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INTRODUCTION 

For the most part this book is concerned with modules, which 

are locally free over an integral group ring, and the consequent problem 

of determining whether or not the module is globally free. Such questions 

arise naturally in both algebraic number theory and in algebraic topology. 

In the former, the standard such question is that of the existence of a 

normal integral basis. That is to say, given a Galois extension of number 

fields N/K, we wish to know whether ON, the ring of integers of N, has a 

basis over the ring of integers of a subfield F cK which has the form 

{aYJ, for y running through Gal(N/K). An alternative way of considering 
~ 

this is to ask whether or not ON is free over the group algebra 

OF Gal(N/K). In the second area of application, that of algebraic 

topology, C.T.C. Wall has introduced a locally free module whose deviation 

from being globally free represents an obstruction to finding a finite 

complex in the homotopy type of a given space. 

For a group ring R, C~(R) is defined in a manner which closely 

resembles the way in which the ideal classgroup of a Dedekind domain is 

defined. In place of taking ideals modulo principal ideals, in essence we 

take locally free modules modulo free modules. This construction will be 

made precise in chapter 1. 

The principal aim of this book is to instruct the reader in 

sufficient techniques to enable him, when given a locally free R module M, 

to calculate the class of Min C~(R) and thereby, in many cases, determine 

whether or not M is globally free. 

In the 1960's Swan and Jacobinski gave abstract descriptions 

of locally free (or projective) classgroups. However, explicit calcul­

ations of these classgroups were possible in only a few cases. Subse­

quently Reiner and Ullom introduced the elegant technique of Mayer­

Vietoris sequences to the subject. This proved to be quite a powerful 

tool and it substantially increased our knowledge of classgroups of 



group rings. There is an excellent account of the level of knowledge 

obtained by such methods inS. Ullom's survey article [U3]. 

xii 

There then came a very important turning point in the theory 

of such classgroups when A. Frohlich, motivated by the normal integral 

basis problem, introduced a completely new description of such class­

groups. He was able to show that such classgroups are naturally isomor­

phic to the quotient of two groups of homomorphisms from the virtual 

characters of the group in question, taking idelic values. With this new 

viewpoint even the most basic properties were immediately better under­

stood. As an example we consider certain elementary functorial properties. 

Previous descriptions of such classgroups had nearly always been in terms 

of families of ideals, one for each absolutely irreducible character of 

the underlying group. If we now change group, by means of induction 

resp. restriction of module, this then corresponds to restriction resp. 

induction on the characters of the underlying group. Of course, in 

general, induction and restriction do not preserve irreducibility of 

characters. They do, however, induce natural maps on homomorphisms from 

virtual characters. To underline the advantage of this change in view­

point, we mention one further development. Presently we shall see that 

the Adams operations of character theory play a fundamental role in the 

theory of classgroups. In general, however, an Adams operation takes an 

irreducible character to a virtual character (and not an actual character, 

let alone an irreducible character). 

Whilst Frohlich's description of classgroups represents a 

fundamental change in view point, it does not, however, solve the basic 

problems. The point being that while the numerator in his description of 

the classgroup as the quotient of two groups was very clearly understood, 

the denominator was exceedingly difficult to handle. This necessitated a 

further development called the group logarithm which was first introduced 

by the author in [Tl]. Essentially the group logarithm is the usual 

p-adic logarithm twisted by means of an Adams operation. Very often, 

adroit use of this logarithm, together with Frohlich's description, 

allows us to decide whether or not the class of a module is trivial or 

not. The power of this technique is well illustrated by the normal 

integral basis problem. Here, the above work, when allied to Frohlich's 

Gauss sum resolvent relation, enables one to describe the class of a ring 

of integers over a group ring whose coefficients are ~ , whenever the ring 


