




Numerical Methods in Physics with Python

Bringing together idiomatic Python programming, foundational numerical methods, and
physics applications, this is an ideal standalone textbook for courses on computational
physics. All the frequently used numerical methods in physics are explained, including
foundational techniques and hidden gems on topics such as linear algebra, differential
equations, root-finding, interpolation, and integration. The second edition of this
introductory book features several new codes and 140 new problems (many on physics
applications), as well as new sections on the singular-value decomposition, derivative-
free optimization, Bayesian linear regression, neural networks, and partial differential
equations. The last section in each chapter is an in-depth project, tackling physics
problems that cannot be solved without the use of a computer. Written primarily for
students studying computational physics, this textbook brings the non-specialist quickly
up to speed with Python before looking in detail at the numerical methods often used in
the subject.

Alex Gezerlis is Professor of Physics at the University of Guelph. Before moving to
Canada, he worked in Germany, the United States, and Greece. He has received several
research awards, grants, and allocations on supercomputing facilities. He has taught
undergraduate and graduate courses on computational methods, as well as courses on
quantum field theory, subatomic physics, and science communication.



Praise for the Second Edition

“Gezerlis’ book Numerical Methods in Physics with Python is a beautiful example
of how an established subject can be brought to the next level by making it very
accessible and by introducing several insightful and interdisciplinary applications. This
second edition considerably extends the set of exercises, resulting in an extremely useful
resource for both students and teachers. Strongly recommended!”

Sonia Bacca, Johannes Gutenberg-Universität Mainz

“This new edition of Numerical Methods. . . is another great example of Gezerlis’
passion for teaching and for doing so carefully and precisely. Especially welcome, in
my view, are the addition of problems at the end of each chapter and the discussion
of singular value decomposition (SVD) and Bayesian methods. The SVD is one of the
crown jewels of linear algebra which modern students interested in machine learning
will surely find beneficial. To physics, computer science, or engineering students
mesmerized by the fast Fourier transform, Gezerlis’ excellent explanation of it in
Chapter 6 is likely to shed some light on the underlying divide-and-conquer algorithm,
which is an essential classic.”

Joaquin Drut, University of North Carolina at Chapel Hill

“A fantastic addition as an introductory textbook for computational physics. The book
is timely, and the author made thoughtful and in my view many wise choices. The book
is comprehensive and yet accessible to undergraduate students.”

Shiwei Zhang, Flatiron Institute and College of William & Mary



Praise for the First Edition

“I enthusiastically recommend Numerical Methods in Physics with Python by Professor
Gezerlis to any advanced undergraduate or graduate student who would like to acquire
a solid understanding of the basic numerical methods used in physics. The methods
are demonstrated with Python, a relatively compact, accessible computer language,
allowing the reader to focus on understanding how the methods work rather than
on how to program them. Each chapter offers a self-contained, clear, and engaging
presentation of the relevant numerical methods, and captivates the reader with well-
motivated physics examples and interesting physics projects. Written by a leading expert
in computational physics, this outstanding textbook is unique in that it focuses on
teaching basic numerical methods while also including a number of modern numerical
techniques that are usually not covered in computational physics textbooks.”

Yoram Alhassid, Yale University

“In Numerical Methods in Physics with Python by Gezerlis, one finds a resource that
has been sorely missing! As the usage of Python has become widespread, it is too often
the case that students take libraries, functions, and codes and apply them without a solid
understanding of what is truly being done ‘under the hood’ and why. Gezerlis’ book fills
this gap with clarity and rigor by covering a broad number of topics relevant for physics,
describing the underlying techniques and implementing them in detail. It should be an
important resource for anyone applying numerical techniques to study physics.”

Luis Lehner, Perimeter Institute

“Gezerlis’ text takes a venerable subject – numerical techniques in physics – and brings
it up to date and makes it accessible to modern undergraduate curricula through a
popular, open-source programming language. Although the focus remains squarely on
numerical techniques, each new lesson is motivated by topics commonly encountered
in physics and concludes with a practical hands-on project to help cement the students’
understanding. The net result is a textbook which fills an important and unique niche in
pedagogy and scope, as well as a valuable reference for advanced students and practicing
scientists.”

Brian Metzger, Columbia University
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To Marcos, ψυχή βαθιά

My soul, rather than yearn for life immortal,
press into service every shift at your disposal.

Pindar





Contents

Preface page xii

1 Idiomatic Python 1
1.1 Why Python? 2
1.2 Code Quality 3
1.3 Summary of Python Features 4
1.4 Core-Python Idioms 10
1.5 Basic Plotting with matplotlib 13
1.6 NumPy Idioms 15
1.7 Project: Visualizing Electric Fields 21
Problems 25

2 Numbers 31
2.1 Motivation 31
2.2 Errors 32
2.3 Representing Real Numbers 41
2.4 Rounding Errors in the Wild 48
2.5 Project: the Multipole Expansion in Electromagnetism 63
Problems 78

3 Derivatives 89
3.1 Motivation 89
3.2 Analytical Differentiation 90
3.3 Finite Differences 91
3.4 Automatic Differentiation 109
3.5 Project: Local Kinetic Energy in Quantum Mechanics 113
Problems 121

4 Matrices 126
4.1 Motivation 126
4.2 Error Analysis 130
4.3 Solving Systems of Linear Equations 138
4.4 Eigenproblems 167
4.5 The Singular-Value Decomposition 197
4.6 Project: the Schrödinger Eigenvalue Problem 205
Problems 213

ix



x Contents

5 Zeros and Minima 232
5.1 Motivation 232
5.2 Non-linear Equation in One Variable 235
5.3 Zeros of Polynomials 261
5.4 Systems of Non-Linear Equations 268
5.5 One-Dimensional Minimization 276
5.6 Multidimensional Minimization 282
5.7 Project: Extremizing the Action in Classical Mechanics 297
Problems 305

6 Approximation 317
6.1 Motivation 317
6.2 Polynomial Interpolation 323
6.3 Cubic-Spline Interpolation 339
6.4 Trigonometric Interpolation 347
6.5 Linear Least-Squares Fitting 367
6.6 Linear Statistical Inference 383
6.7 Non-Linear Least-Squares Fitting 408
6.8 Project: Testing the Stefan–Boltzmann Law 422
Problems 429

7 Integrals 453
7.1 Motivation 453
7.2 Newton–Cotes Methods 456
7.3 Adaptive Integration 474
7.4 Romberg Integration 479
7.5 Gaussian Quadrature 487
7.6 Complicating the Narrative 501
7.7 Monte Carlo 508
7.8 Project: Variational Quantum Monte Carlo 534
Problems 546

8 Differential Equations 566
8.1 Motivation 566
8.2 Initial-Value Problems 570
8.3 Boundary-Value Problems 601
8.4 Eigenvalue Problems 608
8.5 Partial Differential Equations 617
8.6 Project: Poisson’s Equation in Two Dimensions 625
Problems 632

Appendix A Installation and Setup 657



Contents xi

Appendix B Number Representations 658
B.1 Integers 658
B.2 Real Numbers 659
Problems 663

Appendix C Math Background 664
C.1 Taylor Series 664
C.2 Matrix Terminology 665
C.3 Probability 668

Bibliography 671
Index 677



Preface

The health of the eye seems to demand a horizon.
We are never tired, so long as we can see far enough.

Ralph Waldo Emerson

This is a textbook for advanced undergraduate (or beginning graduate) courses on Compu-
tational Physics. To explain what this means, I first go over what this book is not.

First, this is not a text that focuses mainly on physics applications and basic program-
ming, only bringing up numerical methods as the need arises. It’s true that such an ap-
proach would have the benefit of giving rise to beautiful visualizations and helping students
gain confidence in using computers to study science. The disadvantage of this approach is
that it tends to rely on external libraries, i.e., “black boxes”. To make an analogy with
non-computational physics, we teach students calculus before seeing how it helps us do
physics. In other words, an instructor would not claim that derivatives are important but al-
ready well-studied, so we’ll just employ a package that takes care of them. That being said,
a physics-applications-first approach may be appropriate for a more introductory course
(the type with a textbook that has the answers in the back) or perhaps as a computational
addendum to an existing text on mechanics, electromagnetism, and so on.

Second, this is not a text addressing a small subset of modern computational methods.
Depending on the instructor’s interests and expertise, computational courses sometimes
specialize on a single theme, such as: simulations (e.g., molecular dynamics or Monte
Carlo), data analysis (e.g., uncertainty quantification), or partial differential equations (e.g.,
continuum dynamics). Such a targeted approach has the advantage of being intimately con-
nected to research, at the cost of assuming students have picked up the necessary founda-
tional material from elsewhere. To return to the analogy with non-computational physics,
a first course on electromagnetism would never skip over things like basic electrostatics to
get directly to, say, the Yang–Mills Lagrangian just because non-abelian gauge theory is
more “current”. Even so, an approach that focuses on modern computational technology is
relevant to a more advanced course: once students have mastered the foundations, they can
turn to state-of-the-art methods that tackle research problems.

The present text attempts to strike a happy medium: a broad spectrum of numerical
methods is studied in detail and then applied to questions from undergraduate physics,
via idiomatic implementations in the Python programming language. When selecting and
discussing topics, I have prioritized pedagogy over novelty; this is reflected in the chapter
titles, which are pretty standard. Of course, my views on what is pedagogically superior
are mine alone, so the end result also happens to be original in some respects. Below, I
touch upon some of the main features of this book, with a view to orienting the reader.

xii
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• Idiomatic Python: the book employs Python 3, which is a popular, open-source pro-
gramming language. A pedagogical choice I have made is to start out with standard
Python, use it for a few chapters, and only then turn to the NumPy library; I have
found that this helps students who are new to programming in Python effectively dis-
tinguish between lists and NumPy arrays. The first chapter includes a discussion of
modern programming idioms, which allow me to write shorter codes in the following
chapters, thereby emphasizing the numerical method over programming details. This
is somewhat counterintuitive: teaching more “advanced” programming than is usual in
computational-physics books allows the programming to recede into the background. In
other words, not having to fight with the programming language every step of the way
makes it easier to focus on the physics (or the math).

• Modern numerical-analysis techniques: I devote an entire chapter to questions of nu-
merical precision and roundoff error; I hope that the lessons learned there will pay off
when studying the following chapters, which typically focus more on approximation-
error themes. While this is not a volume on numerical analysis, it does contain a bit
more on applied math than is typical: in addition to standard topics, this also includes
modern techniques that haven’t made it to computational-physics books before (e.g., au-
tomatic differentiation or interpolation at Chebyshev points). Similarly, the section on
errors in linear algebra glances toward monographs on matrix perturbation theory. To
paraphrase Forman Acton [2], the idea here is to ensure that the next generation does
not think that an obligatory decimal point is slightly demeaning.

• Methods “from scratch”: chapters typically start with a pedagogical discussion of a
crude algorithm and then advance to more complex methods, in several cases also cover-
ing state-of-the-art techniques (when they do not require elaborate bookkeeping). Con-
siderable effort is expended toward motivating and explaining each technique as it is
being introduced. Similarly, the chapters are ordered in such a way that the presentation
is cumulative. Thus, the book attempts to discuss things “from scratch”, i.e., without
referring to specialized background or more advanced references; physicists do not ex-
pect lemmas and theorems, but do expect to be convinced.1 Throughout the text, the
phrases “it can be shown”2 and “stated without proof” are actively avoided, so this book
may also be used in a flipped classroom, perhaps even for self-study. As part of this
approach, I frequently cover things like convergence properties, operation counts, and
the error scaling of different numerical methods. When space constraints made it impos-
sible to reach for simplex munditiis in explaining a given method, I quietly omitted that
method. This is intended as a “first book” on the subject, which should enable students
to confidently move on to more advanced expositions.

• Methods implemented: while the equations and figures help explain why a method
should work, the insight that can be gleaned from an existing implementation of a given
algorithm is crucial. I have worked hard to ensure that these code listings are embedded
in the main discussion, not tossed aside at the end of the chapter or in an online sup-
plement. Even so, each implementation is typically given its own subsection, in order to

1 Nullius in verba, the motto of the Royal Society, comes to mind. The idea, though not the wording, can clearly
be traced to Heraclitus’ fragment 50: “Listen, not to me, but to reason”.

2 An instance of proof by omission, but still better than “it can be easily shown” (proof by intimidation).
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help instructors who are pressed for time in their selection of material. Since I wanted
to keep the example programs easy to talk about, they are quite short, never longer than
a page. In an attempt to avoid the use of black boxes, I list and discuss implementations
of methods that are sometimes considered advanced (e.g., the QR eigenvalue method or
the fast Fourier transform). While high-quality libraries like NumPy and SciPy contain
implementations of such methods, the point of a book like this one is precisely to teach
students how and why a given method works. The programs provided (whose filenames
also appear in the book’s index) can function as templates for further code development
on the student’s part, e.g., when solving the end-of-chapter problems.

• Clear separation between numerical method and physics problem: each chapter fo-
cuses on a given numerical theme. The first section always discusses physics scenarios
that touch upon the relevant tools; these “motivational” topics are part of the standard
undergrad physics curriculum, ranging from classical mechanics, through electromag-
netism and statistical mechanics, to quantum mechanics. The bulk of the chapter then
focuses on several numerical methods and their implementation, typically without bring-
ing up physics examples. The last numbered section in each chapter is a Project: in ad-
dition to involving topics that were introduced in earlier sections (or chapters), these
physics projects allow students to carry out calculations they wouldn’t attempt without
the help of a computer. These projects also provide a first taste of “programming-in-
the-large”. As a result of this design choice, the book may also be useful to beginning
physics students or even students in other areas of science and engineering (with a more
limited physics background). Even the primary audience may benefit from the structure
of the text in the future, when tackling different physics questions. In the same spirit, the
physics-oriented problems in each chapter’s problem set are labelled with [P]; these are
placed near the end, presupposing the maturity developed while working on the earlier
problems. (Since most problems involve some coding, the ones that are purely analytical
are labelled with [A], into the bargain.)

• Second edition includes six new sections on:

– the singular-value decomposition (section 4.5),
– derivative-free optimization (sections 5.5.2 and 5.6.5),
– maximum-likelihood and Bayesian approaches to linear regression (section 6.6),
– non-linear fitting via the Gauss–Newton method and neural networks (section 6.7),
– finite-difference approaches to the diffusion equation (section 8.5.2).

Six original codes are associated with these sections. Section 6.6 may be of special
benefit to readers interested in experimental physics. I found that brief yet meaty in-
troductions to these ideas are useful to physics students, at both the undergraduate and
graduate levels. As always, the point was to avoid the dreaded phrase “it turns out that”,
i.e., the use of (analytical or programming) black boxes. In addition to the totally new
material, using the book in a classroom setting has inspired a very large number of other
modifications throughout the volume, ranging from minor tweaks (e.g., now explicitly
citing problem numbers in the main text) to complete rewrites of selected first-edition
sections. From start to finish, I have tried to navigate between Scylla (familiar notation
obscuring conceptual subtleties) and Charybdis (too many strange-looking symbols).
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• Second edition includes 140 new problems on: (a) extensions of techniques introduced
in the main text, (b) topics that would otherwise take too many pages to discuss (e.g.,
problems 5.38, 5.39, and 5.40 on constrained minimization), and (c) a large number of
physical applications: I have now included problems on standard themes (e.g., prob-
lem 7.65 on the Ising model in two dimensions, problem 8.58 on molecular dynamics
for the Lennard–Jones potential, or problem 8.59 on the scattering of a wave packet
from a barrier) as well as on topics that I have not encountered in other computational-
physics textbooks (e.g., problem 6.67 on credible intervals for a relativistic particle’s
mass or problem 7.63 on the dimensional regularization of loop integrals). Sometimes
a given physical theme carries over across chapters, for example: the Roche potential is
visualized in problem 1.17, it is then extremized in problem 5.50 to find the Lagrange
points, the volume of the Roche lobe is computed via quadrature in problem 7.56, and
the Arenstorf orbit is arrived at by solving differential equations in problem 8.46.
A word on solutions: standard practice is that computational-physics textbook authors
either produce no solutions to the problems or provide solutions only to instructors
teaching for-credit courses out of the textbook. I have followed the latter route, but I’m
also providing (online) a subset of the solutions to all readers, as a self-study resource.

• Topic sequence for different courses: like many textbooks, this one contains more
material than can be covered in a single semester. Here are two sample courses:

– Advanced undergraduate course: sections 1.1–1.5, 2.1–2.4.3, 2.5.2, 3.1–3.3, 1.6, 4.1,
4.2.1–4.2.3, 4.3, 4.4.1, 5.1–5.2, 5.4, 5.5.2, 6.1–6.2.2, 6.5, 7.1–7.3, 7.5, 7.7.1–7.7.4,
8.1–8.3.1, 8.4.1, 8.5. Labs focus on Python programming; lectures mainly address nu-
merical methods; physics content limited to motivation and homework assignments.

– Beginning graduate course: appendix B, sections 2.1–2.5, 3.4, 4.1–4.6, 5.1, 5.3–5.6,
6.1, 6.2.2–6.2.3, 6.4–6.8, 7.1, 7.4–7.8, 8.1–8.4, 8.6. Python and an undergrad numer-
ical course are prerequisites. Increased focus on analytical manipulations; program-
ming limited to homework; lectures’ physics content determined by a student poll.

Alas, adding 150 pages of new material for the second edition ran the risk of making
this volume too expensive. With that in mind, I abridged sections 4.2 and 4.6, placing the
original versions in the online supplement at www.numphyspy.org. This book continues to
be dear to my heart; I hope the reader gets to share some of my excitement for the subject.

On the Epigraphs

I have translated 14 of the quotes appearing as epigraphs myself; in the remaining instances
the original was in English. All 17 quotes are not protected by copyright. The sources are:
Dedication: Pindar, Pythian Odes, 3.61–62 (∼474 BCE), Preface: Ralph Waldo Emerson,
Nature, Chapter III (1836 CE), Chapter 1: Immanuel Kant, Lectures VI, Philosophical
Encyclopedia (∼1780 CE), Chapter 2: Georg Wilhelm Friedrich Hegel, The Phenomenol-

ogy of Spirit, Paragraph 74 (1807 CE), Chapter 3: Emily Dickinson, Poem F372/J341

(1862 CE), Chapter 4: Vergil, Georgics, Book II, Line 412 (∼29 BCE), Chapter 5: Karl

http://www.numphyspy.org
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Kraus, The Last Days of Mankind, Act I, Scene 22 (∼1918 CE), Chapter 6: Gabriel
Lippmann, quoted in Henri Poincaré, Calcul des probabilités, Second edn, Section 108
(1912 CE), Chapter 7: Thucydides, History of the Peloponnesian War, Book IV, Para-
graph 40 (∼420 BCE), Chapter 8: Sophocles, Oedipus Tyrannus, Line 486 (∼429 BCE),
Postscript: Socrates, quoted in Diogenes Laërtius, Lives and Opinions of Eminent Philoso-

phers, Book 2 (∼220 CE), Appendix A: Aristotle, Metaphysics Book III (B), 1001a1 (∼330
BCE), Appendix B: Thomas Aquinas, Commentary on Aristotle’s Metaphysics, Book IV
(Γ), Lesson 1, Chapter 2, Commentary (1270 CE), Appendix C: Parmenides, Fragment 5

(∼475 BCE), (Online) Appendix D: Callimachus, Fragment 465 (∼250 BCE), Bibliogra-
phy: Michel Eyquem de Montaigne, Essay III.13, On Experience (1588 CE), Index: James
Joyce, Ulysses, Episode 16, Eumaeus (1922 CE).
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Idiomatic

It’s not always about speculating; at some point one must think about practice.
Immanuel Kant

This chapter is not intended as an introduction to programming in general or to program-
ming with Python. A tutorial on the Python programming language can be found in the
online supplement to this book; if you’re still learning what variables, loops, and functions
are, we recommend you go to our tutorial (see appendix A) before proceeding with the
rest of this chapter. You might also want to have a look at the (official) Python Tutorial
at www.python.org. Reference [41] is a readable book-length introduction to Python (also
available online); Ref. [71] is another introduction, with nice material on visualization. Pro-
gramming, like most other activities, is something you learn by doing. Thus, you should
always try out programming-related material as you read it: there is no royal road to pro-

gramming. Even if you have solid programming skills but no familiarity with Python, we
recommend you work your way through one of the above resources, to familiarize yourself
with the basic syntax. In what follows, we will take it for granted that you have worked
through our tutorial and have modified the different examples to carry out further tasks.
This includes solving many of the programming problems we pose there.

What this chapter does provide is a quick summary of Python features, with an emphasis
on those which the reader is more likely not to have encountered in the past. In other words,
even if you are already familiar with the Python programming language, you will most
likely still benefit from reading this short chapter. Observe that the title at the top of this
page is Idiomatic Python: this refers to coding in a Pythonic manner. The motive is not to
proselytize but, rather, to let the reader work with the language (i.e., not against it); we aim
to show how to write Python code that feels “natural”. If this book was using, say, Julia or
Rust instead of Python, we would still be making the same point: one should try to do the
best job possible with the tools at one’s disposal. As noted in the Preface, the use of idioms
allows us to write shorter codes in the rest of the book, thereby emphasizing the numerical
method over programming details; this is not merely an aesthetic concern but a question of
cognitive consonance.

At a more mundane level, this chapter contains all the Python-related reference material
we will need in this volume: reserved words, library functions, tables, and figures. Keep-
ing the present chapter short is intended to help you when you’re working through the
following chapters and need to quickly look something up. Before summarizing Python
features, we make some big-picture comments on the choice of language, as well as on
programming in general.

1
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2 Idiomatic Python

1.1 Why Python?

Since computational physics is a fun subject, it is only appropriate that the programming
involved should also be as pleasant as possible. In this book, we use Python 3, a popular,
open-source programming language that has been described as “pseudocode that executes”.
Python is especially nice in that it doesn’t require lots of boilerplate code; that, combined
with the fact that one can use Python interactively, make it easy to write new programs.
This is great from a pedagogical perspective, since it allows a beginner to start using the
language without having to first study lengthy volumes. Importantly, Python’s syntax is
reasonably simple and leads to very readable code. Even so, Python is very expressive,
allowing you to do more in a single line than is possible in many other languages. Further-
more, Python is cross-platform, providing a similar experience on Windows and Unix-like
systems. Finally, Python comes with “batteries included”: its standard library allows you
to do a lot of useful work, without having to implement basic/unrelated things (e.g., sorting
a list of numbers) yourself.

In addition to the functionality contained in core Python and in the standard library,
Python is associated with a wider ecosystem, which includes libraries like Matplotlib, used
to visualize data. Another member of the Python ecosystem, especially relevant to us, is
the NumPy library (NumPy stands for “Numerical Python”); containing numerical arrays
and several related functions, NumPy is one of the main reasons Python is so attractive for
computational work. Another fundamental library is SciPy (“Scientific Python”), which
provides many routines that carry out tasks like numerical integration and optimization in
an efficient manner. A pedagogical choice we have made in this book is to start out with
standard Python, use it for a few chapters, and only then turn to the numpy library; this
is done in order to help students who are new to Python (or to programming in general)
effectively distinguish between Python lists and numpy arrays. The latter are then used in
the context of linear algebra (chapter 4), where they are indispensable, both in terms of
expressiveness and in terms of efficiency.

Speaking of which, it’s worth noting at the outset that, since our programs are intended
to be easy to read, in some cases we have to sacrifice efficiency.1 Our implementations are
intended to be pedagogical, i.e., they are meant to teach you how and why a given numer-
ical method works; thus, we almost never employ NumPy or SciPy functionality (other
than numpy arrays), but produce our own functions, instead. We make some comments on
alternative implementations here and there, but the general assumption is that you will be
able to write your own codes using different approaches (or programming languages) once
you’ve understood the underlying numerical method. If all you are interested in is a quick
calculation, then Python along with its ecosystem is likely going to be your one-stop shop.
As your work becomes more computationally challenging, you may need to switch to a
compiled language; most work on supercomputers is carried out using languages like For-
tran or C++ (or sometimes even C). Of course, even if you need to produce a hyperefficient
code for your research, the insight you may gain from building a prototype in Python could

1 Thus, we do not talk about things like Python’s Global Interpreter Lock, cache misses, page faults, and so on.
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be invaluable; similarly, you could write most of your code in Python and re-express a few
performance-critical components using a compiled language. We hope that the lessons you
pick up here (both on the numerical methods and on programming in general) will serve
you well if you need to employ another environment in the future.

The decision to focus on Python (and NumPy) idioms is coupled to the aforementioned
points on Python’s expressiveness and readability: idiomatic code makes it easier to con-
quer the complexity that arises when developing software. (Of course, it does require you
to first become comfortable with the idioms.) That being said, our presentation will be se-

lective; Python has many other features that we will not go into. Most notably, we don’t
discuss how to define classes of your own or how to handle exceptions; the list of omit-
ted features is actually very long.2 While many features we leave out are very important,
discussing them would interfere with the learning process for students who are still mas-
tering the basics of programming. Even so, we do introduce topics that haven’t often made
it into computational-science texts (e.g., list comprehensions, dictionaries, for-else, array
manipulation via slicing and @) and use them repeatedly in the rest of the book.

We sometimes point to further functionality in Python. For more, have a look at the
bibliography and at The Python Language Reference (as well as The Python Standard
Library Reference). Once you’ve mastered the basics of core Python, you may find books
like Ref. [120] and Ref. [132] a worthwhile investment. On the wider theme of developing
good programming skills, volumes like Ref. [103] can be enriching, as is also true of any
book written by Brian Kernighan. Here we provide only the briefest of summaries.

1.2 Code Quality

We will not be too strict in this book about coding guidelines. Issues like code layout can
be important, but most of the programs we will write are so short that this won’t matter too
much. If you’d like to learn more about this topic, your first point of reference should be
PEP 8 – Style Guide for Python Code. Often more important than issues of code layout3

are questions about how you write and check your programs. Here is some general advice:

• Code readability matters Make sure to target your program to humans, not the com-
puter. This means that you should avoid using “clever” tricks. Thus, you should use good
variable names and write comments that add value (instead of repeating the code). The
human code reader that will benefit from this is first and foremost yourself, when you
come back to your programs some months later.

• Be careful, not swift, when coding Debugging is typically more difficult than coding
itself. Instead of spending two minutes writing a program that doesn’t work and then
requires you to spend two hours fixing it up, try to spend 10 minutes on designing the
code and then carefully converting your ideas into program lines. It doesn’t hurt to also
use Python interactively (while building the program file) to test out components of the
code one-by-one or to fuse different parts together.

2 For example: decorators, coroutines, or type hints.
3 Discussion of which, more often than not, sheds light on the narcissism of minor differences (“bikeshedding”).
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• Untested code is wrong code Make sure your program is working correctly. If you have
an example where you already know the answer, make sure your code gives that answer.
Manually step through a number of cases (i.e., mentally, or on paper, do the calculations
the program is supposed to carry out). This, combined with judiciously placed print-
outs of intermediate variables, can go a long way toward ensuring that everything is as it
should be. When modifying your program, ensure it still gives the original answer when
you specialize the problem to the one you started with.

• Write functions that do one thing well Instead of carrying out a bunch of unrelated
operations in sequence, you should structure your code so that it makes use of well-
named (and well-thought-out) functions that do one thing and do it well. You should
break down the tasks to be carried out and logically separate those into distinct functions.
If you design these well, in the future you will be able to modify your programs to carry
out much more challenging tasks, by only adding a few lines of new code (instead of
having to change dozens of lines in an existing “spaghetti” code).

• Use trusted libraries In most of this book we are “reinventing the wheel”, because we
want to understand how things work (or don’t work). Later in life, you should not have
to always use “hand-made” versions of standard algorithms. As mentioned, there exist
good (widely employed and tested) libraries like numpy that you should learn to make
use of. The same thing holds, obviously, for the standard Python library: you should
generally employ its features instead of “rolling your own”.

One could add (much) more advice along these lines. Since our scope here is much more
limited, we conclude by pointing out that in the Python ecosystem (or around it) there’s
extensive infrastructure [128] to carry out version control (e.g., git), testing (e.g., doctest
and unittest), as well as debugging (e.g., pdb), program profiling and optimization, among
other things. You should also have a look at the pylint tool.

1.3 Summary of Python Features

1.3.1 Basics

Python can be used interactively: this is when you see the Python prompt >>>, also known
as a chevron. You don’t need to use Python interactively: like other programming lan-
guages, the most common way of writing and running programs is to store the code in
a file. Linear combinations of these two ways of using Python are also available, fusing
interactive sessions and program files. In any case, your program is always executed by the
Python interpreter. Appendix A points you in the direction of tools you could employ.

Like other languages (e.g., C or Fortran), Python employs variables, which can be inte-
gers, complex numbers, etc. Unlike those languages, Python is a dynamically typed lan-
guage, so variables get their type from their value, e.g., x = 0.5 creates a floating-point
variable (a “float”). It may help you to think of Python values as being produced first and
labels being attached to them after that. Numbers like 0.5 or strings like "Hello", are
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known as literals. If you wish to print the value of a variable, you use the print() built-in
function, i.e., print(x). Further functionality is available in the form of standard-library
modules, e.g., you can import the sqrt function that is to be found in the math module.
Users can define their own modules: we will do so repeatedly. You can carry out arith-
metic with variables, e.g., x**y raises x to the y-th power or x//y does “floor division”.
It’s usually a good idea to group related operations using parentheses. Python also sup-
ports augmented assignment, e.g., x += 1 or even multiple assignment, e.g., x, y = 0.5,
"Hello". This gives rise to a nifty way to swap two variables: x, y = y, x.

Comments are an important feature of programming languages: they are text that is ig-
nored by the computer but can be very helpful to humans reading the code. That human
may be yourself in a few months, at which point you may have forgotten the purpose or de-
tails of the code you’re inspecting. Python allows you to write both single-line comments,
via #, or docstrings (short for “documentation strings”), via the use of triple quotation
marks. Crucially, we don’t include explanatory comments in our code examples, since this
is a book which explicitly discusses programming features in the main text. That being
said, in your own codes (which are not embedded in a book discussing them) you should
always include comments.

1.3.2 Control Flow

Control flow refers to programming constructs where not every line of code gets executed
in order. A classic example is conditional execution via the if statement:

>>> if x!=0:

... print("x is non-zero")

Indentation is important in Python: the line after if is indented, reflecting the fact that it
belongs to the corresponding scenario. Similarly, the colon, :, at the end of the line contain-
ing the if is also syntactically important. If you wanted to take care of other possibilities,
you could use another indented block starting with else: or elif x==0:. In the case of
boolean variables, a common idiom is to write: if flag: instead of if flag==True:.

Another concept in control flow is the loop, i.e., the repetition of a code block. You can
do this via while, which is typically used when you don’t know ahead of time how many
iterations you are going to need, e.g., while x>0:. Like conditional expressions, a while
loop tests a condition; it then keeps repeating the body of the loop until the condition is
no longer true, in which case the body of the block is jumped over and execution resumes
from the following (non-indented) line. We sometimes like to be able to break out of a
loop: if a condition in the middle of the loop body is met, then: (a) if we use break we
will proceed to the first statement after the loop, or (b) if we use continue we skip not the
entire loop, but the rest of the loop body for the present iteration.

A third control-flow construct is a for loop: this arises when you need to repeat a cer-
tain action a fixed number of times. For example, by saying for i in range(3): you will
repeat whatever follows (and is indented) three times. Like C, Python uses 0-based index-

ing (which we will shorten to “0-indexing”), meaning that the indices go as 0, 1, 2 in this
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case. In general, range(n) gives the integers from 0 to n-1 and, similarly, range(m, n, i)
gives the integers from m to n-1 in steps of i. Above, we mentioned how to use print()
to produce output; this can be placed inside a loop to print out many numbers, each on a
separate line; if you want to place all the output on the same line you do:

>>> for i in range(1,15,2):

... print(0.01*i, end=" ")

that is, we’ve said end=" " after passing in the argument we wish to print. As we’ll discuss
in the following subsection, Python’s for loop is incredibly versatile.

1.3.3 Data Structures

Python supports container entities, called data structures; we will mainly be using lists.

Lists A list is a container of elements; it can can grow when you need it to. Elements can
have different types. You use square brackets and comma-separated elements when creating
a list, e.g., zs = [5, 1+2j, -2.0]. You also use square brackets when indexing into a
list, e.g., zs[0] is the first element and zs[-1] the last one. Lists are mutable sequences,
meaning we can change their elements, e.g., zs[1] = 9, or introduce new elements, via
append(). The combination of for loops and append() provides us with a powerful way
to populate a list. For example:

>>> xs = []

>>> for i in range(20):

... xs.append(0.1*i)

where we started with an empty list. In the following section, we’ll see a more idiomatic
way of accomplishing the same task. You can concatenate two lists via the addition oper-
ator, e.g., zs = xs + ys; the logical consequence of this is the idiom whereby a list can
be populated with several (identical) elements using a one-liner, xs = 10*[0]. There are
several built-in functions (applicable to lists) that often come in handy, most notably sum()
and len().

Python supports a feature called slicing, which allows us to take a slice out of an existing
list. Slicing, like indexing, uses square brackets: the difference is that slicing uses two
integers, with a colon in between, e.g., ws[2:5] gives you the elements ws[2] up to (but
not including) the element ws[5]. Slicing obeys convenient defaults, in that we can omit
one of the integers in ws[m:n] without adverse consequences. Omitting the first index is
interpreted as using a first index of 0, and omitting the second index is interpreted as using
a second index equal to the number of elements. You can also include a third index: in
ws[m:n:i] we go in steps of i. Note that list slicing uses colons, whereas the arguments
of range() are comma-separated. Except for that, the pattern of start, end, stride is the
same.

We are now in a position to discuss how copying works. In Python a new list, which is
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Labelling and modifying a mutable object (in this case, a list) tFig. 1.1

assigned to be equal to an old list, is simply the old list by another name. This is illustrated
in Fig. 1.1, which corresponds to the three steps xs = [1,2,3], followed by ys = xs, and
then ys[0] = 7. In other words, in Python we’re not really dealing with variables, but
with labels attached to values, since xs and ys are just different names for the same entity.
When we type ys[0] = 7we are not creating a new value, simply modifying the underlying
entity that both the xs and ys labels are attached to. Incidentally, things are different for
simpler variables, e.g., x=1; y=x; y=7; print(x) prints 1 since 7 is a new value, not a
modification of the value x is attached to. This is illustrated in Fig. 1.2, where we see that,
while initially both variable names were labelling the same value, when we type y=7 we
create a new value (since the number 7 is a new entity, not a modification of the number 1)
and then attach the y label to it.

Crucially, when you slice you get a new list, meaning that if you give a new name to
a slice of a list and then modify that, then the original list is unaffected. For example,
xs = [1,2,3], followed by ys = xs[1:], and then ys[0] = 7 does not affect xs. This
fact (namely, that slices don’t provide views on the original list but can be manipulated
separately) can be combined with another nice feature (namely, that when slicing one can
actually omit both indices) to create a copy of the entire list, e.g., ys = xs[:]. This is a
shallow copy, so if you need a deep copy, you should use the function deepcopy() from
the standard module copy; the difference is immaterial here.

Tuples Tuples can be (somewhat unfairly) described as immutable lists. They are se-
quences that can neither change nor grow. They are defined using parentheses instead of
square brackets, e.g., xs = (1,2,3), but you can even omit the parentheses, xs = 1,2,3.
Tuple elements are accessed the same way that list elements are, namely with square brack-
ets, e.g., xs[2].

Strings Strings can also be viewed as sequences, e.g., if name = "Mary" then name[-1]
is the character ‘y’. Note that you can use either single or double quotation marks. Like
tuples, strings are immutable. As with tuples, we can use + to concatenate two strings. A

Labelling immutable objects (in this case, integers) tFig. 1.2
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useful function that acts on strings is format(): it uses positional arguments, numbered
starting from 0, within curly braces. For example:

>>> x, y = 3.1, -2.5

>>> "{0} {1}".format(x, y)
‘3.1 -2.5’

The overall structure is string-dot-format-arguments. This can lead to powerful ways of
formatting strings, e.g.,

>>> "{0:1.15f} {1}".format(x, y)
‘3.100000000000000 -2.5’

Here we also introduced a colon, this time followed by 1.15f, where 1 gives the number of
digits before the decimal point, 15 gives the number of digits after the decimal point, and
f is a type specifier (that leads to the result shown for floats).

Dictionaries Python also supports dictionaries, which are called associative arrays in com-
puter science (they’re called maps in C++). You can think of dictionaries as being similar
to lists or tuples, but instead of being limited to integer indices, with a dictionary you can
use strings or floats as keys. In other words, dictionaries contain key and value pairs. The
syntax for creating them involves curly braces (compare with square brackets for lists and
parentheses for tuples), with the key-value pair being separated by a colon. For exam-
ple, htow = {1.41: 31.3, 1.45: 36.7, 1.48: 42.4} is a dictionary associating heights
to weights. In this case both the keys and the values are floats. We access a dictionary
value (for a specific key) by using the name of the dictionary, square brackets, and the
key we’re interested in: this returns the value associated with that key, e.g., htow[1.45]. In
other words, indexing uses square brackets for lists, tuples, strings, and dictionaries. If the
specific key is not present, then we get an error. Note, however, that accessing a key that
is not present and then assigning actually works: this is a standard way key:value pairs are
introduced into a dictionary, e.g., htow[1.43] = 32.9.

1.3.4 User-Defined Functions

If our programs simply carried out a bunch of operations in sequence, inside several loops,
their logic would soon become unwieldy. Instead, we are able to group together logically
related operations and create what are called user-defined functions: just as in our earlier
section on control flow, this refers to lines of code that are not necessarily executed in the
order in which they appear inside the program file. For example, while the math module
contains a function called exp(), we could create our own function called, say, compexp()
as in section 2.4.4, which, e.g., uses a different algorithm to get to the answer. The way
we introduce our own functions is via the def keyword, along with a function name and a
colon at the end of the line, as well as the (by now expected) indentation of the code block
that follows. Here’s a function that computes the sum from 1 up to some integer:
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>>> def sumofints(nmax):

... val = sum(range(1,nmax+1))

... return val

We are taking in the integer up to which we’re summing as a parameter. We then ensure
that range() goes up to (but not including) nmax+1 (i.e., it includes nmax). We split the body
of the function into two lines: first we define a new variable and then we return it, though
we could have simply used a single line, return sum(range(1,nmax+1)). This function
can be called (in the rest of the program) by saying x = sumofints(42).

The function we just defined took in one parameter and returned one value. It could have,
instead, taken in no parameters, e.g., summing the integers up to some constant; we would
then call it by x = sumofints(). Similarly, it could have printed out the result, inside the
function body, instead of returning it to the external world; in that case, where no return
statement was used, the x in x = sumofints(42) would have the value None. Analogously,
we could be dealing with several input parameters, or several return values, expressed
by def sumofints(nmin,nmax):, or return val1, val2, respectively. The latter case is
implicitly making use of a tuple.

We say that a variable that’s either a parameter of a function or is defined inside the func-
tion is local to that function. If you’re familiar with the terminology other languages use
(pass-by-value or pass-by-reference), then note that Python employs pass-by-assignment,
which for immutable objects behaves like pass-by-value (you can’t change what’s outside)
and for mutable objects behaves like pass-by-reference (you can change what’s outside),
if you’re not re-assigning. It’s often a bad idea to change the external world from inside
a function: it’s best simply to return a value that contains what you need to communicate
to the external world. This can become wasteful, but here we opt for conceptual clarity,
always returning values without changing the external world. This is a style inspired by
functional programming, which aims at avoiding side effects, i.e., changes that are not vis-
ible in the return value. (Unless you’re a purist, input/output is fine.) Python also supports
nested functions and closures. On a related note, Python contains the keywords global
and nonlocal as well as function one-liners via lambda; some of these features are briefly
touched upon in problem 1.4.

A related feature of Python is the ability to provide default parameter values:

>>> def cosder(x, h=0.01):

... return (cos(x+h) - cos(x))/h

You can call this function with either cosder(0.) or cosder(0., 0.001); in the former
case, h has the value 0.01. Basically, the second argument here is optional. As a matter of
good practice, you should make sure to always use immutable default parameter values.
Finally, note that in Python one has the ability to define a function that deals with an
indefinite number of positional or keyword arguments. The syntax for this is *args and
**kwargs, but a detailed discussion would take us too far afield.

A pleasant feature of Python is that functions are first-class objects. As a result, we
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can pass them in as arguments to other functions; for example, instead of hard-coding the
cosine as in our previous function, we could say:

>>> def der(f, x, h=0.01):

... return (f(x+h) - f(x))/h

which is called by passing in as the first argument the function of your choice, e.g.,
der(sin, 0., 0.05). Note how f is a regular parameter, but is used inside the function
the same way we use functions (by passing arguments to them inside parentheses). We
passed in the name of the function, sin, as the first argument and the x as the second ar-
gument.4 As a rule of thumb, you should pass a function in as an argument if you foresee
that you might be passing in another function in its place in the future. If you basically
expect to always keep carrying out the same task, there’s no need to add yet another pa-
rameter to your function definition. Incidentally, we really meant it when we said that in
Python functions are first-class objects. You could even have a list whose elements are
functions, e.g., funcs = [sumofints, cos]. Similarly, problem 1.2 explores a dictionary
that contains functions as values (or keys).

1.4 Core-Python Idioms

We are now in a position to discuss Pythonic idioms: these are syntactic features that allow
us to perform tasks more straightforwardly than would have been possible with the syntax
introduced above. Using such alternative syntax to make the code more concise and ex-
pressive helps us write new programs, but also makes the lives of future readers easier. Of
course, you do have to exercise your judgement.5

1.4.1 List Comprehensions

At the start of section 1.3.3, we saw how to populate a list: start with an empty one and
use append() inside a for loop to add the elements you need. List comprehensions (often
shortened to listcomps) provide us with another way of setting up lists. The earlier example
can be replaced by xs = [0.1*i for i in range(20)]. This is much more compact (one
line vs three). Note that when using a list comprehension the loop that steps through the
elements of some other sequence (in this case, the result of stepping through range()) is
placed inside the list we are creating! This particular syntax is at first sight a bit unusual,
but very convenient and strongly recommended.

It’s a worthwhile exercise to replace hand-rolled versions of code using listcomps. For
example, if you need a new list whose elements are two times the value of each element
in xs, you should not say ys = 2*xs: as mentioned earlier, this concatenates the two lists,
which is not what we are after. Instead, what does work is ys = [2*x for x in xs]. More
4 This means that we did not pass in sin() or sin(x), as those wouldn’t work.
5 “A foolish consistency is the hobgoblin of little minds” (Ralph Waldo Emerson, Self-Reliance).
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generally, if you need to apply a function to every element of a list, you could simply do so
on the fly: ws = [f(x) for x in xs]. Another powerful feature lets you “prune” a list as
you’re creating it, e.g., zs = [2*x for x in xs if x>0.3]; this doubles an element only
if that element is greater than 0.3 (otherwise it doesn’t even introduce it).

1.4.2 Iterating Idiomatically

Our earlier example, ys = [2*x for x in xs], is an instance of a significant syntactic fea-
ture: a for loop is not limited to iterating through a collection of integers in fixed steps (as
in our earlier for i in range(20)) but can iterate through the list elements themselves di-

rectly.6 This is a general aspect of iterating in Python, a topic we now turn to; the following
advice applies to all loops (i.e., not only to listcomps).

One list Assuming the list xs already exists, you may be tempted to iterate through its
elements via something like for i in range(len(xs)): then in the loop body you would
get a specific element by indexing, i.e., xs[i]. The Pythonic alternative is to step through
the elements themselves, i.e., for x in xs: and then simply use x in the loop body. Instead
of iterating through an index, which is what the error-prone syntax range(len(xs)) is
doing, this uses Python’s in to iterate directly through the list elements.

Sometimes, you need to iterate through the elements of a list xs in reverse: the old-school
(C-influenced) way to do this is for i in range(len(xs)-1, -1, -1):, followed by in-
dexing, i.e., xs[i]. This works, but all those -1’s don’t make for light reading; instead, use
Python’s built-in reversed() function, saying for x in reversed(xs): and then using x
directly. A final use case: you often need access to both the index showing an element’s
place in the list, and the element itself. The “traditional” solution would involve for i in
range(len(xs)): followed by using i and xs[i] in the loop body. The Pythonic alternative
is to use the built-in enumerate() function, for i, x in enumerate(xs): and then use i
and x directly; this is more readable and less error-prone.

Two lists We sometimes want to iterate through two lists, xs and ys, in parallel. You should
be getting the hang of things by now; the unPythonic way to do this would be for i in
range(len(xs)):, followed by using xs[i] and ys[i] in the loop body. The Pythonic
solution is to say for x, y in zip(xs,ys): and then use x and y directly. The zip()
built-in function creates an iterable entity consisting of tuples, fusing the 0th element in xs
with the 0th element in ys, the 1st element in xs with the 1st element7 in ys, and so on.

Dictionaries We can use for to iterate Pythonically through more than just lists; in the
tutorial you have learned that it also works for lines in a file. Similarly, we can iterate
through the keys of a dictionary; for our earlier height-to-weight dictionary, you could say
for h in htow: and then use h and htow[h] in the loop body. An even more Pythonic
way of doing the same thing uses the items() method of dictionaries to produce all the
key-value pairs: for h,w in htow.items(): lets you use h and w inside the loop body.

6 In other words, Python’s for is similar to the foreach that some other languages have.
7 In English we say “first”, “second”, etc. We’ll use numbers, e.g., 0th, when using the 0-indexing convention.
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Code 1.1 forelse.py Code 1.1

def look(target,names):

for name in names:

if name==target:

val = name

break

else:

val = None

return val

names = ["Alice", "Bob", "Eve"]

print(look("Eve", names))

print(look("Jack", names))

For-else In this section we’ve spent some time discussing the line where for appears. We
now turn to a way of using for loops that is different altogether: similarly to if statements,
you can follow a for loop by an else (!). This is somewhat counterintuitive, but can be very
helpful. The way this works is that the for loop is run as usual: if no break is encountered
during execution of the for block, then control proceeds to the else block. If a break is
encountered during execution of the for block, then the else block is not run. (Try re-
reading the last two sentences after you study code 1.1.)

The else in a for loop is nice when we are looking for an item within a sequence and we
need to do one thing if we find it and a different thing if we don’t. An example is given in
code 1.1, the first full program in the book. We list such codes in boxes with the filename at
the top; we strongly recommend you download these Python codes and use them in parallel
to reading the main text;8 you would run this by typing python forelse.py or something
along those lines; note that, unlike other languages you may have used in the past, there
is no compilation stage. This specific code uses several of the Python features mentioned
in this chapter: it starts with defining a function, look(), which we will discuss in more
detail below. The main program uses a listcomp to produce a list of strings and then calls
the look() function twice, passing in a different first argument each time; we don’t even
need a variable to hold the first argument(s), using string literal(s) directly. Since we are no
longer using Python interactively, we employ print() to ensure that the output is printed
on the screen (instead of being evaluated and then thrown away).

Turning to the look() function itself, it takes in two parameters: one is (supposed to be) a
target string and the other one is a list of strings. The latter could be very long, e.g., the first
names listed in a phone book. Note that there are three levels of indentation involved here:
the function body gets indented, the for loop body gets indented, and then the conditional

8 “One cannot so well grasp a thing and make it one’s own, when it has been learned from someone else, as when
one has discovered it oneself” (René Descartes, Discourse on the Method, part VI).
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expression body also gets indented. Incidentally, our for loop is iterating through the list
elements directly, as per our earlier admonition, instead of using error-prone indices. You
should spend some time ensuring that you understand what’s going on. Crucially, the else
is indented at the level of the for, not at the level of the if. We also took the opportunity to
employ another idiom mentioned above: None is used to denote the absence of a value. The
two possibilities that are at play (target in sequence or target not in sequence) are probed by
the two function calls in the main program. When the target is found, a break is executed,
so the else is not run. When the target is not found, the else is run. It might help you to
think of this else as being equivalent to nobreak: the code in that block is only executed
when no break is encountered in the main part of the for loop. (Of course, this is only a
mnemonic, since nobreak is not a reserved word in Python.) We will use the for-else idiom
repeatedly in this volume (especially in chapter 5), whenever we are faced with an iterative
task which may plausibly fail, in which case we wish to communicate that fact to the rest
of the program. Since even some expert users are uncomfortable with the for-else idiom,
problem 1.5 gives you a tour of the alternatives.

1.5 Basic Plotting with matplotlib

We will now visualize relationships between numbers via matplotlib, a plotting library
(i.e., not part of core Python) which can produce quality figures: all the plots in this book
were created using matplotlib. Inside the matplotlib package is the matplotlib.pyplot
module, which is used to produce figures in a MATLAB-like environment.

A simple example is given in code 1.2. This starts by importing matplotlib.pyplot in
the (standard) way which allows us to use it below without repeated typing of unnecessary
characters. We then define a function, plotex(), that takes care of the plotting, whereas
the main program simply introduces four list comprehensions and then calls our function.
The listcomps also employ idiomatic iteration, in the spirit of applying what you learned
in the previous section. If you’re still a beginner, you may be wondering why we defined
a Python function in this code. An important design principle in computer science goes by
the name of separation of concerns (or sometimes information hiding or encapsulation):
each aspect of the program should be handled separately. In our case, this means that each
component of our task should be handled in a separate function.

Let’s discuss this function in more detail. Its parameters are (meant to be) four lists,
namely two pairs of xi and yi values. The function body starts by using xlabel() and
ylabel() to provide labels for the x and y axes. It then creates individual curves/sets of
points by using matplotlib’s function plot(), passing in the x-axis values as the first
argument and the y-axis values as the second argument. The third positional argument to
plot() is the format string: this corresponds to the color and point/line type. In the first
case, we used r for red and - for a solid line. Of course, figures in this book are in black
and white, but you can produce the color version using the corresponding Python code. In
order to help you interpret this and other format strings, we list allowed colors and some
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Code 1.2 plotex.py Code 1.2

import matplotlib.pyplot as plt

def plotex(cxs,cys,dxs,dys):

plt.xlabel(‘x’, fontsize=20)

plt.ylabel(‘f(x)’, fontsize=20)

plt.plot(cxs, cys, ‘r-’, label=‘one function’)

plt.plot(dxs, dys, ‘b--ˆ’, label=‘other function’)

plt.legend()

plt.show()

cxs = [0.1*i for i in range(60)]

cys = [x**2 for x in cxs]

dxs = [i for i in range(7)]

dys = [x**1.8 - 0.5 for x in dxs]

plotex(cxs, cys, dxs, dys)

of the most important line styles/markers in table 1.1. The fourth argument to plot() is
a keyword argument containing the label corresponding to the curve. In the second call
to plot() we pass in a different format string and label (and, obviously, different lists);
observe that we used two style options in the format string: -- to denote a dashed line and
ˆ to denote the points with a triangle marker. The function concludes by calling legend(),
which is responsible for making the legend appear, and show(), which makes the plot
actually appear on our screen.

Table 1.1 Color, line styles, and markers in matplotlib

Character Color Character Description

‘b’ blue ‘-’ solid line style

‘g’ green ‘--’ dashed line style

‘r’ red ‘-.’ dash-dot line style

‘c’ cyan ‘:’ dotted line style

‘m’ magenta ‘o’ circle marker

‘y’ yellow ‘s’ square marker

‘k’ black ‘D’ diamond marker

‘w’ white ‘ˆ’ triangle-up marker
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Examples of figures produced using matplotlib tFig. 1.3

The result of running this program is in the left panel of Fig. 1.3. A scenario that pops
up very often in practice involves plotting points with error bars:

dyerrs = [0.1*y for y in dys]

plt.errorbar(dxs, dys, dyerrs, fmt=‘b:D’, label=‘with errors’)

where we have called errorbar() to plot the points with error bars: the three positional
arguments here are the x values, the y values, and the errors in the y values. After that,
we pass in the format string using the keyword argument fmt and the label as usual. We
thereby produce the right panel of Fig. 1.3.

We could fine-tune almost all aspects of our plots, including basic things like line width,
font size, and so on. For example, we could get TeX-like equations by putting dollar signs
inside our string, e.g., ‘$x i$’ appears as xi. We could control which values are displayed
via xlim() and ylim(), we could employ a log-scale for one or both of the axes (using
xscale() or yscale()), and much more. The online documentation can help you go beyond
these basic features. Finally, we note that instead of providing matplotlib with Python lists
as input, you could be using NumPy arrays; this is the topic we now turn to.

1.6 NumPy Idioms

NumPy arrays are not used in chapters 2 and 3 so, if you are still new to Python, you should
focus on mastering Python lists: how to grow them, modify them, etc. Thus, you should
skip this section and the corresponding NumPy tutorial for now and come back when you
are about to start reading chapter 4. If you’re feeling brave you can keep reading, but know
that it is important to distinguish between Python lists and NumPy arrays.

In our list-based codes, we typically carry out the same operation over and over again, a
fixed number of times, e.g., contribs = [w*f(x) for w,x in zip(ws,xs)]; this list com-
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Table 1.2 Commonly used numpy data types

Type Variants

Integer int8, int16, int32, int64

Float float16, float32, float64, longdouble

Complex complex64, complex128, complex256

prehension uses the zip() built-in to step through two lists in parallel. Similarly, our Python
lists are almost always “homogeneous”, in the sense that they contain elements of only
one type. This raises the natural question: wouldn’t it make more sense to carry out such
tasks using a homogeneous, fixed-length container? This is precisely what the Numerical
Python (NumPy) array object does: as a result, it is fast and space-efficient. It also allows
us to avoid, for the most part, having to write loops: even in our listcomps, which are more
concise than standard loops, there is a need to explicitly step through each element one by
one. Numerical Python arrays often obviate such syntax, letting us carry out mathematical
operations on entire blocks of data in one step.9 The standard convention is to import numpy
with a shortened name: import numpy as np.
One-dimensional arrays One-dimensional (1d) arrays are direct replacements for lists.
The easiest way to make an array is via the array() function, which takes in a sequence and
returns an array containing the data that was passed in, e.g., ys = np.array(contribs);
the array() function is part of numpy, so we had to say np.array() to access it. There is
both an array() function and an array object involved here: the former created the latter.
Printing out an array, the commas are stripped, so you can focus on the numbers. If you
want to see how many elements are in the array ys, use the size attribute, via ys.size.
Remember: NumPy arrays are fixed-length, so the total number of elements cannot change.
Another very useful attribute arrays have is dtype, namely the data type of the elements;
table 1.2 collects several important data types. When creating an array, the data type can
also be explicitly provided, e.g., zs = np.array([5, 8], dtype=np.float32).

NumPy contains several handy functions that help you produce pre-populated arrays,
e.g., np.zeros(5), np.ones(4), or np.arange(6). The latter also works with float argu-
ments, however, as we will learn in the following chapter, this invites trouble. For exam-
ple, np.arange(1.5,1.75,0.05) and np.arange(1.5,1.8,0.05) behave quite differently.
Instead, use the linspace() function to get a specified number of evenly spaced elements
over a specified interval, e.g., np.linspace(1.5,1.75,6) or np.linspace(1.5,1.8,7).
There also exists a function called logspace(), which produces a logarithmically spaced
grid of points.

Indexing for arrays works as for lists, namely with square brackets, e.g., zs[2]. Slicing
appears, at first sight, to also be identical to how slicing of lists works. However, there is a
crucial difference, namely that array slices are views on the original array; let’s revisit our

9 From here onward, we will not keep referring to these new containers as numpy arrays: they’ll simply be called
arrays, the same way the core-Python lists are simply called lists.
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earlier example. For arrays, xs = np.array([1,2,3]), followed by ys = xs[1:], and then
ys[0] = 7 does affect xs. NumPy arrays are efficient, eliminating the need to copy data: of
course, one should always be mindful that different slices all refer to the same underlying
array. For the few cases where you do need a true copy, you can use np.copy(), e.g., ys =
np.copy(xs[1:]) followed by ys[0] = 7 does not affect xs. We could, just as well, copy
the entire array over, without impacting the original. In what follows, we frequently make
copies of arrays inside functions, in the spirit of impacting the external world only through
the return value of a function.

Another difference between lists and arrays has to with broadcasting. Qualitatively, this
means that NumPy often knows how to handle entities whose dimensionalities don’t quite
match. For example, xs = np.zeros(5) followed by xs[:] = 7, leads to an array of five
sevens. Remember, since array slices are views on the original array, xs[:] cannot be used
to create a copy of the array, but it can be used to broadcast one number onto many slots;
this syntax is known as an “everything slice”. Without it, xs = 7 leads to xs becoming an
integer (number) variable, not an array, which isn’t what we want.

The real strength of arrays is that they let you carry out operations such as xs + ys: if
these were lists, you would be concatenating them, but for arrays addition is interpreted as
an elementwise operation (i.e., each pair of elements is added together).10 If you wanted
to do the same thing with lists you would need a listcomp and zip(). This ability to carry
out such batch operations on all the elements of an array (or two) at once is often called
vectorization. You could also use other operations, e.g., to sum the results of pairwise
multiplication you simply say np.sum(xs*ys). This is simply evaluating the scalar product
of two vectors, in one short expression. Equally interesting is the ability NumPy has to
also combine an array with a scalar: this follows from the aforementioned broadcasting,
whereby NumPy knows how to interpret entities with different (but compatible) shapes.
For example, 2*xs doubles each array element; this is very different from what we saw in
the case of lists. You can think of what’s happening here as the value 2 being “stretched”
into an array with the same size as xs and then an elementwise multiplication taking place.
Needless to say, you could carry out several other operations with scalars, e.g., 1/xs. Such
combinations of broadcasting (whereby you can carry out operations between scalars and
arrays) and vectorization (whereby you write one expression but the calculation is carried
out for all elements) can be hard to grasp at first, but are very powerful (both expressive
and efficient) once you get used to them.

Another very useful function, np.where(), helps you find specific indices where a condi-
tion is met, e.g., np.where(2 == xs) returns a tuple of arrays, so we would be interested in
its 0th element. NumPy also contains several functions that look similar to corresponding
math functions, e.g., np.sqrt(); these are are designed to take in entire arrays so they are
almost always faster. NumPy also has functions that take in an array and return a scalar,
like the np.sum() we encountered above. Another very helpful function is np.argmax(),
which returns the index of the maximum value. You can also use NumPy’s functionality
to create your own functions that can handle arrays. For example, our earlier contribs =
[w*f(x) for w,x in zip(ws,xs)] can be condensed into the much cleaner contribs =

10 Conversely, if you wish to concatenate two arrays you cannot use addition; use np.concatenate().
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Table 1.3 Important attributes of numpy arrays

Attribute Description

dtype Data type of array elements

ndim Number of dimensions of array

shape Tuple with number of elements for each dimension

size Total number of elements in array

ws*fa(xs), where fa() is designed to take in arrays (so, e.g., it uses np.sqrt() instead of
math.sqrt()).

Two-dimensional arrays In core Python, matrices can be represented by lists of lists
which are, however, quite clunky (as you’ll further experience in the following section). In
Python a list-of-lists is introduced by, e.g., LL = [[11,12], [13,14], [15,16]]. Just like
for one-dimensional arrays, we can say A = np.array(LL) to produce a two-dimensional
(2d) array that contains the elements in LL. If you type print(A) the Python interpreter
knows how to strip the commas and split the output over three rows, making it easy to see
that it’s a two-dimensional entity, similar to a mathematical matrix.

Much of what we saw on creating one-dimensional arrays carries over to the two-
dimensional case. For example, A.size is 6: this is the total number of elements, including
both rows and columns. Another attribute is ndim, which tells us the dimensionality of the
array: A.ndim is 2 for our example. The number of dimensions can be thought of as the
number of distinct “axes” according to which we are listing elements. Incidentally, our ter-
minology may be confusing to those coming from a linear-algebra background. In linear
algebra, we say that a matrix A with m rows and n columns has “dimensions” m and n,
or sometimes that it has dimensions m × n. In contradistinction to this, the NumPy con-
vention is to refer to an array like A as having “dimension 2”, since it’s made up of rows
and columns (i.e., how many elements are in each row and in each column doesn’t matter).
There exists yet another attribute, shape, which returns a tuple containing the number of
elements in each dimension, e.g., A.shape is (3, 2). Table 1.3 collects the attributes we’ll
need. You can also create two-dimensional arrays by passing a tuple with the desired shape
to the appropriate function, e.g., np.zeros((3,2)) or np.ones((4,6)). Another function
helps you make a square identity matrix via, e.g., np.identity(4). All of these functions
produce floats, by default.

If you want to produce an array starting from a hand-rolled list, but wish to avoid the
Python list-of-lists syntax (with double square brackets, as well as several commas), you
can start from a one-dimensional list, which is then converted into a one-dimensional ar-
ray, which in its turn is re-shaped into a two-dimensional array via the reshape() function,
e.g., A = np.array([11,12,13,14,15,16]).reshape(3,2). Here’s another example: A =
np.arange(11,23).reshape(3,4). Observe how conveniently we’ve obviated the multi-
tude of square brackets and commas of LL.
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Examples of slicing a 3 × 4 two-dimensional array tFig. 1.4

It is now time to see one of the nicer features of two-dimensional arrays in NumPy:
the intuitive way to access elements. To access a specific element of LL, you have to say,
e.g., LL[2][1]. Recall that we are using Python 0-indexing, so the rows are numbered
0th, 1st, 2nd, and analogously for the columns. This double pair of brackets, separating the
numbers from each other, is quite cumbersome and also different from how matrix notation
is usually done, i.e., Ai j or Ai, j. Thus, it comes as a relief to see that NumPy array elements
can be indexed simply by using only one pair of square brackets and a comma-separated
pair of numbers, e.g., A[2, 1].

Slicing is equally intuitive, e.g., A[1,:] picks a specific row and uses an everything-
slice for the columns, and therefore leads to that entire row. Figure 1.4 shows a few other
examples: the highlighting shows the elements that are chosen by the slice shown at the
top of each matrix. The most interesting of these is probably A[:2,1:-1], which employs
the Python convention of using -1 to denote the last element, in order to slice the “mid-
dle” columns: 1:-1 avoids the first/0th column and the last column. We also show a few
examples that employ a stride when slicing. To summarize, when we use two numbers
to index (such as A[2,1]), we go from a two-dimensional array to a number. When we
use one number to index/slice (such as A[:,2]), we go from a two-dimensional array to
a one-dimensional array. When we use slices (such as A[::2,:]), we get collections of
rows, columns, individual elements, etc. We can combine what we just learned about slic-
ing two-dimensional arrays with what we already know about NumPy broadcasting. For
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example, A[:,:] = 7 overwrites the entire matrix and you could do something analogous
for selected rows, columns, etc.

Similarly to the one-dimensional case, vectorized operations for two-dimensional arrays
allow us to, say, add together (elementwise) two square matrices, A + B. On the other
hand, a simple multiplication is also carried out elementwise, i.e., each element in A is
multiplied by the corresponding element in B when saying A*B. This may be unexpected
behavior, if you were looking for a matrix multiplication. To repeat, array operations are

always carried out elementwise, so when you multiply two two-dimensional arrays you
get the Hadamard product, (A ⊙ B)i j = Ai jBi j. The matrix multiplication that you know
from linear algebra follows from a different formula, namely (AB)i j =

∑

k AikBk j, see
Eq. (C.10). From Python 3.5 and onward11 you can multiply two matrices using the @
infix operator, i.e., A@B. In older versions you had to say np.dot(A,B), which was not as
intuitive as one would have liked. There are many other operations we could carry out,
e.g., we can multiply together a two-dimensional and a one-dimensional matrix, A@xs or
xs@A. It’s easy to come up with more convoluted examples; here’s another one: xs@A@ys is
much easier to write (and read) than np.dot(xs,np.dot(A,ys)). Problem 1.8 studies the
dot product of two one-dimensional arrays in detail: the main takeaway is that we compute
it via xs@ys.12 In a math course, to take the dot product (also known as the inner product)
of two vectors you had to first take the transpose of the first vector (to have the dimensions
match); conveniently, NumPy takes care of all of that for us, allowing us to simply say
xs@ys.13 Finally, broadcasting with two-dimensional arrays works just as you’d expect,
e.g., A/2 halves all the matrix elements.

NumPy contains several other important functions, with self-explanatory names. Since
we just mentioned the (potential) need to take the transpose: NumPy has a function called
transpose(); we prefer to access the transpose as an array attribute, i.e., A.T. You may
recall our singing the praises of the for loop in Python; well, another handy idiom involves
iterating over rows via for row in A: or over columns via for column in A.T:; marvel
at how expressive both these options are. Iterating over columns will come in very handy
in section 4.4.4 when we will be handling eigenvectors of a matrix.

In linear algebra the product of an n × 1 column vector and a 1 × n row vector produces
an n × n matrix. If you try to do this “naively” in NumPy using 1d arrays, you will be
disappointed: both xs@ys and xs@(ys.T) give a number (the same one). Inspect the shape
attribute of ys and of ys.T to see what’s going on. What you really need is the function
np.outer(), which computes the outer product, e.g., np.outer(xs, ys).

All the NumPy functions we mentioned earlier, such as np.sqrt(), also work on two-
dimensional arrays, and the same holds for subtraction, powers, etc. Intriguingly, func-
tions like np.sum(), np.amin(), and np.amax() also take in an (optional) argument axis:
if you set axis = 0 you operate across rows (column-wise) and axis = 1 operates across
columns (row-wise). Similarly, we can create our own user-defined functions that know
how to handle an entire two-dimensional array/matrix at once. There are also several
handy functions that are intuitively easier to grasp for the case of two-dimensional ar-

11 Python 3.5 was already 8 years old when the present textbook came out.
12 Make sure not to get confused by the fact that A@B produces a matrix but xs@ys produces a number.
13 Similarly, when multiplying a vector by a matrix, xs@A is just as simple to write as A@xs.
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rays, e.g., np.diag() to get the diagonal elements, or np.tril() to get the lower triangle
of an array and np.triu() to get the upper triangle. In chapter 8 we will also need to use
np.meshgrid(), which takes in two coordinate vectors and returns coordinate matrices.
Another helpful function is np.fill diagonal() which allows you to efficiently update
the diagonal of a matrix you’ve already created. Finally, np.trace() often comes in handy.

The default storage-format for a NumPy array in memory is row major: as a beginner,
you shouldn’t worry about this too much, but it means that rows are stored in order, one
after the other. This is the same format used by the C programming language. If you wish
to use, instead, Fortran’s column-major format, presumably in order to interoperate with
code in that language, you simply pass in an appropriate keyword argument when creating
the array. If you structure your code in the “natural” way, i.e., first looping through rows
and then through columns, all should be well, so you can ignore this paragraph.

1.7 Project: Visualizing Electric Fields

Each chapter concludes with a physical application of techniques introduced up to that
point. Since this is only the first chapter, we haven’t covered any numerical methods yet.
Even so, we can already start to look at some physics that is not so accessible without a
computer by using matplotlib for more than just basic plotting. We will visualize a vector
field, i.e., draw field lines for the electric field produced by several point charges.

1.7.1 Electric Field of a Distribution of Point Charges

Very briefly, let us recall Coulomb’s law: the force on a test charge Q located at point P (at
the position r), coming from a single point charge q0 located at r0 is given by:

F0 = k
q0Q

(r − r0)2

r − r0

|r − r0|
(1.1)

where Coulomb’s constant is k = 1/(4πǫ0) in SI units (and ǫ0 is the permittivity of free
space). The force is proportional to the product of the two charges, inversely proportional
to the square of the distance between the two charges, and points along the line from charge
q0 to charge Q. The electric field is then the ratio of the force F0 with the test charge Q in
the limit where the magnitude of the test charge goes to zero. In practice, this gives us:

E0(r) = kq0
r − r0

|r − r0|3
(1.2)

where we cancelled out the Q and also took the opportunity to combine the two denomi-
nators. This is the electric field at the location r due to the point charge q0 at r0.

If we were faced with more than one point charge, we could apply the principle of

superposition: the total force on Q is made up of the vector sum of the individual forces
acting on Q. As a result, if we were dealing with the n point charges q0, q1, . . . , qn−1 located
at r0, r1, . . . , rn−1 (respectively) then the situation would be that shown in Fig. 1.5. Our
figure is in two dimensions for ease of viewing, but the formalism applies equally well to
three dimensions. The total electric field at the location r is:
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tFig. 1.5 Physical configuration made up of n point charges

E(r) =
n−1∑

i=0

Ei(r) =
n−1∑

i=0

kqi

r − ri

|r − ri|3
(1.3)

namely, a sum of the individual electric field contributions, Ei(r). Note that you can con-
sider this total electric field at any point in space, r. Note, also, that the electric field is a
vector quantity: at any point in space this E has a magnitude and a direction. One way of
visualizing vector fields consists of drawing field lines, namely imaginary curves that help
us keep track of the direction of the field. More specifically, the tangent of a field line at a
given point gives us the direction of the electric field at that point. Field lines do not cross;
they start at positive charges (“sources”) and end at negative charges (“sinks”).

1.7.2 Plotting Field Lines

We will plot the electric field lines in Python; while more sophisticated ways of visual-
izing a vector field exist (e.g., line integral convolution), what we describe below should
be enough to give you a qualitative feel for things. While plotting functions (or even li-
braries) tend to change much faster than other aspects of the programming infrastructure,
the principles discussed apply no matter what the specific implementation looks like.

We are faced with two tasks: first, we need to produce the electric field (vector) at several
points near the charges as per Eq. (1.3) and, second, we need to plot the field lines in such a
way that we can physically interpret what is happening. As in the previous code, we make
a Python function for each task. For simplicity, we start from a problem with only two
point charges (of equal magnitude and opposite sign). Also, we restrict ourselves to two
dimensions (the Cartesian x and y).

Code 1.3 is a Python implementation, where Coulomb’s constant is divided out for sim-
plicity. We start by importing numpy and matplotlib, since the heavy lifting will be done
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vectorfield.py Code 1.3

import numpy as np

import matplotlib.pyplot as plt

from math import sqrt

from copy import deepcopy

def makefield(xs, ys):

qtopos = {1: (-1,0), -1: (1,0)}
n = len(xs)

Exs = [[0. for k in range(n)] for j in range(n)]

Eys = deepcopy(Exs)

for j,x in enumerate(xs):

for k,y in enumerate(ys):

for q,pos in qtopos.items():

posx, posy = pos

R = sqrt((x - posx)**2 + (y - posy)**2)

Exs[k][j] += q*(x - posx)/R**3

Eys[k][j] += q*(y - posy)/R**3

return Exs, Eys

def plotfield(boxl,n):

xs = [-boxl + i*2*boxl/(n-1) for i in range(n)]

ys = xs[:]

Exs, Eys = makefield(xs, ys)

xs=np.array(xs); ys=np.array(ys)

Exs=np.array(Exs); Eys=np.array(Eys)

plt.streamplot(xs, ys, Exs, Eys, density=1.5, color=‘m’)

plt.xlabel(‘$x$’)

plt.ylabel(‘$y$’)

plt.show()

plotfield(2.,20)

by the function streamplot(), which expects NumPy arrays as input. We also import the
square root and the deepcopy() function, which can create a distinct list-of-lists.

The function makefield() takes in two lists, xs and ys, corresponding to the coordinates
at which we wish to evaluate the electric field (x and y together make up r). We also need
some way of storing the ri at which the point charges are located. We have opted to store
these in a dictionary, which maps from charge qi to position ri—take some time to consider
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alternative (“manual”) implementations. For each position r we need to evaluate E(r): in
two dimensions, this is made up of Ex(r) and Ey(r), namely the two Cartesian components
of the total electric field. Focusing on only one of these for the moment, say Ex(r), we
realize that we need to store its value for any possible r, i.e., for any possible x and y

values. We decide to use a list-of-lists, produced by a nested list comprehension. We then
create another list-of-lists, for Ey(r). We need to map out (i.e., store) the value of the x and
y components of the total electric field, at all the desired values of the vector r, namely,
on a two-dimensional grid made up of xs and ys. This entails computing the electric field
(contribution from a given point charge qi) at all possible y’s for a given x, and then iterating
over all possible x’s. We also need to iterate over our point charges qi and their locations
ri (i.e., the different terms in the sum of Eq. (1.3)); we do this by saying for q, pos in
qtopos.items(): at which point we unpack pos into posx and posy.

We thus end up with three nested loops: one over possible x values, one over possible y

values, and one over i. All three of these are written idiomatically, employing items() and
enumerate(). The latter was used to ensure that we won’t only have access to the x and
the y values, which are needed for the right-hand side of Eq. (1.3), but also to two indices
( j and k) that will help us store the electric-field components in the appropriate list-of-lists
entry, e.g., Exs[k][j].14 This storing is carried out after defining a helper variable to keep
track of the vector magnitude that appears in the denominator in Eq. (1.3). You should
think about the += a little bit: since the left-hand side is for given j and k, the summation
is carried out only when we iterate over the qi (and ri). Incidentally, our idiomatic iteration
over the point charges means that we don’t even need an explicit i index.

Our second function, plotfield(), is where we build our two-dimensional grid for the
xs and ys.15 We take in as parameters the length L and the number of points n we wish
to use in each dimension and create our xs using a list comprehension; all we’re doing is
picking x’s from −L to L. We then create a copy of xs and name it ys. After this, we call our
very own makefield() to produce the two lists-of-lists containing Ex(r) and Ey(r) for many
different choices of r. The core of the present function consists of a call to matplotlib’s
function streamplot(); this expects NumPy arrays instead of Python lists, so we convert
everything over. If you skipped section 1.6, as you were instructed to do, you should relax:
this call to np.array() is all you need to know for now (and until chapter 4). We also pass
in to streamplot() two (optional) arguments, to ensure that we have a larger density of
field lines and to choose the color. Most importantly, streamplot() knows how to take
in Exs and Eys and output a plot containing curves with arrows, exactly like what we are
trying to do. We also introduce x and y labels, using dollar signs to make the symbols look
nicer.

The result of running this code is shown in the left panel of Fig. 1.6. Despite the fact that
the charges are not represented by a symbol in this plot, you can easily tell that you are
dealing with a positive charge on the left and a negative charge on the right. At this point,
we realize that a proper graphic representation of field lines also has another feature: the
density of field lines should correspond to the strength of the field (i.e., its magnitude). Our

14 The confusing index order follows streamplot()’s documentation (see also page 630).
15 This would all be much easier with two-dimensional arrays, but you skipped that section.



Problems 25

Visualizing the electric fields resulting from two and four point charges tFig. 1.6

figure has discarded that information: the density argument we passed in had a constant
value. This is a limitation of the streamplot() function.

There is a way to represent both the direction (as we already did) and the strength of the
field using streamplot(), using the optional linewidth parameter. The argument passed
in to linewidth can be a two-dimensional NumPy array, which keeps track of the strength
at each point on the grid; it’s probably better to pass in, instead, the logarithm of the mag-
nitude at each point (possibly also using an offset). We show the result of extending our
code to also include line width in the right panel of Fig. 1.6, where a stronger field is shown
using a thicker line. This clearly shows that the field strength is larger near the charges (and
in between them) than it is as you go far away from them. To make things interesting, this
shows a different situation than the previous plot did: we are now dealing with four charges
(two positive and two negative, all of equal magnitude). We also took the opportunity to
employ symbols representing the position of the point charges themselves.

Problems

1.1 Study the following program, meant to evaluate the factorial of a positive integer:

def fact(n):

return 1 if n==0 else n*fact(n-1)

print(fact(10))

This uses Python’s version of the ternary operator. Crucially, it also uses recursion:
we are writing the solution to our problem in terms of the solution of a smaller ver-
sion of the same problem. The function then calls itself repeatedly. At some point
we reach the base case, where the answer can be directly given. Recursion is helpful
when the problem you are solving is amenable to a “divide-and-conquer” approach,
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as we will see in section 6.4.3.3. For the example above, recursion is quite unneces-
sary: write a Python function that evaluates the factorial iteratively.

1.2 Produce a function, descr(), which describes properties of the function and argu-
ment value that are passed in to it. Define it using def descr(f, x):.

(a) Write the function body; this should separately print out f, x, and f(x). Now call
it repeatedly, for a number of user-defined and Python standard library functions.
Notice that when you print out f the output is not human friendly.

(b) Pass in as the first argument not the function but a string containing the function
name. You now need a mechanism that converts the string you passed in to a
function (since you still need to print out f(x)). Knowing the list of possibilities,
create a dictionary that uses strings as keys and functions as values.

(c) Modify the previous program so that the first argument that is passed in to
descr() is a function, not a string. To produce the same output, you must also
modify the body of the function since your dictionary will now be different.

1.3 Iterate through a list xs in reverse, printing out both the (decreasing) index and each
element itself. Come up with both Pythonic and unPythonic solutions.

1.4 Imagine you have access to two Python functions, fa() and fb(), with one parameter
each.16 You now wish to apply the function der() that was defined in section 1.3.4
to a linear combination of fa() and fb(), namely a*fa(x) + b*fb(x).

(a) Your initial reaction might be to define a third function, fc(); but what if you
don’t actually know the values of the a and b coefficients until you’re already
inside some other Python function, say, caller()? Based on what we’ve intro-
duced in the main text, one idea is to define fc() to take three parameters (x, a,
and b). This would then not interoperate with der(), which expects as its first
argument a function taking in a single parameter. Try this.

(b) Your next instinct may be to modify the definition of der(): sometimes that’s
OK, but often it’s just asking for trouble. What you’re really after is a throwaway
function that knows about the values of variables defined in the same scope. Do
so via an anonymous function (via Python’s lambda keyword) right where you
need it. Look up the documentation and implement this solution.

(c) You may next be tempted to actually name your lambda function and then use it
in der(). Try this. Unfortunately, this is explicitly discouraged in PEP 8.17

(d) Instead, define a nested function func() inside caller(), the latter calling der().
(e) Use a closure: func() is nested inside caller(), the latter returning func();

recall that in Python you use the function name without the parentheses.

1.5 We will now elaborate on the for-else idiom introduced in forelse.py.

(a) First, we realize that our look() function, while helpful from a pedagogical per-
spective, is somewhat pointless: you didn’t really need to write a function to

16 The same idea applies to the two functions sumofints() and cos() that we encountered in the main text.
17 It’s easy to see why: if you feel the need to name your. . . anonymous function, then perhaps you shouldn’t be

using an anonymous function in the first place.
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check for membership in a list. Directly use Python’s in keyword to test whether
or not a given string is to be found in a given list of strings.

(b) Now make look() slightly more useful by having it return not only the value
(i.e., the string) but also the index where that value was found.

(c) Experiment with making look() shorter, by avoiding the for-else idiom alto-
gether. First, do this the simplest way, i.e., by providing the default option val =
None before you enter the loop. Second, avoid using break altogether by opting
for two exit points in your function, i.e., two separate return statements.18

(d) The for-else idiom is actually better than the alternatives when exceptions (which
we don’t discuss elsewhere) are involved. Check the documentation to see how
you can raise a ValueError in the else block of your for loop.

1.6 The following is implicitly defining a recurrence relation:

f0,f1 = 0,1

for i in range(n-1):

f0,f1 = f1,f0+2*f1

We will now produce increasingly fancier versions of this code snippet.

(a) Define a function that takes in the cardinal number n and returns the correspond-
ing latest value following the above recurrence relation. In other words, for n = 0
you should get 0, for n = 1 you should get 1, for n = 2 you should get 2, for
n = 3 you should get 5, and so on.

(b) Define a recursive function taking in the cardinal number n and returning the
corresponding latest value. The interface of the function will be identical to that
of the previous part (the implementation will be different).

(c) Define a similar function that is more efficient. Outside the function, define a
dictionary ntoval = {0:0, 1:1}. Inside the function, you should check to see if
the n that was passed in exists as a key in ntoval: if it does, then simply return
the corresponding value; if it doesn’t, then carry out the necessary computation
and augment the dictionary with a new key-value pair.

(d) If you take separation of concerns seriously, you may be feeling uncomfortable
about accessing and modifying ntoval inside your function (since it is not being
passed in as a parameter). Write a new function that looks like the one in the
previous part, but takes in two parameters: n and ntoval.

(e) While part (d) respects separation of concerns, unfortunately it is not actually
efficient. Write a similar function which uses a mutable default parameter value,
i.e., it is defined by saying def f5(n, ntoval = {0:0, 1:1}):.

Test all five functions with n = 8: each of them should return 408. The functions in
parts (c) and (e) should be efficient in the sense that if you now call them with, say,
n = 6 they won’t need to recompute the answer since they have already done so.

18 Elsewhere in this book we always employ a single exit point, to make our codes easier to reason about.
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1.7 This problem studies the quantity (1 + 1/n)n where n = 101, 102, . . . , 107. Print out
a nicely formatted table where the three columns are: (a) the value of n, (b) the
quantity of interest computed with single-precision floating-point numbers, (c) the
same quantity but now using doubles. You will need to use NumPy to get the singles
to work. Keep in mind that the numbers shown in the second and third columns
should be different (if they aren’t, you’re doing it wrong).

1.8 Investigate the relative efficiency of multiplying two one-dimensional NumPy arrays,
as and bs; these should be large and with non-constant content. Do this in four dis-
tinct ways: (a) sum(as*bs), (b) np.sum(as*bs), (c) np.dot(as,bs), and (d) as@bs.
You may wish to use the default timer() function from the timeit module. To
produce meaningful timing results, repeat such calculations thousands of times (at
least).

1.9 Take two matrices, A and B, which are n × m′ and m′ × m, respectively. Implement
matrix multiplication, without relying on numpy’s @ or dot() as applied to matrices.

(a) Write the most obvious implementation you can think of, which takes in A and
B and returns a new C. Use three loops.

(b) Write a function without the third loop by applying @ to vectors.
(c) Write a third function that takes in A and B and returns C, but this time these are

lists-of-lists, instead of arrays.
(d) Test the above three functions by employing specific examples for A and B, say

3 × 4 and 4 × 2, respectively.

1.10 Write your own functions that implement functionality similar to: (a) np.argmax(),
(b) np.where(), and (c) np.all(), where the input will be a one-dimensional NumPy
array. Note that np.where() is equivalent to np.nonzero() for this case.

1.11 Rewrite code 5.9, i.e., action.py, such that:

(a) The two lines involving arr[1:-1] now use an explicit loop and index.
(b) The calls to np.fill diagonal() are replaced by explicit loop(s) and indices.

Compare the expressiveness (and total line-count) in your code vs that in action.py.
1.12 [P] We now help you produce the right panel of Fig. 1.6:

(a) First try to produce the curves themselves. You’ll need to appropriately place two
positive and two negative charges and plot the resulting field lines. (Remember
that dictionaries don’t let you use duplicate keys, for good reason.)

(b) Introduce line width, by producing a list of lists containing the logarithm of the
square root of the sum of the squares of the components of the electric field at
that point, i.e., log

[ √

(Ex(r))2 + (Ey(r))2
]

at each r.
(c) Figure out how to add circles/dots (of color corresponding to the charge sign).
(d) Re-do this plot for the case of four positive (and equal) charges.

1.13 [P] Problem 1.12 was made easier by the fact that you knew what the answer had to
look like. You now need to produce a plot for the field lines (including line width) for
the case of four alternating charges on a line. Place all four charges on the x axis, and
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give their xi positions the values −1, −0.5, 0.5, and 1. The leftmost charge should be
positive and the next one negative, and so on (they are all of equal magnitude).

1.14 [P] Study methane isotherms with the van der Waals equation of state, Eq. (5.2).

(a) Plot 40 isotherms (i.e., constant-T curves, showing P vs v), where T goes from
162 to 210 K, v goes from 1.5b to 9b and the curves look smooth.

(b) If you solved the previous part correctly, you should barely be able to tell the
different curves apart. Beautify your plot by employing an automated color map.

1.15 [P] We address the problem of wave interference, by repurposing vectorfield.py.
Work in two dimensions (just like in section 1.7) and assume that the combined effect
of two objects dropped in a water basin can be modelled by:

W(r) = A sin (k|r − r0|) + A sin (k|r − r1|) (1.4)

You can think of this as an updated version of Eq. (1.3), where we are dealing with
the linear addition of sinusoidal waves, instead of electric-field contributions. For
simplicity, take A = 1, k = 2π/0.3, r0 = (−1 0)T , and r1 = (1 0)T . Since we are now
faced with a density plot, you should employ (not streamplot() but) imshow() from
Matplotlib; in each of x and y your plot should extend from −4 to +4.

1.16 [P] We will now examine the simple (yet non-linear) pendulum on the phase plane.
The total energy of a pendulum of mass m and length l is:

E =
1
2

ml2θ̇2 + mgl (1 − cos θ) (1.5)

where θ is the angle from the vertical. Your task is to create a plot of θ̇ vs θ, where
you will show the contours of constant E using Matplotlib’s contour(); feel free
to repurpose vectorfield.py. It’s best to vary θ from −2π to +2π; you may also
have to play around with the levels parameter; take m = 1 kg, l = 1 m, and g =

9.8 m/s2. Physically interpret the different regions you encounter; roughly speaking,
you should be seeing open curves19 (above and below) and eye-shaped areas (near
the middle). The boundary between the two regions is known as a separatrix.

1.17 [P] We will now discuss how to visualize binary stars. While stars in well-detached
binaries will have spherical shapes, stars in close binaries will experience tidal dis-
tortions and will have nearly ellipsoidal shapes. The Roche model was introduced
to account for either possibility: it studies the total gravitational potential for two
masses that are in circular orbit (about their barycenter). Switching to a coordinate
frame that eliminates the circular orbit of the two masses (a co-rotating/“synodic”
frame), the (dimensionless) Roche potential at any point (x, y, z) can be written as:

Φ =
m0

√

(x − m1)2 + y2 + z2
+

m1
√

(x + m0)2 + y2 + z2
+

x2 + y2

2
(1.6)

The (dimensionless) masses can be written in terms of the mass ratio q = m0/m1 ≤ 1
(m0 = q/(1 + q) and m1 = 1/(1 + q)). We focus on the orbital plane (z = 0).

19 The open curves have constant amplitude as θ is increased. We will see a different scenario in problem 8.43.
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(a) Repurpose vectorfield.py, using Matplotlib’s contour(), to visualize the curves
of constant gravitational potential for the case of q = 0.4. Pass in an appropri-
ate levels list to make your figure look good. (Note that a star’s surface is an
equipotential surface.) The characteristic∞ shape you find in the middle is made
up of two Roche lobes; a Roche lobe tells you the maximum volume that a star
in a binary can occupy without losing gravitational control of its constituents.

(b) Another way you can visualize the Roche potential of Eq. (1.6) is via a sur-
face plot. You can create such a figure via Matplotlib’s plot surface(). Go
over its documentation, which will explain that you will first need to pass in
projection=‘3d’ when creating your axes. Make sure you can easily identify
the different ridges and wells corresponding to the two stars as well as the area
around them (e.g., via the use of set zlim()).

1.18 [P] The problem of a single particle in a one-dimensional lattice is a staple of intro-
ductory courses on solid-state physics; we will see how to tackle it for the case of
a general potential in problem 4.56 (after learning about linear-algebra techniques).
Here, we address a specific case, that of the Kronig–Penney model, involving an in-
finite periodic array of potential barriers (or, viewed from another perspective, of
wells) of rectangular shape. Writing down the wave function within the barrier (of
width L − M) and separately that within the well (of width M), and then imposing
continuity of the wave function and of its derivative, one arrives at the condition:

cos(KL) = cos(k0M) cosh[k1(L − M)] +
k2

1 − k2
0

2k0k1
sin(k0M) sinh[k1(L − M)]

k0 =
√

2mE/~2, k1 =
√

2m(V0 − E)/~2

(1.7)

V0 is the barrier height, E the energy, and K the wave number in Bloch’s theorem:

ψ(x + L) = eiKLψ(x) (1.8)

This wave number obeys −π < KL < π. Equation (1.7) implicitly provides us with
the energy-dispersion relation, i.e., E(K). However, we don’t know how to solve
complicated equations yet (we tackle this challenge in problem 5.45, after learning
about root-finding). Our approach here will be to: hand-pick a value of E, compute
the right-hand side of the equation, and check to see if its absolute value is larger than
unity; if so, then there is no solution for K. If, however, the absolute value of the right-
hand side is smaller than unity, then we can find the value of K by taking the inverse
cosine and dividing by L. (Since the cosine is an even function, you need to consider
both K and −K as equally acceptable solutions.) Take L = 1, M = 0.4, ~2/m = 1 and
study five thousand E values from (roughly) 0 to 110. Plot E vs K for the two cases
of: (a) V0 = 0 and (b) V0 = 35. Do yourself a favor and employ the special functions
contained in the complex-number-aware module cmath (i.e., not in math). Your plot
for V0 = 0 should be a parabola, which corresponds to a plane-wave dispersion; of
course, your results will lie in −π < KL < π, so you will find a “folded” version of
the parabola. Your plot for V0 = 35 should exhibit band gaps, resulting from the fact
that there are energy regions for which no solution exists.
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Numbers

Should we not be concerned that this fear of erring is already the error itself?
Georg Wilhelm Friedrich Hegel

2.1 Motivation

We don’t really have to provide a motivation regarding the importance of numbers in
physics: both experimental measurements and theoretical calculations produce specific
numbers. Preferably, one also estimates the uncertainty associated with these values.

We have, semi-arbitrarily, chosen to discuss a staple of undergrad physics education, the
photoelectric effect. This arises when a metal surface is illuminated with electromagnetic
radiation of a given frequency ν and electrons come out. In 1905 Einstein posited that
quantization is a feature of the radiation itself. Thus, a light quantum (a photon) gives up
its energy (hν, where h is now known as Planck’s constant) to an electron, which has to
break free of the material, coming out with a kinetic energy of:

T = hν −W (2.1)

where W is the work function that relates to the specific material. The maximum kinetic
energy T of the photoelectrons could be extracted from the potential energy of the electric
field needed to stop them, via T = eVs, where Vs is the stopping potential and e is the
charge of the electron. Together, these two relations give us:

eVs = hν −W (2.2)

Thus, if one produces data relating Vs with ν, the slope would give us h/e.
In 1916, R. A. Millikan published a paper [107] titled “A direct photoelectric determi-

nation of Planck’s h”, where he did precisely that. Millikan’s device included a remotely
controlled knife that would shave a thin surface off the metal; this led to considerably en-
hanced photocurrents. It’s easy to see why Millikan described his entire experimental setup
as a “machine shop in vacuo”. Results from this paper are shown in Fig. 2.1. Having ex-
tracted the slope h/e, the author then proceeded to compute h by “inserting my value of
e”.1 The value Millikan extracted for Planck’s constant was:

h = 6.56 × 10−27erg s (2.3)

In his discussion of Fig. 2.1, Millikan stated that “it is a conservative estimate to place

1 Recall that Millikan had measured e very accurately with his oil-drop experiment in 1913.

31
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tFig. 2.1 Millikan’s data on the photoelectric effect. Reprinted figure with permission from R. A.

Millikan, Phys. Rev. 7, 355 (1916), Copyright 1916 by the American Physical Society.

the maximum uncertainty in the slope at about 1 in 200 or 0.5 per cent”.Translating this
to the above units, we find an uncertainty estimate of 0.03 × 10−27erg s. Richardson and
Compton’s earlier experimental results [122] had a slope uncertainty that was larger than
60 percent. The above extraction is to be compared with the modern determination of
h = 6.626070040(81)× 10−27erg s. Overall, Millikan’s result was a huge improvement on
earlier works and was important in the acceptance of Einstein’s work and of light quanta.2

For the sake of completeness, we note that the aforementioned error estimate follows
from assuming a linear relationship. It would have probably been best to start from Mil-
likan’s earlier comment that “the maximum possible error in locating any of the intercepts
is say two hundredths of a volt” and then do a least-squares fit, as explained in prob-
lem 6.65. This isolated example already serves to highlight that even individual experi-
mental measurements have associated uncertainties; nowadays, experimental data points
are always given along with a corresponding error bar. Instead of multiplying the exam-
ples where experiment and theory interact fruitfully, we now turn to the main theme of this
chapter, which is the presence of errors when storing and computing numbers.

2.2 Errors

In this text we use the word accuracy to describe the match of a value with the (possibly
unknown) true value. On the other hand, we use the word precision to denote how many

2 Intriguingly, Millikan himself was far from being convinced that quantum theory was relevant here, speaking
of “the bold, not to say the reckless, hypothesis of an electro-magnetic light corpuscle”.
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digits we can use in a mathematical operation, whether these digits are correct or not. An
inaccurate result arises when we have an error. This can happen for a variety of reasons,
only one of which is limited precision.3 Excluding “human error” and measurement un-
certainty in the input data, there are typically two types of errors we have to deal with in
numerical computing: approximation error and rounding error. In more detail:

• Approximation errors These are sometimes known as truncation errors. Here’s an ex-
ample. You are trying to approximate the exponential, ex, using its Taylor series:

y =

nmax∑

n=0

xn

n!
(2.4)

Obviously, we are limiting the sum to the terms up to nmax (i.e., we are including the
terms labelled 0, 1, . . . , nmax and dropping the terms from nmax + 1 to ∞). As a result,
it’s fairly obvious that the value of y for a given x may depend on nmax. In principle, at
the mere cost of running one’s calculation longer, one can get a better answer.4

• Roundoff errors These are also known as rounding errors. This type of error appears
every time a calculation is carried out using floating-point numbers: since these don’t
have infinite precision, some information is lost. Here’s an example: using real numbers,
it is easy to see that (

√
2)2 − 2 = 0. However, when carrying out the same operation in

Python we get a non-zero answer:

>>> (sqrt(2))**2 - 2

4.440892098500626e-16

This is because
√

2 cannot be evaluated with infinitely many digits on the computer.
Thus, the (slightly inaccurate) result for sqrt(2) is then used to carry out a second
calculation, namely the squaring. Finally, the subtraction is yet another mathematical
operation that can lead to rounding error.5 Often, roundoff errors do not go away even if
you run the calculation longer.

In the present chapter we will talk quite a bit about roundoff errors. In the next chapter
we talk about the combined effect of approximation and roundoff errors. The chapters after
that typically focus only on approximation errors, i.e., on estimating how well a specific
method performs in principle. Before we get that far, however, let us first try to introduce
some basic concepts, without limiting ourselves to any one kind of error.

2.2.1 Absolute and Relative Error

Assume we are studying a quantity whose exact value is x. If x̃ is an approximate value for
it, then we can define the absolute error as follows:6

3 The value 1.23456789123456 is precisely determined yet, viewed as an approximation of π, quite inaccurate.
4 But keep reading, since roundoff error becomes important here, too.
5 Again, this is discussed much more thoroughly in the rest of the chapter.
6 Other authors employ another definition of the absolute error, which differs by a minus sign (see also page 459).
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∆x = x̃ − x (2.5)

We don’t specify at this point the source of this absolute error: it could be uncertainties in
the input data, an inaccuracy introduced by our imperfect earlier calculation, or the result
of roundoff error (possibly accumulated over several computations). For example:

x0 = 1.000, x̃0 = 0.999 (2.6)

corresponds to an absolute error of∆x0 = −10−3. This also allows us to see that the absolute
error, as defined, can be either positive or negative. If you need it to be positive (say, in
order to take its logarithm), simply take the absolute value.

We are usually interested in defining an error bound of the form:

|∆x| ≤ ǫ (2.7)

or, equivalently:

|x̃ − x| ≤ ǫ (2.8)

where we hope that ǫ is “small”. Having access to such an error bound means that we can
state something very specific regarding the (unknown) exact value x:

x̃ − ǫ ≤ x ≤ x̃ + ǫ (2.9)

This means that, even though we don’t know the exact value x, we do know that it could
be at most x̃ + ǫ and at the least x̃ − ǫ. Keep in mind that if you know the actual absolute
error, as in our ∆x0 = −10−3 example above, then, from Eq. (2.5), you know that:

x = x̃ − ∆x (2.10)

and there’s no need for inequalities. The inequalities come into the picture when you don’t
know the actual value of the absolute error and only know a bound for the magnitude of
the error. The error bound notation |∆x| ≤ ǫ is sometimes rewritten in the form x = x̃ ± ǫ,
though you should be careful: this employs our definition of maximal error (i.e., the worst-
case scenario) as above, not the usual standard error (i.e., the statistical concept you may
have encountered in a lab course).

Of course, even at this early stage, one should think about exactly what we mean by
“small”. Our earlier case of ∆x0 = −10−3 probably fits the bill. But what about:

x1 = 1 000 000 000.0, x̃1 = 999 999 999.0 (2.11)

which corresponds to an absolute error of ∆x1 = −1? Obviously, this absolute error is
larger (in magnitude) than ∆x0 = −10−3. On the other hand, it’s not too far-fetched to
say that there’s something wrong with this comparison: x1 is much larger (in magnitude)
than x0, so even though our approximate value x̃1 is off by a unit, it “feels” closer to the
corresponding exact value than x̃0 was.
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This is resolved by introducing a new definition. As before, we are interested in a quan-
tity whose exact value is x and an approximate value for it is x̃. Assuming x , 0, we can
define the relative error as follows:

δx =
∆x

x
=

x̃ − x

x
(2.12)

Obviously, this is simply the absolute error ∆x divided by the exact value x. As before, we
are not specifying the source of this relative error (input-data uncertainties, roundoff, etc.).
Another way to express the relative error is:

x̃ = x(1 + δx) (2.13)

You should convince yourself that this directly follows from Eq. (2.12). We will use this
formulation repeatedly in what follows.7

Let’s apply our definition of the relative error to the earlier examples:

δx0 =
0.999 − 1.000

1.000
= −10−3, δx1 =

999 999 999.0− 1 000 000 000.0
1 000 000 000.0

= −10−9

(2.14)
The definition of the relative error is consistent with our intuition: x̃1 is, indeed, a much
better estimate of x1 than x̃0 is of x0. Quite frequently, the relative error is given as a
percentage: δx0 is a relative error of −0.1% whereas δx1 is a relative error of −10−7%.

In physics the values of an observable can vary by several orders of magnitude (ac-
cording to density, temperature, and so on), so it is wise to employ the scale-independent
concept of the relative error, when possible.8 Just like for the case of the absolute error, we
can also introduce a bound for the relative error:

|δx| =
∣
∣
∣
∣
∣

∆x

x

∣
∣
∣
∣
∣
≤ ǫ (2.15)

where now the phrase “ǫ is small” is unambiguous (since it doesn’t depend on whether or
not x is large). Finally, we note that the definiton of the relative error in Eq. (2.12) involves
x in the denominator. If we have access to the exact value (as in our examples with x0 and
x1 above), all is well. However, if we don’t actually know the exact value, it is sometimes
more convenient to use, instead, the approximate value x̃ in the denominator. Problem 2.2
discusses this alternative definition and its connection with what we discussed above.

2.2.2 Error Propagation

So far, we have examined the concepts of the absolute error and of the relative error (as well
as the corresponding error bounds); no details were provided regarding the mathematical

7 You can also expand the parentheses and identify xδx = ∆x, to see that this leads to x̃ = x + ∆x.
8 Once again, if you need the relative error to be positive, simply take the absolute value.
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operations carried out using these values. We will now discuss the elementary operations
(addition, subtraction, multiplication, division), to give you some insights into combining
approximate values together. One of our goals is to see what happens when we put together
the error bounds for two numbers a and b to produce an error bound for a third number x,
i.e., we will study error propagation. We will also study more general scenarios, in which
one is faced with more complicated mathematical operations (and possibly more than two
numbers being operated on). In what follows, it’s important to keep in mind that these are
maximal errors, so our results will be different (and likely more pessimistic) than what you
may have encountered in a standard course on experimental measurements.9

2.2.2.1 Addition or Subtraction

We are faced with two real numbers a and b, and wish to take their difference:

x = a − b (2.16)

As usual, we don’t know the exact values, but only the approximate values ã and b̃, so what
we form instead is the difference of these:

x̃ = ã − b̃ (2.17)

Let us now apply Eq. (2.10) twice:

ã = a + ∆a, b̃ = b + ∆b (2.18)

Plugging the last four equations into the definition of the absolute error, Eq. (2.5), we have:

∆x = x̃ − x = (a + ∆a) − (b + ∆b) − (a − b) = ∆a − ∆b (2.19)

In the third equality we cancelled what we could.
We now recall that we are interested in finding relations between error bounds. Thus, we

take the absolute value and then use the triangle inequality to find:

|∆x| ≤ |∆a| + |∆b| (2.20)

You should convince yourself that a fully analogous derivation leads to exactly the same
result for the case of addition of the two numbers a and b. Thus, our main conclusion so
far is that in addition and subtraction adding together the bounds for the absolute errors

in the two numbers gives us the bound for the absolute error in the result.
Let’s look at an example. Assume that we have:

|4.56 − a| ≤ 0.14, |1.23 − b| ≤ 0.03 (2.21)

(If you are in any way confused by this notation, look up Eq. (2.7) or Eq. (2.8).) Our finding
in Eq. (2.20) implies that the following relation will hold, when x = a − b:

|3.33 − x| ≤ 0.17 (2.22)

9 “It is probable that many quite improbable things should happen” (Aristotle, Poetics, 1456a25).
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It’s easy to see that this error bound, simply the sum of the two error bounds we started
with, is larger than either of them. If we didn’t have access to Eq. (2.20), we could have
arrived at the same result the long way: (a) when a has the greatest possible value (4.70)
and b has the smallest possible value (1.20), we get the greatest possible value for a − b,
namely 3.50, and (b) when a has the smallest possible value (4.42) and b has the greatest
possible value (1.26), we get the smallest possible value for a − b, namely 3.16.

As our main result in Eq. (2.20), applied just now in a specific example, shows, we sim-
ply add up the absolute error bounds. Again, this is different from what you do when you
are faced with a “standard error” (i.e., the standard deviation of the sampling distribution
of a statistic): in that case, the absolute errors add “in quadrature”; we will address this
scenario in due course, see Eq. (6.129). We repeat that our result is more pessimistic (i.e.,
tries to account for the worst-case scenario). We won’t keep repeating this warning below.

2.2.2.2 Catastrophic Cancellation

Let us examine the most interesting special case: a ≈ b (for which case x = a− b is small).
Dividing our result in Eq. (2.20) by x gives us the relative error (bound) in x:

|δx| =
∣
∣
∣
∣
∣

∆x

x

∣
∣
∣
∣
∣
≤ |∆a| + |∆b|
|a − b| (2.23)

Now, express ∆a and ∆b in terms of the corresponding relative error: ∆a = aδa and ∆b =

bδb. Since a ≈ b, you can factor |a| out:

|δx| ≤ (|δa| + |δb|) |a||a− b| (2.24)

It’s easy to see that if a ≈ b then |a − b| will be much smaller than |a| so, since the fraction
will be large, the relative errors δa and δb will be magnified.10

Let’s look at an example. Assume that we have:

|1.25 − a| ≤ 0.03, |1.20 − b| ≤ 0.03 (2.25)

that is, a relative error (bound) δa ≈ 0.03/1.25 = 0.024 or roughly 2.4% (this is approxi-
mate, because we divided by ã, not by the, unknown, a). Similarly, the other relative error
(bound) is δb ≈ 0.03/1.20 = 0.025 or roughly 2.5%. From Eq. (2.24) we see that the
relative error for the difference will obey:

|δx| ≤ (0.024 + 0.025)
1.25
0.05

= 1.225 (2.26)

where the right-hand side is an approximation (using ã and x̃). This shows us that two num-
bers with roughly 2.5% relative errors were subtracted and the result has a relative error
which is more than one hundred percent! This is sometimes known as subtractive or catas-

trophic cancellation. For the purists, we note that catastrophic cancellation refers to the
case where the two numbers we are subtracting are themselves subject to errors, as above.

10 This specific issue doesn’t arise in the case of addition, since there the denominator doesn’t have to be tiny.
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There also exists the scenario of benign cancellation, which shows up when you subtract
quantities that are exactly known (though that is rarely the case in practice) or when the
result of the subtraction does not need to be too accurate for what follows. The distinction
between catastrophic and benign cancellation is further explained in problems 2.6 and 2.7
(including the classic example of a simple quadratic equation) and in section 2.4 below.

2.2.2.3 Multiplication or Division

We are faced with two real numbers a and b, and wish to take their product:

x = ab (2.27)

As usual, we don’t know the exact values, but only the approximate values ã and b̃, so what
we form instead is the product of these:

x̃ = ãb̃ (2.28)

With some foresight, we will now apply Eq. (2.13) twice:

ã = a(1 + δa), b̃ = b(1 + δb) (2.29)

Plugging the last four equations into the definition of the relative error, Eq. (2.12), we have:

δx =
x̃ − x

x
=

ãb̃ − ab

ab
=

a(1 + δa)b(1 + δb) − ab

ab
= 1 + δa + δb + δaδb − 1 = δa + δb

(2.30)

In the fourth equality we cancelled the ab. In the fifth equality we cancelled the unit and
we dropped δaδb since this is a higher-order term (it is the product of two small terms).

We now recall that we are interested in finding relations between error bounds. Thus, we
take the absolute value and then use the triangle inequality to find:

|δx| ≤ |δa| + |δb| (2.31)

In problem 2.1 you will carry out the analogous derivation for the case of division of the
two numbers a and b, finding exactly the same result. Thus, our new conclusion is that in

multiplication and division adding together the bounds for the relative errors in the two

numbers gives us the bound for the relative error in the result. Observe that for addition
or subtraction we were summing absolute error bounds, whereas here we are summing
relative error bounds. Thus, typically multiplication and division don’t cause too much
trouble, whereas addition and (especially) subtraction can cause headaches.

Let’s look at an example. Assume that we have the same numbers as in Eq. (2.25):

|1.25 − a| ≤ 0.03, |1.20 − b| ≤ 0.03 (2.32)

that is, a relative error δa ≈ 0.03/1.25 = 0.024 of roughly 2.4% and a relative error
δb ≈ 0.03/1.20 = 0.025 of roughly 2.5%. Our finding in Eq. (2.31) implies that:

|1.5 − x|
|x| ≤ 0.049 (2.33)
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namely a relative error bound of roughly 4.9%. It’s easy to see that this error bound, while
larger than either of the relative error bounds we started with, is nowhere near as dramatic
as what we found when we subtracted the same two numbers.

2.2.2.4 General Error Propagation: One Variable

We have studied (maximal) error propagation for a couple of simple cases of combining
two numbers (subtraction and multiplication). But what about the error when you do some-
thing more complicated to a single number, e.g., take its square root or its logarithm?

Let us go over some notation. As per Eq. (2.5), the absolute error in a variable x is:

∆x = x̃ − x (2.34)

We now turn to a more involved quantity, namely y = f (x). We wish to calculate:

∆y = ỹ − y = f (x̃) − f (x) (2.35)

What we’ll do is to Taylor expand f (x̃) around x. This gives us:

∆y = f (x + ∆x) − f (x) = f (x) +
d f (x)

dx
∆x +

1
2

d2 f (x)
dx2

(∆x)2 + · · · − f (x) ≈ d f (x)
dx
∆x

(2.36)

In the third step we cancelled the f (x) and disregarded the (∆x)2 term and higher-order
contributions: assuming ∆x is small, this is legitimate. We have thereby shown that:

∆y ≈ d f (x)
dx
∆x (2.37)

In other words, the absolute condition number is d f (x)/dx: this determines how strongly
the absolute error in x will affect the absolute error in y. If you were faced with, say, y = x3,
you could estimate the absolute error in y by taking a derivative: ∆y ≈ 3x2∆x. Obviously,
when x is large the absolute error ∆x gets amplified due to the presence of 3x2 in front.

A formal aside: let’s define the forward error to be f̃ (x)− f (x); here x is the exact prob-
lem, f (x) is the exact solution to the exact problem, and f̃ (x) is an approximate solution
to the exact problem. Then, to take f (x̃) = f̃ (x) (= ỹ) is to search for the approximate
problem x̃ for which the exact solution ( f (x̃)) is equal to the approximate solution to the
exact problem ( f̃ (x)). In that case, x̃ − x is known as the backward error and bounding it
is known as backward error analysis. As an example, let’s tackle f (x) =

√
x at x = 3,

implying y =
√

3. Take ỹ =
√√

3 = 1.8 to be the result of our own (poor) approximation to
the square-root function. The forward error is f̃ (x) − f (x) =

√√
3 −
√

3 ≈ 0.068; we notice
that f (x̃) =

√
3.24 = 1.8 =

√√
3 = f̃ (x), so the backward error is x̃ − x = 0.24.

It is straightforward to use Eq. (2.37) to get an estimate for the relative error in y:

δy =
∆y

y
≈ 1

f (x)
d f (x)

dx
∆x (2.38)

If we now multiply and divide by x (assuming, of course, that x , 0) we find:
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δy ≈ x

f (x)
d f (x)

dx
δx (2.39)

which is our desired relation connecting δy with δx. Analogously to what we saw for the
case of the absolute error, our finding here shows us that the coefficient in front of δx de-
termines how strongly the relative error in x will affect the relative error in y. For example,
if you were faced with y = x4, then you could estimate the relative error in y as follows:

δy ≈ x

x4
4x3δx = 4δx (2.40)

that is, the relative error in y is worse than the relative error in x, but not dramatically so.11

2.2.2.5 General Error Propagation: Many Variables

For future reference, we oberve that it is reasonably straightforward to generalize our ap-
proach above to the case of a function of many variables, i.e., y = f (x0, x1, . . . , xn−1): the
total error ∆y would then have contributions from each ∆xi and each partial derivative:

∆y ≈
n−1∑

i=0

∂ f

∂xi

∆xi (2.41)

This is a general formula, which can be applied to functions of varying complexity. As a
trivial check, we consider the case:

y = x0 − x1 (2.42)

which a moment’s consideration will convince you is nothing other than the subtraction of
two numbers, as per Eq. (2.16). Applying our new general result to this simple case:

∆y ≈ ∆x0 − ∆x1 (2.43)

which is precisely the result we found in Eq. (2.19).
Equation (2.41) can now be used to produce a relationship for the relative error:

δy ≈
n−1∑

i=0

xi

f (x0, x1, . . . , xn−1)
∂ f

∂xi

δxi (2.44)

You should be able to see that this formula can be applied to almost all possible scenarios.12

An elementary test would be to take:

y = x0x1 (2.45)

11 You will apply both Eq. (2.37) and Eq. (2.39) to other functions when you solve problem 2.3.
12 Of course, in deriving our last result we assumed that y , 0 and that xi , 0.
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which is simply the multiplication of two numbers, as per Eq. (2.27). Applying our new
general result for the relative error to this simple case, we find:

δy ≈ x0

x0x1
x1δx0 +

x1

x0x1
x0δx1 = δx0 + δx1 (2.46)

which is precisely the result in Eq. (2.30).
You will benefit from trying out more complicated cases, e.g., y =

√
x0 + x3

1 log x2. In
your resulting expression for δy, the coefficient in front of each δxi tells you by how much
(or if) the corresponding relative error is amplified.

2.3 Representing Real Numbers

Our discussion so far has been general: the source of the error, leading to an absolute or
relative error or error bound, has not been specified. At this point, we will turn our attention
to roundoff errors. In order to do that, we first go over the representation of real numbers on
the computer and then discuss simple examples of mathematical operations. For the rest of
the chapter, we will work on roundoff error alone: this will result from the representation
of a number (i.e., storing that number) or the representation of an operation (e.g., carrying
out a subtraction).

2.3.1 Basics

Computers use electrical circuits, which communicate using signals. The simplest such
signals are on and off. These two possibilities are encoded in what is known as a binary

digit or bit: bits can take on only two possible values, by convention 0 or 1.13 All types of
numbers are stored in binary form, i.e., as collections of 0s and 1s.

Python integers actually have unlimited precision, so we won’t have to worry about them
too much. In this book, we mainly deal with real numbers, so let’s briefly see how those are
represented on the computer. Most commonly, real numbers are stored using floating-point

representation. This has the general form:

± mantissa × 10exponent (2.47)

For example, the speed of light in scientific notation is +2.997 924 58× 108 m/s.
Computers only store a finite number of bits, so cannot store exactly all possible real

numbers. In other words, there are “only” finitely many exact representations/machine

numbers.14 These come in two varieties: normal and subnormal numbers. There are three
ways of losing precision, as shown qualitatively in Fig. 2.2: underflow for very small num-
bers, overflow for very large numbers, and rounding for decimal numbers whose value falls

13 You can contrast this to decimal digits, which can take on 10 different values, from 0 to 9.
14 That is, finitely many decimal numbers that can be stored exactly using a floating-point representation.
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tFig. 2.2 Illustration of exactly representable floating-point numbers

between two exactly representable numbers. For more on these topics, you should look at
appendix B; here we limit ourselves to simply quoting some results.

Python employs what are known as double-precision floating point numbers, also called
doubles; their storage uses 64 bits in total. Doubles can represent:

±4.9 × 10−324 ↔ ±1.8 × 10308 (2.48)

This refers to the ability to store very large or very small numbers. Most of this ability
is found in the term corresponding to the exponent. For doubles, if we try to represent a
number that’s larger than 1.8 × 10308 we get overflow. Similarly, if we try to represent a
number that’s smaller than 4.9 × 10−324 we get underflow. Keep in mind that being able to
represent 4.9 × 10−324 does not mean that we are able to store 324 significant figures in a
double. The number of significant figures (and the related concept of precision) is found
in the coefficient in front (e.g., 1.8 or 1.234567). For doubles, the precision is 1 part in
252 ≈ 2.2 × 10−16, which amounts to 15 or 16 decimal digits.

2.3.2 Overflow

We can explore the above results programmatically. We will start from an appropriately
large value, in order to shorten the number of output lines:

>>> large = 2.**1021

for i in range(3):

... large *= 2

... print(i, large)

0 4.49423283715579e+307

1 8.98846567431158e+307

2 inf

This is what we expected: from 21024 ≈ 1.7976 × 10308 and onward we are no longer able
to store the result in a double. You can check this by saying:
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>>> 8.98846567431158e+307*1.999999999999999

1.797693134862315e+308

Multiplying by 2 would have led to inf, as above. Problem 2.4 investigates when underflow
occurs.

2.3.3 Machine Precision

We already mentioned that the precision for doubles is limited to ≈2.2 × 10−16. The pre-
cision is related to the distance between two vertical lines in the figure above for a given
region of interest: as we noted, anything between the two lines gets rounded, either to the
left or to the right. We now turn to the question of carrying out arithmetic operations us-
ing such numbers: this gives rise to the all-important question of rounding. This question
arises every time we are trying to combine two floating-point numbers but the answer is
not an exactly representable floating-point number. For example, 1 and 10 can be exactly
represented as doubles, but 1/10 cannot.

We first address an even simpler problem: five-digit decimal arithmetic. Let’s assume we
want to add together the two numbers 0.12345 and 1.2345. One could notice that 1.2345 =
0.12345× 101 while 0.12345 = 0.12345× 100, i.e., in an (imagined) system that used five-
digit decimal arithmetic these two numbers would have the same mantissa and different
exponents. However, that doesn’t help us when adding: to add two mantissas we have to
align them to use the same exponent (since that’s how addition works). Adding them as
real numbers (i.e., not five-digit decimal numbers) we get:

0.12345+ 1.2345 = 1.35795 (2.49)

But our answer now contains six decimal digits, 1.35795. Since we’re limited to five-digit
decimal numbers, this leaves us with the option of chopping the result down to 1.3579 or
rounding it up to 1.3580. Problems like this one also appear in other arithmetic operations
and for other representational systems (like binary).

Turning back to the question of the machine representation of doubles, we try to make
the concept of “precision” more specific. We define the machine precision ǫm as follows:
it is the gap between the number 1.0, on the one hand, and the smallest possible number
x̃ that is larger than 1.0 (x̃ > 1.0), on the other hand. If you have read appendix B, you
should know that (given the form of the mantissa for normal doubles) the smallest number
we can represent obeying x̃ > 1.0 is 1 + 2−52. The gap between this number and 1 is
2−52 ≈ 2.2 × 10−16. In other words:

ǫm ≈ 2.2 × 10−16 (2.50)

We will make use of this repeatedly in what follows.
Instead of delving into a study of binary arithmetic (analogous to what we did above for

five-digit decimal arithmetic), let us investigate the definition of machine precision using
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Python. We start with a small number and keep halving it, after which operation we add it
on to 1.0: at some point, this is going to give us back 1.0: we then call the gap between
1.0 and the last number > 1 the machine precision. Explicitly:

>>> small = 1/2**50

>>> for i in range(3):

... small /= 2

... print(i, 1 + small, small)

0 1.0000000000000004 4.440892098500626e-16

1 1.0000000000000002 2.220446049250313e-16

2 1.0 1.1102230246251565e-16

As you can see, we started small at an appropriately small value, in order to shorten the
number of output lines. We can further explore this topic interactively. At first sight, the
results below might be confusing:

>>> 1. + 2.3e-16

1.0000000000000002

>>> 1. + 1.6e-16

1.0000000000000002

>>> 1. + 1.12e-16

1.0000000000000002

>>> 1. + 1.1e-16

1.0

We found that there exist numbers smaller than 2.2e-16 that when added to 1 lead to a
result that is larger than 1. If you pay close attention, you will notice that 1. + 1.6e-16
or 1. + 1.12e-16 are rounded to the same number that 1. + 2.22e-16 corresponds to
(namely, 1.0000000000000002). However, below a certain point, we start rounding down
to 1. In other words, for some values of small below the machine precision, we have a
computed value of 1.+small that is not 1, but corresponds to 1 + ǫm.15

Take a moment to appreciate that you can use a double to store a tiny number like 10−300,
but this doesn’t mean that you can store 1 + 10−300: to do so, you would need 301 digits of
precision (and all you have is 16).

2.3.4 Revisiting Subtraction

We discussed in an earlier section how bad catastrophic cancellation can be. At the time,
we were investigating general errors, which could have come from several sources. Let
us try to specifically investigate what happens in the case of subtraction when the only

errors involved are those due to roundoff, i.e., let us assume that the relative error δx is a
consequence of the fact that, generally speaking, x cannot be represented exactly on the

15 Some authors call the smallest value of small for which 1.+small doesn’t round down to 1 the unit roundoff

u: it is easy to see that this is related to the machine precision by ǫm = 2u.
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computer (i.e., it is typically not a machine number). Thus, when replacing x by its nearest
double-precision floating-point number, we make a roundoff error: without getting into
more detail, we will estimate the relative error’s magnitude using the machine precision,
which as we saw earlier is ǫm ≈ 2.2 × 10−16.16 Obviously, this is only an estimate: for
example, the error made when rounding to a subnormal number may be smaller (since
subnormals are more closely spaced). Another example: if x is a machine number, then it
can be exactly represented by x̃, so the relative error is actually 0. Our point in using ǫm

is simply that one should typically not trust floating-point numbers for more than 15–16
(relative) decimal digits of precision.17 If you think of ǫm as an error bound, then the fact
that sometimes the error is smaller is OK.

Since we will estimate the relative error δx using ǫm, we see that the absolute error can
be considerably larger: from Eq. (2.12) we know that ∆x = xδx, so if x is very large then
since we are taking ǫm ≈ 2.2 × 10−16 as being fixed at that value, it’s obvious that ∆x can
become quite large. Let’s take a specific example: given a relative error ≈10−16, a specific
double of magnitude ≈1022 will have an absolute error in its last digit, of order 106.

Given that we use ǫm to find a general relative error in representing a real number via the
use of a floating-point number, we can re-express our result for catastrophic cancellation
from Eq. (2.24) as:

|δx| ≤ |a|
|a − b| 2ǫm (2.51)

Due to |a|/|a − b|, even the relative error can be much larger than ǫm.
It might be worth making a distinction at this point between: (a) the loss of significant

figures when subtracting two nearly equal numbers, and (b) the loss of even more digits
when carrying out the subtraction using floating-point numbers (which have finite preci-
sion). Let’s start from the first case. Subtract two nearly equal numbers, each of which has
20 significant figures:

1.2345678912345678912−1.2345678900000000000 = 0.0000000012345678912 (2.52)

Note that here we subtracted real numbers (not floating-point representations) and wrote
out the answer explicitly. It’s easy to see that we started with 20 significant figures and
ended up with 11 significant figures, even though we’re dealing with real numbers/infinite
precision. We now turn to the second case, which is the carrying out of this subtraction
using floating-point numbers. We can use Python (doubles) to be explicit. We have:

>>> 1.2345678912345678912 - 1.2345678900000000000

1.234568003383174e-09

Comparing to the answer we had above (for real numbers), we see that we only match the
first 6 (out of 11) significant figures. This is partly a result of the fact that each of our initial
numbers is not represented on the computer using the full 20 significant figures, but only
at most 16 digits. Explicitly:
16 Note, however, that ǫm was defined in a related but slighty different context (for values around 1.0).
17 Incidentally, though we loosely use the term significant figures here and elsewhere, it’s better to keep in mind

the relative error, instead, which is a more precise and base-independent measure.
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>>> 1.2345678912345678912

1.234567891234568

>>> 1.2345678900000000000

1.23456789

>>> 1.234567891234568 - 1.23456789

1.234568003383174e-09

This shows that we lose precision in the first number, which then has to lead to loss of
precision in the result for the subtraction.

It’s easy to see that things are even worse than that, though: using real numbers, the
subtraction 1.234567891234568−1.23456789 would give us 0.000000001234568. Instead
of that, we get 1.234568003383174e-09. This is not hard to understand: a number like
1.234567891234568 typically has an absolute error in the last digit, i.e., of the order of
10−15, so the result of the subtraction generally cannot be trusted beyond that absolute
order (1.234568003383174e-09 can be rewritten as 1234568.003383174e-15). This is a
result of the fact that in addition or subtraction the absolute error in the result comes from
adding the absolute errors in the two numbers.

Just in case the conclusion is still not “clicking”, let us try to discuss what’s going on
using relative errors. Here the exact number is x = 0.0000000012345678912 while the
approximate value is x̃ = 0.000000001234568003383174. Since this is one of those situ-
ations where we can actually evaluate the error, let us do so. The definition in Eq. (2.12)
gives us δx ≈ 9.08684 × 10−8. Again, observe that we started with two numbers with rel-
ative errors of order 10−16, but subtracting them led to a relative error of order roughly
10−7. Another way to look at this result is to say that we have explicitly evaluated the left-
hand side of Eq. (2.51), δx. Now, let us evaluate the right-hand side of that equation. Here
a = 1.2345678912345678912 and a − b = 0.0000000012345678912. The right-hand side
comes out to be |a| 2ǫm/|a− b| ≈ 2.2× 10−7. Thus, we find that the inequality is obeyed (of
course), but the actual relative error is a factor of a few smaller than what the error bound
would lead us to believe. This isn’t too hard to explain: most obviously, the right-hand side
of Eq. (2.51) contains a 2, stemming from the assumption that both ã and b̃ have a relative
error of ǫm, but in our case b didn’t change when we typed it into the Python interpreter.

You should repeat the above exercise (or something like it) for the cases of addition,
multiplication, or division. It’s easy to come up with examples where you add two num-
bers, one of which is poorly constrained, and then you get a large absolute error in the
result (but still not as dramatic as in catastrophic cancellation). On the other hand, since in
multiplication and division only the relative errors add up, you can convince yourself that
since your starting numbers each have a relative error bound of roughly 10−16, the error
bound for the result is at worst twice that, which is typically not that bad.

2.3.5 Comparing Floats

Since only machine numbers can be represented exactly (other numbers are rounded to the
nearest machine number), we have to be careful when comparing floating-point numbers.
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We won’t go into the question of how operations with floating-point numbers are actually
implemented, but some examples may help explain the core issues.

Specifically, you should (almost) never compare two floating point variables x̃ and ỹ for
equality: you might have an analytical expectation that the corresponding two real numbers
x and y should be the same, but if the values of x̃ and ỹ are arrived at via different routes,
their floating-point representations may well be different. A famous example:

>>> xt = 0.1 + 0.2

>>> yt = 0.3

>>> xt == yt

False

>>> xt

0.30000000000000004

>>> yt

0.3

The solution is to (almost) never compare two floating-point variables for equality: instead,
take the absolute value of their difference, and check if that is smaller than some acceptable
threshold, e.g., 10−10 or 10−12. To apply this to our example above:

>>> abs(xt-yt)

5.551115123125783e-17

>>> abs(xt-yt) < 1.e-12

True

which behaves as one would expect.18

The above recipe (called an absolute epsilon) is fine when comparing natural-sized num-
bers. However, there are situations where it can lead us astray. For example:

>>> xt = 12345678912.345

>>> yt = 12345678912.346

>>> abs(xt-yt)

0.0010013580322265625

>>> abs(xt-yt) < 1.e-12

False

This makes it look like these two numbers are really different from each other, though
it’s plain to see that they aren’t. The solution is to employ a relative epsilon: instead of
comparing the two numbers to check whether they match up to a given small number, take
into account the magnitude of the numbers themselves, thereby making the comparison
relative. To do so, we first introduce a helper function:

18 Well, almost: if you were carrying out the subtraction between 0.30000000000000004 and 0.3 using real
numbers, you would expect their difference to be 0.00000000000000004. Instead, since they are floats, the
answer turns out to be 5.551115123125783e-17.
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>>> def findmax(x,y):

... return max(abs(x),abs(y))

This picks the largest magnitude, which we then use to carry out our comparison:

>>> xt = 12345678912.345

>>> yt = 12345678912.346

>>> abs(xt-yt)/findmax(xt,yt) < 1.e-12

True

Finally, note that there are situations where it’s perfectly fine to compare two floats for
equality, e.g., while 1.+small != 1.:. This specific comparison works: 1.0 is exactly rep-
resentable in double-precision, so the only scenario where 1.+small is equal to 1.0 is when
the result gets rounded to 1.0. Of course, this codicil to our rule (you can’t compare two
floats for equality, except when you can) in practice appears most often when comparing
a variable to a literal: there’s nothing wrong with saying if xt == 10.0: since 10.0 is a
machine number and xt can plausibly round up or down to that value.

2.4 Rounding Errors in the Wild

Most of what we’ve had to say about roundoff error up to this point has focused on a single
elementary mathematical operation (e.g., one subtraction or one addition). Of course, in
actual applications one is faced with many more calculations (e.g., taking the square root,
exponentiating), often carried out in sequence. It is often said that rounding error for the
case where many iterations are involved leads to roundoff error buildup. This is not incor-
rect, but more often than not we are faced with one or two iterations that cause a problem,
which can typically not be undone after that point. Thus, in the present section we turn to
a study of more involved cases of rounding error.

2.4.1 Are Roundoff Errors Random?

At this point, many texts on computational science discuss a standard problem, that of
roundoff error propagation when trying to evaluate the sum of n numbers x0, x1, . . ., xn−1.
One way to go about this is by applying our discussion from section 2.2.2.1. If each number
has the same error bound ǫ, it’s easy to convince yourself that since the absolute errors
will add up, you will be left with a total error bound that is nǫ. This is most likely too
pessimistic: it’s hard to believe that the errors for n numbers would never cancel, i.e., they
would all have the same sign and maximal magnitude.

What’s frequently done, instead, is to assume that the errors in the different terms are
independent, use the theory of random variables, and derive a result for the scaling with n

of the absolute or relative error for the sum
∑n−1

i=0 xi. We will address essentially the same
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problem when we introduce the central limit theorem in problem 6.47. There we will find
that, if ǫ is the standard deviation for one number, then the standard error for the sum turns
out to be

√
nǫ. For large n, it’s clear that

√
n grows much more slowly than n. Of course,

this is comparing apples (maximal errors) with oranges (standard errors).
One has to pause, however, to think about the assumption that the errors of these xi’s are

stochastically independent: many of the examples we will discuss in the rest of this chapter
would have been impossible if the errors were independent. To take one case, the next con-
tribution in a Taylor expansion is clearly correlated to the previous contribution. Rounding
errors are not random: you get the same (predictable) answer every time you repeat the
same computation. If you wish to study them probabilistically, you will need correlated,
discrete (i.e., not continuous) random variables. These are points that, while known to ex-
perts (see, e.g., N. Higham’s book [68]), are too often obscured in introductory textbooks.
The confusion may arise from the fact that the roundoff error in the finite-precision rep-

resentation of a real number may be modelled using a simple distribution; this is wholly
different from the roundoff error in a computation involving floating-point numbers.

Perhaps it’s best to consider a specific example.19 Let’s look at the rational function:

r(x) =
4x4 − 59x3 + 324x2 − 751x + 622

x4 − 14x3 + 72x2 − 151x + 112
(2.53)

In problem 2.11 you will learn to code up polynomials using an efficient and accurate
approach known as Horner’s rule. In problem 2.12, you will apply what you’ve learned to
this specific rational function. You will find what’s shown in Fig. 2.3: this is clear evidence
that our method of evaluating the function is sensitive to roundoff error: the typical error
is ≈10−13. What’s more, the roundoff error follows striking patterns: the left panel shows
that the error is not uniformly random.20 To highlight the fact that the pattern on the left
panel is not simply a fluke, the right panel picks a different region and finds a different
pattern (again, a mostly non-random one). In the aforementioned problem, you will not
only reproduce these results, but also see how one could do better.

Where does this leave us? Since assuming totally independent standard errors is not war-
ranted and assuming maximal errors is too pessimistic, how do we proceed? The answer is

19 “When we perceive the whole at once, as in numerical computations, all agree in one judgment” (Samuel
Johnson, The History of Rasselas, Prince of Abyssinia, chapter XXVIII).

20 In which case we would be seeing “noise” instead of straight lines.
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that one has to approach each problem separately, so there is no general result for the scal-
ing with n (beyond the formal relation in Eq. (2.44)). As noted, often only a few rounding
errors are the dominant contributions to the final error, so the question of finding a scaling
with n is moot. We hope that by seeing several cases of things going wrong (and how to fix
them), the reader will learn to identify the main classes of potential problems.

2.4.2 Compensated Summation

We now turn to a crucial issue regarding operations with floats; in short, due to roundoff
errors, when you’re dealing with floating-point numbers the associative law of algebra does
not necessarily hold. You know that 0.1 added to 0.2 does not give 0.3, but things are even
worse than that: the result of operations involving floating-point numbers may depend on

the order in which these operations are carried out. Here’s a simple example:

>>> (0.7 + 0.1) + 0.3

1.0999999999999999

>>> 0.7 + (0.1 + 0.3)

1.1

Once again, operations that “should” give the same answers (i.e., that do give the same an-
swer when dealing with real numbers) may not. This behavior is more than just a curiosity:
it can have real-world consequences. In fact, here’s an even more dramatic example:

>>> xt = 1.e20; yt = -1.e20; zt = 1.

>>> (xt + yt) + zt

1.0

>>> xt + (yt + zt)

0.0

In the first case, the two large numbers, xt and yt, cancel each other and we are left with the
unit as the answer. In the second case, we face a situation similar to that in subsection 2.3.3:
adding 1 to the (negative) large number yt simply rounds to yt; this is analogous to the
1. + small we encountered on page 48, only this time we’re faced with large + 1. and
it is the unit that is dropped. Then, xt and yt cancel each other out (as before). If you’re
finding these examples a bit disconcerting, you are in good company.

Once you think about the problem more carefully, you might reach the conclusion that
the issue that arose here is not too problematic: you were summing up numbers of wildly
varying magnitudes, so you cannot trust the final answer too much. Unfortunately, as we’ll
see in section 2.4.4, sometimes you may not even be aware of the fact that the interme-
diate values in a calculation are large and of opposite signs (leading to cancellations), in
which case you might not even know how much you should trust the final answer. A lesson
that keeps recurring in this chapter is that you should get used to reasoning about your
calculation, in contradistinction to blindly trusting whatever the computer produces.

We don’t want to sound too pessimistic, so we will now see how to sum up numbers
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kahansum.py Code 2.1

def kahansum(xs):

s = 0.; e = 0.

for x in xs:

temp = s

y = x + e

s = temp + y

e = (temp - s) + y

return s

if name == ‘ main ’:

xs = [0.7, 0.1, 0.3]

print(sum(xs), kahansum(xs))

very accurately. Our task is simply to sum up the elements of a list. In problem 2.15, we
will see that often one can simply sort the numbers and then add them up starting with the
smallest one. There are, however, scenarios where sorting the numbers to be summed is
not only costly but goes against the task you need to carry out. Most notably, when solving
initial-value problems in the study of ordinary differential equations (see chapter 8), the
terms have to be added in the same order as that in which they are produced.

Here we will employ a nice trick, called compensated summation or Kahan summation.
Qualitatively, what this does is to estimate the rounding error in each addition and then
compensate for it with a correction term. More specifically, if you are adding together two
numbers (a and b) and s̃ is your best floating-point representation for the sum, then if:

e = (a − s̃) + b (2.54)

we can compute ẽ to get an estimate of the error (a+b)− s̃, namely the information that was
lost when we evaluated s̃. While this doesn’t help us when all we’re doing is summing two
numbers21 it can really help when we are summing many numbers: add in this correction
to the next term in your series, before adding that term to the partial sum.

Typically, compensated summation is more accurate when you are adding a large num-
ber of terms, but it can also be applied to the case we encountered at the start of the present
section. Code 2.1 provides a Python implementation. This does what we described around
Eq. (2.54): it estimates the error in the previous addition and then compensates for it. Note
how our new function does not need any “length” arguments, since it simply steps through
the elements of the list. We then encounter a major new syntactic feature of Python: the
line if name == ‘ main ’: checks to see if we’re running the present file as the main
program (which we are). In this case, including this extra check is actually unnecessary:
we could have just defined our function and then called it. We will see the importance of

21 s̃ + ẽ doesn’t get you anywhere, since s̃ was already the best we could do!
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this further check later, when we wish to call kahansum() without running the rest of the
code. The output is 1.0999999999999999 1.1. Thus, this simple function turns out to cure
the problem we encountered earlier on. We don’t want to spend too much time on the topic,
but you should play around with compensated summation, trying to find cases where the
direct sum does a poor job (here’s another example: xs = [123456789 + 0.01*i for i
in range(10)]).

Even our progress has its limitations: if you take xs = [1.e20, 1., -1.e20], which is
(a modified version of) the second example from the start of this section, you will see that
compensated summation doesn’t lead to improved accuracy. In general, if:

∑

i

|xi| ≫
∣
∣
∣
∣
∣
∣
∣

∑

i

xi

∣
∣
∣
∣
∣
∣
∣

(2.55)

then compensated summation is not guaranteed to give a small relative error. On a different
note, Kahan summation requires more computations than regular summation: this perfor-
mance penalty won’t matter to us in this book, but it may matter in real-world applications.

2.4.3 Naive vs Manipulated Expressions

We now go over a simple example showing how easy it is to lose accuracy if one is not
careful; at the same time, we will see how straightforward it is to carry out an analytical
manipulation that avoids the problem. The task at hand is to evaluate the function:

f (x) =
1

√
x2 + 1 − x

(2.56)

for large values of x. A Python implementation using list comprehensions is given in
code 2.2. The output of running this code is:

10000 19999.99977764674

100000 200000.22333140278

1000000 1999984.77112922

10000000 19884107.85185185

The answer appears to be getting increasingly worse as the x is increased. Well, maybe:
this all depends on what we expect the correct answer to be. On the other hand, the
code/expression we are using is certainly not robust, as you can easily see by running
the test case of x = 108. In Python this leads to a ZeroDivisionError since the terms in
the denominator are evaluated as being equal. This is happening because for large values
of x, we know that x2 + 1 ≈ x2. We need to evaluate the square root very accurately if we
want to be able to subtract a nearly equal number from it.

An easy way to avoid this problem consists of rewriting the starting expression:

f (x) =
1

√
x2 + 1 − x

=

√
x2 + 1 + x

(
√

x2 + 1 − x)(
√

x2 + 1 + x)
=

√
x2 + 1 + x

x2 + 1 − x2
=
√

x2 + 1 + x

(2.57)
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naiveval.py Code 2.2

from math import sqrt

def naiveval(x):

return 1/(sqrt(x**2 + 1) - x)

xs = [10**i for i in range(4,8)]

ys = [naiveval(x) for x in xs]

for x, y in zip(xs, ys):

print(x, y)

In the second equality we multiplied numerator and denominator by the same expression.
In the third equality we used a well-known identity in the denominator. In the fourth equal-
ity we cancelled terms in the denominator. Notice that this expression no longer requires a
subtraction. If you implement the new expression, you will get the output:

10000 20000.000050000002

100000 200000.00000499998

1000000 2000000.0000005001

10000000 20000000.000000052

The errors now behave much better: for x ≫ 1 we have x2 + 1 ≈ x2, so we are essen-
tially printing out 2x. There are several other cases where a simple rewriting of the initial
expression can avoid bad numerical accuracy issues (often by avoiding a subtraction).

2.4.4 Computing the Exponential Function

We now turn to an example where several calculations are carried out in sequence. Thus, if
something goes wrong we must carefully sift through intermediate results to see what went
wrong (and when). We focus on the task of computing the exponential function (assuming
we have no access to a math library), by using the Taylor/Maclaurin series:

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · (2.58)

We’re clearly not going to sum infinitely many terms, so we approximate this expansion
by keeping only the terms up to nmax:

ex ≈
nmax∑

n=0

xn

n!
(2.59)

A naive implementation of this algorithm would divide x raised to increasingly large pow-
ers by increasingly large factorials, summing the result of such divisions up to a specified


