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PREFACE 

This set of lecture notes is focused on the noncommutative aspects of the study 
of rings and modules. It is intended to complement the book Steps in Com­
mutative Algebra, by R. Y. Sharp, which provides excellent coverage of the 
commutative theory. It is also intended to provide the necessary background 
for the book An Introduction to Noncommutative Noetherian Rings, by K. R. 
Goodearl and R. B. Warfield. 

The core of the first three chapters is based on my lecture notes from the 
second semester of a graduate algebra sequence that I have taught at Northern 
Illinois University. I have added additional examples, in the hope of making 
the material accessible to advanced undergraduate students. To provide some 
variety in the examples, there is a short section on modules over the Weyl 
algebras. This section is marked with an asterisk, as it can be omitted without 
causing difficulties in the presentation. (The same is true of Section 1.5 and 
Section 3.4.) Chapter 4 provides an introduction to the representation theory 
of finite groups. Its goal is to lead the reader into an area in which there has 
been a very successful interaction between ring theory and group theory. 

Certain books are most useful as a reference, while others are less encyclo­
pedic in nature, but may be an easier place to learn the material for the first 
time. It is my hope that students will find these notes to be accessible, and a 
useful source from which to learn the basic material. I have included only as 
much material as I have felt it is reasonable to try to cover in one semester. 
The role of an encyclopedic text is played by anyone of the standard texts by 
Jacobson, Hungerford, and Lang. My personal choice for a reference is Basic 
Algebra by N. Jacobson. 

There are many possible directions for subsequent work. To study non­
commutative rings the reader might choose one of the following books: An 
Introduction to Noncommutative Noetherian Rings, by K. R. Goodearl and R. 
B. Warfield, A First Course in Noncommutative Rings, by T. Y. Lam, and A 
Course in Ring Theory, by D. S. Passman. After finishing Chapter 4 of this 
text, the reader should have the background necessary to study Representations 
and Characters of Finite Groups, by M. J. Collins. Another possibility is to 
study A Primer of Algebraic D-Modules, by S. C. Coutinho. 

I expect the reader to have had prior experience with algebra, either at the 
advanced undergraduate level, or in a graduate level course on Galois theory 
and the structure of groups. Virtually all of the prerequisite material can be 
found in undergraduate books at the level of Herstein's Abstract Algebra. For 
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the sake of completeness, two definitions will be given at this point. A group 
is a nonempty set G together with a binary operation . on G such that the 
following conditions hold: (i) for all a, b, c E G, we have a· (b· c) = (a· b) . Cj (ii) 
there exists 1 E G such that 1· a = a and a· 1 = a for all a E Gj (iii) for each 
a E G there exists an element a-l E G such that a· a-l = 1 and a-l . a = 1. 
The group G is said to be abelian if a . b = b· a for all a, bEG, and in this case 
the symbol· for the operation on G is usually replaced by a + symbol, and the 
identity element is denoted by the symbol 0 rather than by the symbol 1. The 
definition of an abelian group is fundamental, since the objects of study in the 
text (rings and modules) are constructed by endowing an abelian group with 
additional structure. 

I sincerely hope that the reader's prior experience with algebra has included 
the construction of examples. Good examples provide the foundation for un­
derstanding this material. I have included a variety of them, but it is best if 
additional ones are constructed by the reader. A good example illustrates the 
key ideas of a definition or theorem, but is not so complicated as to obscure the 
important points. Each definition should have several associated examples that 
will help in understanding and remembering the conditions of the definition. It 
is helpful to include some that do not satisfy the stated conditions. 

I would like to take this opportunity to thank my colleagues for many helpful 
conversations: Bill Blair, Harvey Blau, Harald Ellers (who made corrections in 
the last chapter), and George Seelinger (who class-tested the manuscript). I 
would also like to thank Svetlana Butler, Sonia Edghill, Lauren Grubb, Suzanne 
Riehl, and Adam Slagell, who gave me lists of misprints. I would like to dedicate 
the book to my daughter Hannah, with thanks for her patience while I was 
writing, and for her help in proofreading. 

John A. Beachy 
DeKalb, Illinois 

August, 1998 



Chapter 1 

RINGS 

The abstract definition of a ring identifies a set of axioms that underlies some 
familiar sets: the set Z of integers, the set of polynomials Q[x] with coefficients 
in the field Q of rational numbers, and the set Mn(R) of n x n matrices with 
coefficients in the field R of real numbers. Much of the interest in what we now 
call a ring had its origin in number theory. In the field C of complex numbers, 
Gauss used the subset 

Z[i] = {a+bi Eel a,bE Z} 

to prove facts about the integers, after first showing that unique factorization 
into 'primes' still holds in this context. The next step was to consider subsets 
of the form Z[(], where ( is a complex root of unity. These rings were used to 
prove some special cases of Fermat's last theorem. 

Kummer was interested in higher reciprocity laws, and found it necessary to 
investigate unique factorization in subrings of the field C of complex numbers. 
He realized that the analog of the prime factorization theorem in Z need not 
hold in all such subrings, but he was able to prove such a theorem in enough 
cases to obtain Fermat's last theorem for exponents up to 100. The modern 
definition of an ideal was given in 1871 by Dedekind, who proved that in certain 
subrings of C every nonzero ideal can be expressed uniquely as a product of 

1 



2 CHAPTER 1. RINGS 

prime ideals. We will see that prime ideals play a crucial role even in the case 
of noncommutative rings. 

The search for a way to extend the concept of unique factorization motivated 
much of the early work on commutative rings. An integral domain with the 
property that every nonzero ideal can be expressed uniquely as a product of 
prime ideals is now called a Dedekind domain. Lasker developed a parallel 
theory for polynomial rings, in which an ideal is written as an intersection of 
primary ideals (rather than as a product of prime ideals). Both of these theories 
were axiomatized by Emmy Noether, who worked with rings that satisfy the 
ascending chain condition for ideals. The commutative theories are beyond the 
scope of this text; the interested reader can consult the texts by Sharp [23], 
Matsumura [21], and Eisenbud [8]. 

The term 'number ring' was used in 1897 in a paper by Hilbert. The current 
definition of an abstract ring seems to have first appeared in the 1921 paper 
"Theory of ideals in rings" published by Emmy Noether. She played a promi­
nent role in the early (1920-1940) development of commutative ring theory, 
along with Krull. 

Section 1.1 and Section 1.2 introduce some of the basic definitions that will 
be used later in the book. For our purposes, integral domains and rings of 
matrices form two of the most important classes of rings. Section 1.3 and Sec­
tion 1.4 provide the tools for a study of unique factorization in integral domains. 
Section 1.5 introduces general matrix rings, and several other noncommutative 
examples. This section, together with Sections 2.8 and 3.4, carries forward the 
noncommutative emphasis of the text, but is not crucial to the development in 
other sections. 

1.1 Basic definitions and exam pIes 

Working with polynomials and matrices leads naturally to a study of algebraic 
systems with two operations, similar to ordinary addition and multiplication of 
integers. Although we assume that the reader has some knowledge of commu­
tative rings, especially integral domains and fields, we will give the definition 
of a ring in full detail. Including the study of even the set of 2 x 2 matrices 
over the real numbers means that we cannot impose the commutative law for 
multiplication. 

We recall that a binary operation on a set S is a function from the Cartesian 
product S x S into S. If * is a binary operation on S, then for all ordered 
pairs a, b E S, the value a * b is uniquely defined and belongs to S. Thus the 
operation is said to satisfy the closure property on S. 
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Definition 1.1.1 Let R be a set on which two binary operations are defined, 
called addition and multiplication, and denoted by + and ., respectively. Then 
R is called a ring with respect to these operations if the following properties 
hold. 

(i) Associative laws: For all a, b, c E R, 

a + (b + c) = (a + b) + c and a· (b· c) = (a· b) . c . 

(ii) Commutative law (for addition): For all a, bE R, 

a+b=b+a. 

(iii) Distributive laws: For all a, b, c E R, 

a· (b + c) = a . b + a . c and (a + b) . c = a . c + b . c . 

(iv) Identity elements: The set R contains elements 0 and 1 (not necessarily 
distinct) called, respectively, an additive identity element and a multiplicative 
identity element, such that for all a E R, 

a + 0 = a and 0 + a = a , 

and 
a . 1 = a and 1 . a = a . 

(v) Additive inverses: For each a E R, the equations 

a + x = 0 and x + a = 0 

have a solution x in R, called the additive inverse of a, and denoted by -a. 

The definition of a ring R can be summarized by stating that R is an abelian 
group under addition, with a multiplication that satisfies the associative and 
distributive laws. Furthermore, R is assumed to have a multiplicative identity 
element. (Note that if 1 = 0, then R is said to be trivial.) Many authors choose 
not to require the existence of a multiplicative identity, and there are important 
examples that do not satisfy the associative law, so, strictly speaking, we have 
given the definition of an 'associative ring with identity element.' 

The distributive laws provide the only connection between the operations 
of addition and multiplication. In that sense, they represent the only reason 
for studying the operations simultaneously instead of separately. For example, 
in the following list of additional properties of a ring, any property using the 
additive identity or additive inverses in an equation involving multiplication 
must depend on the distributive laws. 
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Our observation that any ring is an abelian group under addition implies 
that the cancellation law holds for addition, that the additive identity element 
is unique, and that each element has a unique additive inverse. The remaining 
properties in the following list can easily be verified. 

Let R be a ring, with elements a, b, c E R. 
(a) If a + c = b + c, then a = b. 
(b) If a + b = 0, then b = -a. 
(c) If a + b = a for some a E R, then b = O. 
(d) For all a E R, a· 0 = O. 
(e) For all a E R, (-1)· a = -a. 
(f) For all a E R, -(-a) = a. 
(g) For all a,b E R, (-a)· (-b) = a· b. 
A ring can have only one multiplicative identity element. If 1 E R and e E R 

both satisfy the definition of a multiplicative identity, then 1 . e = e since 1 is an 
identity element, and 1· e = 1 since e is an identity element. Thus e = 1· e = 1, 
showing that 1 is the unique element that satisfies the definition. 

Various sets of numbers provide the most elementary examples of rings. In 
these sets the operation of multiplication is commutative. The set Z of integers 
should be the first example of a ring. In this ring we have the additional 
property that if a ::I 0 and b ::I 0, then ab ::I O. The set Q of rational numbers, 
the set R of real numbers, and the set C of complex numbers also form rings, 
and in each of these rings every nonzero element has a multiplicative inverse. 

We next review the definitions of some well-known classes of rings. 

Definition 1.1.2 Let R be a ring. 
(a) The ring R is called a commutative ring if a . b = b· a for all a, bE R. 
(b) The ring R is called an integral domain if R is commutative, 1 ::I 0, 

and a . b = 0 implies a = 0 or b = 0, for all a, b E R. 
(c) The ring R is called a field if R is an integral domain such that for each 

nonzero element a E R there exists an element a-1 E R such that a· a-1 = 1. 

According to the above definition, Z is an integral domain, but not a field. 
The sets Q, R, and C are fields, since in each set the inverse of a nonzero 
element is again in the set. We assume that the reader is familiar with the ring 
F[x] of polynomials with coefficients in a field F. This ring provides another 
example of an integral domain that is not a field. 

If the cancellation law for multiplication holds in a commutative ring R, then 
for any elements a, b E R, ab = 0 implies that a = 0 or b = O. Conversely, if this 
condition holds and ab = ac, then a(b - c) = 0, so if a ::I 0 then b - c = 0 and 
b = c. Thus in a ring R with 1 ::I 0, the cancellation law for multiplication holds 
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if and only if R is an integral domain. It is precisely this property that is crucial 
in solving polynomial equations. We note that any field is an integral domain, 
since the existence of multiplicative inverses for nonzero elements implies that 
the cancellation law holds. 

It is possible to consider polynomials with coefficients from any commutative 
ring, and it is convenient to give the general definition at this point. 

Example 1.1.1 (Polynomials over a commutative ring) 

Let R be any commutative ring. We let R[x] denote the set of 
infinite tuples 

(aO,al,a2,"') 

such that ai E R for all i, and ai =P ° for only finitely many terms 
ai. Two elements of R[x] are equal (as sequences) if and only if all 
corresponding entries are equal. We introduce addition and multi­
plication as follows: 

(ao, at, a2,"') + (bo, bl, b2, ... ) = (ao + bo, al + b1 , a2 + b2, ... ) 

and 

where 
Ck = Ei+j=k aibj = E~=o aibk-i . 

Showing that R[x] is a ring under these operations is left as Exer­
cise 2, at the end of this section. 

We can identify a E R with (a, 0, 0, ... ) E R[x], and so if R has an 
identity 1, then (1,0,0, ... ) is a multiplicative identity for R[x]. Ifwe 
let x = (0,1,0, ... ), then x2 = (0,0,1,0, ... ), x3 = (0,0,0,1,0, ... ), 
etc. Thus the elements of R[x] can be expressed uniquely in the 
form 

ao + alX + ... + am_1Xm - 1 + amxm , 

allowing us to use the standard notation for the ring of polynomials 
over R in the indeterminate x. Note that two elements of R[x] are 
equal if and only if the corresponding coefficients ai are equal. We 
refer to R as the ring of coefficients of R[x]. 

If n is the largest nonnegative integer such that an =P 0, then we 
say that the polynomial has degree n, and an is called the leading 
coefficient of the polynomial. 

Once we know that R[x] is a ring, it is easy to work with poly­
nomials in two indeterminates x and y. We can simply use the ring 
R[x] as the coefficient ring, and consider all polynomials in the in­
determinate y, with coefficients in R[x]. For example, by factoring 
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out the appropriate terms in the following polynomial in x and y 
we have 

2x - 4xy + y2 + xy2 + x2y2 _ 3xy3 + x3y2 + 2X2y3 
= 2x + (-4x)y + (1 + x + x2 + X3)y2 + (-3x + 2x2)y3 , 

showing how it can be regarded as a polynomial in y with coefficients 
in R[x]. The ring of polynomials in two indeterminates with coeffi­
cients in R is usually denoted by R[x, y], rather than by (R[x])[y], 
which would be the correct notation. 

Now let D be any integral domain. Then the ring D[x] of all 
polynomials with coefficients in D is also an integral domain. To 
show this we note that if f(x) and g(x) are nonzero polynomials 
with leading coefficients am and bn, respectively, then since D is 
an integral domain, the product ambn is nonzero. This shows that 
the leading coefficient of the product f(x)g(x) is nonzero, and so 
f(x)g(x) '" O. In actuality, we have f(x)g(x) '" 0 because the 
degree of f(x)g(x) is equal to deg(f(x)) + deg(g(x)). 

We note that in the definition of the polynomial ring R[X1' X2, ... ,xn ], the 
coefficients could just as easily have come from a noncommutative ring. In that 
case, in defining the notion of a polynomial ring we generally require that the 
indeterminates commute with each other and with the coefficients. 

Many familiar rings fail to be integral domains. Let R be the set of all 
functions from the set of real numbers into the set of real numbers, with ordinary 
addition and multiplication of functions (not composition of functions). It is not 
hard to show that R is a commutative ring, since addition and multiplication are 
defined pointwise, and the addition and multiplication of real numbers satisfy 
all of the field axioms. To show that R is not an integral domain, let f(x) = 0 
for x < 0 and f(x) = x for x ~ 0, and let g(x) = 0 for x ~ 0 and g(x) = x 
for x < O. Then f(x)g(x) = 0 for all x, which shows that f(x)g(x) is the zero 
function. 

We next consider several noncommutative examples. 

Example 1.1.2 (2 x 2 Matrices over a field) 

We assume that the reader is familiar with the ring M2 (F) of 2 x 2 
matrices with entries in the field F. A review of the properties of 
matrices is provided in Section A.3 of the appendix. We recall that 

for matrices [au a12 ] and [bbu bb12 ] in M2(F), their product 
a21 a22 21 22 

is given by the following matrix. 

[ au a12] [bu b12] = [ aubu + a12b21 aUb12 + a12b22 ] 
a21 a22 b21 b22 a21 bu + a22b21 a21 b12 + a22b22 
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The matrix A = [au a 12 ] is invertible if and only if its 
a21 a22 

determinant det(A) = aUa22 - a12a21 is nonzero. This follows from 
the next equation, found by multiplying A by its adjoint adj(A). 

An interesting particular case is that of a lower triangular matrix 
with nonzero entries on the main diagonal. For a matrix of this type 
we have the following formula. 

7 

We recall the definition of a linear transformation. If V and Ware vector 
spaces over the field F, then a linear transformation from V to W is a function 
f : V -+ W such that f(Cl Vi +C2V2) = clf(Vl)+Clf(V2) for all vectors Vi, V2 E V 
and all scalars Cl, C2 E F. For a vector space V of dimension n, there is a one­
to-one correspondence between n x n matrices with entries in F and linear 
transformations from V into V. (See Theorem A.4.1 of the appendix.) 

To give the most general such example, we need to recall the definition of 
a homomorphism of abelian groups. If A and B are abelian groups, with the 
operation denoted additively, then a group homomorphism from A to B is a 
function f : A -+ B such that f(Xl + X2) = f(xt) + f(X2), for all Xl, X2 E A. If 
the group homomorphism maps A into A, it is called an endomorphism of A. 
We will use the notation End(A) for the set of all endomorphisms of A. 

We will show in Proposition 1.2.8 that rings of the form End(A) are the 
generic rings, in the same sense that permutation groups are the generic exam­
ples of groups. 

Example 1.1.3 (Endomorphisms of an abelian group) 

Let A be an abelian group, with its operation denoted by +. We 
define addition and multiplication of elements of End(A) as follows: 
if f, 9 E End(A), then 

[f + g](x) = f(x) + g(x) and [j . g](x) = f(g(x)) 

for all X E A. Thus we are using pointwise addition and composition 
of functions as the two operations. 

Since A is an abelian group, it is easy to check that addition 
of functions is an associative, commutative, binary operation. The 
identity element is the zero function defined by f(x) = 0 for all 
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x E A, where 0 is the identity of A. The additive inverse of an 
element f E End(A) is defined by [- f](x) = -(J(x)) for all x E A. 

Multiplication is well-defined since the composition of two group 
homomorphisms is again a group homomorphism. The associative 
law holds for composition of functions, but, in general, the commu­
tative law does not hold. There is a multiplicative identity element, 
given by the identity function lA. 

The most interesting laws to check are the two distributive laws. 
(We must check both since multiplication is not necessarily com­
mutative.) If f, g, h E End(A), then (J + g) . h = (J . h) + (g . h) 
since 

((J + g) . h)(x) = (J + g)(h(x)) 
= f(h(x)) + g(h(x)) 
= (J. h)(x) + (g. h)(x) 
= ((J. h) + (g. h))(x) 

for all x EA. Furthermore, h· (J + g) = (h· 1) + (h· g) since 

[h· (J + g)](x) = h(J(x) + g(x)) 
= h(J(x)) + h(g(x)) 
= [(h· 1) + (h· g)](x) 

for all x E A. The last argument is the only place we need to use 
the fact that h is a group homomorphism. This completes the proof 
that End(A) is a ring. 

The list of axioms for a ring is rather exhausting to check. In many cases 
we will see that the set we are interested in is a subset of a known ring. If the 
operations on the subset are the same as those of the known ring, then only 
a few of the axioms need to be checked. To formalize this idea, we need the 
following definition. 

Definition 1.1.3 A subset S of a ring R is called a subring of R if S is a 
ring under the operations of R, and the multiplicative identity of S coincides 
with that of R. 

Let F and E be fields. If F is a subring of E, according to the above 
definition, then we usually say (more precisely) that F is a subfield of E, or 
that E is an extension field of F. Of course, there may be subrings of fields 
that are not necessarily subfields. 
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Any subring is a subgroup of the underlying abelian group of the larger ring, 
so the two rings must have the same zero element. If F is any field contained 
in E, then the set of nonzero elements of F is a subgroup of the multiplicative 
group of nonzero elements of E, and so the multiplicative identity elements of 
F and E must coincide. Thus F must be a subfield of E. 

Suppose that D is a subring of a field F, and that ab = 0 for some a, bED. 
If a is nonzero, then the definition of a field implies that there exists an element 
a-1 E F with a· a-1 = 1. Multiplying both sides of the equation ab = 0 by a-1 

shows that b = o. We conclude that D is an integral domain. In Section 1.3 
we will show that the converse holds: if D is any integral domain, then it is 
possible to construct a field F in which D can be considered to be a subring. 
Thus integral domains can be characterized as subrings of fields. 

The next proposition is useful in constructing subrings. 

Proposition 1.1.4 Let S be a ring, and let R be a nonempty subset of S. 
Then R is a subring of S if and only if 

(i) R is closed under the addition and multiplication of S, 
(ii) if a E R, then -a E R, 

(iii) the multiplicative identity of S belongs to R. 

Proof. If R is a subring, then the closure axioms must certainly hold. 
Condition (ii) holds since R is a subgroup of S under addition. Condition (iii) 
holds by definition of a subring. 

Conversely, suppose that the given conditions hold. The first condition 
shows that condition (i) of Definition 1.1.1 is satisfied. Conditions (i)-{iii) of 
Definition 1.1.1 are inherited from S. Finally, since R is nonempty, it contains 
some element, say a E R. Then -a E R, so 0 = a + (-a) E R since R is closed 
under addition. By assumption the multiplicative identity 1 of S belongs to R, 
and this serves as a multiplicative identity for R. Since identity elements are 
unique, this shows that 1 is the multiplicative identity for R. Thus conditions 
(iv) and (v) of Definition 1.1.1 are also satisfied. 0 

The first example of a subring should be to consider Z as a subset of Q. 
Another interesting subring is found in the field C of complex numbers. The 
set Z[ i] is called the ring of Gaussian integers. It is by definition the set of 
complex numbers of the form m + n i, where m, n E Z. Since 

(m + ni) + (r + si) = (m + r) + (n + s) i 
and 

(m + n i) (r + s i) = (mr - ns) + (nr + ms) i , 
for all m, n, r, s E Z, we see that Z[ i] is closed under addition and multiplication 
of complex numbers. Since the negative of any element in Z[ i] again has the 
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correct form, as does 1 = 1 + 0 i, it follows that Z[ i 1 is a commutative ring by 
Proposition 1.1.4. Since it is a subring of the field of complex numbers, it is an 
integral domain. 

Example 1.1.4 (Some subrings of matrix rings) 

The ring M2 (C) of 2 x 2 matrices with complex entries is interesting 
in its own right, but in this example we consider two of its subrings. 

Let R be the subring 

of M2 (C) consisting of all matrices with integer entries. This pro­
vides an interesting example, with a much more complex structure 
than M2(C). For example, fewer matrices are invertible, since a 

matrix [: ~] in R has a multiplicative inverse if and only if 

ad - be = ±l. Even though the entries come from an integral do­
main, there are many examples of nonzero matrices A, B E M2 (Z) 

with AB = 0, such as A = [~ ~] and B = [~ ~]. 
Let S be the subring of R consisting of all matrices [: ~] 

such that b = o. The ring S is called the ring of lower triangular 
matrices with entries in Z. It will provide an interesting source of 

examples. For instance, in S the matrix [: ~] is invertible if 

and only if a = ±1 and d = ±l. 

We need to define several classes of elements. 

Definition 1.1.5 Let R be a ring, and let a E R. 
(a) If ab = 0 for some nonzero element b E R, then a is called a left zero 

divisor. If ba = 0 for some nonzero element b E R, then a is called a right zero 
divisor. 

(b) If a is neither a left zero divisor nor a right zero divisor, then a is called 
a regular element. 

(c) The element a E R is said to be invertible if there exists an element 
b E R such that ab = 1 and ba = 1. The element a is also called a unit of R, 
and its multiplicative inverse is usually denoted by a-I. 

(d) The set of all units of R will be denoted by R X • 
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For any ring R, the set RX of units of R is a group under the multiplication 
of R. To see this, if a, b E RX, then a-I and b- l exist in R, and so ab E R X 

since (ab)(b-la- l ) = 1 and (b-la-l )(ab) = 1. The element 1 E R is an identity 
element for RX, and a-I E R X since (a-l )-1 = a. The associative law for 
multiplication holds because R is assumed to be a ring. 

Now suppose that 1 # 0 in R. Since 0 . b = 0 for all b E R, it is impossible 
for 0 to have a multiplicative inverse. Furthermore, if a E R and ab = 0 for 
some nonzero element b E R, then a cannot have a multiplicative inverse since 
multiplying both sides of the equation by the inverse of a (if it existed) would 
show that b = o. Thus no zero divisor is a unit in R. 

An element a of a ring R is called nilpotent if an = 0 for some positive 
integer n. For example, any strictly lower triangular matrix A in Mn(F) is 
nilpotent, with An = O. Our next observation gives an interesting connection 
between nilpotent elements and units. If a is nilpotent, say an = 0, then 

(1 - a)(1 + a + a2 + ... + an-I) = 1 - an = 1 . 

Since 1 - a commutes with 1 + a + a2 + ... + an-I, this shows that 1 - a is a 
unit. 

The next example provides a construction in which it is informative to con­
sider zero divisors and units. 

Example 1.1.5 (The direct sum of rings) 

Let R l , R2, ... , Rn be rings. The set of n-tuples (Tl, T2, .. ·, Tn) 
such that Ti E R for all i is a group under componentwise addi­
tion. It is clear that componentwise multiplication is associative, 
and (1,1, ... ,1) serves as a multiplicative identity. It is easy to 
check that the distributive laws hold, since they hold in each com­
ponent. This leads to the following definition. 

The direct sum of the rings R l , R2, ... , Rn is defined to be the 
set 

Rl EEl··· EEl Rn = {(Tl,T2, ... ,Tn) I Ti E R for all i} , 

with the operations of componentwise addition and multiplication. 
If Rl. R2, ... , Rn are nontrivial rings, then zero divisors are 

easily found in the direct sum Rl EEl··· EEl Rn. For example, 

(1,0, ... ,0)(0,1, ... ,0) = (0,0, ... ,0) . 

An element (al' ... ' an) E Rl EEl ... EEl Rn is a unit if and only 
if each component is a unit. This can be shown by observing that 
(al, ... ,an)(xl, ... ,Xn) = (1, ... ,1) and (Xl, ... ,xn)(al, ... ,an) = 
(1, ... ,1) if and only if Xi = ail for 1 ~ i ~ n. 
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In the next definition we give the noncommutative analogs of integral do­
mains and fields. 

Definition 1.1.6 Let R be a ring in which 1 =F O. 

(a) We say that R is a noncommutative domain if R is a noncommutative 
ring and ab = 0 implies a = 0 or b = 0, for all a, bE R. 

(b) We say that R is a division ring or skew field if every nonzero element 
of R is invertible. 

Strictly speaking, any field is a skew field, but we will generally use the term 
'skew field' (or 'division ring') only when there is a chance that the ring is actu­
ally noncommutative. The next example is definitely noncommutative, and is 
probably the most familiar example of a skew field. Note that by Wedderburn's 
theorem (see [4], Theorem 8.5.6), it is not possible to give a finite example of a 
division ring that is not a field. 

Example 1.1.6 (The quaternions) 

The following subset of M2 (C) is called the set of quatemions. 

If we represent the complex numbers z and w as z = a + bi and 
w = c + di, then 

[ z w] [10] [i 0] [ 01] [0 i] -w Z =a 0 1 +b 0 -i +c -1 0 +d i 0 . 
If we let 

1=[~ ~], i= [ i 0] . [ o -i ,J = 01] [Oi] 
-1 0 ,k = i 0 ' 

then we can write 

H = {a . 1 + b i + cj + d k I a, b, c, d E R} . 

Direct computations with the elements i,j, k show that we have the 
following identities: 

ij = k, jk = i, ki = j; ji = -k, kj = -i, ik = -j . 
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These identities show that H is closed under matrix addition and 
multiplication, and it is easy to check that we have defined a subring 
of M2(C). 

The determinant of the matrix corresponding to a·l+bi+cj+dk 
is zz + ww = a2 + b2 + c2 + ~, and this observation shows that each 
nonzero element of H has a multiplicative inverse. The full name for 
H is the division ring oj real quaternions. The notation H is used in 
honor of Hamilton, who discovered the quaternions after about ten 
years of trying to construct a field using 3-tuples of real numbers. He 
finally realized that if he would sacrifice the commutative law and 
extend the multiplication to 4-tuples he could construct a division 
ring. 

13 

The next example has its origins in analysis. It gives an example of a 
noncommutative domain that is not a division ring. 

Example 1.1.7 (Differential operator rings) 

Consider the homogeneous linear differential equation 

d'" J dJ an(z)-d + ... + al (z)-d + ao(z)J = 0 , zn Z 

where the solution J(z) is a polynomial with complex coefficients, 
and the terms ai(z) also belong to C[zj. The equation can be written 
in compact form as 

L(f) = 0, 

where L is the differential operator 

with 0 = d/dz. Thus the differential operator can be thought of as 
a polynomial in the two indeterminates z and 0, but in this case the 
indeterminates do not commute, since 

o(zJ(z» = J(z) + zo(f(z» , 

yielding the identity oz = 1 + zo. Repeated use of this identity 
makes it possible to write the composition of two differential oper­
ators in the standard form 

and we denote the resulting ring, called the ring oj differential op­
erators, by C[z][oj or C[z; oj. 
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In taking the product of the terms zjan and zkam, we obtain 
zj+kan+m, together with terms having lower degree in z or a. This 
can be shown via an inductive argument using the identity az = 
1 + za. In taking the product of two arbitrary elements 

and 
bm(z)am + ... + b1 (z)a + bo(z) , 

it is not difficult to show that the leading term is an(z)bm(z)an+m, 
and so the product of two nonzero elements must be nonzero. This 
implies that C[z; a] is a noncommutative domain. 

This construction can be made for any field F, and it can also be 
generalized to include polynomials in more than one indeterminate. 
The construction provides interesting and important noncommuta­
tive examples. 

We next define an entire class of examples, in which the construction begins 
with a given group and a given field. This construction provides the motivation 
for many of the subsequent results in the text. 

Example 1.1.8 (Group rings) 

Let F be a field, and let G be a finite group of order n. We assume 
that the identity of G is denoted by 1, and that the elements of G 
are g1 = 1, g2, ... ,gn. The group ring FG determined by F and G 
is defined to be the n-dimensional vector space over F having the 
elements of G as a basis. 

Vector addition is used as the addition in the ring. Elements of 
FG can be described as sums of the form 

where the coefficient Ci belongs to F. With this notation, the ad­
dition in FG can be thought of as componentwise addition, similar 
to addition of polynomials. 

To define the multiplication in FG, we begin with the basis 
elements {gilf=1, and simply use the multiplication of G. This 
product is extended by linearity (that is, with repeated use of the 
distributive law) to linear combinations of the basis elements. With 
this notation, the multiplication on FG is defined by 
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where Ck = L9i9j= k aibj. 
Note that the elements of FG are sometimes simply written in 

the form L9EG Cgg. With this notation, the multiplication on FG 
is defined by 

(LgEG a9g)(LhEG bhh) = LkEG ckk, 

where Ck = Lgh=k agbh. 
Note that each of the basis elements is invertible in FG, since 

they have inverses in G. On the other hand, zero divisors are also 
easy to find. If 9 E G has order m > 1, then 1, g, ... ,gm-l are 
distinct basis elements, and we have 

(1 - g)(1 + 9 + ... + gm-l) = 1 - gm = O. 

Thus if G is a finite nonabelian group, then FG is a noncommutative 
ring that is not a domain. 

Let R be a commutative ring. For any a E R, let 

aR = {x E R I x = ar for some r E R} . 
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This set is nonempty, since a EaR, and it is closed under addition, subtraction, 
and multiplication since arl ± ar2 = a(rl ± r2) and (arl)(ar2) = a(rlar2), for 
all rl, r2 E R. We note that 1 E aR if and only if a is invertible, and that is 
the case if and only if aR = R. Thus aR is almost a subring of R, except for 
the fact that it does not generally contain an identity element. However, it has 
an important additional property: if x E aR and r E R, then xr EaR. This 
property plays a crucial role in constructing factor rings, and so in that sense 
the notion of an ideal of a ring (as defined below) corresponds to the notion 
of a normal subgroup of a group. We can give a general definition of an ideal 
that does not require the ring R to be commutative, but our proof that aR is 
an ideal definitely depends on commutativity. 

Definition 1.1.7 Let R be a ring. 
(a) A nonempty subset I of R is called an ideal of R if 

(i) a + b E I for all a, b E I and 
(ii) ra,ar E I for all a E I and r E R. 

(b) If R is a commutative ring, then the ideal 

aR = {x E R I x = ar for some r E R} 

is called the principal ideal generated by a. The notation (a) will also be used. 
( c) An integral domain in which every ideal is a principal ideal is called a 

principal ideal domain. 


