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Preface

A few important discoveries in the field of thermodynamics in the 1800s made
the first steps toward sub-Riemannian geometry. Carnot discovered the principle
of an engine in 1824 involving two isotherms and two adiabatic processes, Jule
studied adiabatic processes, and Clausius formulated the existence of the entropy
in the second law of thermodynamics in 1854. In 1909 Carathéodory made the
point regarding the relationship between the connectivity of two states by adiabatic
processes and nonintegrability of a distribution, which is defined by the one-form
of work. Chow proved the general global connectivity in 1934, and the same
hypothesis was used by Hörmander in 1967 to prove the hypoellipticity of a sum
of the squares of vector fields operators. However, the study of the invariants of
a horizontal distribution, known as nonholonomic geometry, was initiated by the
Romanian mathematician George Vranceanu in 1936.

The position of a ship on a sea is determined by three parameters: two coordi-
nates x and y for the location and an angle to describe the orientation. Therefore,
the position of a ship can be described by a point in a manifold. One can ask what
is the shortest distance one should navigate to get from one position to another;
this defines a Carnot–Carathéodory metric on the manifold R2 × S1. In a similar
way, a Carnot–Carathéodory metric can be defined on a general sub-Riemannian
manifold. The study of sub-Riemannian geodesics is useful in determining the
Carnot–Carathéodory distance between two points.

The study of the geometry of the Heisenberg group, which is the prototype of
the sub-Riemannian geometry, was started by Gaveau in 1975. The understand-
ing of the geometry of this group led Beals, Gaveau, and Greiner to characterize
the fundamental solutions for heat-type subelliptic operators and Heisenberg sub-
Laplacian operators in the 1990s. Meanwhile, many examples have been consid-
ered. Some of them have a behavior similar to the Heisenberg operator, but others
do not. However, a unitary and general theory of these sub-Riemannian manifolds
is still missing at the moment.

This book was written by the first author with the participation of the second.
This work is mainly based on both the author’s own recent research publications

xi



xii Preface

as well as a great deal of first author’s unpublished work. It reflects the authors’
best knowledge on the subject at the time it was written.

The main goal of Part I is to present a detailed analysis of the general theory
of sub-Riemannian manifolds using Hamiltonian and Lagrangian formalism de-
veloped in the sub-Riemannian manifolds context. Other mathematical tools used
are differential geometry, exterior differential systems, and the theory of elliptic
functions.

Part II contains a rich collection of examples of sub-Riemannian manifolds of
step 2 and higher, in which the computations can be done explicitly and a further
precise study can be made. Each example involves different techniques, some
of them involving elliptic integrals and hypergeometric functions. Some of these
examples are computed here for the first time.

Why do we need a book on sub-Riemannian geometry? The authors believe
the study of sub-Riemannian geometry helps with the understanding of subelliptic
operators. A similar theory was developed between the Riemannian geometry
and the elliptic operators. For instance, the heat kernel of a subelliptic operator
depends on the geometry of the underlying horizontal distribution. It is known that
for the case of bracket-generating distributions, any two points can be joined by
piecewise horizontal curves. It is believed that the heat kernel is given by a path
integral with respect to all horizontal curves joining the points x0 and x in time t
as in the formula K (x0, x ; t) = ∫PHx0 ,x ;t

e−S(φ,t) dm(φ). Here PHx0,x ;t denotes the

space of horizontal curves between x0 and x parameterized by [0, t], S(φ, t) is the
classical action along the horizontal curve φ ∈ PHx0,x ;t , and dm(φ) is an analog
of the Wiener measure along the horizontal distribution. The authors intend to
return to these ideas in a future monograph.

An Overview for the Reader

The present work can be considered as a text for a course or seminars designed for
graduate students interested in the most recent developments in sub-Riemannian
geometry. It is useful for both pure and applied mathematicians and theoreti-
cal physicists working in the thermodynamics area. The goal of this book is to
introduce the reader to the differential geometry of sub-Riemannian manifolds.

Scientific Outline

This book deals with the study of sub-Riemannian manifolds, which are manifolds
with the Heisenberg principle built in. It is hoped that Heisenberg manifolds (step 2
sub-Riemannian manifolds) will play a role in quantum mechanics in the future,
similar to the role played by the Riemannian manifolds in classical mechanics.
Some people also speculate that superior-step sub-Riemannian manifolds may
play a similar role in quantum field theory.
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Therefore it is important to understand sub-Riemannian as well as Riemannian
manifolds. However, the sub-Riemannian manifolds behave very differently than
Riemannian ones, and we need new methods and insights of investigation.
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Part I

General Theory





1

Introductory Chapter

1.1 Differentiable Manifolds

A manifold of dimension n is essentially a space that locally resembles the
Euclidean space Rn . Every point of the manifold has a neighborhood homeo-
morphic to an open set of Rn , called a chart. The coordinates of the point are the
coordinates induced by the chart. Since a point can be covered by several charts,
these changes of the coordinates have to be correlated when changing from one
chart to another. More precisely, we have the following definitions.

Definition 1.1.1. Let M be a Hausdorff separated topological space. Then the
pair (V, ψ) is called a chart (coordinate system) if ψ : V → ψ(V ) ⊂ Rn is a
homeomorphism of the open set V in M onto an open set ψ(V ) of Rn. The coordi-
nate functions on V are defined as x j : V → Rn and ψ(p) = (x1(p), . . . , xn(p));
namely, x j = u j ◦ ψ , where u j : Rn → R, u j (a1, . . . , an) = a j , is the jth projec-
tion.

Definition 1.1.2. The space M is called a differentiable manifold if there is a
collection of charts {(Vα, ψα)}α such that

(1) Vα ⊂ M,
⋃

α Vα = M (Vα covers M)
(2) if Vα ∩ Vβ �= Ø, the map

�αβ = ψα ◦ ψ−1
β : ψβ(Vα ∩ Vβ) → ψα(Vα ∪ Vβ)

is smooth; i.e., the systems of coordinates overlap smoothly.

Since most of the computations in this book have a local character, we may
consider that M = Rn . The results are sometimes proved for this particular case;
the extension to a general manifold case is left as an exercise for the reader.

3



4 1 Introductory Chapter

1.2 Submanifolds

A submanifold is a subset of a manifold that behaves as a manifold. More precisely,
we have the following definition.

Definition 1.2.1. Consider a differentiable manifold M and let N be a subset of
M. Let f : N → M be a smooth function such that

(1) f is one-to-one
(2) f is an immersion ( f∗ is one-to-one).

The pair (N , f ) is called a submanifold of M. A map with the properties (1) and
(2) is called an imbedding.

Example 1.2.2. Any inclusion is an imbedding. For instance, if we consider the
standard inclusion i : S2 → R3, then S2 becomes a submanifold of R3.

Remark 1.2.3. It is possible for f to be one-to-one without being an imbedding.
For instance, f : (−1, 1) → R, f (t) = t3 is one-to-one but does not have f ′(t)
one-to-one.

The fact that ( f∗)p is one-to-one for all p ∈ N makes possible the identification
of the tangent spaces Tp N and ( f∗)p(Tp N ) ⊂ T f (p) M . Hence we can consider the
tangent space Tp N as a subspace of the tangent space T f (p) M .

A classical result dealing with imbedding was proved by Whitney (see [40]).

Theorem 1.2.4 (Whitney’s Imbedding Theorem, 1937). Every n-dimensional
manifold imbeds in R2n+1.

1.3 Distributions

A distribution D of rank k on a manifold M assigns to each point p of M a
k-dimensional subspace Dp of Tp M .

The distribution D is called differentiable if every point p has a neighborhood
V and k differentiable vector fields on V denoted by X1, X2, . . . , Xk , which form
a basis of Dq for all q ∈ V . We shall write D = span{X1, . . . , Xk} on V . In future,
by a distribution we will mean a differentiable distribution. k is called the rank of
the distribution.

The distribution D is called involutive if [X, Y ] ∈ D for any X, Y in D. An
integral manifold of the distribution D is a connected submanifold N of M such
that

f∗(Tp N ) = Dp, ∀p ∈ N ,

where f : N → M is the imbedding map.
N is called the maximal integral manifold of D if there is no other integral

manifold of D that contains N . A distribution D that admits a unique maxi-
mal manifold through each point is called integrable. The classical theorem of
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Frobenius states the relationship between the aforementioned two concepts (see,
for instance, [52]).

Theorem 1.3.1 (Frobenius). A distribution D is involutive if and only if it is
integrable.

In sub-Riemannian geometry the negation statement is used more often: D is
not involutive if and only if D is nonintegrable.

1.4 Integral Curves of a Vector Field

A vector field X on a manifold M can be considered as a particular case of a
distribution of rank 1. Since [X, X ] = 0, the distribution is involutive and hence
integrable. The integral manifold has dimension 1 and is called the integral curve
of X . If t is the parameter along the integral curve c(t), then for any parameter
value t0 the vector Xc(t0) is tangent to the curve c(t) at c(t0). The existence of
integral curves holds locally; i.e., for any p0 ∈ M , there is ε > 0 such that the
integral curve c(t) is defined on (−ε, ε) and c(0) = t0. This assertion can be shown
as in the following: If (x1, . . . , xm) is a local system of coordinates on M in a
neighborhood U of p0, then the integral curve c(t) is a solution of the following
ODE (ordinary differential equation) system:

dc j (t)

dt
= X j

(
c(t)
)
, j = 1, . . . , m,

where X =∑m
i=1 Xi ∂

∂xi
on U and c j (t) = x j ◦ c(t). The fundamental theorem of

local existence and uniqueness of solutions of ODEs provides the proof of our
assertion.

Let X be a vector field and define ϕt ( p) = c(t), where c(t) is the integral curve
of X passing through p at t = 0. The diffeomorphisms ϕt : M → M form a local
one-parameter group of transformations of M ; i.e.,

ϕt+s(p) = ϕt

(
ϕs(p)

) = ϕs

(
ϕt (p)

)
, ∀t, s, t + s ∈ (−ε, ε).

One may show that the converse is also true; i.e., any local one-parameter group
of diffeomorphisms generates locally a vector field. Sometimes ϕs is regarded as
the flow in the direction of the vector field X .

We shall denote by 	(D) the set of vector fields tangent to the distribution D.
This notation agrees with the notation used for the sections of a subbundle.

Consider a noninvolutive distribution D and two vector fields X and Y tangent
to the distribution. In the following we shall show how the one-parameter group of
diffeomorphisms generated by [X, Y ] can be written in terms of the one-parameter
group of diffeomorphisms associated with the vector fields X and Y . We shall start
with an example.



6 1 Introductory Chapter

Let X = ∂x1 + 2x2∂x3 and Y = ∂x2 − 2x1∂x3 be two vector fields on R3. Consider
the ODE system satisfied by the integral curve c(s) = (x1(s), x2(s), x3(s)

)
of X :

ẋ1(s) = 1

ẋ2(s) = 0

ẋ3(s) = 2x2(s)

with the solution

x(s) = x(0)+ s
(
1, 0, 2x2(0)

)
,

where c(0) = (x1(0), x2(0), x3(0)
)

is the initial point. Then the one-parameter
group of diffeomorphisms associated with X is

ϕs(x) = x + s(1, 0, 2x2).

In a similar way, the flow associated with the vector field Y is

ψs(x) = x + s(0, 1,−2x1).

Since [X, Y ] = −4∂x3 �= 0, the flows ϕs and ψs do not commute. We shall compute
next the difference ϕs ◦ ψs − ψs ◦ ϕs .

(ϕs ◦ ψs)(x) = ϕs(x1, x2 + s, x3 − 2sx1)

= (x1, x2 + s, x3 − 2sx1)+ s
(
1, 0, 2(x2 + s)

)
= (x1 + s, x2 + s, x3 + 2s(x2 − x1)+ 2s2

)
,

and

(ψs ◦ ϕs)(x) = ψs(x1 + s, x2, x3 + 2sx2)

= (x1 + s, x2, x3 + 2sx2)+ s
(
0, 1,−2(x1 + s)

)
= (x1 + s, x2 + s, x3 + 2s(x2 − x1)− 2s2

)
.

We note that

ψs ◦ ϕs(x)− ϕs ◦ ψs(x) = s2(0, 0,−4) = s2[X, Y ](x).

Let τs be the flow associated with the vector field [X1, X2] = −4∂x3 . We have

τs(x) = x + (0, 0,−4s).

Then the preceding relation can also be written as

ψs ◦ ϕs(x)− ϕs ◦ ψs(x) = τs2 (x)− x .

In particular, when x = 0 we get

ψs ◦ ϕs(0)− ϕs ◦ ψs(0) = τs2 (0).

We shall prove these identities in a more general case.
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Proposition 1.4.1. Let (ψs)s and (ϕ)s be the one-parameter groups of diffeomor-
phisms associated with the vector fields X and Y on a manifold M. Then for any
smooth function f ∈ F (M) we have

f
(
ψt ◦ ϕs(x)

)− f
(
ϕs ◦ ψt (x)

) = ts[X, Y ]( f )(x)+ o(s2 + t2).

Proof. Let f ∈ F (M) and consider the smooth function of two variables

u(t, s) = f
(
ψt ◦ ϕs(x)

)− f
(
ϕs ◦ ψs(x)

)
.

The Taylor expansion of u about (0, 0) is

u(t, s) =
∑

n,m≥0

∂n
t ∂m

s u(t, s)|t=s=0 tnsm

= u(0, 0)+ ∂t u(t, 0)|t=0 t + ∂su(0, s)|s=0 s + ∂2
t u(t, 0)|t=0 t2

+ ∂2
s u(0, s)|s=0 s2 + ∂t∂su(t, s)|t=s=0 ts + o(s2 + t2).

Since ϕ0(x) = x and ψ0(x) = x , we have

u(0, 0) = f
(
ψ0 ◦ ϕ0(x)

)− f
(
ϕ0 ◦ ψ0(x)

) = 0

u(t, 0) = f
(
ψt ◦ ϕ0(x)

)− f
(
ϕ0 ◦ ψs(x)

) = f
(
ψt (x)

)− f
(
ψt (x)

) = 0

u(0, s) = f
(
ψ0 ◦ ϕs(x)

)− f
(
ϕs ◦ ψ0(x)

) = f
(
ϕt (x)

)− f
(
ϕt (x)

) = 0,

and then

∂t u(t, 0)|t=0 = 0, ∂su(0, s)|s=0 = 0, ∂2
t u(t, 0)|t=0 = 0, ∂2

s u(0, s)|s=0 = 0.

It follows that

u(t, s) = ∂t∂su(t, s)|t=s=0 ts + o(s2 + t2). (1.4.1)

It suffices to compute the mixed derivative at t = s = 0. Using the definition
of a vector at a point we have

∂s f
(
ψs ◦ ϕt (x)

)
|s=0
= ∂s f

(
ψs(ϕt (x))

)
|s=0
= (X f )(ϕt (x)) = g

(
ϕt (x)

)
,

where g = X f . Then

∂t∂s f
(
ψs(ϕt (x))

)
|t=s=0

= ∂t g
(
ϕt (x)

)
|t=0
= (Y g)(x) = Y X ( f )(x).

Similarly we obtain

∂s∂t f
(
ϕt ◦ ψs(x)

)
|t=s=0

= XY ( f )(x).

Using (1.4.1) yields

u(t, s) = ts[Y, X ]( f )(x)+ o(s2 + t2).

When s = t we obtain the following consequence.

Corollary 1.4.2. In the hypothesis of Proposition 1.4.1 we have

f
(
ψs ◦ ϕs(x)

)− f
(
ϕs ◦ ψs(x)

) = s2[Y, X ]( f )(x)+ o(s2).
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Lemma 1.4.3. If (τs)s is the one-parameter group of diffeomorphisms associated
with the vector field Z, then

τs(x) = x + s Z (x)+ o(s2).

Proof. It follows from

lim
s→0

τs(x)− τ0(x)

s − 0
= Z (x)

and τ0(x) = x .

In the following we shall consider M = Rm and choose f = xi to be the i th
coordinate function. Then Corollary 1.4.2 becomes(

ψs ◦ ϕs(x)
)i − (ϕs ◦ ψs(x)

)i = s2[Y, X ]i (x)+ o(s2), i = 1, . . . , m.

In vectorial notation we have

ψs ◦ ϕs(x)− ϕs ◦ ψs(x) = s2[Y, X ](x)+ o(s2). (1.4.2)

Using Lemma 1.4.3 yields

ψs ◦ ϕs(x)− ϕs ◦ ψs(x) = τs2 (x)− x + o(s2),

where τs is the one-parameter group of diffeomorphisms of [Y, X ].
Denote q = ϕs ◦ ψs(x). Then

ψs ◦ ϕs(x) = ψs ◦ ϕs ◦ ψ−1
s ◦ ϕ−1

s (q)

and (1.4.2) becomes

ψs ◦ ϕs ◦ ψ−1
s ◦ ϕ−1

s (q)− q = s2[Y, X ]+ o(s2).

We arrive at the following result.

Proposition 1.4.4. Let [ψs, ϕs] := ψs ◦ ϕs ◦ ψ−1
s ◦ ϕ−1

s . Then

[ψs, ϕs](q) = q + s2[Y, X ](q)+ o(s2)

= τs2 (q)+ o(s2).

If X, Y ∈ 	(D) and [X, Y ] /∈ 	(D), then we can move in the [X, Y ] direction by
just going along the integral curves of X and Y . This is the main idea of the proof of
Chow’s theorem of connectivity by horizontal curves. In other words, if a creature
lives in a universe where it is constrained to move only along a noninvolutive
distribution, then it can move in any direction just by taking tangent paths to the
distribution (see Fig. 1.1).

The commutator in local coordinates. Given two tangent vector fields U and V
to the differentiable manifold M , their commutator vector field is defined by

[U, V ] = U V − V U = ∇U V − ∇V U.
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A

B

X

[X,Y]

Y

Figure 1.1. The ant can go in the [X, Y ] direction by just walking along the integral curves
of the noncommuting vector fields X and Y

If U =∑i U i∂xi and V =∑i V i∂xi are the representations in a local chart
(x1, . . . , xn), then the commutator in local coordinates becomes

[U, V ] = U V − V U =
(

U i ∂xi (V
j )− V i ∂xi (U

j )
)
∂x j ,

with summation in the repeated indices. The reader can verify the following
properties of the commutator:

(1) The commutator is skew-symmetric: [U, V ] = −[V, U ].
(2) Jacobi’s identity is satisfied:

[U, [V, W ]]+ [V, [W, U ]]+ [W, [U, V ]] = 0.

(3) For any smooth functions f and g on M we have

[ f U, hV ] = f h[U, V ]+ f (Uh) V − h (V f ) U.

Geometrical interpretation of a vanishing commutator. Let ϕt and φs be the
one parameter groups of diffeomorphisms associated with the vector fields U and
V . Then [U, V ] = 0 if and only if ϕt (φs(p)) = φs(ϕt (p)); i.e., if starting at any
point p and going in an arc s along the integral curve of V and then an arc t
along the integral curve of U , we end up at the same point as if we performed the
procedure in the reverse way.

1.5 Independent One-Forms

We review here a few basic notions regarding one-forms, which will be useful in
the future presentation. One reason for studying them is that a distribution can
also be defined in terms of one-forms.
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Let M be a differentiable manifold. A one-form on M is a section through the
cotangent bundle T ∗M , i.e., a smooth assignment M � p → T ∗p M . If (x1, . . . , xn)
are the coordinates on an open domain U ⊂ M , a one-form ω can be written in
local coordinates as ω =∑n

i=1 ωi (x)dxi , where ωi (x) are smooth functions of x .
Since all the computations in this section have a local character, we may assume
M = Rn .

Consider two one-forms

ω1 =
n∑

j=1

ωi
1 dxi , ω2 =

n∑
j=1

ωi
2 dxi

on Rn and let

Si = ker ωi |p = {X ∈ Tp M ; ωi |p(X ) = 0}, i ∈ {1, 2}
be the (n − 1)-dimensional vectorial subspaces of Tp M defined by the preceding
one-forms at p.

Definition 1.5.1. The spaces S1 and S2 are called transversal if they are not
parallel. We shall write in this case S1 � ‖S2.

Let 〈 , 〉 be the natural inner product of Rn . If X =∑n
k=1 Xk∂xk ∈ ker ωi , then we

can write

0 = ωi (X ) =
n∑

j=1

ω
j
i dx j (X )

=
n∑

j=1

ω
j
i X j = 〈νi , X〉,

and hence νi =
∑n

i=1 ω
j
i ∂x j is a normal vector field to the space Si = ker ωi .

Definition 1.5.2. Two one-forms ω1 and ω2 are called functionally independent if

rank

(
ωi

1

ω
j
2

)
1≤i, j≤n

= 2.

k one-forms ω1, . . . , ωk are called functionally independent if

rank

ω
i1
1
...

ω
in
k


1≤i1,...,in≤n

= k;

i.e., the coefficients matrix has maximum rank.

Remark 1.5.3. Definition 1.5.2 does not depend on the choice of the basis of one-
forms. If ω =∑ωi dxi =

∑
ω̃ j d x̃ j is the representation of the one-form in two

local systems of coordinates, then ωi = ω̃ j d x̃ j

(
∂xi

) = ω̃ j (∂ x̃ j/∂xi ), and hence
rank ω̃

j
p = rank ω

j
p.
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Proposition 1.5.4. (1) The spaces ker ω1 and ker ω2 are transversal at p if and
only if ω1 and ω2 are linearly independent at p.

(2)
⋂k

j=1 ker ω j �= Ø if and only if the one-forms ω1, . . . , ωk are functionally
independent.

Proof.
(1) Let Si = ker ωi . Then the spaces S1 � ‖S2 if and only if the normal vectors

are not parallel, i.e., ν1 � ‖ν2, or (ω1
1, . . . , ω

n
1) and (ω1

2, . . . , ω
n
2) are not proportional.

This means that there is a 2× 2 nondegenerate minor matrix

det

(
ω

i1
1 ω

i2
1

ω
j1
2 ω

j2
2

)
�= 0,

and therefore the rank of the coefficients matrix is 2. Hence ω1 and ω2 are func-
tionally independent.

(2) We leave this as an exercise for the reader.

Example 1.5.1. The following two one-forms on R4
(x1,x2,y1,y2)

ω1 = dy1 − x1dx2

ω2 = dy2 − 1

2
x2

1 dx2

are functionally independent.

Example 1.5.2. The following three one-forms on R4
(x1,x2,y1,y2)

ω1 = dx1 + x1dx2 + y2dy1 + y1dy2

ω2 = dx2 + x2
2 dy1 + y2dy2

ω3 = dy1 + y2
1 dy2

are functionally independent.

1.6 Distributions Defined by One-Forms

Codimension 1. The simplest case is when the distribution is defined by only
one one-form ω as D = ker ω. We note that for any f �= 0 the distribution is still
given by D = ker fω, and therefore the one-form is unique up to a multiplicative
nonvanishing function.

Codimension 2. Consider the case of a distribution defined by two functionally
independent one-forms ω1 and ω2. Then we define the distribution by

D(ω1,ω2) = ker ω1 ∩ ker ω2.

The following result shows the invariance of the distribution under some algebraic
operations with one-forms.



12 1 Introductory Chapter

Proposition 1.6.1. Let ω1 and ω2 be two functionally independent one-forms. Let
a, b, α, and β be real-valued functions with aβ �= bα, and let ω̃1 = aω1 + bω2

and ω̃2 = αω1 + βω2. Then

D(ω1,ω2) = D(ω̃1,ω̃2).

Proof. It is easy to see that ω̃1 and ω̃2 are functionally independent. The conclusion
is equivalent to

ker ω1 ∩ ker ω2 = ker (aω1 + bω2) ∩ ker (αω1 + βω2).

This will be shown by double inclusion.
Let X ∈ ker ω1 ∩ ker ω2. Then ω1(X ) = 0 and ω2(X ) = 0 and obviously

(aω1 + bω2)(X ) = 0 and (αω1 + βω2)(X ) = 0; i.e., X ∈ ker (aω1 + bω2) ∩
ker (αω1 + βω2).

Let Y ∈ ker (aω1 + bω2) ∩ ker (αω1 + βω2). Then

aω1(Y )+ bω2(Y ) = 0

αω1(Y )+ βω2(Y ) = 0.

Since aβ �= bα, this homogeneous system has only the zero solution; i.e., ω1(Y ) =
0 and ω2(Y ) = 0 and therefore Y ∈ kerω1 ∩ kerω2.

The preceding result is very useful when dealing with a system of two function-
ally independent nonholonomic constraints, i.e., constraints given by one-forms.
One may want to do some transformations that preserve the distribution and at the
same time make the nonholonomic constraints more simple. We shall do this in
the next example.

Example 1.6.1. Let ω1 = dy1 − x1dx2 and ω2 = dy2 − 1
2 x2

1 dx2 be the function-
ally independent one-forms given by Example 1.5.1. Consider

ω̃1 = ω1

ω̃2 = ω2 − 1

2
x1ω1

= dy2 − 1

2
x1dy1.

We have a = 1, b = 0, α = − 1
2 x1, β = 1 and the hypothesis aβ �= bα is satisfied.

The distribution generated by ω1 and ω2 is the same as the distribution generated
by dy1 − x1dx2 and dy2 − 1

2 x1dy1. We note that in this case the coefficients are
linear, while in the initial case a coefficient was quadratic.

Codimension k. In the case of k functionally independent one-forms ω1, . . . ,

ωk , the distribution is defined by

D(ω1,...,ωk ) =
k⋂

j=1

ker ω j .
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Since the forms are functionally independent, then dim D(ω1,...,ωk ) = n − k. The
number of the forms is the codimension of the distribution. One may prove a
similar result as in the case of two one-forms.

Proposition 1.6.2. Let A = (A j
i ) be a matrix with the entries functions such

that det Ap �= 0 at every p. Let  = (ω1, . . . , ωk) and consider ̃ = A; i.e.,
ω̃ j =

∑
p Ap

j ωp. Then D = DA.

1.7 Integrability of One-Forms

The integrable factors for a one-form are used in the proof of the second law of
thermodynamics (see Chapter 3).

Definition 1.7.1. A nowhere vanishing function f : M → R is called an integrat-
ing factor for the one-form ω if d( f ω) = 0. The one-form ω is called integrable if
it has an integrating factor.

Example 1.7.2. The one-form ω = xdy is integrable. An integrating factor is
f (x) = 1

x since

d( f ω) = d2 y = 0.

One may notice that all the integrating factors are of the form f (x) = c
x with

c ∈ R. This is obtained by solving the equation d( f ω) = 0:

d f ∧ ω + f dω = 0 ⇐⇒
( fx dx + fy dy) ∧ xdy + f dx ∧ dy = 0 ⇐⇒

(x fx + f )dx ∧ dy = 0 ⇐⇒
x fx + f = 0.

The method of separation of variables leads to the preceding expression of f (x).

Example 1.7.3. Consider the one-form ω = xdy − ydx. An integrating factor is
f (x) = 1

x2+y2 . This follows from the fact that in polar coordinates (r, φ) we have

ω = r2dφ.

Example 1.7.4. The one-form ω = dt − xdy is not integrable. Suppose ω has a
nonzero integrating factor f . Then the equation d( f ω) = 0 becomes

d f ∧ ω + f dω = 0 ⇐⇒
( fx dx + fydy + ft dt) ∧ (dt − xdy)− f (dx ∧ dy) = 0 ⇐⇒

− (x fx + f )dx ∧ dy + ( fy + x ft )dy ∧ dt + fx dx ∧ dt = 0,

and equating the coefficients to zero yields

x fx + f = 0, fy + x ft = 0, fx = 0.

From the first and the last equations we get f = 0, which is a contradiction.
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Let D = ker ω be the distribution defined by ω. The integrability relationship
between D and ω is provided by the following result.

Proposition 1.7.5. The distribution D is integrable if and only if the one-form ω

is integrable.

Proof. “⇐=” If ω is integrable, then there is an integral factor f such that
d( f ω) = 0. By Poincaré’s lemma, there is a function h such that locally we have
f ω = dh. Let h(p) = c. We shall show that h−1(c) is a locally integrable manifold
of the distribution D that passes through p. Let X ∈ 	(D) be a vector field.
Then

X (h) = dh(X ) = f ω(X ) = 0,

which means that h is constant along the integral curve of X that passes through
p. Then locally X is tangent to h−1(c) and hence the surface h−1(c) is tan-
gent to the distribution D. The submanifold condition dh �= 0 is satisfied since
f �= 0.

“=⇒” An integral manifold can be written locally as h−1(c), dh �= 0. Then
ker (dh) = D = ker ω, and hence the one-forms dh and ω are proportional; i.e.,
there is a nonvanishing function f such that f ω = dh. Then

d( f ω) = d2h = 0,

so ω is integrable.

The following result deals with equivalent integrability conditions for one-
forms.

Proposition 1.7.6. Let ω be a one-form on R3. Then the following conditions are
equivalent:

(1) ω is integrable
(2) there is a one-form θ such that dω = θ ∧ ω

(3) ω ∧ dω = 0
(4) dω|ker ω = 0
(5) the distribution ker ω is involutive.

Proof.
(1) =⇒ (2) Let ω be an integrable one-form. If f is an integrable factor, the

relation d( f ω) = 0 becomes

f dω = −d f ∧ ω,

which is dω = θ ∧ ω with θ = −d f
f .

(2) =⇒ (3) Since dω = θ ∧ ω we have

ω ∧ dω = ω ∧ θ ∧ ω = −(ω ∧ ω) ∧ θ = 0.
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(3) =⇒ (4) Let X1, X2 ∈ ker ω and X3 /∈ ker ω such that {X1, X2, X3} are
linearly independent. Then

0 = (ω ∧ dω)(X1, X2, X3) = ω(X1)dω(X2, X3)− ω(X2)dω(X1, X3)

+ω(X3)dω(X1, X2) = ω(X3)dω(X1, X2).

Since X3 /∈ ker ω, then ω(X3) �= 0 and hence dω(X1, X2) = 0 for all X1, X2 ∈
ker ω.

(4) =⇒ (5) We have

0 = dω(X1, X2) = X1ω(X2)− X2ω(X1)− ω([X1, X2]) = −ω([X1, X2]).

Hence [X1, X2] ∈ ker ω for all X1, X2 ∈ ker ω; i.e., ker ω is an involutive distri-
bution.

(5) =⇒ (1) Since ker ω is involutive, by Frobenius’ theorem it is integrable.
Applying Proposition 1.7.5 it follows that ω is integrable.

Remark 1.7.7. If ω = Adx + Bdy + Cdz is a one-form on R3, the integrability
condition ω ∧ dω = 0 becomes

A
(∂C

∂y
− ∂ B

∂z

)
− B

(∂C

∂x
− ∂ A

∂z

)
+ C

(∂ B

∂x
− ∂ A

∂y

)
= 0.

Definition 1.7.8. A constraint on the velocity of a curve given by a one-form ω is
called nonholonomic1 if ω is nonintegrable.

A nonholonomic constraint can be written as

ω(ċ) =
∑

ωi dxi (ċ) =
∑

ωi ċi = 0.

Example 1.7.1. The one-form ω = dx − xdy on R2 is not integrable, so

ω(ċ) = ċ1 − c1ċ2 = 0

is a nonholonomic constraint.

Example 1.7.2. The one-form ω = 2xdx − dy on R2 is integrable, so

ω(ċ) = 2c1ċ1 − ċ2 = 0

is a holonomic constraint.

The literature of nonholonomic geometry deals with the concepts of rheonomic
(flowing) and scleronomic (ridgid) nonholonomic constraints. A rheonomic con-
dition means that the constraint depends directly on the time parameter t . All our
constraints in this book will be independent of time; i.e., they are scleronomic
nonholonomic (see [28]).

1 In Greek holos means integer.
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Figure 1.2. The graphs of functions sn(z, k), cn(z, k), and dn(z, k), for k = 0.3 and k = 0.7

1.8 Elliptic Functions

We shall provide in the following the definitions of the elliptic functions used in
the next chapters. For a detailed description the reader may consult reference [53].

The integral

z =
∫ w

0

dt√
(1− t2)(1− k2t2)

, |k| < 1,

is called an elliptic integral of the first kind. The integral exists if w is real and
|w| < 1. Using the substitution t = sin θ and w = sin φ,

z =
∫ φ

0

dθ√
1− k2 sin2 θ

.

If k = 0, then z = sin−1 w or w = sin z. By analogy, this integral is denoted by
sn−1(w; k), where k �= 0. The number k is called the modulus. Thus

z = sn−1w =
∫ w

0

dt√
(1− t2)(1− k2t2)

.

The function w = sn z is called a Jacobian elliptic function.
By analogy with the trigonometric functions, it is convenient to define other

elliptic functions (see Fig. 1.2).

cn z =
√

1− sn2 z, dn z =
√

1− k2 sn2 z.

A few properties of these functions are

sn(0) = 0, cn(0) = 1, dn(0) = 1,

sn(−z) = sn(z), cn(−z) = cn(z),

d

dz
sn z = cn z dn z,

d

dz
cn z = −sn z dn z,

d

dz
dn z = −k2sn z cn z,

−1 ≤ cn z ≤ 1, −1 ≤ sn z ≤ 1, 0 ≤ dn z ≤ 1.

Let

K = K (k) =
∫ 1

0

dt√
(1− t2)(1− k2t2)

=
∫ π/2

0

dθ√
1− k2 sin2 θ
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be the complete Jacobi integral. Then, as real functions, the elliptic functions sn
and cn are periodic functions of the principal period 4K .

1.9 Exterior Differential Systems

Let p be the space of p-forms on a connected, open set U ⊆ Rm . The p-form
ω ∈ p can be written as

ω =
∑

ωi1...i p dxi1 ∧ · · · ∧ dxi p ,

where the coefficients ωi1...i p are differentiable functions on U and skew-symmetric
in the indices i1, . . . , i p. We shall denote by  the graded algebra with components
p; i.e.,  =⊕m

p=0 p. The space  is sometimes called the sheaf of differen-
tiable forms on U . The multiplication∧ : ×→  is the usual wedge product
of two forms. 0 denotes the set of differentiable functions on U . In the following
we shall review a few notions regarding ideals (see [70]).

An ideal I of  is a subset with the following properties:

(1) ∀θ, θ ′ ∈ I and f ∈ 0, then θ + θ ′ ∈ I and f θ ∈ I.
(2) ∀θ ∈ I and ∀ω ∈ , then θ ∧ ω ∈ I.

An ideal I of  is called finitely generated if it has a finite number of generators
θ1, . . . , θk ; i.e., any form θ ∈ I can be written as

θ = ω1 ∧ θ1 + · · · + ωk ∧ θk,

where ωi ∈  with deg ωi = deg θ − deg θi .
An ideal I of  is called homogeneous if

⊕m
p=0 I p = I, where I p = I ∩p.

With these introductions we can define the concept of a system of forms, which
will be useful in the analysis of distributions.

Definition 1.9.1. Let U be an open set of Rm. An exterior differential system on
the set U is a homogeneous, finitely generated ideal I of .

In the following we shall introduce the notion of integral manifold of an exterior
differential system.

Definition 1.9.2. (1) A point x ∈ U is called an integral point of the exterior
differential system I if f (x) = 0 for any f ∈ I0; i.e., all the functions of I vanish
at x.

(2) Let x ∈ U be an integral point of I . A vector v ∈ TxU is called an integral
vector of the system I if θx (v) = 0 for any θ ∈ I1 = I ∩1.

(3) Let V be a subspace of dimension k of the vector space TxU, where x ∈ U is
an integral point. V is called an integral k-plane of the exterior differential system
I if V has a basis {v1, v2, . . . , vk} such that for any θ ∈ Ir and any subindex
{i1, . . . , ir } ⊂ {i1, . . . , ik} we have θx (vi1 , . . . , vir ) = 0, for all r ≤ k.

(4) Any subspace S of V of dimension s ≤ k is an integral s-plane of the
system I.
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The definition makes sense, since, as we shall show later, this definition does
not depend on the basis of the integral k-plane. If {v1, . . . , vk} is a basis of the
subspace V of TxU , then the fact that V is an integral k-plane can be written as∑

j

θ j1... jr (x)v j1
i1

. . . v
jr
ir
= 0. (1.9.3)

Let {w1, . . . , wk} be another basis such that w j =
∑

p a jpvp. Componentwise, we

have w�
j =
∑

p a jpv
�
p and then∑

j

θ j1... jr (x)w j1
i1

. . . w
jr
ir
=
∑

j

θ j1... jr (x)
∑

p1

ai1 p1v
j1
p1
· · ·
∑

pr

air pr v
jr
pr

=
∑

p1...pr

(∑
j

θ j1... jr (x)v j1
i1
· · · v jr

ir︸ ︷︷ ︸
=0 by (1.9.3)

)
ai1 p1 · · · air pr

= 0,

which is the relation (1.9.3) for the basis {v1, . . . , w1, . . . , wk}.
The main problem of the theory of exterior differential systems is to study

their integral manifolds. In the following we shall present two definitions of a
submanifold of Rm , which are equivalent to Definition 1.2.1 for the case M = Rm .

Definition 1.9.3. A subset M ⊂ Rm is called a k-dimensional differential mani-
fold of Rm if for every point x ∈ M, there is an open neighborhood U ⊂ Rm and
differentiable functions fi : U → R, i = 1, . . . , m − k, such that

(1) M ∩U = {x ∈ U ; f1(x) = · · · = fm−k(x) = 0}
(2) rank J f (x) = m − k, where

J f (x) = ∂( f1, . . . , fm−k)

∂(x1, . . . , xm)

is the Jacobian of f = ( f1, . . . , fm−k).

Condition (2) can be restated by saying that the Jacobian of f has maximum
rank.

Example 1.9.1. If m = k + 1 then f has only one component and the Jacobian
becomes the gradient of f . The manifold can be written in this case as

Hm−1 = {x ∈ Rm ; f (x) = 0,∇ f �= 0}

and it is called a hypersurface of Rm. In the particular case when f (x) =
a0 +

∑m
i=1 ai xi , with a j ∈ R not all zero, we obtain a hyperplane. When f (x) =∑m

i=1(xi )2 − 1 we obtain a hypersphere in Rm.
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Example 1.9.2. Let m = 3 and k = 1 and consider the manifold defined by the
equations

f1(x1, x2, x3) = x1 + x2 + x3 = 0

f2(x1, x2, x3) = x2 − x3 = 0.

Since J f =
(

1 1 1
0 1 −1

)
has the rank equal to 2 = m − k, this system of func-

tions define a manifold of dimension k = 1 of R3. This would be more clear if we
solve the system in the variables x2 and x3 as

x2 = −1

2
x1, x3 = −1

2
x1.

Letting x1 = t ∈ R we obtain the parametric equations of the manifold

x1 = t

x2 = −1

2
t

x3 = −1

2
t, t ∈ R,

which define a line in R3. This procedure can be carried out for any manifold M
of R3.

Let M be a manifold of dimension k in Rm given by the equations

f1(x1, . . . , xm) = 0
...

fm−k(x1, . . . , xm) = 0.

By the Implicit Function Theorem this system can be solved locally with respect
to m − k of the variables xi , which will be denoted by ti , such that we have

x1 = ϕ1(t1, . . . , tk)
...

xm = ϕm(t1, . . . , tk)

with ϕi differentiable functions and with the Jacobian Jϕ of rank k. These equations
hold locally; i.e., the coordinates t1, . . . , tk belong to an open set U ⊆ Rk .

We shall often use the preceding parametric representation for a manifold.
Sometimes M is regarded as a submanifold of Rm to emphasize that M inherits
topological and differential structures of Rm . If (t1, . . . , tk) are the coordinates on
an open subset U ⊆ Rk , then ϕ : U → Rm is an immersion since the rank of the
Jacobian is maximum on U .
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Definition 1.9.4. A manifold M of dimension k contained in the open set U ⊂ Rm

is called an integral manifold for the exterior differential system I if for any x ∈ M
the tangent plane at x, Tx M, is an integral k-plane of the system I.

Remark 1.9.5. If S is a submanifold of the integral manifold M, then S is an
integral manifold of I.

In order to present the main theorem about integral manifolds we need
the following definition. Let U ⊂ Rk and V ⊂ Rm be two open sets and con-
sider a differentiable function F = (F1, . . . , Fm) : U → V . Denote by t1, . . . , tk
the coordinates on U and by x1, . . . , xm the coordinates on Rm . Let θ =∑

θi1...i p (x)dx1 ∧ · · · ∧ dx p be a p-form on V . The pullback F∗(θ ) of θ through
F is a p-form on U obtained from θ by substituting xi by Fi (t) and differentials
dxi by d Fi =∑k

j=1
∂ Fi

∂t j dt j . This means

F∗(θ ) =
∑

θi1...i p

(
F(t)

)
d Fi1 ∧ · · · ∧ d Fi p

=
∑

θi1...i p

(
F(t)

) k∑
j1=1

∂ Fi1

∂t j1

dt j1 ∧ · · · ∧
k∑

jp=1

∂ Fi p

∂t jp

dt jp

=
∑

θi1...i p

(
F(t)

)∂ Fi1

∂t j1

dt j1 · · ·
∂ Fi p

∂t jp

dt jp dt j1 ∧ · · · ∧ dt jp (1.9.4)

=
∑
I,J

θI

(
F(t)

)∂ F I

∂tJ
dtJ ,

where I = (i1, . . . i p) and J = ( j1, . . . , jp) are multi-indices.

Theorem 1.9.6. Let M be a manifold of Rm of dimension k given locally by the
parametric equations xi = ϕi (t1, . . . , tk), i = 1, . . . , m. Then M is an integral
manifold for the exterior differential system I if and only if ϕ∗(θ ) = 0 for any form
θ ∈ I, where ϕ = (ϕ1, . . . , ϕm).

Proof. The coordinates tangent vector fields at x = ϕ(t) are

v j =
(∂ϕ1

∂t j
, . . . ,

∂ϕm

∂t j

)
∈ Tx M, j = 1, . . . , k.

M is an integral manifold for the system I if for any point x ∈ M the vector space
Tx M is an integral k-plane of the system I. Then for any form θ ∈ I p, we have

θx (vi1 , . . . , vi p ) = 0 ⇐⇒∑
θ j1... jp (x) v

j1
i1

. . . v
jp

i p
= 0 ⇐⇒∑

θ j1... jp

(
ϕ(t)
)∂ϕ j1

∂ti1

. . .
∂ϕ jp

∂ti p

= 0 ⇐⇒

ϕ∗(θ ) = 0,

where we used (1.9.4).
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Definition 1.9.7. An exterior system I is called closed if dI ⊂ I; i.e., for all
θ ∈ I we have dθ ∈ I.

Proposition 1.9.8. Let I be an exterior differential system. Then

I = I + dI = {θ + dω; θ, ω ∈ I}
is a closed exterior differential system, called the closure of I.

Proof. We shall show first that I is an ideal of .
Let η, η′ ∈ I, with η = θ + dω and η′ = θ ′ + dω′, where θ, ω, θ ′, ω′ ∈ I.

Then we have

η + η′ = (θ + θ ′)+ d(ω + ω′) ∈ I + dI = I;

i.e., the sum of any two forms of I belongs to I.
Now we shall show that ω ∧ θ ∈ I for any ω ∈  and θ ∈ I.
If θ ∈ I, then using that I is an ideal of , we have ω ∧ θ ∈ I ⊂ I + dI = I.
If θ ∈ dI, i.e., θ = dξ with ξ ∈ I, we have for any ω ∈ p

(−1)pω ∧ θ = (−1)pω ∧ dξ = d(ω ∧ ξ )− dω ∧ ξ ∈ I + dI = I,

since dω ∧ ξ ∈ I and ω ∧ ξ ∈ I. Hence I is an ideal of the graded algebra .
We shall show next that the ideal I is finitely generated. Let {θ1, . . . , θk} be a

system of generators for the ideal I. Then {θ1, . . . , θk, dθ1, . . . , dθk} is a system
of generators for the ideal I + dI = I.

Since
⊕m

p=0(I p + dI p) =⊕m
p=0 I p +⊕m

p=0 dI p = I + d
⊕m

p=0 I p = I +
dI, it follows that the ideal I + dI is homogeneous.

In order to show the closeness of I, we use the involutivity of the exterior
derivative:

d(I) = d(I + dI) = dI + d2I = dI ⊂ I + dI = I.

The following result deals with the integral manifolds of the closure of an
exterior differential system.

Theorem 1.9.9. A manifold M is an integral manifold for the exterior differential
system I if and only if it is an integral manifold for the system I = I + dI .

Proof. “=⇒” Let M be an integral manifold for the system I defined locally by
the parametric equations

xi = ϕi (t1, . . . , tk), i = 1, . . . , m.

By Theorem 1.9.6, we have ϕ∗(θ ) = 0 for any form θ ∈ I . Since d and ϕ∗

commute,

ϕ∗(dθ ) = dϕ∗(θ ) = 0.

Then for all θ, η ∈ I we have ϕ∗(θ + dη) = 0; i.e., ϕ∗(ω) = 0, ∀ω ∈ I + dI .
Using Theorem 1.9.6 it follows that M is an integral manifold for I = I + dI .
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“⇐=” Assume M is an integral manifold of dimension k for the systemI + dI .
Let x ∈ M . Then the tangent plane Tx M is an integral k-plane for I + dI ; i.e.,
any form of the type θ + dη with θ, η ∈ I will vanish on Tx M . In particular, for
η = 0, we obtain that the forms of I vanish on Tx M ; i.e., Tx M is an integral
k-plane for the system I . Since x was chosen arbitrarily in M , it follows that M
is an integral manifold of the system I .

In general, the system I + dI has fewer integral planes than I . For instance,
if I is generated by the form ω = x1dx2 on R2, the plane {x1 = 0} is an inte-
gral 2-plane. However, the form dω = dx1 ∧ dx2 does not vanish on any vector,
so the system I + dI generated by ω and dω does not have integral planes.
In this case the system I does not have any integral manifolds; i.e., it is not
integrable.

Theorem 1.9.9 reduces the problem of finding the integral manifolds of the
system I to the same problem for the closure I + dI .

The following definition says that a system is called integrable if it has an
integral manifold of maximal dimension through each point.

Definition 1.9.10. LetI be an exterior differential system on the open set U ⊂ Rm

generated by the functionally independent one-forms θ1, . . . , θk . The system I is
called integrable on U if for any x ∈ U there is an integral manifold Mx of I
passing through x such that dim Mx = k.

The system I is called nonintegrable if it is not integrable. In sub-Riemannian
geometry we deal with nonintegrable exterior differential systems.

1.10 Formulas Involving Lie Derivative

Let U be an open subset of Rm and ω ∈ p be a p-form on U . If X is a vector
field on U , then the Lie derivative of ω with respect to X is a p-form on U , i.e.,
L Xω ∈ p, defined by

(
L Xω

)
(Y1, . . . , Yp) = Xω(Y1, . . . , Yp)−

p∑
i=1

ω
(
Y1, . . . , [X, Yi ], . . . , Yp

)
,

(1.10.5)

where Y j are vector fields on U . In particular, when ω is a one-form, we have(
L Xω

)
(Y ) = Xω(Y )− ω

(
[X, Y ]

)
.

When ω = f ∈ 0 is a function, we have

L X f = X ( f ).
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The exterior derivative d :  =⊕m
p=0 →  is defined by

dω(X1, . . . , Xr+1) =
r+1∑
i=1

(−1)i+1 Xiω(X1, . . . , X̂i , . . . , Xr+1)

+
∑
i< j

(−1)i+ jω
(
[Xi , X j ], X1, . . . , X̂i , . . . , X̂ j , . . . Xr+1

)
,

where X̂i means that Xi is missing from the argument. In the case when ω is a
one-form,

dω(X1, X2) = X1ω(X2)− X2ω(X1)− ω
(

[X1, X2]
)
.

Proposition 1.10.1. The operator d satisfies the following properties:

(1) d f (X ) = X ( f ), ∀ f ∈ 0

(2) d(αω + βη) = αdω + βdη, ∀α, β ∈ R, ω, η ∈ 

(3) d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη, ∀ω ∈ p

(4) d2ω = 0, i.e. d(dω) = 0
(5) d(φ∗ω) = φ∗(dω),

where φ : V → U is a smooth map and φ∗ω(X1, . . . , X p) = ω(φ∗X1, . . . , φ∗X p),
where φ∗ is the tangent application given in local coordinates as the Jacobian
of φ.

The proof of the proposition is left to the reader.
The next definition is introducing the concept of interior multiplication.

Definition 1.10.2. Let ω ∈ p and X be a vector field on the open domain U in
Rm. Then the (p − 1)-form iXω defined by

iXω(X1, . . . , X p−1) =
{

0 if p = 0

ω(X, X1, . . . , X p−1) if p ≥ 1

is called the interior multiplication of X with ω.

The relation among the interior multiplication iX , the exterior derivative
d , and the Lie derivative L X is given by the following magic decomposition
result.

Theorem 1.10.3 (Cartan). For ω ∈ p we have the decomposition

L Xω = iX (dω)+ d(iXω).


