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Introduction 

The numerical range of a linear operator on a normed 

linear space is a subset of the scalar field constructed in such a 

way that it is related both to the algebraic and the norm structures 

of the operator. In this it differs from the spectrum, which is 

related to the algebraic structure but independent of the norm (up 

to equivalence). For an operator on a Hilbert (or pre-Hilbert) 

space the numerical range has a very natural definition which was 

introduced, for finite dimensional spaces, by Toeplitz in 1918 

[70], as follows. Let~'denote a pre-Hilbert space with scalar 

product < ,> and norm I:. II, and let S(3t;') denote the unit 

sphere in a~c', SC:9tc/') = {x E3t:': II x II = I}. Then the numerical 

range of a linear operator T:3t:' - 3t;'is the set W(T) of scalars 

defined by 

W(T) = {< Tx, x>: x E S(jlF)} (1) 

The numerical range W(T) owes part of its motivation to the 

classical theory of quadratic forms, but modern developments are 

naturally given in terms of the theory of bounded linear operators. 

We have not included an account of the numerical range of 

an operator on a Hilbert space in these notes. There are two 

reasons for this. First and most important is the ready availability 

of an excellent account of the subject in Halmos's recent book [30]. 
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The second reason is that in the context of Hilbert spaces, with the 

varied and powerful methods available there, the numerical range 

has remained a relatively unimportant tool. By comparison, the 

theory of operators on Banach spaces and the general theory of 

Banach algebras are lacking in effective methods, and therefore 

such methods as we have are to be correspondingly treasured 

Moreover the numerical range can be applied to problems, such as 

the metric characterization of B*-algebras, which become meaning­

ful only in a wider context, even though, as in this instance, they 

may concern a Hilbert structure. 

It is, however, appropriate to give a brief review of the 

main results for Hilbert spaces, since these have motivated much 

of the general theory. It is obvious that W(T) contains all 

eigenvalues of T; for if ~ is an eigenvalue, there exists 

u € S~) with Tu = ~u, and then 

~ = ~ < u, u> = < Tu, u> € W(T) . 

Thus when~'has finite dimension, W(T) contains Sp(T), the 

spectrum of T, and Toeplitz proved that the unbounded component 

of the complement of W(T) has a convex curve for its boundary. 

The truth of this latter result became obvious when it was proved 

by Hausdorff (31] , still for finite dimensional ~', that W(T) is 

convex. This last result of Hausdorff was extended by Stone [68] 

to operators on pre-Hilbert spaces of arbitrary dimension. Let 

~'denote a complex Hilbert space, let T be a bounded linear 

operator on j1'c'" with operator norm I T I, and let 

w(T) = sup { I ~ I: ~ € W(T)} . 
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Further developments in the theory included the results that 

Sp(T) c W(Tf (the closure of W(T)), that, for a normal operator 

T, W(Tf is the convex hull of Sp(T), and that for all T 

I T I :s 2 w (T) . (2) 

These elementary results already give examples of the relationship 

of the numerical range to both the algebraic and the norm properties 

of the operator. 

The study of the numerical range of an operator on a Hilbert 

space continued in an unspectacular fashion until quite recently. 

One very interesting recent result is the theorem of Berger [4] 

that 

w(Tn) :s (w(T))n (n = 1, 2, ... ) , (3) 

which is remarkable because the inequality w(ST):s w(S)w(T) is 

false, as is also the special case w(Tn+m):s w(Tn)w(Tm). An 

elegant and simple proof of the inequality (3) is given by Pearcy 

[54]. For other references see Halmos [30] and Putnam [56]. 

By contrast to the long history of the Hilbert space numerical 

range, the birth of the general theory was long delayed and its 

growth has been spectacular. No concept of numerical range 

appropriate to general normed linear spaces appeared until 1961 

and 1962, when distinct, though related, concepts were introduced 

independently by Lumer [40] and Bauer [3]. Lumer defined the 

concept of a semi-inner-product on a linear space, and showed 

that every normed linear space (X, II. II) has at least one semi­

inner-product [,] such that 

[x, x] = IIxll 2 (x EX) • (4) 
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In terms of a semi-inner-product satisfying (4), the definition (1) 

used for Hilbert spaces at once generalizes to give the definition 

of the numerical range W(T) for a linear operator on X, 

W(T) = ([Tx, x] : x E S(X)} , 

where S(X) denotes the unit sphere of X. On the face of it this 

definition has the serious defect that it is not an invariant of the 

normed space (X, II . II), since, except when the unit ball of X is 

smooth, there are infinitely many semi-inner-products on X 

satisfying (4). However, this defect is more apparent than real, 

for Lumer proved that 

sup {Re A : A E W(T)} = lim 2. {I I + aT I - I}, (5) 
a-O+ a 

from which it follows that co W(T), the closed convex hull of 

W(T), is independent of the choice of semi-inner-product satisfying 

(4). In fact, (5) shows that co W(T) depends only on the norms of 

the operators in the two dimensional linear subspace spanned by I 

(the identity operator) and T. 

Lumer's paper [40] was undoubtedly the most important in 

the development of the subject. Besides introducing a suitable 

general concept and obtaining its fundamental properties, including 

a generalization of the crucial inequality (2), this paper showed the 

power of the concept in applications both to linear operators and 

to Banach algebras. Given an element a of a normed algebra A, 

let T denote the left regular representation operator: 
a 

T x = ax (x E A) . a 

4 
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Then the numerical range W(a) may be defined by W(a) = W(T a) in 

terms of some semi-inner-product on A related to the norm of A. 

Lumer showed that the numerical range is an effective tool for 

relating algebraic and geometric properties of a Banach algebra, 

giving, in particular, a simple proof of the theorem of Bohnenblust 

and Karlin [10] that the unit element is a vertex of a complex unital 

Banach algebra, and throwing fresh light on Vidav's metric character­

ization of B*-algebras [72]. 

Bauer's paper [3] was concerned only with finite dlmensional 

normed linear spaces, but the concept of numerical range that he 

introduced is available without restriction of the dimension. Let 

(X, 11.11) be a normed linear space, S(X) its unit sphere, X' its 

dual space, and let 

IT = {(x,f) € S(X) x S(X'): f(x) = I} 

Then, for an operator T on X, the numerical range V(T) is 

defined by 

V(T) = {f(Tx): (x, f) € II} . (7) 

When X is a Hilbert space, (x, f) € IT if and only if x € S(X) 

and f is the functional given by f(y) = < y, x> (y € X). Thus 

V(T) in this case coincides with the classical W(T) given by (1) 

above. If X is a normed linear space with a smooth unit ball, 

then V(T) coincides with the numerical range W(T) corresponding 

to the unique semi-inner-product satisfying (4). For a general 

normed linear space X, V(T) is the union of all the numerical 

ranges W(T) corresponding to all choices of semi-inner-product 

satisfying (4), and for each choice of such a semi-inner-product 
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co V(T) = co W(T) . 

Thus Lumer's results are immediately transferable to V(T). 

Since V(T) is intrinsically defined, without intervention 

of a choice of semi-inner-product, it is to be expected that it will 

exhibit greater regularity than W(T); and two recent theorems 

exemplify this. Williams [74] has proved that for any bounded 

linear operator T on a complex Banach space 

Sp(T) C V(T) - , 

whereas we only know that W(T) - contains the approximate point 

spectrum of T; and Bonsall, Cain, and Schneider [12] have proved 

that for every bounded linear operator T on a normed linear space 

V(T) is connected, whereas W(T) may be disconnected. With 

one trivial exception, the connectedness of V(T) holds for any 

continuous mapping T of S(X) into X, and this suggests that 

V(T) may be useful for the study of non-linear mappings. It 

should be remarked that V(T) is not in general convex, and 

perhaps the failure of the best known property of the Hilbert 

space numerical range contributed to the long delay in the 

introduction of V(T), which after all is a very simple generaliza­

tion of the Hilbert space numerical range. 

That the numerical range can give interesting information 

even about an n x n matrix is exemplified by the following 

theorem of Nirschl and Schneider [47]. Let A be an eigenvalue of 

an operator T which belongs to the frontier of co V(T); then A 

has index (ascent) one, i. e. 

2 
(AI - T) x = 0 =? (A I - T)x = 0 . 
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This result is immediately applicable to the eigenvalues of modulus 

one of a stochastic matrix. 

Let v(T) = sup { I A I : A E V(T) }. Since co V(T) = co W(T), 

we have v(T) = sup { I A I : A E W(T)} for any choice of semi-inner­

product satisfying (4). For complex normed linear spaces, we 

have 

IT I :::; e v(T) , 

an inequality essentially due to Bohnenblust and Karlin [10], in 

which the constant e (= exp 1) has been shown by Glickfeld [28] 

to be best possible for the class of all complex normed linear 

spaces. For special classes of spaces better constants have been 

established. The reciprocal of the least constant valid for a given 

normed linear space is called the numerical index of the space. It 

has recently been proved by Duncan, McGregor, Pryce and White 
-1 

[21] that for every real number I) E [e ,1] there exists a complex 

normed linear space with numerical index I). 

The inequality (3) has not been established t for operators 

on a general Banach space (perhaps for the natural reason), but 

M. J. Crabb [17] has recently proved that if T is a bounded 

linear operator on a complex Banach space normalized so that 

v(T) :::; 1, then 

(n = 1,2, ... ) . 

He has further proved, using the theorem of Nirschl and Schneider 

mentioned earlier, that if X is finite dimensional (or more 

t See Remark (10) of § 14. 
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generally if T is a meromorphic operator), then with the same 

normalization the sequence {II Tn,,} is bounded. 

Suppose now that A is a normed algebra, and is unital, 

i. e. has a unit element 1 with " 1" = 1. Given a EO A, the 

numerical range V(a) is defined by V(a) = V(T ), where T is a a 
the left regular representation operator on A, as in (6) above. In 

this case, however, a remarkably simple expression is available 

for V(a). Let D(l) denote the set of all normalized states on A, 

i. e. continuous linear functionals f on A such that 

f(l) = "f " = 1 . 

Then 

V(a) = {f(a): f EO D(l)} . 

It follows at once that V(a) is a compact convex set; and a number 

of other fundamental properties of V(a) are very easily established. 

Given a bounded linear operator T on a normed linear space 

X, we can regard T as an element of the unital normed algebra 

B(X) of all bounded linear operators on X, and we then have two 

intrinsic numerical ranges available for T. It turns out, as would 

be expected, that the numerical range of T as an element of the 

normed algebra B(X) is the closed convex hull of the spatial 

numerical range V(T) given by (7) above. 

Of special interest are the Hermitian elements of a complex 

unital Banach algebra A, i. e. elements h of A such that 

V(h) c R. By the lemma of Lumer mentioned above (5), h is 

Hermitian if and only if 
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lim a-I { "1 + iah II - I} = a , 
a-a 

i. e. if and only if h is Hermitian in the sense of Vidav [72]. Thus 

a fundamental lemma of Vidav shows that, for all Hermitian 

elements h of A, we have 

co Sp(h) = V(h) . (8) 

This is a crucial lemma in the Vidav characterization of B*-algebras, 

already mentioned above, which, as recently improved by Palmer 

[49], states that A is a B*-algebra if and only if every element of 

A is of the form h + ik with hand k Hermitian. As is well 

known, B*-algebras are isometrically star isomorphic to C*­

algebras, i. e. uniformly closed self-adjoint algebras of operators 

on Hilbert spaces. Thus an important theorem about algebras of 

operators on Hilbert spaces involves the concept of numerical 

range for general normed linear spaces and not just the classical 

Hilbert space concept. To show the effectiveness of the Vidav­

Palmer theorem, we give a number of applications of the theorem. 

In particular we use it to give new and transparent proofs of the 

theorem of Glimm and Kadison on a Banach star algebra satisfying 

the condition 

Ila~all = Ila*11 Iiall , 

and of the well known theorems of Kaplansky and of Sherman that 

the quotient of a B*-algebra by a closed two-sided ideal and the 

second dual of a B*-algebra with the Arens multiplication are both 

B*-algebras. 

9 


