

Adversarial Learning and Secure AI

Providing a logical framework for student learning, this is the first textbook on adver-
sarial learning. It introduces students to attacks and vulnerabilities of deep learning,
and to methods for defending against attacks and making AI generally more robust.

It is the ideal resource for upper undergraduate and first-year graduate courses on
AI security and adversarial learning. Students and instructors will benefit from these
features

• application examples, case studies, and real-world student projects in each chapter,
connecting theory with practice
• a project-driven approach that strengthens critical thinking when evaluating attacks
and defenses
• a variety of application areas covered by the examples and projects, for example,
image classification, text classification, point cloud classification, and a regression
example from finance.

David J. Miller is professor of Electrical Engineering at the Pennsylvania State Uni-
versity.

Zhen Xiang is a post-doctoral research associate of Computer Science at the University
of Illinois, Urbana-Champaign.

George Kesidis is a professor of Computer Science and Engineering, and of Electrical
Engineering, at the Pennsylvania State University.

“This textbook is one of the first major efforts to systematically examine adversarial
machine learning. It clearly outlines the most common types of attacks on machine
learning/AI, and defenses, with rigorous yet practical discussions. I would highly
recommend it to any instructor or machine learning student who seeks to understand
how to make machine learning more robust and secure.”
Carlee Joe-Wong, Carnegie Mellon University

“This is a clear and timely introduction to the vital topic of adversarial learning. As
leading international experts, the authors provide an accessible explanation of the
foundational principles and then deliver a nuanced and extensive survey of recent
attack and defense strategies. Multiple suggested projects allow the book to serve as
the core of a graduate course.”
Mark Coates, McGill University

“Remarkably comprehensive, this book explores the realm of adversarial learning,
revealing the vulnerabilities and defenses associated with deep learning. With a mix
of theoretical insights and practical projects, the book challenges the misconceptions
about the robustness of Deep Neural Networks, offering strategies to fortify them.
It is well suited for students and professionals with basic calculus, linear algebra, and
probability knowledge, and provides foundational background on deep learning and
statistical modeling. A must-read for practitioners in the machine learning field, this
book is a good guide to understanding adversarial learning, the evolving landscape of
defenses, and attacks.”
Ferdinando Fioretto, Syracuse University

“In a field that is moving at break-neck speed, this book provides a strong foundation
for anyone interested in joining the fray.”
Amir Rahmati, Stony Brook

Adversarial Learning
and Secure AI

DAVID J. MILLER
Pennsylvania State University

ZHEN XIANG
University of Illinois, Urbana-Champaign

GEORGE KESIDIS
Pennsylvania State University

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment,
a department of the University of Cambridge.

We share the University’s mission to contribute to society through the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/highereducation/isbn/9781009315678

DOI: 10.1017/9781009315647

© David J. Miller, Zhen Xiang, and George Kesidis 2024

This publication is in copyright. Subject to statutory exception and to the provisions
of relevant collective licensing agreements, no reproduction of any part may take

place without the written permission of Cambridge University Press & Assessment.

First published 2024

Printed in the United Kingdom by CPI Group Ltd, Croydon, CR0 4YY, 2024

A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-009-31567-8 Hardback

Additional resources for this publication at www.cambridge.org/millersecureAI.

Cambridge University Press & Assessment has no responsibility for the persistence
or accuracy of URLs for external or third-party internet websites referred to in this

publication and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

http://www.cambridge.org
http://www.cambridge.org/highereducation/isbn/9781009315678
http://www.cambridge.org/millersecureAI

DJM dedicates this book to his children Joshua and Madeline

ZX dedicates this book to his son Ian

GK dedicates this book to Fozzie, Gonzo and Therese

The authors also share a dedication of this book to their collaborators Xi Li and
Hang Wang

Contents

Preface page xiii
Notation xvii

1 Overview of Adversarial Learning 1
1.1 Machine Learning and Its Attack Vectors 2
1.2 Attacker/Defender Goals and Assumptions 2
1.3 Test-Time Evasion Attacks (TTEs) or Adversarial Inputs 4
1.4 Data Poisoning (DP) Attacks 8
1.5 Reverse-Engineering Attacks (REAs) Targeting the Deep Neural

Network (DNN) 13
1.6 Attacks on Privacy of Training Data 14
1.7 Chapter Summary 17
1.8 References for Further Reading 18

2 Deep Learning Background 19
2.1 Deep Learning for Classification, Regression, or Prediction 20
2.2 Motivating Deep Neural Network (DNN) Classifiers 23
2.3 Linearly Separable Data 23
2.4 From Binary to K-ary Classification 24
2.5 Deep Neural Network (DNN) Architectures 24
2.6 Background on Gradient-Based Optimization 31
2.7 Heuristic Optimization Methods for Deep Learning 36
2.8 Overfitting and DNN Regularization 41
2.9 “Certified” Training and Classification Confidence 44
2.10 Neural Network Inversion 46
2.11 Identification and Visualization of Salient Features 47
2.12 Handling Label-Deficient Data: Transfer and Contrastive Learning 47
2.13 Other Methods of Extracting Salient Features 50
2.14 Other Types of Classifiers: Naive Bayes (NB) and Logistic Regression

(LR) 50
2.15 Discussion: Statistical Confidence 52
2.16 Chapter Summary 53
2.17 References for Further Reading 54
2.18 Project: Classification of UC Irvine Datasets 54

viii Contents

2.19 Project: Membership-Inference Attack 55
2.20 Project: Classification for the CIFAR-10 Image Domain 55

3 Basics of Detection and Mixture Models 56
3.1 Mixture Densities 58
3.2 Estimating the Parameters: Maximum Likelihood Estimation (MLE)

and Expectation-Maximization (EM) 59
3.3 K-Means Clustering as a Special Case 63
3.4 Model Order Selection 63
3.5 Principal Component Analysis (PCA) and Singular Value

Decomposition (SVD) 66
3.6 Some Detection Basics 70
3.7 Performance Measures for Detection 72
3.8 Chapter Summary 72
3.9 References for Further Reading 73
3.10 Projects: Receiver Operating Characteristic (ROC), Principal

Component Analysis (PCA), and Gaussian Mixture Model (GMM) 73

4 Test-Time Evasion Attacks (Adversarial Inputs) 76
4.1 Previously Proposed Test-Time Evasion (TTE) Attacks 76
4.2 “Robust” and “Certified” Defenses for Test-Time Evasion (TTE) Attacks 80
4.3 Anomaly Detection (AD) of Test-Time Evasion (TTE) Attacks 85
4.4 Background on Generative Modeling and Generative Adversarial

Networks (GANs) 90
4.5 Generative Adversarial Network (GAN) Based Test-Time Evasion

(TTE) Attack Detection Methodology 93
4.6 Experiments 96
4.7 Deeper Consideration of Test-Time Evasion (TTE) Attack Scenarios 105
4.8 Discussion: Out-of-Distribution Detection (OODD) 110
4.9 Chapter Summary 111
4.10 Project: White Region Counting Defense 112
4.11 Project: Nearest Neighbor (NN) Classification Defense 114
4.12 Project: Test-Time Evasion (TTE) Attacks and Dropout 115

5 Backdoors and Before/During Training Defenses 116
5.1 Backdoor Attacks 117
5.2 Before/During Training Defender’s Goals 120
5.3 Before/During Training Defenses 121
5.4 Training Set Cleansing Reverse-Engineering Defense (TSC-RED) 122
5.5 Experiments 128
5.6 Defense Variations and Additional Experiments 138
5.7 Chapter Summary 139
5.8 Project: Principal Component Analysis (PCA) Based Cluster Impurity

(CI) Defense 140

Contents ix

6 Post-Training Reverse-Engineering Defense (PT-RED) Against
Imperceptible Backdoors 141

6.1 The Post-Training (PT) Scenario 141
6.2 Some Post-Training (PT) Defenses 143
6.3 Imperceptible-Backdoor Post-Training Reverse-Engineering Defense

(I-PT-RED) 146
6.4 Experiments 154
6.5 Lagrangian Post-Training Reverse-Engineering Defense (L-PT-RED)

and Experiments 173
6.6 Discussion: Robust and Explainable AI 178
6.7 Chapter Summary 179
6.8 Project: Imperceptible Backdoor Post-Training Reverse-Engineering

Defense (I-PT-RED) on Images 180
6.9 Project: Consensus Post-Training Reverse-Engineering Defense

(C-PT-RED) 182
6.10 Project: Noisy Backdoor Incorporation 184

7 Post-Training Reverse-Engineering Defense (PT-RED) Against
Patch-Incorporated Backdoors 185

7.1 Perceptible Backdoor Patterns 186
7.2 Choice of Source Class(es) and Target Class 188
7.3 Perceptible Backdoor Post-Training Reverse-Engineering Defense

(P-PT-RED) 188
7.4 Experiments 195
7.5 Chapter Summary 207
7.6 Project: Exploring What the Deep Neural Network (DNN) is Learning 209
7.7 Project: Perceptible Backdoor Post-Training Reverse-Engineering

Defense (P-PT-RED) and Variations on Images 209

8 Transfer Post-Training Reverse-Engineering Defense (T-PT-RED)
Against Backdoors 211

8.1 Transferability of Sample-wise Minimal Perturbations 211
8.2 Transfer Post-Training Reverse-Engineering Defense (T-PT-RED)

Detection Procedure 213
8.3 Experiments 216
8.4 Chapter Summary 222
8.5 Project: Targeted Transfer Post-Training Reverse-Engineering Defense

(T-PT-RED) for Multiple Classes 223
8.6 Project: Transfer Post-Training Reverse-Engineering Defense

(T-PT-RED) for Backdoor Patches 224

9 Universal Post-Training (PT) Backdoor Defenses 226
9.1 Universal Backdoor Detection (UnivBD) Without Clean Labeled Data 227
9.2 Universal Mitigation of Backdoor Attack (UnivBM) 234
9.3 Some Additional Experiments 238

x Contents

9.4 Chapter Summary 241
9.5 Project: Universal Backdoor Detection (UnivBD) Versus Lagrangian

Post-Training Reverse-Engineering Defense (L-PT-RED) 243
9.6 Project: Reverse-Engineering Backdoor Patterns (BPs) 243
9.7 Project: Universal Backdoor Detection (UnivBD) Leveraging Clean

Labeled Data 243
9.8 Project: Universal Detector Based on Deep Neural Network (DNN)

Weight Outliers 244
9.9 Project: Mitigation Using Surrogates for Correct Decision Rate 244
9.10 Project: Testing the Hypothesis that a Backdoor Preserves Clean Logits 245
9.11 Project: Modified UnivBM Objective to Reduce Margin 245
9.12 Project: Defense Against Error-Generic Data Poisoning 245

10 Test-Time Detection of Backdoor Triggers 246
10.1 Some Test-Time Backdoor Detection Methods 246
10.2 In-Flight Reverse-Engineering Defense (IF-RED) 247
10.3 Experiments 249
10.4 Chapter Summary 252
10.5 Project: Trigger Detection via Test-Time Evasion (TTE) Attack

Detection Strategy 254
10.6 Project: In-Flight Reverse-Engineering Defense (IF-RED) Using

Imperceptible Backdoor Post-Training Reverse-Engineering Defense
(I-PT-RED) Applied to Embedded Features 255

10.7 Project: Margin as an In-Flight Detection Statistic 255

11 Backdoors for 3D Point Cloud (PC) Classifiers 256
11.1 3D Point Cloud (PC) Classification 258
11.2 Backdoor Attacks against 3D Point Cloud (PC) Classifiers 258
11.3 A Small Cluster of Backdoor Points 260
11.4 Attack Experiments 265
11.5 Point Cloud (PC) Anomaly Detectors (ADs) against Backdoor Attacks

(BAs) 271
11.6 Point Cloud Post-Training Reverse-Engineering Defense (PC-PT-RED) 272
11.7 Attack/Defense Experiments 276
11.8 Chapter Summary 278
11.9 Project: During-Training Defense or Robustification of Point Cloud

(PC) Classifiers 280

12 Robust Deep Regression and Active Learning 281
12.1 Background on Active Learning 283
12.2 Robust Deep Regression by Active Learning (RDR-AL) 284
12.3 A Localized Region of Regression Error 286
12.4 Experimental Results for Valuation of a Financial Option 287

Contents xi

12.5 Discussion Topics: Query by Committee, Reinforcement Learning
(RL), Test-Time Evasion (TTE), Classification 290

12.6 Chapter Summary 292
12.7 Project: Clean Label Backdoor Attack 292

13 Error Generic Data Poisoning Defense 294
13.1 Threat Model 295
13.2 Data Poisoning Defenses 296
13.3 Bayesian Information Criterion Based Mixture Model Training Set

Cleansing (BIC-MM-TSC) 298
13.4 Experiments on Binary, Discrete Feature Classification Tasks 304
13.5 Discussion: Experiments with K > 2 Classes 312
13.6 Chapter Summary 312
13.7 Project: K-Nearest Neighbor (KNN) Defense 313
13.8 Project: White Box Data Poisoning Attack 314

14 Reverse-Engineering Attacks (REAs) on Classifiers 315
14.1 Reverse-Engineering Attacks (REAs) Given Domain Samples 316
14.2 Overview of Defense Against Reverse-Engineering Attacks (REAs) 316
14.3 Anomaly Detection of Attacks (ADA) Based Defense Against

Reverse-Engineering Attacks (REA-ADA) 317
14.4 Experiments 317
14.5 Chapter Summary 319
14.6 Project: Defense Against Random Querying 321

Appendix Support Vector Machines (SVMs) 322

References 333
Index 351

Preface

Why We Wrote This Book

In the past ten years, deep learning has been applied to many market and government
sectors (e.g., health, finance, military, intelligence, manufacturing, sales), including in
their critical infrastructure and supply chains (MLOps/AIOps). Application domains
include those where operational conditions may change over time (model drift), where
safety and security are of great concern, and where significant financial stakes are
involved. As such, the deep learning process and the trained Deep Neural Networks
(DNNs or “AIs”) themselves have become targets of attack. More generally, basic
questions about the robustness and explainability of DNN solutions have also been
raised even in the absence of attacks, for example, [132]. A research sub-field assessing
and addressing the risks associatedwith usingAIs (and othermachine learningmodels)
is known as adversarial learning. This area essentially represents a merger between
the fields of computer security and machine learning.

An important aspect of software security is to consider how the software will
behave for all possible valid inputs. The reason for this is that an adversary may exploit
a vulnerability that pertains to a range of inputs for which the software’s behavior
was not carefully considered by its developers. This is a daunting security task for
a DNN, whose behavior depends on an enormous set of parameters (even billions)
which are heuristically learned, and whose input space may be very high-dimensional.
What this means is that DNNs have a substantial attack “surface,” which makes them
vulnerable to a variety of attacks/exploits. While some basic adversarial learning
research dates back more than 20 years, this field really took off with the observation
in 2014 that adversarial inputs may be easily constructed for DNNs – these are small
changes to an input pattern, imperceptible to a human being, and yet which greatly
alter the DNN’s output (e.g., changing its class decision). Aside from being a security
threat, adversarial inputs demonstrate that it is a fallacy – held by many researchers,
educators, industrialists, and journalists – that DNNs are generally robust, reliable
decision-makers, and are close to fulfilling the promise of artificial intelligence. In the
year 2020 alone, more than 1100 papers on adversarial learning were submitted to
arXiv.org. While there are a number of review papers, to date there are no books on
this subject which are suitable for a course offering.

xiv Preface

The Emphasis of the Book is Unsupervised Defenses

Generally, defenses and attacks continuously evolve. New vulnerabilities are discov-
ered by attackers (either in the system being protected or in its defenses) and exploited.
Defenses may evolve to address newly identified vulnerabilities (including those re-
cently revealed by new exploits). It may be unrealistic to suppose that the defender
has detailed knowledge of an attack that may be mounted. This is why we focus on
unsupervised defenses that aim to protect against a whole family of attacks (rather than
relying on somehow obtained knowledge of a specific known attack [269, 270])1 . On
the other hand, in the quest for the glory (and concomitant research funding) associated
with finding a new vulnerability and devising an exploit for it, some researchers ignore
existing or obvious defenses which would be effective against their attacks, or get car-
ried away and unrealistically assume an omniscient or omnipotent attacker (e.g., one
who completely controls the training dataset and training process, or controls how new
samples are labeled in an active learning context). Given an omnipotent adversary, a
defense may be able to do little more than increase the attacker’s work factor. That said,
though “security through obscurity” is commonly practiced and may be effective in
some cases, assuming some attacker knowledge of a defense is not unreasonable. This
is especially true considering spectacular leaks by insiders and breaches in privacy
protections in the recent past.2

Purpose, Target Audience and Prerequisites

The targeted audience for this book is senior undergraduates and graduate students in all
branches of science and engineering. The purpose of this book is to introduce students
to existing attacks and vulnerabilities of deep learning (andmachine learning in general)
and to methods for defending against these attacks, as well as for making AI generally
more robust (even in the absence of attack). Along the way, students will also enhance
their appreciation for what deep neural networks are in fact learning (and what they are
not learning). For example, students will learn that training dataset augmentation (i)
may improve generalization performance, (ii) instead, may cause degradation in DNN
accuracy (e.g., by overfitting through adversarially robust learning), (iii) or may result
in the planting of a backdoor in the DNN. As another example, students will better
understand the circumstances in which DNNs learn patterns that are spatially invariant
(occurring anywhere in an image), or only patterns that are spatially fixed. The book
covers many attack-defense scenarios and involves many case studies and real-world
problems addressed by the state-of-the-art in recent research publications.
1 Note that an antivirus system or firewall typically functions in response to known attacks, that is, they

are supervised defenses. Hence periodic updates (with patching of exposed vulnerabilities) are needed,
typically after a new exploit has been detected and carefully studied to identify its signature.

2 Which can go both ways, that is, new attacks can also be leaked before they are launched; but, to
reiterate, we focus on unsupervised defenses herein.

Preface xv

Prerequisites for this book include a basic introduction to calculus, linear algebra,
and probability. Though the second and third chapters provide the necessary back-
ground material on deep learning, detection, and statistical modeling, a student would
benefit from a more broadly scoped course on pattern recognition and machine learn-
ing based on, for example, [63, 190], and from an introduction to numerical analysis,
for example, [8].

Projects

There are course projects at the ends of the chapters that give hands-on experience
to students in devising and evaluating both attacks and defenses against machine
learning systems. These projects are intended as the primary homework exercises
for a course on robust and adversarial learning. They also serve the dual purpose of
helping students to obtain familiarity and facility in machine learning design within the
Python programming environment (in particular, the use of PyTorch for deep learning).
Moreover, these projects provide a window for students into how much research work
is being conducted in AI/machine learning – with promising new ideas postulated and
then experimentally assessed, both to validate (or reject) them and to obtain greater
insight into the problem at hand. Given some Python experience, students can learn
PyTorch [209] while studying the first few chapters of this book. Also, a tutorial on the
Pillow fork of the Python Image Processing Library (PIL) will be useful, for example,
[88]. PyTorch code for projects given at the end of Chapters 4, 5, 6 and 13 is available
at: www.cambridge.org/millersecureAI.

Quite a bit of code is provided for the first few preliminary PyTorch projects (the
provided code should be carefully studied by the student), while little to no code is
provided for subsequent projects. The idea is that the students can “fill in the blanks”
for the first PyTorch projects that are assigned but have to produce all of the code for
subsequent ones.

Chapter Roadmap

The first three chapters respectively provide background on attack types and attack
nomenclature, on deep learning, and on detection and estimation. If students have
taken a prior course on pattern recognition or machine learning, they may be able to
skip Chapters 2 and 3. Note that subsequent chapters frequently refer back to material
in Chapters 2 and 3.

Chapter 4 addresses defenses against adversarial inputs at test-time, also known as
test-time evasion (TTE) attacks.

Chapter 13 addresses defense against general data poisoning attacks against classi-
fiers.

Chapter 14 addresses defense against reverse-engineering (probing) attacks.

xvi Preface

A road map for the remaining chapters on backdoor defense is as follows.

• Chapter 5 addresses backdoor defense implemented by the training authority, who
has access to the (possibly poisoned) training set and who controls the training
process.
• The next four chapters address post-training backdoor defense, where the defender
does not in fact have access to the training set, but only to the trained classifier and
to a (relatively) very small set of clean (unpoisoned) labeled samples.
• Chapter 6 addresses defense against imperceptible backdoor attacks. One approach
reverse-engineers putative backdoor patterns that are additively incorporated either
to the input (raw features) or to an internal layer of the neural network (embedded
features). The reverse-engineered backdoor pattern has utility beyond post-training
detection (it can also be used for test-time detection of backdoor triggers and for mit-
igating the effect of backdoors). Moreover, it is an important element of explainable
AI (XAI), indicating patterns in the presence of which a DNN’s decision-making is
fragile.
• Chapter 7 addresses post-training defense against backdoors that are embedded by
replacing a “patch” of input features by the backdoor pattern. These backdoor attacks
can be implemented either digitally or physically (e.g., by placing an object – the
backdoor pattern – in a given scene). One reverse-engineering defense exploits the
fact that the attack should be “scene-plausible” in order to be evasive.
• The defenses in Chapters 6 and 7 are not very suitable when the number of classes in
the problem is small (e.g., the two-class case), since in this case there are insufficient
detection statistics available for estimating the parameters that specify a detection
rule. The post-training defenses in Chapter 8 address this problem. Themain defense
developed there was found to be effective with a constant detection threshold (1

2),
irrespective of the DNN architecture and classification domain.
• Chapter 9 considers defenses that aim to be universal, that is, without any explicit
or implicit assumptions about the backdoor pattern or how it was embedded.
• Chapter 10 considers “in-flight” detection, that is, detection of backdoor triggers in
input patterns at test time. Such detection may give the potential to catch culprits in
the act of exploiting the backdoor mapping. One such described defense leverages a
reverse-engineered backdoor pattern.
• Chapter 11 considers backdoor detection for non-image point cloud data classifiers.
• Chapter 12 considers backdoors for regression rather than classification and also
discusses active learning.

The authors acknowledge the support of students and colleagues. In particular, we
thank YujiaWang (Chapters 4 and 14), Xi Li (Chapters 10, 12 and 13), and HangWang
(Chapters 4 and 9), as well as Zhicong Qiu and Xinyi Hu. We also thank Vladimir
Lucic for consultations regarding Chapter 12.

The authors acknowledge the sources of our research support through the Penn-
sylvania State University: an AFOSR DDDAS grant (2017–2021), an ONR NROTC
education grant (2021–2022), an NRC Research Associate Fellowship with AFRL
(2021–2022), and two Cisco Systems gifts (2019, 2022). Through Anomalee Inc., we
also acknowledge the research support of an NSF SBIR Phase-One grant (2022–2023).

Notation

Typically,

• random objects are denoted by capital (upper-case) letters
• non-vector matrices are denoted by bold capital letters, for example,

V = [vi, j]i=1,...,n, j=1,...,m

denotes an n × m matrix with entry vi, j in the ith row and jth column, and both
m > 1 and n > 1
• column vectors are denoted by underlined lower-case letters
• datasets are typically denoted by calligraphic capital letters
• some variables not defined below, such as x, y, z,n,m, i, j, k, α, β, κ, θ, are often re-
purposed in various chapters
• some symbols, such as f,g, are typically used for functions and are also often
repurposed

More specifically, we define the following mathematical symbols and operators

• R is the set of real numbers
• Z is the set of integers
• Z+ is the set of positive integers (natural numbers)
• N is the dimension of the input sample space (space of input patterns) of a feed-
forward neural network, that is, the space of N-dimensional, real-valued column
vectors, RN

• z′ is the transpose of column vector z, that is, z′ is a row vector
• 〈z, y〉 = z′y =

∑N
j=1 zj yj is the inner (dot) product of (column) vectors z, y ∈ RN

• ‖x‖q = (
∑N

i=1 xqi)
1/q is the lq-norm (or q norm) of vector x ∈ RN

• ‖x − y‖q is the lq distance between x and y of the same dimension
• ‖x‖ = ‖x‖2 =

√
x ′x =

√
〈x, x〉 is the Euclidean (l2) norm of x

• x � m is element-wise multiplication of the vectors (or matrices) x,m resulting in
another vector (or matrix), that is the ith element of x � m, (x � m)i = ximi

• X is the set of data samples that are used for training a neural network (deep
learning), where X ⊂ RN

• T = |X| < ∞ is the number of samples in the dataset X
• K is the (finite) number of classes in X for classification problems (but K has
different meaning in the context of K-means clustering or KNN classification)

xviii Notation

• Y is the set of classes in X, that is, K = |Y|, for example, Y = {1,2, . . . ,K}
• c(x) ∈ Y is the true class label of x ∈ RN

• ĉ(x) is the inferred class of input sample x by a classifier
• EX = E(X) = E[X] is the expectation of random variable X
• P(A) = P[A] is the probability of event A
• {x1, x2, . . . , xn} is a set with n elements
• {xa | a ∈ A} = {xa : a ∈ A} is the set of elements xa such that (: or |) parameter or
index a belongs to the set A (here x(a) or x(a) may be used instead of xa to indicate
the dependence of x on a)
• A ∪ B and A ∩ B respectively are the union and intersection of the sets A and B
• A\B is the set of elements in the set A that are not in the set B
• ∅ is the empty set
• [a, b) = {r ∈ R : a ≤ r < b}, with b > a, is a contiguous interval of real numbers
including a but not b
• 1{ξ} = 1(ξ) is an indicator function, equal to one if the statement ξ is true and zero
if ξ is false
• I is a square identity matrix, with 1s on the diagonal and 0s off diagonal
• a := b or a , b means a equals b by definition
• 0 is a vector all of whose entries are zero
• 1 is a vector all of whose entries are one
• X ∼ F means random vector X has (multivariate) distribution F
• det(A) = |A| is the determinant of square matrix A
• ∆x is a change in the quantity x

List of Acronyms

• 3D: three-dimensional
• ACC: Accuracy (on a clean test/evaluation set)
• AD: Anomaly Detection (short name for I-PT-RED in Chapter 6)
• AI: Artificial Intelligence (often synonymous with a DNN)
• AL: Active Learning
• a.s.: almost surely (with probability one)
• ASR: Attack Success Rate
• AUC: Area Under the (ROC) Curve
• BA: Backdoor Attack (Trojan)
• BIC: Bayesian Information Criterion
• BP: Backdoor Pattern
• CDF or cdf: Cumulative Distribution Function
• CNN: Convolutional Neural Network
• CS: Cosine Similarity
• DNN: Deep Neural Network
• DP: Data Poisoning (attack)
• ET: Expected Transferability

Notation xix

• FPR: False Positive Rate (fraction or percentage)
• GAN: Generative Adversarial Network
• GMM: Gaussian Mixture Model
• HC: High Confidence
• i.i.d.: independent and identically distributed
• JSD: Jensen–Shannon Divergence
• KL: Kullback–Leibler divergence
• KNN: K Nearest Neighbors
• LC: Low Confidence
• LEM: Local Error Maximizer
• LeNet-n: Learnable Neural Network architecture with n layers [140]
• LR: Logistic Regression
• LSTM: Long Short-Term Memory (a recurrent NN)
• MAD: Median Absolute Deviation
• MAE: Mean Absolute Error
• MAP: Maximum a posteriori
• ML: Machine Learning
• MLE: Maximum Likelihood Estimation
• MM: Mixture Model (or Maximum Margin in Chapter 9)
• MSE: Mean-Squared Error
• NB: Naive Bayes
• NN: Neural Network
• OOD: Out-Of-Distribution
• OODD: Out-Of-Distribution Detection
• pAUC: partial (ROC) Area Under the Curve
• PCA: Principal Component Analysis
• pdf: probability density function
• pmf: probability mass function
• PMM: Parsimonious Mixture Modeling [86]
• PT: Post-Training
• RE: Reverse-Engineering
• RE-AP: Reverse-Engineering Additive Perturbation
• RE-PR: Reverse-Engineering Patch Replacement
• REA: Reverse-Engineering Attack
• RED: Reverse-Engineering Defense
• ResNet-n: Residual Neural Network architecture with n layers [97]
• RL: Reinforcement Learning
• ROC: Receiver Operating Characteristic
• SGD: Stochastic Gradient Descent
• SIA: Source-class Inference Accuracy
• SVD: Singular Value Decomposition
• SVM: Support Vector Machine
• TPR: True Positive Rate (fraction or percentage)
• TSC: Training Set Cleansing

xx Notation

• TTE: Test-Time Evasion (attack), that is, adversarial input
• WB: White Box
• XAI: eXplainable AI

The following list contains the “proper names” of some attacks and defenses used in
this book, with bibliographic citations

• AC-GAN: Auxiliary-Classifier GAN based TTE detection [284, 285]
• ADA: Anomaly Detection of TTE Attacks [179]
• B3D: Black Box Backdoor trigger Detection [61]
• BIC-MM-TSC: BIC-MM based TSC against error generic DP [148]
• CI: Cluster Impurity defense [308]
• CIFAR-n: Canadian Institute for Advanced Research color image dataset with n
object classes [129]
• CW: Carlini–Wagner TTE attack [33]
• FGSM: Fast Gradient Sign Method for TTE attacks [83]
• FP: Fine Pruning backdoor defense [156]
• i-FGSM or BIM: iterative-FGSM or Basic Iterative Method for TTE attacks [133]
• I-PT-RED: Imperceptible–backdoor PT-RED [303, 307]
• IF-RED: In-Flight backdoor trigger RED [149]
• JSMA: Jacobian based Saliency Map Approach for TTE attacks [203]
• KD: Kernel Density based defense [68]
• L-PT-RED: Lagrangian PT-RED [305]
• MD: Mahalanobis Distance based defense [142]
• MNIST: Modified National Institute of Standards and Technology dataset of hand-
written digits [141]
• NC: Neural Cleanse backdoor detection [282]
• NC-M: NC based backdoor Mitigation [282]
• P-PT-RED: Perceptible backdoor PT-RED [304]
• PC-PT-RED: Point Cloud PT-RED against backdoors [306, 309]
• PGD: Projected Gradient Descent for TTE attacks [271]
• STRIP: STRong Intentional Perturbation backdoor trigger detection [73]
• T-PT-RED: Transferable PT-RED against backdoor DP [302]
• TSC-RED: Training dataset Cleansing RED against backdoor DP [301]
• UnivBD: “Universal” Backdoor Detection approach [286]
• UnivBM: “Universal” Backdoor Mitigation approach [286]
• ZOO: Zeroth Order Optimization based TTE attacks [41]

1 Overview of Adversarial Learning

In this chapter, we introduce attacks/threats against machine learning systems. Attacks
that will be covered in much greater detail in subsequent chapters are discussed briefly,
and attacks which will not be explored beyond this chapter are covered in greater detail.
In much of the rest of this book we will focus on defenses against the attacks surveyed
in this chapter.

A primary aim of an attack on machine learning, particularly deep learning, is to
cause the neural network to make errors. Examples with severe implications include:
fooling a biometric authentication system so that it grants access to sensitive material
or building access to an unauthorized individual; fooling an automated breast cancer
pre-screening system so that images with tumors are not forwarded to a radiologist;
fooling an autonomous vehicle’s recognition system so that it mistakes a stop sign for a
speed limit sign. An attack may target the training dataset (its integrity or privacy, the
former by data poisoning), the training process (deep learning), or the parameters of the
deep neural network (DNN) once trained. Alternatively, or in addition, an attack may
target vulnerabilities in the trained network by discovering test samples that produce
erroneous output – such samples are called adversarial inputs or test-time evasion
attacks (TTEs). They have also been referred to as adversarial samples, adversarial
examples, or (redundantly) adversarial attacks. All of these terms are ambiguous in
light of backdoor triggers (Chapter 10) and querying/probing for purposes of reverse
engineering (Chapter 14), which are also adversarial. Indeed, both TTEs (Chapter 4)
and backdoor triggers produce incorrect outputs.

Defenses typically attempt to detect attacks and/or to proactively improve the ro-
bustness of machine learning in the face of them. They may also help to interpret the
decision-making of a machine-learned system and to make it generally more robust
even in the absence of an attack.

In this book, previously published attacks and defenses under various scenarios will
be critically surveyed. The main focus is on unsupervised defenses with reasonable
work factors against strong contemporary attacks on supervised machine-learned sys-
tems. Primarily, the examples are DNN classifiers applied to images, but there are
some exceptions: Chapter 11 on 3D point cloud classifiers, Chapter 12 on non-image
regression applications, and Chapter 13 on document classifiers.

In this chapter, after reviewing some jargon, an overview is first given of the three
main types of attacks on machine learning that will be investigated in subsequent
chapters.

2 1 Overview of Adversarial Learning

1.1 Machine Learning and Its Attack Vectors

Machine learning involves learning predictive models (for tasks such as classification,
regression, and time series prediction) from a finite training set of “examples.” (Ma-
chine learning may also involve learning data “transformations,” where one seeks the
most informative/salient feature representation starting from high-dimensional feature
vector examples thatmay involvemany noisy/uninformative features.)Moreover, “deep
learning” is simply machine learning applied to deep neural network (DNN) models –
these involve numerous (in general nonlinear) layers of data processing applied to input
patterns, culminating in the output of the DNN, which produces a classifier decision or
a regression model prediction. Accordingly, attacks on machine learning/deep learning
may target different stages of the machine learning model-building and use process: (i)
corruption of the training data; (ii) malicious alteration of the learning process itself,
or of the resulting model parameters; or (iii) disruption of the test-time use of machine
learning models, so that they produce incorrect decisions/inferences. Attacks may also
seek to reveal sensitive information, such as information about individual training
examples (e.g., which patients participated in a large-scale medical study) or about a
company’s proprietary decision-making rule (e.g., for an investment bank, revealing
how it makes its trading decisions).

The main attacks on machine learning that are comprehensively addressed in this
book include: data poisoning attacks, backdoor attacks, test-time evasion attacks,
membership-inference attacks, and reverse-engineering attacks. Data poisoning and
backdoor attacks both involve corruption of the training set (and/or alteration of the
learning process). However, backdoor attacks also, along with test-time evasion at-
tacks, involve attacker exploits at test-time, that is, altering input patterns so as to
produce erroneous model outputs. Membership-inference attacks seek to reveal sensi-
tive information about training data, while reverse-engineering attacks aim to reveal a
classifier’s decision-making rule/a regression model’s predictive rule, and the features
on which it is based. All of these attacks (and defenses against them) will be studied
in detail in this book.

1.2 Attacker/Defender Goals and Assumptions

Attack/defense scenarios typically begin by describing the attacker’s specific goals and
the knowledge and capabilities that the attacker and defender are assumed to possess.
Also, attack/defense scenarios typically specify atwhat point the attacker/adversary and
defender will act: before training, while the training dataset is being formed; during
training; post-training but before operational deployment; at test/operational time;
or during retraining or fine-tuning (including by “active” learning using judiciously
chosen new supervised training data samples, or by “reinforcement” learning using
recently observed test samples).

We now discuss the following post-training scenarios particularly germane to TTE
attacks. In attack scenarios sometimes referred to as black box, the attacker does not

1.2 Attacker/Defender Goals and Assumptions 3

possess detailed knowledge of the trainedDNN, but is assumed to be able to freely query
the DNN, so as to learn its decision-making rule. Alternatively, in what is sometimes
referred to as a grey box scenario, the adversary has access either to the DNN’s
parameters or to a training dataset (presumed i.i.d. with the training data used to build
the targeted DNN) that allows it to build a good proxy of the DNN. In the following,
“black box” will typically be used to describe both of those foregoing attack scenarios,
since in both cases the attacker possesses (or creates) knowledge of the classifier, but
not of any supplementary defense that may be mounted against the attack. In white
box attack scenarios [32], the adversary has knowledge of the DNN parameters and is
also assumed to have detailed knowledge of anymounted supplementary defense.1 The
latter could be obtained by an insider (inside attacker). Alternatively, if attack detection
results in the classifier making a “rejection” or “undecided” decision, then the attacker
may be able to learn the mechanism of the supplementary (anomaly detection) defense
by observing this output (rejection decisions). [21] makes a case for white box attacks,
ostensibly because “security through obscurity” may fail: the DNN parameters (as well
as the inner details of a supplementary defense) may have been leaked to the attacker. It
will be argued, however, that the privacy of a supplementary defense may be protected
in some cases.

Let us next consider pre-training attack scenarios, germane to data poisoning attacks.
If an attack targets the training set of a classifier, then one can imagine reasonable
scenarios where the adversary can manipulate only a small fraction of the training
samples (for example, to avoid detection). The adversary may either be unaware (black
box) or aware (white box) of the remaining training samples.

It is important to assess the relative work factors of the attacker and defender,
especially in the white box case. Work factors particularly include the computational
effort and memory storage needed to mount a given attack or defense.

Extreme case scenarios, where either the attacker or defender is omniscient (knows
everything) and/or omnipotent (can do anything) will not be considered here. For
example, it may be theoretically impossible to defend against an adversary who is
aware of and can easily manipulate all of the training dataset X and all aspects of
the training process, that is, an omniscient and omnipotent insider. See, for example,
Appendix R.4 of [286].

Note that calling a defense unsupervised (i.e., without any knowledge about a specific
attack that may be mounted) is analogous to calling an attack black box (i.e., where
the attacker has no knowledge of any supplementary defense). Similarly, calling a
defense supervised is analogous to calling an attack white box. White box attacks and
supervised defenses require information that generally may not be available in practice
– they are arguably less realistic than black box attacks and unsupervised defenses.

Genuinely unsupervised defenses are also obviously preferable as they afford some
protection against zero day threats, never before seen attacks, which are also sometimes
1 This terminology is not standard. In some articles, knowledge of the model (its parameters and

architecture) is dubbed “white box” or “grey box,” and “black box” means that the adversary can only
query the model. In the following, we will clarify these definitions when describing attack/defense
scenarios.

4 1 Overview of Adversarial Learning

called unknown unknowns. Supervised defenses, on the other hand, may only be
effective against threats that are already known. Many proposed defenses appear to be
unsupervised but eithermake unrealistic assumptions regarding limitations of the attack
or involve hyperparameters which are difficult to set in an unsupervised, anomaly-
detection setting.

Some attacks are targeted. For example, a targeted attack may focus on ensuring a
DNN classifier assigns either a particular subset of data samples, for example, from
a particular class (even a single sample), or a particular region of feature space, to
the attacker’s chosen (target) class [14]. Other attacks are indiscriminate (untargeted,
or error generic [21]). An indiscriminate TTE or data poisoning attack on a classifier
seeks to induce decision change without the requirement to misclassify to a particular
class chosen by the attacker.2

Attacks may be referred to as strongwhen they both (i) succeed in their objective of
inducing misclassifications and (ii) are not easily detectable by man or machine. For
example, strongTTEattacks on a classifier craft examples that inducemisclassifications
to a target class but which to a human inspector still appear to be natural (artifact-free)
examples from some other class. In fact, in general, a TTE attack is only deemed to
be truly successful if it induces misclassifications while not introducing artifacts that
make the attack either easily perceivable by a human being or easily detected by a
trivial anomaly detector; that is, only strong attacks are truly successful ones.

1.3 Test-Time Evasion Attacks (TTEs) or Adversarial Inputs

As aforementioned, TTEs [19, 260] involve the alteration of test-time input patterns,
resulting in erroneous decision-making/test-time inferences. TTEs are most commonly
launched against statistical classifiers. However, they can also target other systems that
involve discrete decision-making such as those that involve object detection and image
segmentation [313]. From this standpoint, they can also in fact target unsupervised
data clustering, where a learned clustering solution/model may be applied to identify
to which cluster a new (test-time) data object should be assigned. TTEs are typically
constructed with knowledge of the model/classifier, but without relying on knowledge
of the specific training samples used for deep learning. Again, if the attacker has full
knowledge of both the classifier and any deployed defense (and seeks to defeat both),
it is referred to as a white box attack. How plausible the white box assumption is will
be explored in Chapter 4.

Given a trained DNN, a TTE typically modifies a “clean” input sample in a way that
may not be noticeable to a human inspector (in which case we refer to the modifica-
tion as “imperceptible”) but which induces a significant change in the DNN’s output
(decision).3 We refer to the attacker’s change to the input pattern as an adversarial
2 Some authors use “universal” instead of “untargeted” and use “label-specific” instead of “targeted,” in

either a data poisoning or TTE context.
3 In contrast, some “spoofing” attacks are not innocuous and the resulting change in the DNN’s decision is

not necessarily incorrect (not a misclassification).

1.3 TTEs or Adversarial Inputs 5

successful
attacks

source
class

adversarial
perturbation

decision
boundary destination or

target class

Figure 1.1 Illustration of a test-time evasion attack. Correctly classified source-class samples
(triangles) are adversarially perturbed so that they are pushed across the decision boundary
(represented by squares) and incorrectly classified to the destination/target class (the circle
class). Reprinted from [179, 180] with permission.

perturbation of the input pattern. A strong, untargeted TTE modifies a clean, correctly
classified sample x from class s, ĉ(x) = c(x) = s, so that the modified sample x̃ is
not classified to s, that is, so that ĉ(x̃) , s but while still appearing to be a natural
(undoctored) class-s sample to a human inspector; see Figure 1.1. The imperceptibility
objective is typically achieved by making the adversarial perturbation from x to x̃ as
small as possible according to some measure. Likewise, a targeted TTE attack seeks
to induce decision change to a target class chosen by the attacker.

Clearly, in non-image domains that are high-dimensional (for which human beings
either cannot intelligibly perceive class-discriminating patterns, or would require huge
time and resources, perhaps involving data visualization tools, tomake such inferences),
it is much less of an imperative that the attack example be “imperceptible” to a
human. However, for such domains, the attack should still aim to be evasive to simple,
automated anomaly detection systems.

Note that TTE attacks in general assume the attacker knows the true class of the
sample to be altered – otherwise, the attacker would only know he/she succeeded
in inducing a decision change (to the actual classifier, or to the attacker’s proxy) –
not whether the change actually results in a misclassification (the decision change
could otherwise in fact “correct” a misclassification). The practical implications of
this assumption will be further explored in Chapter 4.

TTE attacks often employ techniques of neural network inversion (see Section 2.10)
applied to an objective function whose maximization is consistent with a change in
the classifier’s decision (see Section 4.1). Some proposed TTE attacks compute the
gradient of this objective but take a single, large step rather than taking an incremental
descent approach involving smaller step sizes and (potentially numerous) small descent
steps. As a result, to succeed in inducing misclassifications, the former approaches
may require larger adversarial perturbations than the latter ones. However, some TTE
attacks of the latter variety, with relatively small perturbations, can still be quite
weak/ineffective.

As an example of the latter, let us consider a DNN classifier of handwritten dig-
its trained on the MNIST dataset [141] with K = 10 classes, Y = {0,1,2, . . . ,9}.

6 1 Overview of Adversarial Learning

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Figure 1.2 Images on the diagonal are examples of unmodified (clean) samples that are
correctly classified by a DNN trained on MNIST [141]. Off-diagonal images are the result of
the JSMA [203] attack applied to the diagonal image in the same row, which are classified by
the DNN to the class corresponding to the column index. Adversarial examples are clearly
doctored with significant salt and pepper noise. Reprinted from [179, 180] with permission.

Example JSMA TTE attacks (see Section 4.1), wherein individual pixels are modified
sequentially until the desired misclassification is achieved, are depicted in Figure 1.2.
Note the significant salt-and-pepper noise and extra white pixels introduced by the
attack. A simple detection method based on the number of contiguous white regions in
the image achieved 0.97 ROCAUC; see Table 6 of [179] and Section 4.10.2. Moreover,
the attacked images should appear highly suspicious to a human observer. Thus, JSMA
applied to MNIST is a weak TTE attack. Moreover, in some of the attack instances in
Figure 1.2 even a human being cannot unambiguously assert the true class of origin for
the image – note in particular many of the attacked ‘5’s, some of the ‘3’s, the attacked
‘6’ classified as a ‘7’, and the attacked ‘9’ classified as a ‘0’. In this sense, the attack
does not “fool” the classifier since even a human being cannot ambiguously determine
the class of origin. Other TTE attacks such as FGSM [83] and CW [33] do exhibit grey
ghosting artifacts on MNIST (see Figure 1.3) but these are less noticeable than JSMA
artifacts. Moreover, all of these attacks exhibit much less noticeable artifacts for more
complex image domains (involving textures and non-constant image background) such
as CIFAR [129] and ImageNet [57].

A TTE attack may be on physical objects in the real world (e.g., altering a road sign
or “camouflaging” a vehicle). However, in some cases it may be difficult to implement

1.3 TTEs or Adversarial Inputs 7

Original Image

Classified as ‘7’
99.9% confidence

Classified as ‘ship’
100% confidence

Classified as ‘frog’
99.9% confidence

Classified as ‘frog’
91.2% confidence

Classified as ‘frog’
44.9% confidence

Classified as ‘8’
34.1% confidence

Classified as ‘8’
91.2% confidence

Classified as ‘8’
37.1% confidence

FGSM CW-HC CW-LC

Figure 1.3 Examples of clean images, FGSM attack images [83], CW high confidence
(CW-HC) images and CW low confidence (CW-LC) images [33], from MNIST [141] (first
row) and CIFAR-10 [129] (second row) datasets. HC TTEs typically have much larger
adversarial perturbations compared to LC TTEs. Reprinted from [284] with permission.

strong physical attacks. Alternatively, a TTE attack may alter data objects that have
either already been digitally captured (e.g., digital images, voice files) or those which
are natively digital (e.g., emails, documents, or computer programs). Such digital TTE
attacks are invoked prior to the data object being input to the DNN.

While some attacks necessitate sophisticated defenses that may require significant
innovations, other attacksmay be defeated simply by invocation of standard techniques.
For example, the use of encryption can defeat a man-in-the-middle TTE attack [135],
that is, one wherein the data object is intercepted by the attacker, and modified, before
being input to the classifier. As another example, the attack on voice systems in [31]
could potentially be defeated by Apple Siri’s existing built-in speaker-recognition
system. Even if the speaker-recognition system can be overcome by existing voice
cloning technology (especially under a white box scenario where the attacker has
samples of the authorized party’s voice), standard techniques of limited privilege can
be applied. For example, Siri cannot enter data into the Safari web browser, and even
if it could, there is standard multi-factor authentication to prevent unauthorized access
to a private website even if the password were compromised.

Aside from use of standard security techniques, there are basically two different
approaches to TTE defense. The first is robust classifier training, which seeks to be
robust to (i.e., to correctly classify) adversarial inputs. The second, andmore promising
approach, is anomaly detection (AD) at test/operational time, which, unlike robust
classification, makes explicit attack detection inferences. These two approaches are
discussed in detail in Chapter 4.

8 1 Overview of Adversarial Learning

1.4 Data Poisoning (DP) Attacks

1.4.1 Early Work on Error Generic DP attacks

Most early DP attacks simply seek to degrade the learned classifier’s accuracy, see for
example, [106, 176, 311]. For example, an early DP attack targeted spam/ham email
classification and simply required the attacker to know common “good” words (in
ham) and “bad” words (in spam) [14]. More recent “error generic” DP attacks require
greater knowledge of the system under attack. [20] showed that significant degradation
in the accuracy of a Support Vector Machine (SVM, see the Appendix) could be
achieved with the addition of just one poisoned training sample – on MNIST the error
rate increased from the 2–5% range to the 15–20% range. To achieve this, the attacker
exploits knowledge of the training set, a validation set, the SVM learning algorithm, and
its hyperparameters. The authors define the attacker’s objective function as classifier
error rate on the validation set as a function of the poisoned sample’s location (and
class label). This loss is maximized under the constraint that the support vector and
non-support vector subsets of the training dataset are not altered by addition of the
poisoned sample. Thus, [20] adds a single, new (adversarially labeled) support vector
to the SVM solution. The constraint is met by performing gradient descent carefully,
with a small step size. One would expect that even more classifier degradation could
be achieved if the support vectors were allowed to change through the addition of
the poisoned sample.4 However, this would also entail a more complex optimization
procedure. An illustrative example of such a DP attack on SVMs is shown in Figure
1.4.

While [20] required the attacker to possess substantial knowledge of the classifier,
other works make even greater assumptions about an attacker’s capabilities. In particu-
lar, in [176] it was noted that, in the data poisoning attack on active learning of an SVM
in [175], the authors assumed that the oracle (typically a human expert) deliberately
mislabels samples. Thus, the attack in [175] relies on even the human labeler being
compromised.

While SVMs (which rely on a support vector subset of the training set to define
the linear discriminant function) can unsurprisingly be fragile in the presence of DP
attacks, there is little prior work investigating such attacks against DNNs. One reason
may be computational complexity – one could in some way alternate gradient descent
optimization in weight space (minimizing the loss function, i.e., the defender/learner’s
problem) and gradient ascent in pattern space (maximizing the loss function, i.e., the
attacker’s problem), to find a set of poisoned input patterns that maximally degrade the
learned DNN’s accuracy. However, such a procedure would be complicated and quite
computationally heavy. Moreover, this assumes both that the attacker has access to the
training set and that the attacker is the training authority.

DNNs should be less fragile in the presence of data poisoning than SVMs. To
degrade a DNN’s accuracy sufficiently, a larger fraction of poisoned samples may be
4 On the other hand, if the attacker does not know the value of the margin slackness hyperparameter,

he/she cannot ensure the poisoned sample will be a support vector; in such case, many more poisoned
samples may be needed in order to significantly degrade SVM accuracy.

1.4 Data Poisoning Attacks 9

1

(a) (b)

1

2

Figure 1.4 Linear SVM classifier decision boundary for a two-class dataset with support
vectors and classification margins indicated (a). The decision boundary is significantly
impacted in this example if just one training sample is changed, even when that sample’s class
label does not change (b). Here, the changed sample becomes a support vector. Reprinted from
[180] with permission.

needed. For “big data” domains with, for example, one million training samples, even
2% data poisoning (with judicious selection of the poisoned samples by the attacker)
means optimizing 20,000 poisoned sample locations and labels.

1.4.2 Backdoor DP Attacks on DNNs

On the other hand, DNNs appear to be quite vulnerable to backdoor DP attacks, as
demonstrated in a number of works [44, 89, 150, 158, 268, 303, 304, 308]. Planted
backdoors are also known as Trojans. To the training dataset, the attacker adds samples
drawn from a source class with a backdoor pattern incorporated, and with the resulting
poisoned samples labeled as belonging to a different (target) class. Thus, the classifier
learns to classify to the attacker’s target class whenever the attacker’s backdoor pattern
is embedded in a source-class test example to be classified, that is, when the test
example is a backdoor trigger; see Figure 1.5. Successful backdoor poisoning does not
significantly impact classification accuracy on clean (backdoor-free) test samples.

Triggering a backdoor of a (poisoned) DNN at test-time is typicallymuch easier (and
requires much less computation) compared to launching a TTE on a clean (unpoisoned)
DNN with the same associated source and target classes.

The backdoor pattern could be an imperceptible (e.g., random-looking) local
or global watermark-like pattern. Alternatively, it could be perceptible but scene-
plausible – for example, the presence of glasses on a face [44], a plausible object in
the background of an image scene (such as a tree or a bird in the sky, or a ball on a
lawn), or a noise-like audio background pattern in the case of speech classification.
Scene-plausible attacks on images may be implemented either by a physically “chore-
ographed” scene or by photo-shopping a digital image to include the plausible object.

10 1 Overview of Adversarial Learning

white class samples with
backdoor pattern incorporated
and labeled to the black class

trained
decision-making system,

e.g., mixture model or
DNN classifierinitial training or

reinforcement/active learning

pre-training post-training

post-training
representation

of samples

source
class

target
class

training
samples with
raw features

Figure 1.5 Illustration of a backdoor attack and the before/during and post-training defense
scenarios. Also see Figure 6.1. The “in-flight” defense scenario, where backdoor triggers at test
time are detected, is not depicted; see Chapter 10.

In Chapter 7, it will be argued that scene-plausibility implies that the backdoor pattern
will be learned in a spatially invariant fashion by a DNN.

Various digital mechanisms can be applied to introduce a backdoor pattern into
an image. These include replacing a local patch of pixels (consistent with the afore-
mentioned perceptible, scene-plausible backdoors), applying an additive perturbation
to the image, or applying a multiplicative perturbation. Noisy patch backdoor pat-
terns are described in [144, 197]. [44, 316] employ a noisy patch u that is “blended”
into a clean image x using an image-wide binary mask m (all elements are Boolean,
mi ∈ {0,1} for all pixels i) and a real-valued blending factor α ∈ (0,1) to produce
x̃ = (1 − αm) � x + αm � u. Here, � is a pixel-wise product (e.g., a 3 × 3-pixel square
mask in the same location for each poisoned image x̃).

One very attractive aspect of backdoor attacks is that they may require no knowledge
of the classifier – the attacker simply needs: (i) legitimate examples from the domain,
into which it embeds the backdoor pattern; (ii) the ability to poison the training dataset
with these samples labeled to the target (backdoor) class; and (iii) perhaps knowledge
of the training set size, to know how many poisoned samples may be needed. On the
other hand, if the attacker does possess knowledge of the classifier, its training set,
and its learning algorithm, he/she can optimize the backdoor pattern to ensure: (i) the
backdoor is well-learned; (ii) clean classifier accuracy is not compromised; and (iii)
that (i) and (ii) are accomplished with the least amount of “attack strength,” that is,
with the fewest poisoned examples and/or using least noticeable backdoor patterns (so
that the attack is not easily detected). An attempt at such an approach is given in [150].

Figure 1.6 is a low resolution picture of a car with a single pixel modification. A
group of images with such changes could be used to poison a training set and thus
plant a backdoor in the classifier. Note that, even at this level of resolution, it would be

1.4 Data Poisoning Attacks 11

Figure 1.6 Modified low resolution CIFAR-10 [129] image of a car with a single pixel changed
to trigger (or train) a backdoor.

difficult for a human inspector to detect the poisoned samples in the training set or the
samples triggering the backdoor operationally (at test time).

In some defenses, it is assumed that initially there is a clean (free of poisoned
samples) training set, but that subsequently it is altered by additional (potentially
unreliable) data collection, by online learning, or by the actions of an adversarial
insider – under this scenario, the learner knows a subset of the available training
set that is guaranteed to be clean (attack-free). In this case, for DP attacks, one can
detect poisoned samples by discerning that their use in learning degrades classification
accuracy (on a clean, held-out validation data subset) relative to just use of the clean
subset of data [193].

A more challenging DP scenario for attack detection is the embedded scenario
[301, 308], where one cannot assume the training dataset is “initially” clean and where
there is no available means (using time stamps, data provenance, etc.) for identifying
a subset of samples guaranteed to be free of poisoning.

Defenses against backdoor attacks under different scenarios are discussed in Chap-
ters 5–10 for image classification, Chapter 11 for 3D point cloud classification, and
Chapter 12 for regression.

Clean Label Backdoor Attacks
In [275], a clean label backdoor attack was proposed. These attacks have two key
aspects. First, they intend to induce classification to the target class whenever the
backdoor pattern is present, irrespective of the class of origin of the data object.
Second, and most importantly, these attacks do not require any mislabeling of training
examples. Asmotivation for the latter, suppose that the training set is initially unlabeled
and that an honest human expert is responsible for labeling all the training samples.

12 1 Overview of Adversarial Learning

In this situation, the mislabeling required for conventional backdoor attacks cannot be
achieved. So, the attacker applies the backdoor pattern to samples that originate from
the target class of the attack, not from a source class. Moreover, the poisoned samples
may be further altered, for example, by:

• adding noise in order to weaken, within these samples, the features that can normally
be relied upon to correctly classify them (but somehow in a way that is not noticed
by the honest human expert labeling the samples); or
• adding a sample-specific adversarial perturbation, causing an unpoisoned classifier
(trained on clean data and assumed available to the adversary) to change its class
decision from the target class.

However, even when such sample alterations are applied, clean label backdoor attacks
appear to require much greater attack strength than regular backdoor attacks in order to
be successful. One reason is that some normal target-class features need to persist in the
poisoned sample in order to convince the honest human labeler that the sample belongs
to the target class. Alternatively, if (sample specific) adversarial perturbations are used,
there is no reason why those perturbations will be learned instead of the target-class
discriminating features when the victim classifier is trained. So, clean label backdoor
attacks either require poisoning a much greater fraction of the training set than regular
backdoor attacks or they require much more overt (and hence less evasive) backdoor
patterns in order to overcome the target-class discriminating features in the poisoned
samples. The formermay not be possible in practice (as the attacker may have access to,
or contribute to, only a portion of the training set). The latter will make the attack more
easily detected (by either an automated detector or a human inspector). Consequently,
clean label backdoor attacks do not appear to be a significant practical threat. See
the results given in Figure 1.7 which involved an additively incorporated chessboard-
watermark backdoor pattern, shown in Figure 6.4b, without any other alterations.
Here, ten ResNet-18 (see Figure 2.6) classifiers were conventionally trained, each on
a different CIFAR-10 subdomain of five randomly selected classes among which the
poisoned target class was also randomly chosen. Note that the attack success rate is
high only when the number of poisoned samples is large or when the perturbation size
is quite large.

There are other types of backdoor attacks, e.g., label smoothed and sample specific.

1.4.3 Post-Training Model-Adjustment Attacks

Post-training, deployment-stage backdoor attacks have also been proposed, see for
example, [12]. These could occur if the model is intercepted by an adversary (if it is
transmitted from a remote site), that is, by a man-in-the-middle, or if the model is
compromised by resident malware. These attacks are not discussed in detail here, but it
is expected that they can be detected by the post-training backdoor defenses discussed
in this book. Note also that a simple hash against the trained model parameters can be
used to check if the model has been altered, post-training.

1.5 REAs Targeting the DNN 13

5

4

3

2

1

0
0 20 40

attack success rate (%)
(a)

60 80 100

6

5

4

3

2

1

0
0 20 40 60

attack success rate (%)

(b)

80 100

No. backdoor images = 500
No. backdoor images = 1500
No. backdoor images = 3000

pert_size = 2/255
pert_size = 5/255
pert_size = 10/255

Figure 1.7 Histograms of attack success rate for clean label backdoor attacks, for the CIFAR-10
domain, with (a) different numbers of images for training set poisoning, and (b) different
perturbation sizes for the backdoor pattern. To achieve a high attack success rate, either the
poisoning rate must be very high, or the backdoor pattern size must be large (making the
backdoor trigger potentially visually discernible).

1.5 Reverse-Engineering Attacks (REAs) Targeting the Deep Neural
Network (DNN)

Let us now consider privacy issues related to reverse-engineering attacks (REAs)
targeting the training set, the training process (algorithmic privacy), and/or the model

14 1 Overview of Adversarial Learning

parameters and architecture. The identification of some training samples or of some
aspects of the trained model by an adversary is sometimes called “data leakage.”

REAs may involve querying (probing) a DNN numerous times, either to learn its
decision rule or to learn something about the dataset on which it was trained (an attack
on data privacy). Repeated querying can be used to create a training set for the attacker
(with the classifier’s decision on each example used as the supervising label), allowing
him/her to learn a surrogate of the true classifier. Several motivations have been given
for reverse engineering a classifier’s decision rule.

In [267], the authors consider black box machine learning (ML) services, offered
by a company, where, for a given domain, a user (with limited resources for learning a
model) pays for class decisions on individual samples (queries) submitted to the ML
service. [267] demonstrates that, with a significant number of queries (e.g., tens of
thousands, even for low-dimensional classification domains), one can learn a classifier
that closely mimics black box ML service decisions. Once the black box has been
reverse engineered, the attacker need no longer subscribe to the ML service. Perhaps
more importantly, such reverse engineering enables TTE attacks by providing the
attacker with knowledge of the classifier when it is not initially known. One weakness
of [267] is that it considers neither very large (feature space) domains nor very large
neural networks – for orders of magnitude more queries may be needed to reverse
engineer a DNN on a large-scale domain. However, a more critical weakness of [267],
discussed further in Chapter 14, is that its queries should be easily detected because
they are random, that is, they do not use any knowledge of the nominal (training) data
distribution for the given domain.

REAs based on more realistic queries have been proposed. In [202], the adversary
collects a small set of representative labeled samples from the domain as an initial
training set and uses this to train an initial surrogate classifier. Then, there is data
collection and retraining over a sequence of stages. In each, the adversary augments
the current training set by querying the classifier with the stage’s newly generated
samples. Each successive stage crafts samples closer to the classifier’s true decision
boundaries (see (14.1)), which is helpful for surrogate classifier learning (but which
also makes these samples less class representative and thus more detectable). Once a
sufficiently accurate surrogate classifier is learned, a TTE attack can be launched using
it. Defenses against REAs are discussed in Chapter 14.

1.6 Attacks on Privacy of Training Data

Another emergent attack, referred to as a membership-inference attack, seeks not to
alter classifier decision-making but rather to glean, from the classifier, (assumed sensi-
tive) information about the training set on which it was learned. Relevant applications
here include: discerning whether a particular person participated in a patient study
that produced a disease classifier (or a diagnostic or prognostic decision-making aid)
– one may then infer he/she is likely to possess the disease; or discerning whether a
particular individual’s data was used in training a system that grants secure access (to

1.6 Attacks on Privacy of Training Data 15

a building, data, financial records) only to company employees or vetted individuals.
In the latter case, one might alternatively seek to infer what such individuals look like
(estimate an image of an employee’s face [71]). There are various scenarios we can
consider for this type of problem.

An important scenario is one wherein the attacker only has black box (query) access
to the classifier. A representative approach that investigates data privacy attacks on
classifiers under this scenario is [244]. This work makes some strong assumptions, but
shows that when these assumptions hold one can make quite accurate inferences of
whether or not an individual’s sample was used in training (a membership-inference
attack), for example, accuracies as surprisingly high as 80–90% in inferring training-set
membership on two classification domains. The authors pose the attacker’s problem
as learning a posterior model whose input is a data record (feature vector) and whose
output is the probability that the data record was used in training the classifier under
attack. There are three pivotal assumptions made.

• The attacker has query access to the victim classifier and, when queried, the classifier
does not merely produce decisions – it gives decision “confidence” that could consist
of the vector of posterior probabilities over all classes, just the “top” probabilities,
or quantized values for these probabilities. The attacker does not query the victim
classifier repeatedly to reverse engineer its function – this could be detected using
the methods of Chapter 14. It simply queries using the data sample on which it is
seeking to violate privacy, and elicits the victim classifier’s decision and confidence
on this sample.
• It is assumed that the attacker has access to a (surrogate) dataset that is statisti-
cally similar to the training set used in building the victim classifier [244]. This
assumption is plausible only in some applications. In the patient study scenario,
the attacker could have access to data records from hospital B, while the study
yielding the victim classifier was produced by hospital A – hospital B’s popu-
lation could be very similar to that of A. However, it is less plausible that the
attacker would have a training set statistically similar to a particular company’s
dataset, used to build its secure authentication classifier – unless, for example,
members of this company also belong, in large numbers, to the same country
club.
• Even though the victim classifier is assumed to be a black box with respect to
the attacker, it is assumed that the victim classifier was trained using a particular
online tool or “ML pay-for-service” system (e.g., provided by Google), that the
attacker knows which tool/service was used, and he/she also has access to this
tool. In this way, even without knowing what the classifier type is (e.g., SVM
or a particular DNN architecture), the attacker can assume that, given a similar
dataset, with the same feature vector format, from the same classification domain, the
tool/service is likely to produce a new classifier (a shadow classifier) that “behaves
in a similar way” as the classifier under attack. In particular, it should exhibit similar
decision confidence patterns for samples used for training (high decision confidence)
compared to samples not used for training.

16 1 Overview of Adversarial Learning

Based on its surrogate training (and test) datasets, the attacker uses the tool/service
to build an array of such shadow models. For each such model, he/she produces class
decisions and the confidence scores on the surrogate training samples, and separately
on the test samples. Each such triple class decision, confidence vector, training set
example (Yes/No) is treated as a supervised instance of a new training set, used to
learn a binary posterior model that infers whether a given sample was part of a shadow
model’s training set. After the attacker’s binary classifier is trained, it can be applied
to the output of the classifier under attack, when queried by a given data sample, and
yield the probability that the query sample was part of the attacked classifier’s training
set.

It was noted there are strong assumptions in this work, whose violation could
substantially minimize the amount of membership “leakage” obtained. First, if the
victim classifier does not produce decision confidence, but merely a decision, this
would defeat this attack. Producing confidence on decisions is important in order for
classifier decisions to be trusted, but one could, for example, grossly coarsen the victim
classifier’s output confidence to “highly confident,” “confident,” “weakly confident,”
“uncertain” – such quantization could potentially defeat the membership-inference
attack of [244] .

Second, as the authors note, this attack is successful because trained classifiers tend
to overfit to training examples, producing patterns of “high confidence” on samples
used for training, and patterns of lower confidence for non-training samples. The
authors investigate defense strategies that seek to reduce classifier overfitting, or at
least its signature in the victim classifier’s posterior. These mitigations include use
of regularization and altering the victim classifier’s posterior to increase its decision
entropy. While strong regularization can degrade the accuracy of the attacker’s binary
(training set example: Yes/No) classifier, it may also compromise accuracy of the
victim classifier.

One can also likely defeat or weaken this attack by not using an accessible (and
inferrable) service for training the victim classifier. This attack may not transfer well
if the victim and shadow classifier decision rules are quite different.

One can also simply suppose that after training the targeted classifier, the training set
that was used is (securely) retained by the platform/system that operates the classifier
[180]. Now, when the classifier is queried by a sample, the system can first check
whether the sample is part of the training dataset. If the sample is not part of the
training set, the classifier can output its decision and confidence, as usual. However, if
the query sample is in the training set (or is even essentially indistinguishable from a
training pattern, i.e., if the attacker added a small amount of noise to the query sample
in order to be evasive), the system can infer that this is very likely a data privacy
attack query. In this case, the classifier should still output the correct decision, as well
as confidence values that are at least maximum a posteriori (MAP) consistent with
that decision. However, the system should randomize the confidence values to destroy
any privacy revelation, and thus confound the attacker. This simple defense should

