i ≤ n
is i ∈ {1, . . . , n}.

The unit ball in En is B = {x : ‖x‖ ≤ 1}, with surface the unit n-sphere
S n−1 = {x : ‖x‖ = 1}. When necessary we may write Bn instead of B. We
attempt to reserve u for the members of S n−1, the unit vectors. If u ∈ S n−1, then
u⊥ is the (n − 1)-dimensional subspace orthogonal to u, and lu the 1-dimensional
subspace parallel to u. Generally, S is used for a subspace, and S⊥ for its com-
plementary orthogonal subspace. The Grassmann manifold of k-dimensional sub-
spaces of En is denoted by G(n, k). More often than not the topology on G(n, k)

is unnecessary, and the symbol then simply denotes the corresponding set of sub-
spaces.

Translates of subspaces are called planes or flats, or hyperplanes if they are
(n − 1)-dimensional. A hyperplane divides the space into two half-spaces (half-
planes in E2). A ray is a semi-infinite straight line. If E is a set, the linear hull
lin E and affine hull aff E of E are, respectively, the smallest subspace and the
smallest plane containing E . The dimension dim E of a set E is the dimension of
its affine hull.

We say that two planes are parallel if one is contained in a translate of the other,
and orthogonal if, when translated so that they contain the origin, one contains the
complementary orthogonal subspace of the other. (These terms are often used by
other authors in a more restrictive way.) A slab is the closed region between two
parallel hyperplanes.

Suppose that F1, F2 are planes in En , of dimensions d1 and d2, respectively.
Then by [85, Theorem 32.1], either F1 ∩ F2 = ∅ or dim(F1 ∩ F2) ≥ d1 + d2 − n.
The planes F1 and F2 are in general position with respect to each other if either
d1 + d2 < n, F1 ∩ F2 = ∅, and there is no direction parallel to both planes, or
d1 + d2 ≥ n and dim(F1 ∩ F2) = d1 + d2 − n. See [85, pp. 88–90] for more
information. A finite set of points in En is said to be in general position if no
more than k + 1 of them belong to any k-dimensional plane.

A few of our results are set in 2-dimensional projective space P2. Generally,
n-dimensional projective space Pn can be defined as the space of 1-dimensional
subspaces of En+1. The points of Pn are labeled by homogeneous coordinates
w = (w1, . . . , wn+1), not all zero, so for real t 
= 0 the points w and tw are
identified; see, for example, [85, p. 217]. In this way, P1 can be regarded as
the unit circle S1 with antipodal points identified. We can also identify En with
{w : wn+1 
= 0}, where the usual coordinates are given by xi = wi/wn+1. The
remaining set H∞ = {w : wn+1 = 0} is the hyperplane at infinity (strictly speak-
ing, a copy of Pn−1). In particular, P2 can be regarded as E2 with a line at infinity
(strictly speaking, a copy of P1) adjoined.

Our terminology for set theory and topology is standard. If E is a set, then |E |,
co E , cl E , int E , and bd E denote the cardinality, complement, closure, interior,
and boundary of E , respectively; also, relint E is the relative interior of E , that
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is, the interior of E relative to aff E . The relative boundary of E is the boundary
of E relative to aff E . The symmetric difference of E and F is

E � F = (E \ F ) ∪ (F \ E).

A Gδ set is a countable intersection of open sets, and an Fσ set is a countable
union of closed sets. A set is of first category if it is the countable union of
nowhere dense sets, and residual if it is the complement of a set of first cate-
gory. A set in a locally compact Hausdorff space is residual if it contains a dense
Gδ set; see, for example, [700, pp. 158–60 and 200–1]. A component of a set is a
maximal connected subset. A closed set is regular if it is the closure of its interior,
and a body is a compact, regular set.

The diameter diam E of a set E is

diam E = sup {‖x − y‖ : x, y ∈ E}.
If x is a point and E is a closed set, the distance between x and E is

d(x, E) = inf {‖x − y‖ : y ∈ E}.
If E and F are sets, and r is a real number, then

E + F = {x + y : x ∈ E, y ∈ F},
and

r E = {r x : x ∈ E}.
A set E is called centered if −x ∈ E whenever x ∈ E , and centrally symmetric

if there is a vector c such that the translate E − c of E by −c is centered. In the
latter case c is called a center of E . The center of a nonempty bounded centrally
symmetric set is unique.

If X is a subset of En , or indeed any topological space, the support of a real-
valued function f on X is the set cl {x ∈ X : f (x) 
= 0}. We denote by C(X) the
class of continuous real-valued functions on X . When X is an appropriate subset
of En , Ce(X) denotes the even functions in C(X), and C+

e (X) the nonnegative
functions in Ce(X).

If f and g are real-valued functions, we say that f = O(g) on A ⊂ R if
there is a constant c such that | f (x)| ≤ c|g(x)| for all x ∈ A. When A = N, we
sometimes say that f = O(g) as n → ∞, while f = O(g) as x → 0 means that
f = O(g) on A = (0, a) for sufficiently small a.

0.2. Transformations
No single book seems to provide a completely satisfactory introduction to the
various types of transformations of En and Pn ; somehow the required material



4 Background material

falls between the texts on Euclidean or projective geometry currently available.
Borsuk’s book [85] is possibly the most comprehensive text for this purpose, but
its notation is quite outdated.

If A is an n × n matrix, the inverse and transpose of A are denoted by A−1

and At . We call A singular or nonsingular according to whether det A = 0 or
det A 
= 0, respectively; A−1 exists precisely when A is nonsingular. We also
adopt the abbreviation A−t for (A−1)t . Note that if A is nonsingular, then At is
also, and (At )−1 = (A−1)t .

For transformations φ of En and Pn , we shall permit ourselves the shorthand
φx = φ(x). The reader may find Figure 0.1 useful in interpreting the definitions
given below.

o

rotation

o

K

linear transformation

o

affine transformation

x

o

reflection in o

x

translation

x

rigid motion

homothety

x

x

direct rigid motion

similarity

x

dilatation

o

Figure 0.1. Transformations of a set K .

A linear transformation (or affine transformation) of En is a map φ from En

to itself such that φx = Ax (or φx = Ax + t , respectively), where A is an
n × n matrix and t ∈ En . (Here x is considered as a column vector, of course.)
We call φ singular or nonsingular according to whether A is singular or nonsin-
gular, respectively. The group of nonsingular linear (or affine) transformations is
denoted by GLn (or G An); its members are, in particular, bijections of En onto
itself. The group of special linear (or special affine) transformations of En is de-
noted by SLn (or S An , respectively). These are the members of GLn (or G An)
whose determinant is one. We shall write det φ instead of det A, and φ−1, φt , and
φ−t for the affine transformations with corresponding matrices A−1, At , and A−t ,
respectively.
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If A is the identity matrix, then φx = x + t , and the map φ is called a transla-
tion. Each affine transformation is composed of a linear transformation followed
by a translation.

Any set of n + 1 points in general position in En can be mapped onto any
second set of n + 1 points by a suitable affine transformation, and the latter is
nonsingular if the second set is also in general position (see [595, Theorem 7,
p. 16]).

If φ ∈ G An , then φ takes parallel k-dimensional planes onto parallel k-
dimensional planes (cf. [85, p. 156]).

An isometry of En is a map φ such that ‖φx −φy‖ = ‖x − y‖; in other words,
a distance-preserving bijection. Isometries are also called congruences, and the
image and pre-image under an isometry are said to be congruent. Every isometry
is affine (see, for example, [85, p. 150] or [839, p. 139]). Examples of isometries
are the translations and the reflections, which map all points to their mirror images
in some fixed point, line, or plane. (In particular, φx = −x is the reflection in the
origin.)

If F = S + x0 (where S ∈ G(n, k), x0 ∈ En , and 1 ≤ k ≤ n − 1) is a k-
dimensional plane, and x ∈ En , then there are unique points y ∈ S and z ∈ S⊥
such that x = y + z, and we can define a map taking x to y + x0 ∈ F . This map is
the (orthogonal) projection on the plane F . It is a singular affine transformation.
If E is an arbitrary subset of En , the image of E under a projection on a plane F
is called the projection of E on F and denoted by E |F . Since E |S is a translate
of E |F when F = S + x0, we almost always work with the former.

If φ ∈ GLn , then

x · φy = φt x · y, (0.1)

for all x , y ∈ En . The orthogonal group On of orthogonal transformations con-
sists of those isometries of En that are also linear transformations; these are pre-
cisely the maps φ preserving the scalar product, that is, φx · φy = x · y. (An
orthogonal matrix satisfies At = A−1 and by (0.1) we have φt = φ−1, hence
the name.) It follows from this that orthogonal transformations have determinants
with absolute value one. As is shown in [85, Theorem 50.6], every isometry is an
orthogonal transformation followed by a translation, and for this reason isome-
tries are sometimes also called rigid motions. The special orthogonal group SOn

of rotations about the origin consists of those orthogonal transformations with de-
terminant one. A direct rigid motion is a rotation followed by a translation; these
do not allow reflection.

A dilatation is a map φx = r x , for some r > 0. A homothety is a map
φx = r x +t , for some r > 0 and t ∈ En , that is, a composition of a dilatation with
a translation (this is sometimes referred to as a direct homothety). A similarity is
a composition of a dilatation with a rigid motion. We say two sets are homothetic



6 Background material

(or similar) if one of them is an image of the other under a homothety (or similar-
ity, respectively), or if one of the sets is a single point.

We find occasional use for projective transformations of Pn . Such a transfor-
mation is given in terms of homogeneous coordinates by φw = Aw + t , where
A is an (n + 1) × (n + 1) matrix and t ∈ En+1, and where φ is called nonsingu-
lar if det A 
= 0. Since we can regard Pn as En with a hyperplane H∞ adjoined,
we can also speak of a projective transformation of En . In this regard, another
formulation is useful. A projective transformation φ of En has the form

φx = ψx

x · y + t
, (0.2)

where ψ ∈ G An , y ∈ En , and t ∈ R, and φ is nonsingular if the associated linear
map

ψ̄(x, 1) = (ψx, x · y + t)

is nonsingular. If y = o, then φ is affine, but if y 
= o, φ maps the hyperplane
H = {x : x · y + t = 0} onto H∞. To avoid points in a set E being mapped into
H∞, we may insist that φ be permissible for E ; this simply means that E∩H = ∅.

Projective transformations map planes onto planes (neglecting the points map-
ping to or from infinity); see [595, pp. 19–20]. They also preserve cross ratio;
a proof is given in [85, Corollary 96.11]. (The cross ratio of four points xi ,
1 ≤ i ≤ 4 on a line is defined by

〈x1, . . . , x4〉 = (x3 − x1)(x4 − x2)

(x4 − x1)(x3 − x2)
,

where xi also denotes the coordinate of the point xi in a fixed Cartesian coordinate
system on the line.) Affine transformations are also projective transformations, so
the former also preserve cross ratio.

The sets E and F are called linearly, affinely, or projectively equivalent if there
is a nonsingular transformation φ, linear, affine, or projective and permissible for
E , respectively, such that φE = F . Suppose that E and F are bounded centered
sets affinely equivalent via a nonsingular transformation φ. If φo = p, then p is
the center of F ; but since o is the unique center of F , we have p = o. Therefore
φ is linear, proving that E and F are linearly equivalent.

0.3. Basic convexity
There are several possibilities for an introduction to the basic properties of convex
sets. For the absolute beginner, the books of Lay [499] and Webster [827] are
recommended. The first chapter of [595], by McMullen and Shephard, is terse, but
very informative, as is the first chapter of [737], by Schneider. The text of [845],
by Yaglom and Boltyanskĭı, is set out in the form of exercises and solutions, with
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plenty of helpful diagrams. Chapters 11 and 12 of Berger’s two-volume set [52],
[53], contain some wonderful pictures, and Lyusternik’s little book [554] is quirky
but delightful. A list of books on convexity can be found in [737, p. 433].

A set C in En is called convex if it contains the closed line segment joining
any two of its points, or, equivalently, if (1 − t)x + t y ∈ C whenever x , y ∈ C
and 0 ≤ t ≤ 1. A convex set, then, has no “holes” or “dents.” A convex body is
a compact convex set whose interior is nonempty; this definition conforms with
general usage, but the reader is warned that in the important texts of Bonnesen and
Fenchel [83] and Schneider [737] any compact convex set qualifies as a convex
body. The convex hull conv E of a set E is the smallest convex set containing it.

If C is a compact convex set, a diameter of C is a chord [x, y] of C such that
‖x − y‖ = diam C .

A hyperplane H supports a set E at a point x if x ∈ E ∩ H and E is contained
in one of the two closed half-spaces bounded by H . We say H is a supporting
hyperplane of E if H supports E at some point.

A convex body is strictly convex if its boundary does not contain a line seg-
ment and smooth if there is a unique supporting hyperplane at each point of its
boundary.

The intersection of a compact convex set with one of its supporting hyper-
planes is called a face, and (n − 1)-dimensional faces are also called facets.
An extreme point of K is one not contained in the relative interior of any line
segment contained in K . The point x is called an exposed point of K if there
is a supporting hyperplane H such that H ∩ K = {x}. Every exposed point is
extreme, but the converse is not true. Also, a compact convex set is the closure
of the convex hull of its exposed points, implying that every compact convex set
has at least one exposed point (see [737, Section 1.4], especially Theorem 1.4.7).
A corner point of a compact convex set in E2 is one at which there is more than
one supporting line.

If K1 and K2 are disjoint compact convex sets in En , then there is a hyperplane
H that (strictly) separates K1 and K2; that is, K1 is contained in one open half-
space bounded by H , and K2 in the other. A proof can be found in [499, Theo-
rem 4.12] or [737, Theorem 1.3.7]. (In infinite-dimensional spaces, this separation
theorem is closely related to the Hahn–Banach theorem; see [52, Section 11.4].)

Every affine transformation preserves convexity. If φ is a projective transfor-
mation, permissible for a line segment, then it maps this line segment onto another
line segment. Therefore φ preserves the convexity of convex bodies for which it
is permissible.

A nonempty subset C of En is a cone with vertex o if t y ∈ C whenever y ∈ C
and t ≥ 0. A convex cone with vertex o is a cone with vertex o that is convex;
such a set is closed under nonnegative linear combinations. A cone (or convex
cone) with vertex x is of the form C + x , where C is a cone (or convex cone,
respectively) with vertex o.
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Let us define some special convex bodies. The unit ball B in En was defined
already. A ball is any set homothetic to B, and an ellipsoid is an affine image
of B. The centered n-dimensional ellipsoids whose axes are parallel to the co-
ordinate axes are of the form {

x :
n∑

i=1

x2
i

a2
i

≤ 1

}
.

If 0 ≤ k ≤ n, a k-dimensional simplex in En is the convex hull of k + 1 points
in general position.

A polyhedron is a finite union of simplices; in E2, we shall use the term poly-
gon instead. A convex polyhedron or convex polytope can also be defined as the
convex hull of a finite set of points. We denote by Fk(P) the set of k-dimensional
faces of a convex polytope P .

Important examples of convex polytopes are the unit cube {x : 0 ≤ xi ≤ 1,

1 ≤ i ≤ n} (and centered unit cube {x : |xi | ≤ 1/2, 1 ≤ i ≤ n}) in En ; the
parallelepipeds or parallelotopes, affine images of the unit cube; the boxes,
rectangular parallelepipeds with facets parallel to the coordinate hyperplanes;
and the cross-polytopes (n-dimensional versions of the octahedron), each the
convex hull of n mutually orthogonal line segments sharing the same midpoint.
An n-dimensional pyramid P is the convex hull of an (n −1)-dimensional convex
polytope Q (its base) and a point x 
∈ aff Q called the apex of P .

A (right spherical) cylinder in En is the Cartesian product of an (n − 1)-
dimensional ball C and a line segment orthogonal to aff C . A (right spherical)
bounded cone in En is the convex hull of an (n − 1)-dimensional ball C and a
point on the line orthogonal to aff C through the center of C .

If K is a convex body in En , we denote by r(K ) and R(K ) the inradius and
circumradius of K . These are the radii of the largest n-dimensional ball contained
in K and the smallest ball containing K , respectively.

Topologically, a convex body is not very interesting. The surface of a convex
body K in En is homeomorphic to S n−1 via a radial map f , defined by selecting
a point x0 ∈ int K and letting

f (x) = (x − x0)/‖x − x0‖, (0.3)

for each x ∈ bd K .
A real-valued function on En is convex if

f
(
(1 − t)x + t y

) ≤ (1 − t) f (x) + t f (y),

for all x , y ∈ En and 0 ≤ t ≤ 1, and concave if − f is convex. (The terms concave
up and concave down are sometimes used for convex and concave, respectively.)
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0.4. The Hausdorff metric
Exactly what does it mean to say that a sequence of compact sets converges to
another compact set? One must have a way of measuring the distance between
two compact sets. This notion of distance must behave like the usual distance
d(x, y) = ‖x − y‖ between points, which has three fundamental properties:
d(x, y) ≥ 0, and equals zero if and only if x = y; d(x, y) = d(y, x); and
the triangle inequality

d(x, z) ≤ d(x, y) + d(y, z).

Such a function is called a metric. We shall only define one metric for compact
sets here, though there are several in common use (see Lemma 1.2.14 for another).
The Hausdorff metric δ on the class of nonempty compact sets in En is defined by

δ(E, F ) = max{max
x∈E

d(x, F ), max
x∈F

d(x, E)}. (0.4)

(A geometrically more appealing definition is given later.) It can be checked that
δ satisfies the three conditions listed earlier. The proof, and basic properties of the
metric space of compact sets in En defined in this way, may be found in [499,
Section 14] or [737, Section 1.8].

Suppose that E is a nonempty set in En and ε > 0. Then

Eε = E + εB = ∪x∈E (x + εB) (0.5)

is called an outer parallel set of E . When E is closed, Eε is just the set of all
points whose distance from E is no more than ε. (See [499, Section 14], [737,
p. 134]; see also the illustration in the book [789, Fig. 1.1(b)] of Stoyan, Kendall,
and Mecke, and the interesting accompanying discussion on the utility of this
idea in the processing of images.) This convenient concept allows the following
alternative definition of the Hausdorff metric:

δ(E, F ) = min{ε > 0 : E ⊂ Fε and F ⊂ Eε}. (0.6)

This means that the Hausdorff distance between two convex bodies K1 and K2 is
at most ε if K1 is contained in the outer parallel body K2 + εB of K2, and K2 is
contained in the outer parallel body K1 + εB of K1.

The Hausdorff metric is the standard one in the study of convex sets. We de-
note by Kn (or Kn

0) the space of nonempty compact convex sets (or convex bodies,
respectively) in En with the Hausdorff metric. (The definition of a body in Sec-
tion 0.1 implies the existence of interior points when the set is nonempty.) It is the
default metric, always used unless stated otherwise, for example, when discussing
continuity of a function defined on the class of compact convex sets. A specific,
and important, example of this is the continuity of volume on Kn ; see [499, The-
orem 22.6] or [737, Theorem 1.8.16]. (One should try not to be blasé about such
statements. After all, length is not continuous in E2, since one can approximate
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a closed line segment arbitrarily closely by polygonal arcs whose lengths are un-
bounded. According to Young [853, p. 303], this disturbed Lebesgue greatly when
he was at school! In fact, length is only semicontinuous in E2.)

A very frequently quoted theorem is the following one, whose proof may be
found in [499, Section 15] or [737, Theorem 1.8.6].

Theorem 0.4.1 (Blaschke’s selection theorem). Every bounded sequence of
compact convex sets has a subsequence converging to a compact convex set.

(A sequence of sets is bounded if there is a ball containing each member of the
sequence.) In [737, Theorems 1.8.13 and 1.8.15], it is shown that each K ∈ Kn

can be approximated arbitrarily closely from within or without by convex poly-
topes. This implies that the class of convex polytopes is dense in Kn . It is also
known that both the class of smooth convex bodies and the class of strictly con-
vex bodies are dense in Kn ; see [737, Theorem 2.6.1].

0.5. Measure and integration
Measure theory deals with the definition and generalizations of the intuitive
notions of length, area, and volume. The subject is amply supplied with well-
written books appropriate for the novice. Many a student has learned the basics
of Lebesgue measure and integration and the rudiments of general measure the-
ory from [700], by Royden. At a slightly higher level, Munroe’s book [639] is
to be recommended. Unfortunately, however, the geometric aspects of measure
theory are often ignored in the standard introductory texts. Exceptions are [839],
by Weir (see Chapter 6 of Volume 1), and [410], by Jones (see Chapter 3). Of
course, there are books on geometric measure theory proper, but here we can only
suggest a browse of the first three of chapters of the entertaining and exquisitely
illustrated introduction [637] by Morgan; we use no advanced geometric measure
theory in this book.

In practice one can get by without most of the complicated theory of abstract
measure. We summarize here the ingredients used in the sequel.

Consider, as a first example, area in the plane. Its essential properties are:
1. Familiar sets such as triangles, disks, and so on can be assigned a real num-

ber representing the area of the set.
2. The area of a countable union of disjoint sets is the sum of the areas of the

sets; that is, area is countably additive.
3. The area of a set does not change when it is moved by a translation; that is,

area is translation invariant. In fact, area is even invariant under isometries.
The same properties hold for a generalized notion of length in the real line,

or volume in space. Length and area are denoted by λ1 and λ2, respectively. For
Chapter 1, this is all one really needs.
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Sooner or later, it becomes necessary to talk about the area of less familiar sets.
It turns out that in order to retain the second and third properties, one has to give
up the hope of assigning an area to all subsets of the plane (at least, if one wishes
to use the commonly accepted axiom of choice). However, it can be shown that
the concept of area can be defined so that all open sets can be assigned an area.
Moreover, one can prove that the family of all sets that can be assigned an area
forms a σ -algebra; that is, the family contains the empty set and is closed under
the taking of complements and countable unions (and therefore also differences
and countable intersections). Since the family of Borel sets is, by definition, the
smallest σ -algebra containing the open sets, all Borel sets can be assigned an area.

Again, the same comments apply to generalized length in the real line and
volume in space. Generalized length, area, and volume are examples of measures,
and the sets that can be assigned a generalized length, area, or volume are called
measurable sets. Among the measurable sets are those of measure zero, including
all countable sets, but also many uncountable sets. For example, the Cantor ternary
set in the real line has zero generalized length, and any line segment in the plane
has zero area. Sets of measure zero (sometimes called null sets) are often neglected
in measure theory, just as the number zero can be ignored in addition. For the
types of measures encountered in this book, one is never too far from sanity when
working with measurable sets, for it can be shown that each measurable set is
the union of countably many closed sets and a (necessarily measurable) set of
measure zero.

We are now ready for the formal definitions which abstract these ideas.
Let X be a set. A countably additive, extended real-valued function defined on

a σ -algebra of subsets of X is called a signed measure; it is a measure if it is also
nonnegative. The members of the σ -algebra are called measurable sets. We say
a measure µ is σ -finite if X is a countable union of sets of finite µ-measure. A
measure µ is said to be concentrated on a subset E of X if µ(X \ E) = 0. If X is a
topological space, and the σ -algebra consists of the Borel sets in X , the measure
is called a Borel measure. An arbitrary measure in X is called Borel regular if
Borel sets are measurable and every measurable set is contained in a Borel set of
the same measure. A property is said to hold µ-almost everywhere or for µ-almost
all x ∈ X if there is a subset E of X with µ(E) = 0 such that the property holds
for all x ∈ X \ E .

We generally use lowercase Greek letters for measures. This is the convention
adopted by most measure theorists, with the important exception of some who
work in geometric measure theory, who use capital script letters, such as the H
for Hausdorff measure (to be defined shortly). History has forced us to make,
reluctantly, an exception for the area measures, defined in Section A.2.

After measures are defined, one can deal with the integral (some authors re-
verse this process). If µ is a measure in X , the µ-measurable extended real-valued
functions are those for which the inverse image of an open set is a measurable set.
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When X is a topological space, there is also the class of Borel functions on X ,
the extended real-valued functions for which the inverse image of an open set is
a Borel set. Every continuous function is Borel, and if µ is a Borel measure, then
every Borel function is µ-measurable. For certain functions f on X , a meaning
can be given to ∫

E
f (x) dµ(x),

the integral of f over the measurable set E ⊂ X , in such a way that in the
familiar case of a nonnegative f defined on En , the integral gives the volume
under the graph of f . Nonnegative functions are called µ-integrable on E if they
are µ-measurable and the integral exists and is finite. An arbitrary function f is
µ-integrable if both its positive part f + and its negative part f −, defined by

f +(x) = max{ f (x), 0} and f −(x) = max{− f (x), 0},
are integrable. A bounded measurable function is integrable on any set of finite
measure. All this can be found in Chapters 4 and 11 of [700], for example.

One theorem in the theory of integration is of outstanding importance: Fubini’s
theorem (see [700, Theorem 19, p. 307]) says that in all reasonable circumstances,
the integral of a function on a product of two spaces equals both of the two iterated
integrals. (This allows, for example, the volume of a measurable set in E3 to be
calculated by integrating the areas of its sections by planes parallel to a given
plane.)

The n-dimensional Lebesgue measure λn in En is often defined to be the
unique Borel-regular, translation-invariant measure in En such that the unit cube
has unit measure. This provides one definition of generalized length in the real
line, area in the plane, and volume in space. Defined this way, however, λn is not
the most important measure. This honor goes to k-dimensional Hausdorff mea-
sure Hk in En , 0 ≤ k ≤ n. This is the standard way of measuring k-dimensional
volume in En , so that, for example, one could use H1 to measure the perimeter of
a disc, or H2 for the surface area of a ball. The definition of Hausdorff measure
(see the texts of Morgan [637, p. 8] or Rogers [694, Chapter 2]) is somewhat
technical, but not really more so than the very commonly adopted definition of
Lebesgue measure in the real line via Lebesgue outer measure, as in Chapter 3
of [700], for example.

It is a convenient fact that the two measures λn and Hn agree in En (see
[637, Corollary 2.8] or [694, Theorem 30]), provided the correct constant is in-
cluded in the definition of Hn . There is a similar agreement between Hn−1 and
(n − 1)-dimensional spherical Lebesgue measure in S n−1, the unique Borel-
regular, rotation-invariant measure in En such that S n−1 has measure equal to the
constant ωn whose value is given by (0.10). Indeed, it is well known that Hn−1

is Borel regular and rotation invariant (see [694, Theorem 27 and p. 58]), and
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the fact that Hn−1(S n−1) = ωn follows from integration via the area formula in
[637, 3.7, p. 25]. Therefore we allow ourselves to speak loosely of k-dimensional
Lebesgue measure in En when we really mean k-dimensional Hausdorff mea-
sure, and use λk for integration in planes or spheres. Two abbreviations should be
noted: We shall write dx (or du, etc.) for dλk(x) (or dλk(u), etc., as appropriate)
when integrating over a k-dimensional plane or unit (k + 1)-sphere Sk .

The measure H0 (we shall write λ0) is just the counting measure, which counts
the number of points in a set.

When no misunderstanding can arise – for example, when working with com-
pact convex sets – we call the λk-measure of a k-dimensional body in En its
volume. This is traditional in geometry.

Often we want to work with the equivalence classes of measurable sets modulo
sets of measure zero, and here it is useful to write E � F when λn(E�F ) = 0.

Let φ ∈ G An . Then | det φ| is the factor by which φ changes volume,
that is,

λn(φE) = | det φ|λn(E), (0.7)

for each λn-measurable set E in En ; see [839, pp. 142–4]. It follows that the
members of S An , and more generally those maps in G An whose determinants are
±1, are volume preserving. It also follows that if r ≥ 0, then λn(r E) = rnλn(E).
More generally, if 1 ≤ k ≤ n, E is a λk-measurable set in En , and r ≥ 0, then

λk(r E) = rkλk(E). (0.8)

One can also check that φ preserves the ratio of λk-measures of sets in parallel
k-dimensional planes.

The volume of the unit ball in En is given by

κn = λn(B) = πn/2

�(1 + n
2 )

, (0.9)

with the convention κ0 = 1, and its surface area is

ωn = λn−1(S n−1) = nκn . (0.10)

The first computation is given in [570, pp. 324–5] and the second in [171,
p. 125]; or see [746, p. 18]. To calculate special values of κn , one only needs
�(1 + x) = x�(x), �(1) = 1, and �(1/2) = √

π . It is interesting that κn in-
creases with n to its maximum value 8π2/15 when n = 5, and then decreases,
approaching zero.

Using (0.9) and (0.7), one shows that the n-dimensional centered ellipsoid
{x :

∑n
i=1 x2

i /a2
i ≤ 1} has volume

a1a2 · · · anκn . (0.11)
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The volume of a parallelepiped is the λn−1-measure of its base times its height
orthogonal to its base. The volume of the parallelepiped in En with vertices at o,
p1, . . . , pn is also given by

| det(pi j )|, (0.12)

where pi = (pi1, . . . , pin), and the volume of the simplex in En with vertices at
o, p1, . . . , pn is

1

n!
| det(pi j )|, (0.13)

as in [85, p. 117]. We have the formula

λn(P) = 1

n
zλn−1(Q) (0.14)

for the volume of a pyramid or bounded cone P with base Q and height (the
distance from aff Q to the apex) z. This is easily obtained by integration and
induction, as in [52, 9.12.4.4] for the simplex; Dehn’s solution of Hilbert’s third
problem indicates that some form of limit argument is required (see the discussion
in [53, 12.2.5.2], for example).

We occasionally need other Borel measures in En or S n−1. A signed Borel
measure µ in S n−1 is called even (or odd) if µ(−E) = µ(E) (or µ(−E) =
−µ(E), respectively), for all Borel sets E .

Let µ be a measure in En and E a bounded set in En of finite positive µ-
measure. The centroid of E with respect to µ is the point

c = 1

µ(E)

∫
E

x dµ(x). (0.15)

The centroid of E is contained in conv E ; see [83, Section 6, p. 9].
There is another measure that is extremely important in geometry, and it oc-

curs in this fashion. It is sometimes essential to be able to measure the size of
a set of lines or planes, or to integrate a function defined on a set of lines or
planes. We only need to do this for sets of subspaces, that is, lines and planes
containing the origin, or generally for subsets of G(n, k). Moreover, our measure
should be compatible with the appropriate geometric transformations, so that, for
example, the measure of a subset E of G(n, k) should equal the measure of the
set obtained by applying the same rotation about the origin to each member of
E . For k = 1 (or k = n − 1), this is easy: Just identify each 1-dimensional sub-
space (or (n − 1)-dimensional subspace) S with the corresponding antipodal pair
of points ±u in S n−1 such that the vector u is parallel to S (or orthogonal to S,
respectively), and then use the measure λn−1 in S n−1. For 1 < k < n − 1, how-
ever, one needs a new measure, which can be defined by the following general
process.
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Let X be a locally compact topological group. Then there is a nonzero Borel-
regular measure µ in X that is also invariant under left translations by elements
of X . This measure µ is called the Haar measure in X ; it is unique up to
multiplication by a constant, and is finite if X is compact. A detailed proof of
its existence and uniqueness is given in the texts of Cohn [168, Chapter 9] and
Munroe [639, Section 17], for example. However, for the special case of most
interest here, this can be avoided. A clever direct construction due to Schneider
and Weil [746, Satz 1.2.4, p. 21] shows that there is a Haar measure νn in the
compact group SOn , normalized so that νn(SOn) = 1. Let S ∈ G(n, k), and let
fk : SOn → G(n, k) be defined by fk(φ) = φS for each φ ∈ SOn . This map is
surjective; the usual topology for G(n, k) is the finest topology for which fk is
continuous, and with this topology G(n, k) is a compact space. If E ⊂ G(n, k)

is a Borel set, define

µn,k(E) = νn
(

f −1
k (E)

)
.

Then µn,k , also referred to as the Haar measure in G(n, k), is the measure we
need; note that it is normalized so that

µn,k
(
G(n, k)

) = 1,

a fact we shall use several times without special comment. When integrating over
G(n, k), we shall abbreviate dµn,k(S ) by d S, and with this will have no further
use for the symbol µn,k .

Finally, we need a few more definitions. Let X be any set, and µ a mea-
sure in X . If p ≥ 1 is a real number, L p(X) denotes the set of µ-measurable
extended real-valued functions on X such that

∫
X | f (x)|p dµ(x) < ∞, and

‖ f ‖p = (∫
X | f (x)|p dµ(x)

)1/p is the L p norm. Also, L∞(X) is the space of
essentially bounded µ-measurable functions on X , with the L∞ norm given by
‖ f ‖∞ = ess sup | f |. (The function f is essentially bounded if it is equal µ-
almost everywhere to a bounded function g. The essential supremum ess sup f of
f is the infimum of the suprema of such g, and the essential infimum ess inf f
of f is the supremum of the infima of such g. For continuous functions, the es-
sential supremum and infimum reduce to the ordinary supremum and infimum,
respectively.)

A sequence {µn} of finite Borel measures in a metric space X is said to con-
verge weakly to the finite Borel measure µ in X if∫

X
f (x) dµn(x) →

∫
X

f (x) dµ(x), (0.16)

for each bounded f ∈ C(X).
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0.6. The support function
Perhaps the most widely applicable function connected with the study of convex
sets is the support function, and the purpose of this section is to gather together
some of its properties.

If K is a nonempty compact convex set in En , the support function hK of K is
defined by

hK (x) = max{x · y : y ∈ K }, (0.17)

for x ∈ En . From this definition it follows that if K1 and K2 are compact convex
sets, then K1 ⊂ K2 if and only if hK1 ≤ hK2 , and this implies that a compact
convex set is determined by its support function.

If u ∈ S n−1, then

Hu = {x : x · u = hK (u)} (0.18)

is the supporting hyperplane to K with outer normal vector u. The support
function hK (u) at a unit vector u gives the signed distance from o to Hu ; see
Figure 0.2.

hK(u)

H−u

xu
K Hu

 −hK(−u)

u

o

Figure 0.2. The support function.

As a function on En , the support function is positively homogeneous, that is,

hK (cx) = chK (x) for c ≥ 0, (0.19)

and subadditive, that is,

hK (x + y) ≤ hK (x) + hK (y). (0.20)

See [83, Section 15, p. 26]; a function having both these properties is called sub-
linear. An important result is that the converse is true: Every sublinear function
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on En is the support function of a unique compact convex set. See [737, Theo-
rem 1.7.1] for three proofs. Every sublinear function is convex, and every convex
function is continuous on the interior of its domain (cf. [499, Theorem 30.2] or
[737, Theorem 1.5.1]); therefore the support function is convex and continuous
on En .

Equation (0.19) usually permits us to work with the restriction of hK to the
unit sphere, as we almost always do in this book, without special comment.

The support function has some other properties making it of fundamental im-
portance in convexity. It is immediate from the definition that a compact convex
set K is centered if and only if hK (u) = hK (−u) for all u ∈ S n−1. It is an easy
exercise to show that if S is a subspace, then

hK |S(u) = hK (u), (0.21)

for all u ∈ S n−1 ∩ S. The support function also gives a convenient expression
for the Hausdorff distance between two compact convex sets K1 and K2, namely,
that

δ(K1, K2) = sup
u∈S n−1

|hK1(u) − hK2(u)| = ‖hK1 − hK2‖∞. (0.22)

The simple proof is given in [737, Theorem 1.8.11].
If Ki is a compact convex set in En , and ti ≥ 0, 1 ≤ i ≤ m, then the vector

sum

t1 K1 + · · · + tm Km = {t1x1 + · · · + tm xm : xi ∈ Ki }
is also called a Minkowski linear combination. The addition and scalar multipli-
cation are also called Minkowski addition and Minkowski scalar multiplication. It
is easily shown that this Minkowski linear combination is itself a compact convex
set.

If t1, t2 ≥ 0, then

ht1 K1+t2 K2(x) = t1hK1(x) + t2hK2(x), (0.23)

for all x ∈ En ; for the simple proof, see [737, Theorem 1.7.5].
If K is the singleton set {x}, then hK (u) = u · x , for all u ∈ S n−1. From this

and (0.23) we see that if K is a compact convex set, then the support function of
a translate of K is given by

hK+x (u) = hK (u) + x · u, (0.24)

for all u ∈ S n−1. It also follows that if K = [x, y] is a line segment, then hK (u) =
max{u · x, u · y}; in particular, if v ∈ S n−1, then

h[−v,v](u) = |u · v|, (0.25)
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for all u ∈ S n−1. Now (0.23) implies that when K is the centered cube in En , with
sides of length 2 and parallel to the coordinate hyperplanes, we have hK (u) =∑n

i=1 |ui |, for u = (u1, . . . , un) ∈ S n−1. Generally, one can show that K is a
polytope if and only if hK is piecewise linear.

Let φ ∈ GLn . Then, with (0.1),

hφK (x) = max{x · y : y ∈ φK }
= max{x · φz : z ∈ K }
= max{φt x · z : z ∈ K },

so

hφK (x) = hK (φt x), (0.26)

for all x ∈ En , and

hφK (u) = hK (φt u) = ‖φt u‖hK

(
φt u

‖φt u‖
)

, (0.27)

for all u ∈ S n−1.
Of course, hB(u) = 1, for all u ∈ S n−1; the support function of an ellipsoid

can be obtained from this and (0.27).

0.7. Star sets and the radial function
The radial function is dual to the support function introduced in the previous sec-
tion, but it appears much less frequently in the literature. Whereas it is natural to
define the support function for convex sets, the radial function can be defined for
the more general star sets. The purpose of this section is to explain the meaning
of these terms.

A set L is star-shaped at o if every line through o that meets L does so in a
(possibly degenerate) line segment. If L is nonempty, compact, and star-shaped at
o, its radial function ρL is defined by

ρL(x) = max{c : cx ∈ L}, (0.28)

for x ∈ En \ {o} such that the line through x and o meets L . It is positively
homogeneous of degree −1 that is,

ρL(cx) = c−1ρL(x) for c > 0. (0.29)

As with the support function, this usually permits us to work with the restriction
of ρL to the unit sphere, and we shall do this without further comment. We denote
the domain of this restriction by DL and its support by SL .

Note that our definition of radial function differs in an important way from the
usual one, in which the maximum is taken only over nonnegative c. One advantage
of the new definition, introduced by Gardner and Volčič [283], is that it mirrors
the definition (0.17) of the support function. The radial function ρL(u) at a unit
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vector u gives the signed distance from o to the boundary of L along the line lu
through o parallel to u. See Figure 0.3.

 L(u)

−  L(−u)

o

L

u

ρ

ρ

Figure 0.3. The radial function.

By a star body we mean a body such that ρL , restricted to SL , is continuous. A
star set is a set that is a star body in its linear hull.

We warn the reader that there are several definitions of the term “star body”
currently in use. One insists that o ∈ int L , which is clearly more restrictive than
the definition here. Another, specifying that ρL is continuous, is a viable alter-
native for bodies containing the origin (see Chapter 8, especially the discussion
at the beginning of Section 8.1). Our definition has the advantage that a convex
body is always a star body. Sometimes, however, the extra assumption that SL is
centered is required, as in Theorem 7.2.3, for example.

Let L be a star set. If o ∈ L , then DL coincides with S n−1; otherwise, DL

is smaller. Let L be a star body. It is not difficult to see that since L is compact
and regular, both DL and SL are also compact and regular in S n−1. Since ρL is
continuous on SL , it is a bounded Borel function on DL .

If L is a star set in En , and S ∈ G(n, k), then L ∩ S need not be a star set, since
it may not be regular. However, if dim(L ∩ S ) = k, then L ∩ S is a star set.

If xi ∈ En , 1 ≤ i ≤ m, then x1+̃ · · · +̃xm is defined to be the usual vector sum
of the points xi , if all of them are contained in a line through o, and o otherwise.
Let Li be a star body in En with o ∈ Li , and ti ≥ 0, 1 ≤ i ≤ m; then

t1L1+̃ · · · +̃tm Lm = {t1x1+̃ · · · +̃tm xm : xi ∈ Li } (0.30)

is called a radial linear combination. The addition and scalar multiplication
are called radial addition and radial scalar multiplication. (Lutwak [537] adds
Minkowski’s name to these terms.) Moreover,

ρt1 L1+̃t2 L2
(x) = t1ρL1(x) + t2ρL2(x), (0.31)

for all x .
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One can measure distance between star bodies by means of the Hausdorff met-
ric. However, in many respects the radial metric δ̃ is more natural. This is defined
by setting

δ̃(L1, L2) = sup
u∈Sn−1

|ρL1(u) − ρL2(u)| = ‖ρL1 − ρL2‖∞, (0.32)

for star bodies L1, L2 in En .
Let φ ∈ GLn . Then it follows from the definition of ρL that

ρφL(x) = ρL(φ−1x), (0.33)

for x ∈ En \ {o}, so

ρφL(u) = ρL(φ−1u) = 1

‖φ−1u‖ρL

(
φ−1u

‖φ−1u‖

)
, (0.34)

for all u ∈ S n−1.
Many examples of radial functions can be obtained from those of support func-

tions via the important polar relation (0.36).

0.8. Polar duality
Polar duality is an important tool in geometry, and it will be used several times
in this book. Though much is known about polar duality, it can be frustrating to
search the literature for even the most basic facts, so these are collected together
in this section.

If E is an arbitrary nonempty subset of En , then the set

E∗ = {x : x · y ≤ 1 for all y ∈ E} (0.35)

is called the polar set of E . The polar set is always closed and convex and con-
tains the origin; see [499, p. 142]. Moreover, if K is a convex body and o ∈ int K ,
then the same is true of K ∗, which we then call the polar body of K ; see Fig-
ure 0.4. In this case K ∗∗ = K (see [499, p. 142], [595, Section 2.2], or [737,
Theorem 1.6.1]).

If K is a convex body in En such that o ∈ int K , the boundary of K ∗ can be
calculated by the following important relation (see [499, Theorem 29.8] or [737,
Remark 1.7.7]):

ρK ∗(u) = 1/hK (u), (0.36)

for all u ∈ S n−1.
Suppose that K is a centered convex body in En . Then (0.36) and the fact that

K ∗∗ = K show that the reciprocal of ρK (sometimes called the gauge function
of K ) is hK ∗ and is therefore sublinear. In view of the fact that K is centered, the
reciprocal of ρK actually defines a norm ‖·‖K on En , for which K is the unit ball.
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hK(u)

hK(u)−1
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Figure 0.4. The polar body.

The dual of this Banach space is the one whose norm is given by hK , which has
the polar body K ∗ as its unit ball; see [737, Remark 1.7.8]. This is the source of an
intimate and important connection between centered convex bodies and Banach
spaces.

The polar set of the single point {x}, x 
= o, is the half-space {y : x · y ≤ 1},
and the polar body of the ball r B is the ball r−1 B. The following examples of
polar bodies of convex polytopes are noted by Grünbaum [367, Section 3.4]. If
P is an n-dimensional simplex containing the origin in its interior, then P∗ is
also. The polar body of the centered unit cube in En is a centered cross-polytope.
A centered regular dodecahedron has a centered icosahedron for its polar body.
Generally, the polar body of a convex polytope P is also a convex polytope, and
polarity provides an inclusion-reversing bijection between the faces of P and the
faces of P∗ (see [595, Lemma 8, p. 65]).

Suppose that φ ∈ GLn , and that K is a convex body in En with o ∈ int K .
Then for each u ∈ S n−1, by (0.27) and (0.34),

h(φK )∗(u) = 1

ρφK (u)
= 1

ρK (φ−1u)
= hK ∗(φ−1u) = hφ−t K ∗(u).

Therefore

(φK )∗ = φ−t K ∗. (0.37)

It follows immediately from (0.37) that centered convex bodies are similar, or
linearly equivalent, if and only if their polar bodies are, respectively.
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If E is an n-dimensional ellipsoid in En , containing the origin in its interior,
then E∗ is also. To see this, note first that if a = (a1, . . . , an) ∈ int B, then by
(0.36) and (0.24),

ρ(B+a)∗(u) = 1

h(B+a)(u)
= 1

1 + a · u
,

for all u ∈ S n−1. This gives

ρ(B+a)∗(u) = 1 − ρ(B+a)∗(u)u · a.

If we let x = (x1, . . . , xn) = ρ(B+a)∗(u)u, the previous equation becomes

n∑
i=1

x2
i =

(
1 −

n∑
i=1

ai xi

)2

.

Since this equation is a quadratic, and since we know that (B + a)∗ is convex,
it follows that (B + a)∗ is an ellipsoid (see [53, Proposition 15.4.7]). Now if
E = φ(B + a), where a ∈ int B and φ ∈ GLn , then (0.37) implies that E∗ =
φ−t (B + a)∗ is an ellipsoid.

Polar duality provides a link between sections and projections. Indeed, suppose
that K is a convex body in En with o ∈ int K , and that S is a subspace. Then

K ∗ ∩ S = (K |S )∗, (0.38)

where the polar operation on the right is taken in S. One can see this by using
(0.36) and (0.21) to conclude that, for any u ∈ S ∩ S n−1,

ρK ∗∩S(u) = ρK ∗(u) = 1

hK (u)
= 1

hK |S(u)
= ρ(K |S )∗(u);

or see [595, Theorem 15, p. 70] for a simple proof using only the definition of a
polar body.

Despite (0.38), the use of polar duality in geometric tomography is severely
limited by the fact that (as Figure 0.4 suggests) it is not an affine notion, but
rather a projective one. To be more specific, consider the following result, proved
in [595, Theorem 14, p. 67]. Let K be a convex body in En with o ∈ int K , and let
φ be a nonsingular projective transformation of En , permissible for K , such that
o ∈ int φK . Then there is a nonsingular projective transformation ψ , permissible
for K ∗, such that (φK )∗ = ψ K ∗.

0.9. Differentiability properties
A real-valued function on an open subset U of En is said to be of class Ck if
it is k-times continuously differentiable, that is, all partial derivatives of order k
exist and are continuous. The class of such functions is signified by Ck(U ). The
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class C∞(U ) consists of those real-valued functions belonging to Ck(U ) for all
k ∈ N. A real-valued function f on U is real analytic if its Taylor series exists
and converges to f (x) at each x ∈ U . (See, for example, [570, Section 6.8].)

If n ∈ N and 1 ≤ i ≤ n, let πi be the real-valued function on En defined
by πi (x) = xi , where x = (x1, . . . , xn). Suppose that f is a function from an
open subset U of En into Em . Then we say f is of class Ck if each map πi ◦ f ,
1 ≤ i ≤ m, is in Ck(U ). Functions from an open subset of En into Em that are of
class C∞ or real analytic are defined analogously.

Sometimes we want to speak, for example, about a function belonging to
C∞(S n−1), or the boundary of a convex body being of class C2. Basically, the
meaning of such terms is inherited from those defined in the previous paragraph,
but precise definitions take a little work. These can be found in several books on
differential geometry, but for the convenience of the reader we present them here.

A subset M of En is called an m-dimensional submanifold of En of class Ck if
there is an atlas for M of class Ck . An atlas for M of class Ck is a family of pairs
(Ur , fr ), called charts, such that

(i) each Ur is an open subset of M , and ∪r Ur = M ;
(ii) each fr is a homeomorphism of Ur onto an open subset of Em ;
(iii) if Ur ∩ Us 
= ∅, the map fs ◦ f −1

r , from the open subset fr (Ur ∩ Us) of
Em into Em , is of class Ck .

Again, an m-dimensional submanifold of En of class C∞ and a real-analytic
m-dimensional submanifold of En are defined analogously.

The unit sphere S2 is an example of a real-analytic 2-dimensional submanifold
of E3. The reason for the somewhat technical definition given is that one cannot
map the whole of S2 onto an open subset of the plane in the appropriate way, so
one has to use several charts; the sets Ur are patches on S2 which cover it and
which can be mapped onto open subsets of the plane. (In fact, the term “patch” is
often used instead of “chart.”) A picture of such patches covering a surface is one
of many figures generated with Mathematica by Gray [330, p. 219].

We say that a convex body K is of class Ck or of class C∞ if bd K is of class
Ck (or C∞, respectively) as a submanifold of En .

Now let M be an m-dimensional submanifold of En of class Cl , and suppose
that k ≤ l. The real-valued function f on M is of class Ck if, for every chart
(Ur , fr ) in an atlas for M , the real-valued function f ◦ f −1

r on the open subset
fr (Ur ) of Em is of class Ck . The class of such functions is denoted by Ck(M).
The real-valued functions on M of class C∞, or real-analytic ones, are defined
analogously, and the former class is signified by C∞(M).

When E is an appropriate subset of En , Ck
e (E) and C∞

e (E) denote the even
functions in the classes defined earlier.

Occasionally we adopt the common practice of calling a function or body
“sufficiently smooth.” This simply means that it belongs to Ck for a sufficiently
large k.
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If U is an open subset of the reals, the notation f ∈ Ck+ε(U ), 0 < ε ≤ 1,
means that f ∈ Ck(U ) and the k th derivative f (k) of f satisfies the following
Hölder condition:

| f (k)(x) − f (k)(y)| ≤ c |x − y|ε, (0.39)

for some c ≥ 0 and all x , y ∈ U . This allows some of the previous definitions to
have meaning even when k is an arbitrary nonnegative real number.

In the early literature on convexity, it was standard procedure for authors to
assume any convenient order of smoothness of the boundary of a convex body,
often without explicit comment. As the years went by, it happened again and again
that examples were discovered of convex bodies with surprisingly complicated
boundary structure. Luckily, one can learn basic convexity without spending too
much time on this topic, and in the advanced theory of convexity, Aleksandrov’s
magnificent theory of area measures (see Section A.2) often allows one to proceed
without any special boundary assumptions.

Sooner or later, however, one has to make such assumptions. Unfortunately,
there are many pitfalls and highly nonintuitive phenomena. For example, in [436],
Kiselman has shown the existence of a convex body in E3 having a real-analytic
boundary surface, though the boundary of its projection on some plane is only
C2+ε for some ε > 0; and in [437], he proves that the boundary of a Minkowski
sum of two planar convex bodies with real-analytic boundaries is C20/3, and that
this result is the best possible! Moreover, basic results and even definitions tend
to be involved and require some knowledge of differential geometry. Until re-
cently, there was no adequate treatment available, but Chapter 2 of Schneider’s
book [737] now provides a lucid and extremely valuable guide, plundered for the
following summary.

Let K be a convex body in En . The support function hK is differentiable on
En \ {o} if and only if hK is C1, and also if and only if K is strictly convex; see
[737, p. 107]. In this case Hu ∩ K (where Hu is defined by (0.18)) is a single point
xu for each u ∈ S n−1, and

xu = grad hK (u),

where grad denotes gradient (see [737, Corollary 1.7.3]). From this, the boundary
of K can be computed. For n = 2, we can do this directly, as follows. If hK is
differentiable at u = (cos θ, sin θ) ∈ S1, then hK (u) = xu · u. Regarding hK as a
function of θ , we get

h′
K (θ) = x ′

u · u + u′ · xu,

where the primes denote differentiation with respect to θ . Now x ′
u is parallel to

the tangent to K at xu , so x ′
u · u = 0. Also, u′ is orthogonal to u. It follows that

|h′
K (θ)| is the distance from xu to the foot of the perpendicular from o to Hu , and
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that

xu = (hK (θ) cos θ − h′
K (θ) sin θ, hK (θ) sin θ + h′

K (θ) cos θ
)
. (0.40)

The terms “convex body of class Ck (or C∞)” and “smooth” have already
been explained. In [737, p. 104], it is noted that K is smooth if and only if it is of
class C1. The proof given there requires several basic differentiability properties
of convex functions.

Let K be smooth and x ∈ bd K . Suppose that u is the outer unit normal vector
to K at x . The Gauss map g from bd K to S n−1 is defined by g(x) = u; it is
continuous, and a homeomorphism if K is smooth and strictly convex (see [737,
p. 78]).

The tangent space of K at x is the translate Hu − x = u⊥ of the supporting
hyperplane to K with outer normal vector u. Suppose now that K is of class C2.
Then g is C1. The differential Wx = dgx of the Gauss map is a linear map from
this tangent space to itself, called the Weingarten map. The eigenvalues of Wx

are called the principal curvatures of K at x . (In E3, the principal curvatures at a
point in bd K give the maximal and minimal bending of bd K at the point.) The
principal curvatures are nonnegative (see [737, pp. 104–6]). Their product is the
Gauss curvature (or Gauss–Kronecker curvature) of K at x .

The Gauss curvature at a point on an (n − 1)-dimensional submanifold of
En or hypersurface of class C2 can be defined similarly, as in [452, Chapter 7,
Section 5]. Then a compact hypersurface forms the boundary of a strictly convex
body if and only if the Gauss curvature at each of its points is positive; see [452,
Theorem 5.6].

If r = r(θ) is a planar C2 curve, we have the well-known formula

2(r ′)2 − rr ′′ + r2(
(r ′)2 + r2

)3/2
(0.41)

for its curvature in polar coordinates.
If k ≥ 2, we say that K is of class Ck+ (or C∞+ ) if K is of class Ck (or C∞,

respectively) and the Gauss curvature of K at each x is positive.
Suppose that hK ∈ C2. Since this implies that K is strictly convex, the reverse

spherical image map from S n−1 to bd K , taking u to xu , is defined. Furthermore,
its differential W u = dxu is also defined; this linear map from the tangent space
u⊥ of S n−1 at u to itself is called the reverse Weingarten map. The eigenvalues
of W u are called the principal radii of curvature of K at u ∈ S n−1. We denote
them by Ri (u), 1 ≤ i ≤ n − 1, where the labeling ranks them by magnitude. (See
[737, pp. 107–8], where the notation ri (u) is used instead. The corresponding
eigenvectors are called principal curvature directions.) They are also the nonzero
eigenvalues of the second differential of hK at u, by [737, Corollary 2.5.2]. If
K is of class C2+, they are also the eigenvalues of the inverse Weingarten map
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W −1
xu

= dg−1
xu

, and coincide with the reciprocals of the principal curvatures of K
at g−1(u).

A principal curve in bd K is a curve whose tangent vectors point in a principal
curvature direction. Figure 3.9 shows some principal curves in the boundary of an
ellipsoid.

Notice that K is of class C2+ if and only if K is of class C2 and all the princi-
pal curvatures of K are everywhere positive, and also (since K must be smooth,
by the preceding remarks) if and only if all the principal radii of curvature are
everywhere finite and positive.

It is proved in [737, pp. 106–11] that K is of class C2+ if and only if hK ∈ C2

and K has positive finite principal radii of curvature, or equivalently, if and only
if hK ∈ C2 and the Gauss curvature of K exists and is positive everywhere. The
existence of the Gauss curvature is necessary, since it is possible that hK ∈ C2

and the Gauss curvature of K is positive everywhere it exists, yet K is not even
smooth. (In E2, for example, K may have a corner point x so hK (u) = h{x}(u) =
x · u is linear for u ∈ S n−1 in a neighborhood of x/‖x‖.) The positivity of the
Gauss curvature is also essential; Hartman and Wintner [383, p. 480] have shown
that hK is not necessarily C2 even if the boundary of K is real analytic.

Let F (i)
K be defined by(

n − 1
i

)
F (i)

K =
∑

1≤ j1<···< ji ≤n−1

R j1 · · · R ji , (0.42)

where the right-hand side is the i th elementary symmetric function of the principal
radii of curvature of K . (In [737] the notation si is used instead of F (i)

K .) Then
(see [737, Corollary 2.5.3] or [83, Section 38]) F (i)

K (u) is the sum of the principal
minors of order i of the Hessian matrix of hK at u.

Using a result of Aleksandrov, it is possible to define, for almost all u ∈ S n−1,
the principal radii of curvature Ri (u) of a general convex body K in En as the
eigenvalues, corresponding to eigenvectors orthogonal to u, of the second differ-
ential of hK at u ∈ S n−1. Thus each F (i)

K can similarly be defined for almost
all u ∈ S n−1. Each Ri , and hence each F (i)

K , is then integrable on S n−1 with
respect to spherical Lebesgue measure; see [737, p. 118].

The Laplacian � f of a function f on an open subset of En is defined, as usual,
by

� f =
n∑

i=1

∂2 f

∂x2
i

.

The Laplace–Beltrami operator �S on S n−1 can be defined as follows. If f is
a function on S n−1, it can be extended to a function g on En \ {o} by letting
g(x) = f (x/‖x‖) for each x 
= o. Then �S f is defined to be the restriction of
�g to S n−1.
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If we set i = 1, we get (cf. [737, p. 110])

(n − 1)F (1)
K = R1 + · · · + Rn−1 = (n − 1)hK + �ShK .

In particular, if n = 2 and u = (cos θ, sin θ), we obtain, as in [737, p. 110,
eq. (2.5.22)],

R1(u) = hK (θ) + h′′
K (θ). (0.43)

In Section 0.4 it was noted that a convex body can be approximated arbitrarily
closely in the Hausdorff metric by smooth convex bodies. Sometimes it is use-
ful to have even stronger approximation theorems. For example, it follows from
[737, pp. 158–60] that the class of C∞+ convex bodies is dense in Kn , and further
that each centrally symmetric member of Kn can be approximated by centrally
symmetric C∞+ convex bodies.
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Parallel X-rays of planar convex
bodies

In this chapter our goal is to investigate the tomography of convex bodies in the
plane. The requisite concepts of an X-ray and Steiner symmetral of a planar con-
vex body are introduced in such a way that no knowledge of measure theory or
Lebesgue integration is necessary. Furthermore, the reader can absorb the new
ideas while avoiding the technicalities of higher-dimensional spaces. More gen-
eral definitions are postponed until Chapter 2. (Occasional reference is made to
these, but this is merely for cross-reference.) Granted some (but by no means all)
of the background material in the first four sections of Chapter 0, and apart from
references to a couple of auxiliary facts, the chapter is self-contained.

An X-ray of a convex body gives the lengths of all the chords of the body
parallel to the direction of the X-ray. Corollary 1.2.12 states that there are four
directions such that every convex body is determined, among all convex bod-
ies, by its X-rays in these directions. Given a convex body, Theorem 1.2.21
says that there are three directions allowing the body to be distinguished from
all others – “verified” – by the corresponding X-rays. A practical method by
which every convex polygon can be “successively determined” by three X-rays,
the direction of each depending only on the previous X-rays, is provided by
Theorem 1.2.23.

1.1. What is an X-ray?
We all know that dense material such as bone or teeth will show as light areas
on a medical X-ray in a doctor’s viewing box, while darker regions correspond
to other less dense tissue. Each beam of the X-ray travels along a straight line,
and its intensity after traversing the body depends on how much material it has
passed through; high intensities result in a darker point on the X-ray picture, and
low intensities show as a lighter point. If the beams in the X-ray are all parallel,
then the X-ray picture contains information about the amount of material in the
body lying on each straight line parallel to the direction of the X-ray.
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