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PREFACE

Rational functions are a classical tool for approximation. They turn out to
be a more convenient tool for approximation in many cases than polynomaials
which explains the constant increase of interest in them. On the other hand
rational functions are a nonlinear approximation tool and they possess some
intrinsic peculiarities creating a lot of difficulties in their investigation. After
the classcial results of Zolotarjov from the end of the last century substantial
progress was achieved in 1964 when D. Newman showed that | x| is uniformly
approximated by rational functions much better than by algebraic poly-
nomials. Newman’s result stimulated the appearance of many substantial
results in the field of rational real approximations.

Our aim in this book is to present the basic achievements in rational real
approximations. Nevertheless, for the sake of completeness we have included
some results referring to the field of complex rational approximations in
Chapters 6 and 12. Also, in order to stress some peculiaritics of rational
approximations we have included for comparison some classical and more
recent results from the linear theory of approximation. On the other hand,
since rational approximations are closely connected with spline approxi-
mations, we have included as well some results concerning spline
approximations.

As usual the specific topics selected reflect the authors’ interests and
preferences.

We now sketch briefly the contents of the book. Chapters 1 and 3 contain
some basic facts concerning linear approximation theory. A basic problem
in approximation theory is to find complete direct and converse theorems.
In our opinion the most natural way to obtain such theorems in linear and
nonlinear approximations is to prove pairs of adjusted inequalities of Jackson
and Bernstein type and then to characterize the corresponding approxima-
tions by the K-functional of Peetre. This main viewpoint is given and
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illustrated at the end of Chapter 3 and next applied to the spline approxima-
tion in Chapter 7.

Chapter 2 is devoted to the study of the qualitative theory of rational
approximation such as the existence, the uniqueness and the characterization
problems, the problem of continuity of metric projection and numerical
methods.

The heart of the book is contained in Chapters 4 to 11. Chapter 4 presents
the uniform rational approximation of some important functions such as | x|,
Jx, €% In Chapter 5 the uniform rational approximation of a number of
classes is considered. The exact orders of approximation are established.
The basic methods for rational approximation are given. In Chapter 6
some converse theorems for rational uniform approximation are proved. In
Chapter 7 complete direct and converse theorems for the spline approxima-
tion in L,, C, BMO are proved using Besov spaces. Chapter 8 investigates
the relations between the rational and spline approximations. Chapter 9 deals
with rational approximation in Hausdorff metric. A characteristic particulari-
ty of rational approximation is the appearance of the so-called ‘o small’ effect
in the order of rational approximation of each individual function of some
function classes. This phenomenon is investigated and characterized for some
function classes in Chapter 10. The exactness of the proved estimates is
established and discussed in Chapter 11.

Chapter 12 considers some special problems, connected with Padé approxi-
mants — some of the so-called direct and converse problems for convergence
of the rows and diagonal of the Padé-table. Finally some numerical results
and graphs are presented in the Appendix.
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1

Qualitative theory of linear
approximation

We shall begin with a short survey of the basic results related to linear
approximations (i.e. approximation by means of linear subspaces) so that
one can feel better the peculiarities, the advantages as well as some
shortcomings of the rational approximation. In this chapter we shall consider
the problems of existence, uniqueness and characterization of the best
approximation (best polynomial approximation). At the end of the chapter
we shall consider also numerical algorithms for finding the best uniform
polynomial approximation.

1.1 Approximation in normed linear spaces

Let X be a normed linear space. Recall that X is said to be a normed linear
space if:

(1) X is alinear space, i.e. for its elements sum, and product with real numbers,
are defined so that the standard axioms of commutativity and associativity
are satisfied,

(i1} X is a normed space, i.e. to each xe X there corresponds a nonnegative real
number | x| satisfying the axioms
@) x| =0, x| =0if x=0,
(b) x| =1Allx|l, A a real number,
) Ix+yl<lxl+ |yl (the triangle inequality).

Let {¢;}/—; be a system of n linearly independent elements of X. Let us
consider the linear subspace of X:G = {¢: 9 =37_, a;¢,, a; real numbers},
generated by the system {¢;}7- ;. For each element feX we denote by Eg(f)
the best approximation to f by means of elements of G:

Eg(f)=nf{| f— ¢ll:0eG}. (1)



2 Linear approximation

The following basic problems (basic not only for linear approximation
theory, but for the theory of approximation in general) arise.

(i) Existence problem: does an element ¢eG of best approximation for fe X
exist, i.e. is there ¢ = ¢(f)eG such that

If— o)l =Eg(f)?

(i) Uniqueness problem: if there exists an element of best approximation for
feX, is it unique?

(iii) Characterization problem: in the case where the element of best approxim-
ation for fe X exists and is unique, can we characterize it in some way?

(iv) Can we estimate how big Eg(f) is?

(v) Numerical methods: assuming that we know that the answer to the first two
(or three) problems is positive, how can we find ([} in practice?

The whole theory of approximation represents full or partial (for the
present, unfortunately) answers to the above problems when we approximate
different classes of functions in different normed linear spaces (or, more
generally, in metric spaces) with respect to different approximation tools (e.g.
algebraic polynomials, trigonometric polynomials, rational functions, spline
functions, linear combinations of exponential functions).

In the case of approximation in a normed linear space by a finite
dimensional subspace we can give a positive answer to the first question.
More precisely the following theorem holds.

Theorem 1.1 ( Existence theorem). Let G be a finite dimensional subspace of the
normed linear space X. For every fe X there is an element of best approximation
in G.

Proof. The proof of this theorem is based on the following well-known
fundamental property of finite dimensional normed spaces: every bounded
closed subset in a finite dimensional normed linear space is compact. The
idea of the proof is to show that the inf in (1) may be taken over a compact
subset of G.

Let ¢,€G be arbitrary. Then the set A = G:

A= {p:0eG. ] f~ ol <I f~ oo}

is nonempty (¢, € A), closed and bounded (since if pe A then o | < |l —f | +
[ f<loo—fI+1 1) Therefore A is compact and obviously

Eq(f)=inf{]| f—ol:@eG} =inf{]| f—ol:peA}.

The norm || f— ¢ | is a continuous function of ¢ (by the triangle inequality
Wf=el—lIf=¢llI<ll¢ —y¢]), therefore || f—¢| attains its inf on the
compact set 4 at some point ¢(f)eAd < G. dJ
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If the set G = X has the property that every fe X has an element of best
approximation in G, we shall call G an existence set. Obviously every existence
set must be closed (every boundary point of G must belong to G). Theorem
1.1 gives us that every finite dimensional subspace of a linear normed space
is an existence set.

Unfortunately the element of best approximation in an existence set G is
not always unique. Let us denote by Pg(f) the set

Po(f)={p:9€G, | f— ol =Ea(f)}
of all elements of best approximation of f.

Theorem 1.2. Let X be a normed linear space and G a subspace of X, G an
existence set. Then for every fe X the set Pg(f) is convex and closed.

Proof. Indeed, if pePg(f) and Y ePg(f) then for every ae[0, 1] we have

EdN<f—@p+(1 -}l <ol f—ol+(1 =) f—¥| =Es(f)
From this it follows that

Ee(f)=If— (@ + (1 =),

ie. 2@ + (1 —aWePgy(f), therefore Pg(f) is convex.
Ifj¢,.— el — 0,0,eG, then g also G, since G is closed. If ¢,,e Pg(f) then

m-—+ oo

EN<If—ol<lf=oul +lon—0l = Egf)

m— w0

Eg(N=11=eol,

therefore @ePy(f). O

We shall see now that, when the normed linear space is strictly normed,
there exists a unique element of best approximation in every subspace of X,
which is an existence set (in particular in every finite dimensional subspace).
Let us recall that a normed linear space X is said to be strictly normed if
the equality |x + y{ = || x|| + ||y || implies that x =ay, « a real number.

Theorem 1.3 (Uniqueness theorem). Let X be a strictly normed linear space
and G a subspace of X, G an existence set. Then for every fe X there exists a
unique element of best approximation in G, i.e. Pg(f) consists of exactly one
element.

Proof. Let pePg(f) and Yy ePy(f). In virtue of theorem 1.2 (¢ + )2 P4(f)
and therefore

EdN=If=(@o+ W21 <3 f—ol +31 /=¥ =Eg/).
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From this it follows that

If—(e+y)2] =

f=e
2

f—v
1%

Since X is strictly normed, the last cquality implies f— ¢ =a(f— ). If
a # 1 it follows that feG and in this case P(f)={f},ic. o =y. Ifa=1 we
obtain ¢ = . O

Corollary 1.1. Let G be afinite dimensional subspace of a linear strictly normed
space X. Then for every fe X there exists a unique element of best approximation
in G.

In this book we shall use mostly the following function spaces.

() The space C[a,b] of all functions which are continuous in the closed
finite interval [a, b]. This space becomes a normed one (even a Banach space,
i.e. a complete one) if we introduce the so-called uniform or Chebyshev norm,

IS lletaen = I1.f lle = max {| f(x)|:xe[a, b]}.

The approximations in C[a, b] are usually called uniform or Chebyshev
approximations.

(ii) The space L,(a,b), 1<p<oo, (ab) a linite or infinite interval,’
consisting of all functions f such that | f|” is Lebesgue-integrable in the
interval (a, b). If we consider all equivalent (in the sense of Lebesgue) functions
as one, L, (a, b) becomes a normed (even Banach) space with respect to the so-
called L,-norm

b

1/p
lIfIIL,,(a,b,=4|fHL,,=Hf|p={J If(X)I"dX} : 2

a

The approximations in L (a, b) will be called L ,-approximations.
(iii) We shall use the notation (2) also in the case 0 < p <1 when || f ], is
not a norm (since the triangle inequality does not hold), but only a quasinorm

Hf+gll,<co)U /1, + gl

(iv) The space L [a, b] consisting of all essentially bounded functions in
the interval [a, b] supplied with the norm

1N oy = 1S, = 1S Il = esssup.| f(x)| =inf {4 mes {x:| f(x)|> 1} =0}

where mes {4} denotes the Lebesgue measure of the set {A}.

If feL,, then || fIl,— |l fll, when p— co. Furthermore it is clear that if
feCla,b] then | f|c=1fll.- Sometimes we shall use the notation || f ||
also for bounded functions and we shall interpret it as sup {{ f(x}}: xe[a, b]}.

" We shall use also the notation L,[a,b].
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Beside these spaces we shall use in some paragraphs Orlich spaces, Besov
spaces, Hardy spaces and BMO spaces.

The spaces C[a,b], La,b), 1 <p < o, L, [a,b] are normed linear ones.
Therefore, in virtue of theorem 1.1 for each of their elements there exists an
element of best approximation with respect to an arbitrary finite dimensional
subspace of theirs. The main subspace used is that of algebraic polynomials
of nth degree, denoted by P,. It is the (n + 1)-dimensional subspace generated
by the functions 1, x,...,x". Applying theorem 1.1 in this case we obtain the
following.

Theorem 1.4 (E. Borel). Let feCla,b}(or L,[a,b], 1 < p < o). Then for every
natural number n there exists an algebraic polynomial peP, of best uniform
{or L,) approximation in P,.

It is often necessary to approximate 2z-periodic functions. Without
pointing it out explicitly every time, we shall use the notations we introduced
in the case of an interval also for linear spaces of 2n-periodic functions,
namely C[0,2x], L [0,27], 1 < p < co. The tools used most often in this case
are the trigonometric polynomials. We shall denote by T, the set of all
trigonometric polynomials of nth order, ie. T, is the (2n+ 1)-dimensional
subspace generated by the functions 1, cosx, sinx,...,cosnx, sinnx. In the
periodic case theorem 1.1 implies the following.

Theorem 1.4'. Let f be a 2m-periodic function and feC[0,2n] (feL,[0,2r]).
For every natural number n there exists a trigonometric polynomial qeT, of
best uniform (L,) approximation in T,.

Let us consider now the question of uniqueness. One can show that the
spaces L,, 1 <p < oc, are strictly normed (see for example S.M. Nikol’skij
(1969)). Then theorem 1.3 implies the following.

Theorem 1.5. Let feL (a,b)(let f be 2n-periodic and feL,[0,2n]), 1 <p < c0.
Then for every natural number n there exists a unique algebraic (trigonometric)
polynomial of nth degree of best L,-approximation in P, (in T,).

However, the spaces C, L, L = L, are not strictly normed. Let us show
this for instance for C[O0, 1]. If we consider the functions 1 and x, we have

I+ xllero.3= I lero. + 1 x o, =2

but the functions 1 and x are not linearly dependent.
It is easy to see by examples that in the general case in L, we do not have
uniqueness. Let us consider the function

()= -1, —1<x<0,
=Y L o<x<l

In L,(—1,1) every constant ¢, —1 <c¢ < 1, is a polynomial of degree zero
of best approximation to .
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Fortunately enough it turns out that the algebraic polynomial of nth degree
of best uniform approximation is unique. This follows from the Chebyshev
theorem, which gives a characterization of the algebraic polynomial of best
uniform approximation by alternation. This theorem as well as its proof can
be modified for the best rational uniform approximation. That is why it will
be of special interest of us.

1.2 Characterization of the algebraic polynomial of best
uniform approximation

Now we are going to solve the third basic problem of the theory of
approximation in the case of uniform approximation by means of algebraic
polynomials — characterization of the algebraic polynomial of best uniform
approximation. This problem was solved by P.L. Chebyshev in the last
century with his famous alternation theorem.

Let feC[a,b]. We shall denote by E{f)¢ the best uniform approximation
of the function f by means of algebraic polynomials of nth degree:

En(f)C[a,b] =E(f)c= inf{ I f—p ”C[a,b]:pepn}‘

In what follows in this section we shall write E (f) instead of E (f). and

1A, I f—=pll instead of || f{lc, | /= Pllc-

Definition 1.1. Let feC[a,b]. The polynomial pe P, is said to realize Chebyshev
alternation (or simply alternation) for f in [a,b] if there exist n + 2 points x;,
i=1,...,n+2,a<x; < <X,y,<b, such that

fe)—px) =o'l f=pl, i=1...n+2

where the number ¢ is +1 or — 1.

The Chebyshev alternation has the following geometric interpretation: let
peP, realize Chebyshev alternation for feCla,b] in [a,b]. Let us consider
the functions @(x) =f(x) + || f— pll and Y{x) =f(x) — | f— p||. Then the graph
of the polynomial lies in the strip between ¢ and ¥, touching alternately the
upper function ¢ and the lower function ¥ at least n + 2 times.

Theorem 1.6 (Chebyshey alternation theorem). Let feCla,b]. The necessary
and sufficient condition for the algebraic polynomial peP, to be a polynomial
of best uniform approximation for f in P, is that p realizes Chebyshev alternation

for fin [a,b].

Proof. Let peP, realize Chebyshev alternation for f in [a,b]. Assume that
p is not a polynomial of best uniform approximation, but ge P, is. Then

Ef)=1f—-aqal <l f-rl.
The above inequality implies that the polynomial s=p— geP, has the
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sign of p fin the points x;, i=1,...,n+ 2, since |p(x;) —f(x) = f—pl >

If=ql, p(x)—q(x)=plx) —f (X (61( ) —f(x)). Therefore seP, will
change its sign at least n+ 1 times, i.e. s must have at least n+ 1 zeros in

[a,b]. Since seP,, it follows that s=0, i.e. p=g¢, which is a contradiction
with the assumption.

Let now peP, be an algebraic polynomial of best uniform approximation
for f in P,. We shall show that p realizes Chebyshev alternation for f. Let
us assume, contrary to this, that m + 2 is the highest number of points
Xy <Xy << Xp.,in [a,b] such that

fx)=px)=e(=D' I f—pl=e(=DE(f), i=1,....m+2, )

where e =1 or — 1 and m < n. Then there exist m + 3 points &,, &,,..., &4,
which satisfy the inequalities

a=Co<x, <& <x, <8< <y 1 <Xy 2 $Epia=b

and are such that for every xe[{;_,, ;] we have

g—1Di(f(x)—px))> —ELf), i=1,....m+2. 2)

From (1) it follows that the continuous function f — p changes its sign in
the interval [x;, x; . ; ], therefore the points ¢, &,,...,&, ., can be chosen so
that

fE)=p&) i=1...m+1 ()

Since [&;_,,¢&], i=1,...,m+ 2, are a finite number of closed intervals
and f— p is a continuous function in each of them, from (2) it follows that
there exists 6 > 0 such that for every xe[¢,_,,&], i=1,...,m+ 2, we have
the inequality

&(— 1 (f(x) — p(x)) > 6 — E,(f). 4
Let us set
Q)= (= D" 1 Ax — &) (x—E,40),

where
o

T 20— &) (X — Ema ) lcrany

Since m < n, we have QeP,.
From this definition of Q it follows also that

[Q(x)| <96/2 forxela,b], &)
(=1D0(x)>0 for xe(&,,&,,), i=0,....m+1, {6)
Qo) >0, (=1)""1Q(&,42) >0, (7
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Q&E)=0, i=1,....m+ 1L (8)
Since p is an algebraic polynomial of best approximation to f'in P,, we have
—E(f)<f(x)—p(x)<E(f) for xe[a,b]. )

Let us consider the difference

f(x) = p(x) — eQ(x).
In view of (4), (5) and (6), for every xe[¢&;, &, ], we have,fori=0,....m+1,
& — D/ (x) = plx) — £Q(x)) = o — DY(/(x) = p(x)) — (— 1 Q(x)

>0—E(f)—09/2=0/2—E/f). (10)

From (5)—(9) we also obtain that, for every xe(¢;, ¢, 1) and x =&, &, 4s,
we have

&= 1(f (x) = p(x) —Q(x)) = (— 1)'&( / (x) — p(x)) — (= 1Y Q(x) S E,(f)

—(—1)Q(x) < E,(f). (11)
For x=¢,,i=1,...,m+ 1, we have, from (8),
S(&) —p(&) —eQ(E)=0. (12)

Consequently the inequalities (10)—(12) give us that, for every xe[a, b], we
have

| f(x) = p(x) — £Q(x)| < E,(f). (13)

Since f— p —¢Q is a continuous function in [a, b], from (13) it follows that

If—p—eQl <E\f)

1.e. a contradiction, since p + eQ€eP,. O
From theorem 1.6 there follows easily the uniqueness of the algebraical
polynomial of best uniform approximation as follows.

Theorem 1.7. Let feC[a,b]. For every natural number n there exists a unique
algebraic polynomial pe P, of best uniform approximation to fin P,.

Proof. Let peP, and geP, be two algebraic polynomials of best uniform
approximation to f-

If=pli=1f=ql=Eff) (14)

From theorem 1.2 the polynomial g =(p + ¢)/2€P, is also a polynomial
of best uniform approximation to f. By theorem 1.6 g realizes Chebyshev
alternation for f, ie. there exist n+2 points x;,, i=1,....n+2, a<x, <
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Xy < oo < X, 4 < b, such that

f(xi)—w:s(—l)‘En(f), i=1,...,n+2, (15)

where e=1or — 1.
From (14) it follows that

[/ —p (X)I<E(f)} (16)

| f(x) ) < EL(f)
Therefore the equality (15) can be fulfilled only if we have
S(x) = plx) = f(x;) — qlx),
re. if p(x)=¢q(x)fori=1,...,n+2.
We thus have that the algebraical polynomials peP, and geP, coincide
in n + 2 different points. Consequently p = q. O

The following theorem of de la Vallée-Poussin is very useful in the numerical
methods for obtaining the polynomial of best uniform approximation.

Theorem 1.8. Let feCla,b], peP,and x;, i=1,....n+2, a<x, <X, <+ <
Xp12 < b, be n+ 2 different points in [a,b]. If the dlfferencef p has alternate
signs at the points x;, i=1,...,n+2, then

ELf)zp=min{|f(x)—px)li=1,...,n+2}.

Proof. Let us assume that E,(f) < u. Let ge P, be the algebraic polynomial
of best uniform approximation to f, ie. | f— ¢l = E(f) < u.

From this it follows that the difference p —q¢ must have the sign of
p(x;) — f(x;) at the points x;, i = 1,...,n + 2. By the conditions of the theorem
therefore p — g must have alternate signs at n+ 2 points x;, i=1,2,...,n+ 2,
i.. the algebraic polynomial p — ge P, must have at least n + 1 different zeros
in [a,b]; consequently p — g =0 which contradicts

If—all=ELf)<u<|f-pl O

1.3 Numerical methods

We shall describe in this section the so-called Remez algorithms for numerical
solution of basic problem (v) from section 1.1 - finding the polynomial of
best uniform approximation. The algorithms are more general and can be
used for best uniform approximation by means of arbitrary Haar subspaces
of Cla,b].

Definition 1.2. The system {¢@,}i=, of functions ¢;eC[a,b], i=1,...,n, is said
to be a Chebyshev system on the interval [a, b] if every generalized polynomial
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@ =>"_, a;p; can have at most n — 1 zeros in [a, b] (every zero calculated with
its multiplicity).

Let C*%[q, b] denote the space of all functions in the interval [a, b] which
have kth derivative /® in [a, b], which belongs to C[a, b].

We shall say that x,e[a, b] is a zero of fe C®[a, b] of order k (or multiplicity
k) if

fxo)=f"xg) = =f*"D(xo) =0, fW(xc)#0.

Definition 1.3. A subspace G = C[a,b], G={p:¢ =31, a;p;}, generated by
the Chebyshev system {@;}I_, is said to be a Haar subspace.

Let {¢;}?-; be a Chebyshev system. In this section we shall use the following
notations. Let feC[a,b]. Then

ELf) =inf{nf— olip= 3 ai(pi},

n

Z ap;—f

i=1

Aa) =

s

Cla,b}

A= (@ d)ERY @)= Y a0~ S0,

R" the n-dimensional Euclidean space.
Our aim is to find real numbers {c¥}7_ such that

= E,(f)

Cla,b]

“f— 3. <o,

First Remez algorithm

The algorithm consists of the following recursive procedure.

(i) Select n+ 1 points X' = {x,}5, where a < xy <x; < <x,<b;
(i) Set k=0;
(iii) Given the set X™ find a vector ¢®eR" such that if we denote A¥(c) =
max {|r(e, x)|: xe X®} then

AP(c®) = inf {A¥(c): ceR"};

(iv) Find a point x, . €[a,b] such that Ae®)=|r(c™, x, . 1)l;

(v) Form the set X**V=X®U{x, 11}

(vi) Set k=k+1;
(vii) Go to (iii).

The choice of the initial set X° can be done in different ways (equidistant
point in the trigonometrical case, the roots of the (n + 1)-th polynomial of
Chebyshev in the algebraic case and so on) and there exist no strong rules
for this.
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At step (iii) we have to find in fact the polynomial of the best uniform
approximation on a set which consists of a finite number of points.

Step (iv) is usually the most laborious point in the algorithm.

The execution of the algorithm stops when the polynomial obtained at the
kth iteration satisfies some demands.

The method (i)—(vii) generates a sequence of vectors {¢® }_, for which we
have the following.

Theorem 1.9. Let c* be a cluster point of the sequence {¢®}2,. Then
E(f)= Alc*).
Proof. Let us set [e}=>7_,]¢;| and

Z C;p{x)].

i=1

6 = minmax
fel=1 xex®

Since X'” contains n + 1 different points and {¢;}?- ; is a Chebyshev system
on the interval [a,b] we have 0 >0. From X% < X**V < [, b] we get for
every ceR" that

A¥(e) < A**V(e) < Ae)
and consequently (€ A(C) = E,(f))
A(k)(c(k)) < A(k)(c(k+ 1)) < A(k+ 1)(c(k+ 1)) < A(k+ 1)(6) < A(é) — En(f)

The last inequalities show that the sequence {A®(c*)}% is monotone
nondecreasing and bounded from above. This means that there exists ¢ >0
such that lim,_, , A%(¢®) = E,(f) — &. We shall show that ¢ =0.

First we prove that the sequence {¢®}%, is bounded. Indeed,

n

Z c;04x) —f(x)

i=1

n

2 coilx)

and if f¢| > 2| f||/0 then A®(c) = A%c) > | f || = A¥(0),1.e. ¢ can not minimize
any of the functions A®. So the sequence {¢* }°_ | generated by the algorithm
is bounded.

Further let us set M =max, _,, [l ¢;ll¢z.5;- Then for an arbitrary vector b

= max
teX

A®(c) = max
xeX©

=S le=0lel=I 1]

{r(b, x) — r{c,x}{ = <Mlb—c|

Z = c)dx)

and therefore [#b, x)| < [r(c,x)| + M|b—c¢|, ie.

AD) = (b, ) |l gy = (b, X} < [r(e, X)| + M b —c| < Ale) + M|b—c].
()

Let us suppose now that ¢ > 0 and c*eR" is a cluster point of the sequence
{e®= . For every > 0 there exists an index k such that |¢* —¢®| < é and



12 Linear approximation

an index i > k such that |¢* —¢?] < §. Then |e® —¢®] < 25 and, using (1).
setting ¢* in place of b, we obtain

E(f) < Mc*) < Ae®) + M8 = |r(e™, x** )| + MS
< Jr(e®, X% )| + 3M5 < A% D(e®) + 3M3
SADED)+3MS K E(f)— &+ 3MS.

The number 6 > 0 was arbitrary, so for ¢ > 3M¢ this leads to a contradic-
tion. Therefore e =0 and A(c*)= E(f). O

Corollary 1.2. Let {@{x)}| = {x'}4~ 1. Then there exists lim,_ , ¢® =c*,
This follows from the uniqueness of the best uniform algebraic approxima-
tion (theorem 1.7).
Corollary 1.2 gives that the first Remez algorithm is convergent for the
case of approximation by means of algebraic polynomials.

Remark. The uniqueness theorem is also valid for approximation in the
uniform metric by means of a Chebyshev system. So we have convergence
of the first Remez algorithm also in the general case of a Chebyshev system.

Second Remez algorithm

We shall describe the second Remez algorithm again for an arbitrary
Chebyshev system and we shall prove the order of convergence for the case
of uniform approximation by means of algebraic polynomials.

(1) Take n+ 1 different points x;, i=0,...,n, a <Xy <X; <--- <X, < b;
(1) Solve the linear system

n

Jlx)— Z codx)=(—174, j=0,1,....n,

i=1

with respect to the unknowns cy,...,c, and 4;
(iil) Find the points {z;}{Z¢ such that zq=a, z,,,=b and r(z}) =0 for
i=1,....n'

(iv} Select the points y,e[z;,2;, 11, i=0, 1,...,n, such that
(signr(x;))r(y;) = max {r(x)signr(x;): xe[z;, 2+ 11},

(V) If N17(e; ) lcpaey > max {|H{c; y):0 < i< n} then there exists a point
vela,b] such that |r(e; y)| = [[7(€;} | cia5) — We put the point y in place of
some point among yq, V1,-- -, ¥, S0 that the function r(c; x) would preserve
the alternating signs on the newly obtained points which we denote again
by Yos Vise-esVus

(vi) Go to (ii) and instead of the points {x;}{_, consider the points {y;}?-,.
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This procedure can be easily carried out using computers and numerical
experiments show that it is not very sensitive to the choice of the initial points.

Usually we go out of the iterative process and stop the calculation when
on the kth step || r(c;-) | differs negligibly from | A|. This stop-condition comes
from the Chebyshev theorem of alternation.

The second Remez algorithm has quadratic convergence under some
restrictions on the smoothness of the function f (see L. Veidinger (1960)). We
shall prove here the linear convergence of the algorithm for every feCla, b]
in the case of polynomial approximations.

Theorem 1.10. Let {@;}}—, = {x'}124 and let feC[a,b]. The polynomial p* =
Srdext generated on the kth step by the second Remez algorithm satisfies
the condition || p* — pllcras < 0%, where p is the algebraic polynomial of best
uniform approximation for f of (n — 1)-th degree, 0 < 0 < 1 and ¢ is a constant,
independent of k.

Proof. We again use the abbreviation r(x) = r(¢; x). Since we described a single

cycle of the second Remez algorithm let us denote « = |r(xy)| = -+ = |r(x,)|=
‘_Xl’ /}:max{1r(yi)|:i:07"’7n}:”r(C;.)”Cv '}’:min{|I'(yi)‘:l.:0,,,,,n},
B=lf-rlc

From de la Vallée-Poussin’s theorem (theorem 1.8) we get a <y < <p.
Let us agree that on the next cycle of the algorithm the constants correspond-
ing to a, i, v, 4 and the coefficient vector ¢ will be denoted by «, f, ¥, #
and ¢’. According to this convention it is clear that the vector ¢’ is selected
by the system

n—1
(—1)‘/',’+Zoc;-y{:f(y,-), i=0,...,n,
=
and
flo) 1 yo“'y'(')_1
fO) 1y ! 'ZO(_])if(yi)Mi

L}

n

1 1 yo..-y'(')‘l -ZOMi
n—-1 =

—1 1 ViVl

(=01 yeeyn !
where M, are the minors corresponding to the first column of the matrix in
the denominator.
If f has the form f=3"-Ja;x’ then the approximation has to be exact
and ' =0, ic.
n—1
(— 1y Z ajy{Mi =0.

0 ji=0

e

1

1
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Thus we may replace f(y;) by
n—1
) =f(y) — 'Zo eyl
=

in the expression for 1. Taking into account that signn(y;) = — signr(y;, )
we obtain

o =) =<__20Mi|r(y.->|>/_zoM
Since M; >0,

Mizn(yk_yj)’ (2)

where the product is taken over all k,j such that k>, k,j=0,1,...,i—1,
i+1,...,nand y, >y, for k> j.
Now let 8, = M,;/>7_oM,;. Then

n n

o= Z dr(v)l = .ZOG":V>°" 3)
We shall show that there exists 6, 0 < 0 < 1, such that for all numbers ,
generated at the kth iteration of the algorithm we have

1—-0<0,<1, i=0,1,...,n. 4)

From (2) it follows that this will be true if there exists d > 0 independent
of k such that

Yy -y =6>0, i=0,....n—1, k=1,2,.... (5)

Let us assume that this inequality is not true. Then the sequence
{9, yP e will have a cluster point (3o, J,,...,7,), where at least two
points y; coincide. Consequently there exists an algebraic polynomial
q(x) = 3724 a;x* which interpolates f at the points y,, ¥,,...,7, (the number
of the different points is at most n). By definition «**V is the best
approximation of f at the points y&, y{, ... y® at the kth iteration and

a®* U <max {| f(y*F) — qy*):i=0,...,n}

=max {| () — q0) — f () + q(7):i=0,....n}, (6)
since f(7,) = q(y,), i =0,...,n. This inequality contradicts the fact that o' >«
(see (3)), ie. aP<aP < ookt g ... Really, if k is such that
max {|y® — §;:i=0,...,n} is small enough, then (2!’ > 0)

max {| f(y*) —f(7) — (@) —q@P:i=0,...,n} <oV M

since ¢ and f are continuous functions. From (6) and (7) we get the
contradiction a®**D < g(®),
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Therefore (5), and consequently (4), hold true. Using (4) we obtain

V—V>0<—V”‘29 R =0 =1 =B -y =1~ —y)

i=0

and
B—v=B-n—-G-n<B-»—(1-0(B—y=0p—
ie. p—y® <0 —y?) and

(k+1) (k) (k) k(g
y <ﬂ 0B

y(O))w‘
1—0 ~1—-0 " 1-0

ﬂ(k) — ﬁ < Ig(k) _ Y(k) <

®)

Finally we shall apply the strong uniqueness theorem 2.5 from Chapter 2
(obviously the theorem remains true for P,_,, i.e. when m=0). By this
theorem if p is the polynomial of best uniform approximation for f of (n — 1)-th
degree, then there exists a constant ¢(f) > 0, depending only on f, such that
for every polynomial ge P, , we have:

If=qll=lIf=pl+cNHlg—pl. ©)

Denoting by p' the algebraic polynomial generated at the kth step of the
algorithm (at the kth iteration), we obtain, from (8) and (9),

1
1p™ —pl <—(Ilf PPN =11 f=pl) =B = E.(f)

of) (f)
- _(pgW B P
AP
which completes the proof. O

Remark. Theorem 1.10 remains valid also for an arbitrary Chebyshev system.

1.4 Notes

The classical theorems for characterization and uniqueness of the best
polynomial uniform approximation are given by P.L. Chebyshev (see P.L.
Tchebycheff (1899), see also Ch.de la Vallée-Poussin (1910)).

The abstract theory of linear approximations is a very developed domain.
We recommend the following books, which contain some more details than
given here: L. Singer (1970), E.W. Cheney (1966), J. Rice (1964), (1969), Collatz,
Krabs (1973).

Usually uniform approximation by means of a Chebyshev system is
considered. We shall give only the formulations of some theorems.

Let K be compact and let C(K) be the set of all continuous functions on

Py, B are y, B at the kth iteration.
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K (real- or complex-valued). The following characterization theorem is known
as the Kolmogorov criterion (A.N. Kolmogorov, 1948).

Let feC(K) and let G be a linear subspace of C(K). A function ¢yeG is a
best approximation of [ with respect to G if and only if the inequality

min Re (f(x) — @o(x))p(x) <O

xeA

holds for every @eG, where A is the set of the extremal points of f— @,, i.e.

A={x:xeK, | f(x) = o¥)| = | /= @0 llcu }

and & is the conjugate of o.

The uniqueness theorem 1.7 has the following form.

Let G be a Haar subspace of C(K) (see section 1.3). Then for every fe C(K)
there is exactly one best uniform approximation of [ with respect to G
(A. Haar, 1918, A.N. Kolmogorov, 1948).

The theorem (1.6) of Chebyshev also is true for Chebyshev systems (Haar
subspaces), as follows.

Let G be a Haar subspace of C[a,b] with dimension n. Let ¢eG be the best
uniform approximation to feC[a,b] with respect to G. Then there exist n + 1
points x;,, i=1,....n+1,a<x; <- <X,y <b, such that

[ —ox)=e—= Dl f—@lcam i=L...n+tle==x1

For the first and second Remez algorithms see Remez (1969). There are
many modifications of these algorithms, see the books of Cheney (1966), Rice
(1964, 1969), Meinardus (1967). We have used in section 1.3 the book of
Cheney (1966).
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Qualitative theory of the
best rational approximation

The most essential problems in the qualitative theory of the best approxi-
mation are the problems of existence, uniqueness and characterization of the
best approximation. Finally the problems connected with the continuity of
the operator of the best approximation, or, as is mainly used, the continuity
of the metric projection, are considered. In this chapter we shall consider
these questions for the best rational approximation. The difficulties arise from
the fact that the set R,,, of all rational functions of order (n, m) (see the exact
definition in section 2.1) is not a finite dimensional linear space and the
bounded sets in R,,, are not compact in C[a,b] or in L{a,b). Nevertheless
we shall see that there exists an element of best approximation in C[a,b]
and L,(a,b) (section 2.1). Moreover in C[a,b] we have uniqueness and
characterization of the best approximation by means of an alternation, as in
the linear case (see section 2.2). Unfortunately in L,(a,b), 1 <p < oo, we do
not have uniqueness (section 2.3). In section 2.4 we consider the problem of
continuity of the metric projection in C[a,b] - the metric projection is
continuous only in the so-called ‘normal points’ (see section 2.4). In section
2.5 we consider numerical methods for obtaining the rational function of
best uniform approximation. We should like to remark that we examine only
the usual rational approximation. Some references for the qualitative theory
of generalized rational approximations are given in the notes at the end of
the chapter.

2.1 Existence

We shall denote by R,,, the set of all real-valued rational functions with
numerator an algebraic polynomial of degree at most n and denominator an
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algebraic polynomial of degree at most m, 1.e. reR,,, if r has the form

ax"+a, X" '+ +a
r(x)_ n—1 0

= 0 1
bX™ 4 by X"+ o+ by M

where a;,i=0,...,n, b;, i=0,...,m, are real numbers.

If reR,, has the form (1) with a,#0, or b, #0, we say that r is
nondegenerate.

If r =p/q, p and q algebraic polynomials without common zeros, we say
that r is a reduced rational function, or r has a reduced form, or r is irreducible.

Since the set R,,, is nonlinear when m > 1, we cannot apply the general
theory of linear approximation to obtain the existence of the best rational
approximation in the spaces C[a, b] and L (a,b), 1 < p < co. So we shall prove
its existence directly.

We define the best rational approximation in C[a, b] and L (a,b), | <p < o,
of order (n, m) as usual:

an(f)C[a,h] = inf{ I f—rl Cla.b]* VEan}s

an(f)l,p(a.b) =inf{|f—r 1 paby: reR ).

When it is clear we shall write briefly R,,(/)c or R,.(f) and R,,(f),, or
R,.(f),- When m = n we shall use the notations R,(f)ca.s» Ru(f)e oF Ry(f)

and R,(f)i s Rl )1, OF Ry(f)p-

Theorem 2.1 (Existence theorem), Let feCla,b] (or feL(a,b), | <p< ).
Then there exists a rational function reR,,, (respectively r,eR,,) such that

I f—r an, b] = an(f)C[a.b]

(respectively

I f=r, HLp[a,b] = an(f)L,,[a.b])-

Remark. The rational function r, respectively r,, is called a rational function
of best approximation to f in C[a, b], or of best uniform approximation to
f, respectively a rational function of the best L -approximation to f, of order
(n, m).

Proof of theorem 2.1. Let X denote the space Cla,b] or L(a,b), | <p < 0.
Let feX and ryeR,,, be such that

If=rylx <Ru(Nx+1/N, N=12.... 2)
Then it follows that
Irvllx SR NDx+ 1 flIx+1=4, N=12,.... 3)

Let ry = pn/qn. Where pyeP,, gyeP,,. We can assume that r, is normalized



2.t Existence 19

so that
lanlcs =1, N=12,.... (4)

Now (3) and (4) give us

[ Pvllx = lanrnllx < llrnllxllgy HC(a,b] <A (5)

From (4) and (5) it follows that the sets {py:N=1,2,...} =P, and
{qv:N=1,2,...} = P,, are sequences in compact sets (P,,P, are finite
dimensional spaces), so there exists a subsequence N,;, i=1,2,..., 0, and
peP,,qeP,, such that

lp — Pn; Ix —0; |p — DPn; HC[a,b] — 0;
Ni— o Ni—» (6)

lg— qn; H(‘[a.b] — 0.
Ni—o o

(all norms in a finite dimensional linear normed space are equivalent).
From (4) and (6) we obtain

lq ”C[a,b] =1 (7

If x is not a zero of g, in view of (6) gy,(x)—q(x) and therefore gy (x) #0
for sufficiently large N,. Using (6) we obtain (r = p/q):

|r(x) — ry(x) < tplclla—an e+ laliclp—pyllcy — 0. (8)

[q(x)gqn,(x)] Niow

Therefore, for every xe[a,b], x not a zero of ¢, we get from (2) and (8)

() = f O] < [r(x) = ra ()] + v (%) = f()] — Ronlf)e ©)

Ni—»w

or
[r(x) — f(x)] < an(f)qa,h]- (10)
On the other hand we have from (3) for every xe[a, b]

PN,-(X)
QNI-(X)

<A or |py() < Algnx)].

The last inequality together with (6) gives us
Ip(x)| < Alq(x)], xela,b]. (11)

The inequality (11) shows that every zero of g in [a,b] is also a zero of p
with at least the same multiplicity. Therefore r = p/q is a continuous function
in [a,b]. Then, since (10) is valid for xe[a, b] which are not zeros of ¢, (10)
is valid for all xe[a, b], so (10) gives us

”f - rHC: an(.f)(’
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Now let X = L [a,b]. Let K be some collection of intervals A; = [«;, ;] =
[a, b] such that A; does not contain a zero of ¢. Then, by (10), (6), (2), we have

1/p
U f(x)— r(x)}”dX}
K

1/p
<If=ryl,+ U tr(X)—rNi(X)I”dX}
K

<N f =y, + (mes(K)' P {iplellg — awllc + laliclp— pa,llc}
—4/_) an(f)pe

N>

1/p
{ J If(X)—r(X)I”dX} < Ryl /)y
K

for every such compact K. Since the number of the zeros of ¢ is finite, it
follows from the definition of the Lebesgue integral that || f —r|l, < R,,(f)
and since reR,,, we must have

” f —-r Hp = an(/)p O

The proof of this existence theorem shows the difficulties which arise
when we work with rational functions. Roughly speaking, we must think in
terms of the poles of the rational function — the proof of theorem 2.1 is so
long because we have to consider the poles of r. Indeed it follows from the
proof that in the uniform case it is not possible that r has poles on [a,b],
because, if g has a zero, on [a,b], p should have the same zero at least with
the same multiplicity. But from here follows the possibility for the best rational
approximation r to be degenerate: this means that peP,_,, qeP,_, if
r=p/qeR,,.

We shall see that in questions connected with the continuity of the metric
projection in C[a,b] on R, this possibility of degeneracy will be the main
problem.

D>

2.2 Uniqueness and characterization of the best
uniform approximation

We have seen that if feCla, b] then there exists a rational function reR,,,
of best uniform approximation. The set of rational functions R,,,, is a nonlinear
one; nevertheless it still has uniqueness of the rational function of best uniform
approximation and also characterization of this best approximation by means
of alternation. In order to formulate this theorem we shall need the notion
of the defect of a rational function.
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Let reR,, and the reduced form of  be r=p/q, ic. p and g have no
common zeros. The defect d(r) of r is given by

min {n —degp,m —degq}, r#0
dir) = _
m, r=0,

where deg p denotes the exact degree of the algebraic polynomial p (degp =k
if peP, and p¢P,_,).
It follows directly from the definition that:

(a) r is degenerate if and only if d(r) > O,
(b) d(r) is the greatest number s for which reR

(n—s){(m~-s)-

Theorem 2.2 Let feCla,b]. For all natural numbers n and m the rational
function reR,,, is a rational function of best uniform approximation to f of
order (n,m) if and only if there exist N=n+m+ 2 — d(r) points x;,i=1,..., N,
A< X <Xy < <Xy<b, such that

f(xi)“r(xi)28(_1)if|f“r'|('[a,b], i=1,..,N,g=+1

Moreover the rational function of order (n, m) of best uniform approximation
to f is unique.

In other words r is the rational function of order (n,m) of best uniform
approximation to f if and only if f—r alternates at least n+m+ 2 — d(r)
times in the interval [a, b].

Before proving theorem 2.2 we shall give some lemmas.

Lemma 2.1. Let oeC'[a,b] and let x;, i=1,... k+1, a<x, <x,< <
Xp+1 < b, be k+ 1 different points in the interval [a,b] such that

Ox1) #0,0(x,) = =o(x)) =0, x,,;)#0,
sign (x,) = (— 1)sign o(x, ;. ;). 0

Then ¢ has at least k zeros on (x,, x4 ), if we compute every zero with its
multiplicity.

Proof. The function ¢ has k — 1 zeros on (x;, X+ ) X3, X3,...,%,. We must
show that there exists in (x;, x, 4 1) @ zero z of ¢, different from x,, x5,...,%;,
or that one of the zeros x,,...,x, has multiplicity at least 2.

If there does not exist a zero of ¢ in (x,,x,,,) different from x,,...,x,,
then in each interval (x;,x;,,), i =1,...,k, the function ¢ has constant sign.
If the sign of ¢ is the same in two adjacent intervals (x;, x;; 1), (X;+15>X;42)
then x,, ; must be at least a double zero of @, since peC'[a, b]. If we assume

that in all adjacent intervals (x,x;, (), (X;y 1, X;42hi=1...,k—1, ¢ hasa
different sign, we obtain that sign ¢(x,) = (— 1)** ! sign ¢(x, ;) and we come
to contradiction with the condition (1) of the lemma. 0

Lemma 2.2. Let {¢;}{., be a Chebyshev system on the interval [a,b],
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0,eCla,b], i=1,....n, and G=1{p:@>"_ a;p;} be the Haar subspace,
generated by @ ,...,¢,. Let x;,i=0,....n,a<xy<x; < - <x,<b ben+1
different points on [a,b]. If for peG we have

(—Dip(x) =0, i=0,...,n,
or

(= Dip(x)<0, i=0,...,n,
then ¢ =0.
Proof. Let us assume that ¢ #£ 0. Let us have for example
(—1)o(x) =0, i=0,...,n. Q)

We shall prove that ¢ has at least n zeros in the interval [a, b], every zero
counted with its multiplicity, which contradicts the assumption of the lemma,
that {¢;}7. is a Chebyshev system on [a, b].

If o(x;)#0,i=0,...,n, from (2) and the continuity of the function ¢ it
follows at once that ¢ has at least n zeros in [, b]. Let now ¢(x;) = 0 for some
i. If o(x;) #0 for only one value of i, then the same result follows. There
remains the case when ¢(x;) # 0 for at least two values of i. Let the first two
be j and j +k, ie.

Plxg) = =plx;-1) =0, o(x;) # 0, )
(p(xH J== (p(xj+k— 1)=0, O(xj44) # 0.
From the hypothesis (2) it follows that
sign o(x;) = (— 1) sign o(x;, 4). 4)

Since peC![a,b], from (3), (4) and lemma 2.1 it follows that ¢ has at least
k zeros in the interval (x;,x;.,) and therefore ¢ has at least j + k zeros in
the interval [a, x;,,]. Going on in this way, we obtain that there exist n zeros
of ¢ in [a, x,], every zero counted with its multiplicity. O

In the proof of theorem 2.2 we shall use also the following modification
of the well-known Vallée-Poussin theorem for polynomials.

Theorem 2.3. Let feCla,b]. Let peP,, qeP,, and let q have no zeros on [a, b].
Let there exist N =n + m + 2 — d(p/q) points {x;}}_ |, a < x, <x, < <xy<
b, in [a,b] such that

plxy)

S = q(x;)

=g —14, e=+1,i>0i=1,... ,N. (5)
Then

Ru Nctapy = min {Azi=1,... N}
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Proof. Let us assume that there exists a rational function r, =p,/q,€R,,,,
(p.1/q)-irreducible, such that

I f=rillcas<min{iz:i=1,...,N} ©)

Let us consider the values of the difference s = p/qg — r; at the points x;,
i=1,...,N. We obtain from (5) and (6) that

sign s(x;) = sign {(” () _ f(x») —(ry(x) — f(x,-))}
: Q(xi)

_ sign<”(x") —f(xl-)> —o(—1)*1, i=1,...,N.

q(x;)
Hence s has at least N — | different zeros y;, i=1,..., N — [, in the interval
[a,b], ie.
s(yy=0, i=1,...,N—1.

Let us note now that ry = p,/q, has a reduced form and [ r, [|¢(, 5, < o0, and
consequently g, has no zeros on [a,b]. So from

s = PB) P L.N—1,

q(y) _‘11(%’)

it follows that
pya(v) —piya(y) =0, i=1,...,N—1,

1.e. the algebraic polynomial pq, — p,ge Py, M <n+m—d(p/q) = N — 2, has
at least N — 1 > M different zeros in the interval [a, b]. This contradiction
proves the theorem. O

Let us mention that later on we shall use theorem 2.3 in the numerical
method of Remez for finding the rational function of best approximation
(see section 2.5).

Proof of theorem 2.2. First we shall prove that if reR,,, realizes an alternation,
then r is a rational function of best uniform approximation to f of order
(n,m). If we apply theorem 2.3 to f and r with

Ai=A=f— r”(‘[a,b]7

we obtain that A< R,,(f)cwp» and since reR,, we must really have
A=l f =7 llcrae.51 = Rum(f), 1.€. r is a rational function of best uniform approxi-
mation to f of order (n, m).

Now let r be a rational function of best uniform approximation to f of
order (n,m). We shall prove that / —r must alternate at least N=n+m +
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2 —d(r) times in [a,b]. Let us assume the opposite, that M <N — 1 is the
highest number of points x; < x, < --- < x,, in [a, b] such that

S =r(x)=e(= D' f =7l cany = &l = DR Mgy, 1=1.-. . Mye=£1.

(7

Then there exist M + 1 points £,,i=0,.... M, a=¢{, <&, <---<&y=b
such that for every xe[¢&;_,,&;] we have

o= D) = r(x)) > = Ryl Netar, i=1..., M. (8)

In view of (7) the continuous function f—r changes its sign in [xi Xt 11
therefore we can assume, as in section 1.2, that the points §,,i=1,...,.M — 1,
are such that

flEY—r)=0, i=1,...,.M—1. 9
Let us consider the algebraic polynomial
S(X):('l)M(X_é)“’(X‘CTM~1)€PM—1~ (10)

Let r = p/q.and p and ¢ have no common zeros. Since se Py _,, peP,_4,
geP, _ 4. there exist two algebraic polynomials p,eP,,,q,€P,, such that

S=PpP1r—49;.
Let us consider the rational function

i p (11)

F= .
q — &dp,

where ¢ (¢ =1 or —1) is the same as in (7), and 4, 6 > 0, will be chosen later.
Since || f —rllcrap; < %, p and g have no common zeros, and g has no zeros
in [a, b], we can find &, so that for 0 < < o, the polynomial g —edp, has
the same sign as g in [a, b].
Let us consider the difference f —F. We have
p_p—edqy . #ppi—dqy) _ . €0s

f—=F=f-r+-———"—=f = —
q q—¢&op, glq — €op)) qlq — edp,)

Let 6, < &, be such that for §, 0 < 9 < J,, we have for xe[¢&,_,,&]

e(— D(f(x) — F(x)) = & — D(f(x) — r(x))
9s(x)
q(x){g(x) — &dp(x))

+(~1*! > = an(f)C[a,b]-
(12)

This is possible in view of (8), since f — r is a continuous function in {a, b].
On the other hand for xe(&;_{, &), i=1,....M, x=¢,, x=¢&,,, we have
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for 0<d <3,

) . . )
o= D) = 7)) = e = 1/ (x) = r(x)) — el = 1Y ) (q(;) S_()i_)ép )
O(— 1)'s(x)
~= Rmn a.bl
< Rl Deten = 45 (0 — e0p1 (9)
< an(f)('[a.h]ﬂ (1 3)

since by (10) we have (— 1)s(x) > Oforxe(&,_ ., &) i=1,.... M, x =&y, x =&y

In view of (9) we have also (13) for x=¢, i=1,...,M —1, ie. for all
xe[a,b]. Since f — 7 is a continuous function on [a, b], the inequalities (12)
and (13) give us

I f = Flletas) < Rumd Nerany- (14)

By (11) FeR,,,, and therefore (14) is a contradiction. Consequently f —r
must alternate at least N times.

Now let us prove the uniqueness of the best rational approximation of
order (n, m).

Let us assume that there exist two different rational functions r; =
Pi/4:€R,,, and r, = p,/q,€R,,, such that

If—r HC[a,b] =|f—r; “C[a,b] = an(f)C[a,b]'

We can assume that , = p,/q, and r, = p,/q, have a reduced form and
4:.9, have no zeros in [a,b].

Let Ny=n+m+2—d(r,), Ny=n+m+2—d(r,) and let us assume for
definiteness that N, > N,, or, which is the same, d(r;)<d(r,). Let x,
i=1,...,Ny, a<x;<--<Xxy, <b, be the points of alternation for r, i.e.

Sx)—ri(x) =e(— l)ian(.f)C[a,b]’ i=1,...,N,e= £ 1L (15)

Let us consider the difference s=r; —r, at the points x;, i=1,...,N,.
There are two possibilities:

(@ s(x)=0,i=1,...,Ny,
(b) s(x;) # 0 for some i.

In case (b), since | f(x;) - r{(x;)| = R,,.{f), we must have
8ry(x) — f(x)) <&ry(x) — f(x)), &= sign(rlx)—f(x)),
and therefore
sign s(x;) = sign (r,(x;) —f(xy). (16)
From (15) and (16} it follows that
g—1D*ts(x) =0, i=12,...,N . (17)



