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Abstract: Extracting the latent underlying structures of complex nonlinear
local and nonlocal flows is essential for their analysis and modeling. In this
Element the authors attempt to provide a consistent framework through
Koopman theory and its related popular discrete approximation – dynamic
mode decomposition (DMD). They investigate the conditions to perform
appropriate linearization, dimensionality reduction, and representation of
flows in a highly general setting. The essential elements of this framework
are Koopman eigenfunctions (KEFs) for which existence conditions are

formulated. This is done by viewing the dynamic as a curve in state-space.
These conditions lay the foundations for system reconstruction, global

controllability, and observability for nonlinear dynamics. They examine the
limitations of DMD through the analysis of Koopman theory and propose a
new mode decomposition technique based on the typical time profile of

the dynamics.
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1 Introduction
Knowing the latent space of certain data allows one to represent it concisely
and to differentiate between signal and clutter parts. Recovering this space in
a data-driven manner is a long-standing research problem. Data resulting from
dynamical systems is represented commonly as spatial structures (modes) that
are attenuated or enhanced with time. A common technique in linear flows is
separation of variables. It is assumed that a solution u(x, t) of a linear flow can
be expressed as

u(x, t) = X(x)T(t). (1.1)

That is, the solution is a multiplication of a function of the spatial variable
x and a function of the temporal variable t. In this study we examine, from
various angles, the following paradigm: a nonlinear flow can be well approxi-
mated (or even exactly expressed) by a linear combination of variable separated
functions,

u(x, t) ≈
m∑
i=1

Xi(x)Ti(t). (1.2)

In this context, the spatial structures Xi are referred to as modes and Ti are
time-profiles. For such an approximation, if the error is negligible and m is
small, we obtain a significant simplification of the system. This enables better
understanding and modeling, allowing accurate interpolation and prediction of
the dynamics.
The theory of Koopman argues that for many nonlinear systems data

measurements evolve as if the dynamical system is linear (in some infinite-
dimensional space). A well-known algorithm to approximate these measure-
ments is Dynamic Mode Decomposition (DMD) of Schmid (2010). In this
work, we formulate sufficient and necessary conditions for the existence of
these measurements. These findings highlight certain flaws of DMD. Finally,
we suggest a new mode decomposition to overcome some of these problems,
originated in an algorithm for general spectral decomposition of Gilboa (2018).
In many dynamical processes, there are measurements of the observations

that evolve linearly, or approximately so; see Otto and Rowley (2021). A
theoretical justification for that can be traced back to the seminal work of
Koopman (1931). These measurements are referred to as Koopman Eigenfunc-
tions (KEFs). An algorithm was proposed by Mezić (2005), Koopman Mode
Decomposition (KMD), to reconstruct the dynamics using spatial structures,
termed as modes, which are the coefficients of Koopman eigenfunctions. Since
KEFs evolve as if they were observations in a linear dynamical system, KMD
can interpret the original dynamics as a linear one.


