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Preface 

The course presented in this text concentrates on the typical methods of 
modern set theory: transfinite induction, Zorn's lemma, the continuum hy
pothesis, Martin's axiom, the diamond principle 0, and elements offorcing. 
The choice of the topics and the way in which they are presented is subordi
nate to one purpose - to get the tools that are most useful in applications, 
especially in abstract geometry, analysis, topology, and algebra. In par
ticular, most of the methods presented in this course are accompanied by 
many applications in abstract geometry, real analysis, and, in a few cases, 
topology and algebra. Thus the text is dedicated to all readers that would 
like to apply set-theoretic methods outside set theory. 

The course is presented as a textbook that is appropriate for either a 
lower-level graduate course or an advanced undergraduate course. How
ever, the potential readership should also include mathematicians whose 
expertise lies outside set theory but who would like to learn more about 
modern set-theoretic techniques that might be applicable in their field. 

The reader of this text is assumed to have a good understanding of 
abstract proving techniques, and of the basic geometric and topological 
structure of the n-dimensional Euclidean space lRn. In particular, a com
fort in dealing with the continuous functions from lRn into lR is assumed. A 
basic set-theoretic knowledge is also required. This includes a good under
standing of the basic set operations (union, intersection, Cartesian product 
of arbitrary families of sets, and difference of two sets), abstract functions 
(the operations of taking images and preimages of sets with respect to func
tions), and elements of the theory of cardinal numbers (finite, countable, 
and uncountable sets.) Most of this knowledge is included in any course in 
analysis, topology, or algebra. These prerequisites are also discussed briefly 
in Part I of the text. 

The book is organized as follows. Part I introduces the reader to ax
iomatic set theory and uses it to develop basic set-theoretic concepts. In 
particular, Chapter 1 contains the necessary background in logic, discusses 
the most fundamental axioms of ZFC, and uses them to define basic set-

ix 



x Preface 

theoretic operations. In Chapter 2 the notions of relation, function, and 
Cartesian product are defined within the framework of ZFC theory. Related 
notions are also introduced and their fundamental properties are discussed. 
Chapter 3 describes the set-theoretic interpretation of the sets of natural 
numbers, integers, and real numbers. Most of the facts presented in Part I 
are left without proof. 

Part II deals with the fundamental concepts of "classical set theory." 
The ordinal and cardinal numbers are introduced and their arithmetic is 
developed. A theorem on definition by recursion is proved and used to 
prove Zorn's lemma. Section 4.4 contains some standard applications of 
Zorn's lemma in analysis, topology, and algebra. 

Part III is designed to familiarize the reader with proofs by transfi
nite induction. In particular, Section 6.1 illustrates a typical transfinite
induction construction and the diagonalization argument by describing 
several different constructions of subsets of]Rn with strange geometric prop
erties. The two remaining sections of Chapter 6 introduce the basic ele
ments of descriptive set theory and discuss Borel and Lebesgue-measurable 
sets and sets with the Baire property. Chapter 7 is designed to help the 
reader master the recursive-definitions technique. Most of the examples 
presented there concern real functions, and in many cases consist of the 
newest research results in this area. 

Part IV is designed to introduce the tools of "modern set theory": Mar
tin's axiom, the diamond principle 0, and the forcing method. The overall 
idea behind their presentation is to introduce them as natural refinements 
of the method of transfinite induction. Thus, based on the solid founda
tion built in Part III, the forcing notions and forcing arguments presented 
there are obtained as "transformed" transfinite-induction arguments. In 
particular, the more standard axiomatic approach to these methods is de
scribed in Chapter 8, where Martin's axiom and the diamond principle are 
introduced and discussed. Chapter 9 is the most advanced part of this text 
and describes the forcing method. Section 9.1 consists of some additional 
prerequisites, mainly logical, necessary to follow the other sections. In Sec
tion 9.2 the main theoretical basis for the forcing theory is introduced while 
proving the consistency of ZFC and the negation of CH. In Section 9.3 is 
constructed a generic model for ZFC+O (thus, also for ZFC+CH). Sec
tion 9.4 discusses the product lemma and uses it to deduce a few more 
properties of the Cohen model, that is, the model from Section 9.2. The 
book finishes with Section 9.5 in which is proved the simultaneous con
sistency of Martin's axiom and the negation of the continuum hypothesis. 
This proof, done by iterated forcing, shows that even in the world of the 
"sophisticated recursion method" of forcing the "classical" recursion tech
nique is still a fundamental method of set theory - the desired model is 
obtained by constructing forcing extensions by transfinite induction. 



Preface xi 

It is also worthwhile to point out here that readers with different back
grounds will certainly be interested in different parts of this text. Most 
advanced graduate students as well as mathematical researchers using this 
book will almost certainly just skim Part I. The same may be also true 
for some of these readers for at least some portion of Part II. Part III and 
the first chapter of Part IV should be considered as the core of this text 
and are written for the widest group of readers. Finally, the last chapter 
(concerning forcing) is the most difficult and logic oriented, and will prob
ably be of interest only to the most dedicated readers. It certainly can be 
excluded from any undergraduate course based on this text. 
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Chapter 1 

Axiomatic set theory 

1.1 Why axiomatic set theory? 

Essentially all mathematical theories deal with sets in one way or another. 
In most cases, however, the use of set theory is limited to its basics: el
ementary operations on sets, fundamental facts about functions, and, in 
some cases, rudimentary elements of cardinal arithmetic. This basic part 
of set theory is very intuitive and can be developed using only our "good" 
intuition for what sets are. The theory of sets developed in that way is 
called "naive" set theory, as opposed to "axiomatic" set theory, where all 
properties of sets are deduced from a fixed set of axioms. 

Clearly the "naive" approach is very appealing. It allows us to prove a 
lot of facts on sets in a quick and convincing way. Also, this was the way 
the first mathematicians studied sets, including Georg Cantor, a "father 
of set theory." However, modern set theory departed from the "paradise" 
of this simple-minded approach, replacing it with "axiomatic set theory," 
the highly structured form of set theory. What was the reason for such a 
replacement? 

Intuitively, a set is any collection of all elements that satisfy a certain 
given property. Thus, the following axiom schema of comprehension, 
due to Frege (1893), seems to be very intuitive. 

If <p is a property, then there exists a set Y = {X: <p( X)} of all 
elements having property <p. 

This principle, however, is false! It follows from the following theorem of 
Russell (1903) known as Russell's antinomy or Russell's paradox. 

3 



4 1 Axiomatic set theory 

Russell's paradox There is no set S = {X: X ~ X}. 

The axiom schema of comprehension fails for the formula <p(X) defined 
as "X ~ X." To see it, notice that if S had been a set we would have had 
for every Y 

YES{:}Y~Y. 

Substituting S for Y we obtain 

S E S {:} S ~ S, 

which evidently is impossible. 
This paradox, and other similar to it, convinced mathematicians that 

we cannot rely on our intuition when dealing with abstract objects such as 
arbitrary sets. To avoid this trouble, "naive" set theory has been replaced 
with axiomatic set theory. 

The task of finding one "universal" axiomatic system for set theory 
that agrees with our intuition and is free of paradoxes was not easy, and 
was not without some disagreement. Some of the disagreement still ex
ists today. However, after almost a century of discussions, the set of ten 
axioms/schemas, known as the Zermelo-Fraenkel axioms (abbreviated as 
ZFC, where C stands for the axiom of choice), has been chosen as the most 
natural. These axioms will be introduced and explained in the next chap
ters. The full list of these axioms with some comments is also included in 
Appendix A. 

It should be pointed out here that the ZFC axioms are far from "per
fect." It could be expected that a "perfect" set of axioms should be com
plete, that is, that for any statement <p expressed in the language of set 
theory (which is described in the next section) either <p or its negation is a 
consequence of the axioms. Also, a "good" set of axioms should certainly 
be consistent, that is, should not lead to a contradiction. Unfortunately, we 
cannot prove either of these properties for the ZFC axioms. More precisely, 
we do believe that the ZFC axioms are consistent. However, if this belief 
is correct, we can't prove it using the ZFC axioms alone. Does it mean 
that we should search for a better system of set-theory axioms that would 
be without such a deficiency? Unfortunately, there is no use in searching 
for it, since no "reasonable" set of axioms of set theory can prove its own 
consistency. This follows from the following celebrated theorem of G6del. 

Theorem 1.1.1 (G6del's second incompleteness theorem) Let T be a set 
of axioms expressed in a formal language C (such as the language of set 
theory described in Section 1.2) and assume that T has the following "rea
sonable" properties. 

(1) T is consistent. 
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(2) There is an effective algorithm that decides for an arbitrary sentence 
of the language I:- whether it is in T or not. 

(3) T is complicated enough to encode simple arithmetic of the natural 
numbers. 

Then there is a sentence cp of the language I:- that encodes the statement 
"T is consistent." However, cp is not a consequence of the axioms T. 

In other words, Theorem 1.1.1 shows us that for whatever "reasonable" 
systems of axioms of set theory we choose, we will always have to rely on 
our intuition for its consistency. Thus, the ZFC axioms are as good (or 
bad) in this aspect as any other "reasonable" system of axioms. 

So what about the completeness of the ZFC axioms? Can we prove 
at least that much? The answer is again negative and once again it is a 
common property for all "reasonable" systems of axioms, as follows from 
another theorem of Godel. 

Theorem 1.1.2 (Godel's first incompleteness theorem) Let T be a set of 
axioms expressed in a formal language I:- (such as the language of set theory 
described in Section 1.2) and assume that T has the following "reasonable" 
properties. 

(1) T is consistent. 

(2) There is an effective algorithm that decides for an arbitrary sentence 
of the language I:- whether it is in T or not. 

(3) T is complicated enough to encode simple arithmetic of the natural 
numbers. 

Then there is a sentence cp of the language I:- such that neither cp nor its 
negation -,cp can be deduced from the axioms T. 

A sentence cp as in Theorem 1.1.2 is said to be independent of the 
axioms T. It is not difficult to prove that a sentence cp is independent of 
the consistent set of axioms T if and only if both T U { cp} and T U { -,cp} are 
consistent too. Part of this course will be devoted to studying the sentences 
of set theory that are independent of the ZFC axioms. 

The preceding discussion shows that there is no way to find a good 
complete set of axioms for set theory. On the other hand, we can find a 
set of axioms that reach far enough to allow encoding of all set-theoretic 
operations and all classical mathematical structures. Indeed, the ZFC ax
ioms do satisfy this requirement, and the rest of Part I will be devoted to 
describing such encodings of all structures of interest. 



6 1 Axiomatic set theory 

1.2 The language and the basic axioms 
Any mathematical theory must begin with undefined concepts. In the case 
of set theory these concepts are the notion of a "set" and the relation "is 
an element of" between the sets. In particular, we write "x E y" for "x is 
an element of y." 

The relation E is primitive for set theory, that is, we do not define it. 
All other objects, including the notion of a set, are described by the axioms. 
In particular, all objects considered in formal set theory are sets. (Thus, 
the word "set" is superfluous.) 

In order to talk about any formal set theory it is necessary to specify 
first the language that we will use and in which we will express the axioms. 
The correct expressions in our language are called formulas. The basic for
mulas are "x E y" and "z = t," where x, y, z, and t (or some other variable 
symbols) stand for the sets. We can combine these expressions using the 
basic logical connectors of negation -', conjunction &, disjunction V, impli
cation ---., and equivalence ....... Thus, for example, -''P means "not 'P" and 
'P---.'I/J stands for "'P implies 'I/J." In addition, we will use two quantifiers: 
existential :3 and universal V. Thus, an expression VX'P is interpreted as 
"for all x formula 'P holds." In addition, the parentheses "(" and ")" are 
used, when appropriate. 

Formally, the formulas can be created only as just described. However, 
for convenience, we will also often use some shortcuts. For example, an ex
pression:3x E A'P(x) will be used as an abbreviation for :3x(x E A & 'P(x)), 
and we will write Vx E A'P(x) to abbreviate the formula Vx(x E A---.'P(x)). 
Also we will use the shortcuts x i=- y, x rt. y, x c y, and x ct y, where, for 
example, x C y stands for Vz(z E x---.z E y). 

Finally, only variables, the relations = and E, and logical symbols al
ready mentioned are allowed in formal formulas. However, we will often 
use some other constants. For example, we will write x = 0 (x is an empty 
set) in place of -,:3y(y EX). 

We will discuss ZFC axioms throughout the next few sections as they 
are needed. Also, in most cases, we won't write in the main text the 
formulas representing the axioms. However, the full list of ZFC axioms 
together with the formulas can be found in Appendix A. 

Let us start with the two most basic axioms. 

Set existence axiom There exists a set: :3x(x = x). 

Extensionality axiom If x and y have the same elements, then x is equal 
to y. 

The set existence axiom follows from the others. However, it is the 
most basic of all the axioms, since it ensures that set theory is not a trivial 
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theory. The extensionality axiom tells us that the sets can be distinguish 
only by their elements. 

Comprehension scheme (or schema of separation) Foreveryfor
mula 'P(8, t) with free variables 8 and t, set x, and parameter p there 
exists a set y = {u Ex: 'P( u, p)} that contains all those u E x that 
have the property 'P. 

Notice that the comprehension scheme is, in fact, the scheme for in
finitely many axioms, one for each formula 'P. It is a weaker version 
of Frege's axiom schema of comprehension. However, the contradiction 
of Russell's paradox can be avoided, since the elements of the new set 
y = {u Ex: 'P( u, p)} are chosen from a fixed set x, rather than from an 
undefined object such as "the class of all sets." 

From the set existence axiom and the comprehension scheme used with 
the formula "u =I- u," we can conclude the following stronger version of the 
set existence axiom. 

Empty set axiom There exists the empty set 0. 

To see the implication, simply define 0 = {y Ex: y =I- y}, where x is a 
set from the set existence axiom. Notice that by the extensionality axiom 
the empty set is unique. 

An interesting consequence of the comprehension scheme axiom is the 
following theorem. 

Theorem 1.2.1 There is no set of all sets. 

Proof If there were a set S of all sets then the following set 

z = {X E S: X 5t X} 

would exist by the comprehension scheme axiom. However, with S being 
the set of all sets, we would have that Z = {X: X 5t X}, the set from 
Russell's paradox. This contradiction shows that the set S of all sets cannot 
~~. 0 

By the previous theorem all sets do not form a set. However, we some
times like to talk about this object. In such a case we will talk about a 
class of sets or the set-theoretic universe. We will talk about classes only 
on an intuitive level. It is worth mentioning, however, that the theory of 
classes can also be formalized similarly to the theory of sets. This, however, 
is far beyond the scope of this course. Let us mention only that there are 
other proper classes of sets (Le., classes that are not sets) that are strictly 
smaller than the class of all sets. 
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The comprehension scheme axiom is a conditional existence axiom, that 
is, it describes how to obtain a set (subset) from another set. Other basic 
conditional existence axioms are listed here. 

Pairing axiom For any a and b there exists a set x that contains a and 
b. 

Union axiom For every family :F there exists a set U containing the union 
U:F of all elements of :F. 

Power set axiom For every set X there exists a set P containing the set 
P(X) (the power set) of all subsets of X. 

In particular, the pairing axiom states that for any a and b there exists 
a set x such that {a, b} ex. Although it does not state directly that there 
exists a set {a, b}, the existence of this set can easily be concluded from 
the existence of x and the comprehension scheme axiom: 

{a, b} = {u Ex: u = a V u = b}. 

Similarly, we can conclude from the union and power set axioms that for 
every sets :F and X there exist the union of :F 

U :F = {x: :3F E :F (x E F)} = {x E U: :3F E :F (x E F)} 

and the power set of X 

P(X) = {z: z C X} = {z E P: z eX}. 

It is also easy to see that these sets are defined uniquely. Notice also that 
the existence of a set {a, b} implies the existence of a singleton set {a}, 
since {a} = {a, a}. 

The other basic operations on sets can be defined as follows: the union 
of two sets x and y by 

xuy=U{x,y}; 

the difference of sets x and y by 

x \ y = {z E x: Z ~ y}; 

the arbitrary intersections of a family :F by 

and the intersections of sets x and y by 

xny=n{x,y}. 
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The existence of sets x\y and n:F follows from the axiom of comprehension. 
We will also sometimes use the operation of symmetric difference of two 

sets, defined by 

x6.y = (x \ y) U (y \ x). 

Its basic properties are listed in the next theorem. Its proof is left as an 
exercise. 

Theorem 1.2.2 For every x, y, and z 

(a) x6.y = y!:::,.x, 

(b) x!:::"y=(xUy)\(xny), 

(c) (x!:::,.y)6.z = x!:::,.(y6.z). 

We will define an ordered pair (a, b) for arbitrary a and b by 

(a, b) = {{a}, {a, b}}. (1.1) 

It is difficult to claim that this definition is natural. However, it is com
monly accepted in modern set theory, and the next theorem justifies it by 
showing that it maintains the intuitive properties we usually associate with 
the ordered pair. 

Theorem 1.2.3 For arbitrary a, b, e, and d 
(a, b) = (e, d) if and only if a = e and b = d. 

Proof Implication {= is obvious. 
To see the other implication, assume that (a, b) = (e, d). This means 

that {{a}, { a, b} } = { { e}, { e, d} }. In particular, by the axiom of extension
ality, {a} is equal to either {e} or {e, d}. 

If {a} = {e} then a = e. If {a} = {e, d}, then e must belong to {a} and 
we also conclude that a = e. In any case, a = e and we can deduce that 
{{a}, {a, b}} = {{a}, {a, d}}. We wish to show that this implies b = d. 

But {a, b} belongs to {{a}, { a, d} }. Thus we have two cases. 
Case 1: {a,b} = {a,d}. Then b = a or b = d. If b = d we are done. If 

b = a then {a,b} = {a} and so {a,d} = {a}. But d belongs then to {a} 
and so d = a. Since we had also a = b we conclude b = d. 

Case 2: {a, b} = {a}. Then b belongs to {a} and so b = a. Hence we 
conclude that {a, d} = {a}, and as in case 1 we can conclude that b = d. 
D 
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Now we can define an ordered triple (a, b, c) by identifying it with 
((a, b), c) and, in general, an ordered n-tuple by 

The agreement of this definition with our intuition is given by the following 
theorem, presented without proof. 

Theorem 1.2.4 (al,a2, ... ,an-l,an) = (a~,a~, ... ,a~_l>a~) if and only 
if ai = a~ for all i = 1,2, ... ,n. 

Next we will define a Cartesian product X x Y as the set of all ordered 
pairs (x, y) such that x E X and y E Y. To make this definition formal, 
we have to use the comprehension axiom. For this, notice that for every 
x E X and y E Y we have 

(x,y) = {{x}, {x,y}} E P(P(XUY)). 

Hence, we can define 

X x Y = {z E P(P(XUY))::Jx E X:Jy E Y (z = (x,y))}. (1.2) 

The basic properties of the Cartesian product and its relation to other 
set-theoretic operations are described in the exercises. 

The last axiom we would like to discuss in this section is the infinity 
axiom. It states that there exists at least one infinite set. This is the 
only axiom that implies the existence of an infinite object. Without it, 
the family F of all finite subsets of the set of natural numbers would be a 
good "model" of set theory, that is, F satisfies all the axioms of set theory 
except the infinity axiom. 

To make the statements of the infinity axiom more readable we intro
duce the following abbreviation. We say that y is a successor of x and write 
y = S(x) if y = x U {x}, that is, when 

VZ[Z E Y ...... (z E x V Z = x)]. 

Infinity axiom (Zermelo 1908) There exists an infinite set (of some spe
cial form): 

:Jx [Vz(z = 0----tz E x) & Vy E xVz(z = S(y)----tz EX)]. 

Notice that the infinity axiom obviously implies the set existence axiom. 
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EXERCISES 

1 Prove that if FE F then nF c F c U:F. 

2 Show that for every family F and every set A 

(a) if A c F for every F E F then A c nF, and 

(b) if Fe A for every F E F then UF c A. 

11 

3 Prove that if F n 9 i- 0 then n F n n 9 c n(F n 9). Give examples 
showing that the inclusion cannot be replaced by equality and that the 
assumption F n 9 i- 0 is essential. 

4 Prove Theorem 1.2.2. 

5 Show that ((a,b),c) = ((a',b'),c') if and only if (a, (b,c)) = (a', (b',c')) 
if and only if a = a', b = b', and c = c'. Conclude that we could define an 
ordered triple (a, b, c) as (a, (b, c)) instead of ((a, b), c). 

6 Prove that X x Y = 0 if and only if X = 0 or Y = 0. 

7 Show that for arbitrary sets X, Y, and Z the following holds. 

( a) (X U Y) x Z = (X x Z) U (Y x Z). 

(b) (X n Y) x Z = (X x Z) n (Y x Z). 

(c) (X \ Y) x Z = (X x Z) \ (Y x Z). 

8 Prove that if X x Z c Y x T and X x Z i- 0 then Xc Y and Z C T. 
Give an example showing that the assumption X x Z i- 0 is essential. 



Chapter 2 

Relations, functions, and 
Cartesian product 

2.1 Relations and the axiom of choice 
A subset R of a Cartesian product X x Y is called a (binary) relation. 

For a relation R of a Cartesian product X x Y, we usually write aRb 
instead of (a, b) E R and read: a is in the relation R to b, or the relation 
R between a and b holds. 

The domain dom(R) of a relation R is defined as the set of all x such 
that (x, y) E R for some y E Y, that is, 

dom(R) = {x E X: 3y E Y ((x,y) E R)}; 

the range range(R) of a relation R is defined as the set of all y such that 
(x, y) E R for some x E X, that is, 

range(R) = {y E Y: 3x E X ((x, y) E R)}. 

The set Z = dom(R) U range(R) for relation R is called a field of R. 
Notice that R c Z x Z. In this case we often say that R is defined on Z. 

Examples 1. The relation R< on the set of real numbers lR defined as 
(x, y) E R< if and only if x < y is usually denoted by <.1 Notice that 

1 In the examples we will often use notions that you supposedly know from other courses, 
even if we have not yet defined them within the framework of set theory (such as the set 
of real numbers lR in this example). This will be used only to help you develop the right 
intuition. We will try to avoid this kind of situation in the main stream of the course. 
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