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Preface

Numerous and large-dimensional data is now a default setting in modern machine
learning (ML). Standard ML algorithms, starting with kernel methods such as support
vector machines and graph-based methods like the PageRank algorithm, were how-
ever initially designed out of small-dimensional intuitions and tend to misbehave, if
not completely collapse, when dealing with real-world large datasets. Random matrix
theory has recently developed a broad spectrum of tools to help understand this new
“curse of dimensionality,” to help repair or completely recreate the suboptimal algo-
rithms, and most importantly, to provide new intuitions to deal with modern data
mining.

This book primarily aims to deliver these intuitions, by providing a digest of the
recent theoretical and applied breakthroughs of random matrix theory into ML. Tar-
geting a broad audience, spanning from undergraduate students interested in statistical
learning to artificial intelligence engineers and researchers alike, the mathematical
prerequisites to the book are minimal (basics of probability theory, linear algebra,
and real and complex analyses are sufficient): As opposed to introductory books in
the mathematical literature of random matrix theory and large-dimensional statistics,
the theoretical focus here is restricted to the essential requirements to ML applica-
tions. These applications range from detection, statistical inference, and estimation
to graph- and kernel-based supervised, semisupervised, and unsupervised classifica-
tion, as well as neural networks: For these, a precise theoretical prediction of the
algorithm performance (often inaccessible when not resorting to a random matrix
analysis), large-dimensional insights, methods of improvement, along with a funda-
mental justification of the wide-scope applicability of the methods to real data, are
provided.

Most methods, algorithms, and figures proposed in the book are coded in
MATLAB and Python and made available to the readers (https://github.com/
Zhenyu-LIAO/RMT4ML). The book also contains a series of exercises of two types:
short exercises with corrections available online to familiarize the reader with the
basic theoretical notions and tools in random matrix analysis, as well as long guided
exercises to apply these tools to further concrete ML applications.

https://github.com/Zhenyu-LIAO/RMT4ML
https://github.com/Zhenyu-LIAO/RMT4ML




1 Introduction

This chapter discusses fundamentally different mental images of large- versus small-
dimensional machine learning through examples of sample covariance and kernel
matrices, on both synthetic and real data. Random matrix theory is presented as a flex-
ible and powerful tool to assess, understand, and improve classical machine learning
methods in this modern large-dimensional setting.

1.1 Motivation: The Pitfalls of Large-Dimensional Statistics

1.1.1 The Big Data Era: When n Is No Longer Much Larger than p

The big data revolution comes along with the challenging needs to parse, mine, and
compress a large amount of large-dimensional and possibly heterogeneous data. In
many applications, the dimension p of the observations is as large as – if not much
larger than – their number n. In array processing and wireless communications, the
number of antennas required for fine localization resolution or increased communi-
cation throughput may be as large (today in the order of hundreds) as the number of
available independent signal observations [Li and Stoica, 2007, Lu et al., 2014]. In
genomics, the identification of correlations among hundreds of thousands of genes
based on a limited number of independent (and expensive) samples induces an even
larger ratio p/n [Arnold et al., 1994]. In statistical finance, portfolio optimization relies
on the need to invest on a large number p of assets to reduce volatility but at the same
time to estimate the current (rather than past) asset statistics from a relatively small
number n of asset return records [Laloux et al., 2000].

As we shall demonstrate in the following section, the fact that in these problems
n is not much larger than p annihilates most of the results from standard asymp-
totic statistics that assume n alone is large [Vaart, 2000]. As a rule of thumb, by
“much larger” we mean here that n must be at least 100 times larger than p for
standard asymptotic statistics to be of practical convenience (see our argument in Sec-
tion 1.1.2). Many algorithms in statistics, signal processing, and machine learning are
precisely derived from this n � p assumption that is no longer appropriate today. A
major objective of this book is to cast some light on the resulting biases and prob-
lems incurred and to provide a systematic random matrix framework to improve these
algorithms.
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Possibly more importantly, we will see in this book that (small p) small-dimensional
intuitions at the core of many machine learning algorithms (starting with spectral
clustering [Ng et al., 2002, Luxburg, 2007]) may strikingly fail when applied in a
simultaneously large n,p setting. A compelling example lies in the notion of “dis-
tance” between vectors. Most classification methods in machine learning are rooted
in the observation that random data vectors arising from a mixture distribution (say
Gaussian) gather in “groups” of close-by vectors in the Euclidean norm. When deal-
ing with large-dimensional data, however, concentration phenomena arise that make
Euclidean distances useless, if not counterproductive: Vectors from the same mixture
class may be further away in Euclidean distance than vectors arising from different
classes. While classification may still be doable, it works in a rather different way
from our small-dimensional intuition. The book intends to prepare the reader for the
multiple traps caused by this “curse of dimensionality.”

1.1.2 Sample Covariance Matrices in the Large n,p Regime

Let us consider the following example that illustrates a first elementary, yet counterin-
tuitive, result: For simultaneously large n,p, the sample covariance matrix Ĉ ∈ R

p×p

based on n samples xi ∼ N (0,C) is an entry-wise consistent estimator of the popula-
tion covariance C ∈ R

p×p (i.e., ‖Ĉ−C‖∞ → 0 as p,n → ∞ for ‖A‖∞ ≡ maxi j |Ai j |)
while overall being an extremely poor estimator in a (more practical) operator norm
sense (i.e., ‖Ĉ−C‖ �→ 0, with ‖ · ‖ being the operator norm here). Matrix norms are,
in particular, not equivalent in the large n,p scenario.

Let us detail this claim, in the simplest case where C = Ip . Consider a dataset
X = [x1,. . . ,xn ] ∈ R

p×n of n independent and identically distributed (i.i.d.) observa-
tions from a p-dimensional standard Gaussian distribution, that is, xi ∼ N (0,Ip) for
i ∈ {1,. . . ,n}. We wish to estimate the population covariance matrix C = Ip from the
n available samples. The maximum likelihood estimator in this zero-mean Gaussian
setting is the sample covariance matrix Ĉ defined by

Ĉ =
1
n

n

∑
i=1

xixTi =
1
n

XXT. (1.1)

By the strong law of large numbers, for fixed p, Ĉ → Ip almost surely as n → ∞, so

that ‖Ĉ − Ip‖ a.s.−−→ 0 holds for any standard matrix norm and in particular for the
operator norm.

One must be more careful when dealing with the case n,p → ∞ with the ratio p/n →
c ∈ (0,∞) (or, from a practical standpoint, n is not much larger than p). First, note that
the entry-wise convergence still holds since, invoking the law of large numbers again,

[Ĉ]i j =
1
n

n

∑
l=1

[X]il [X] jl
a.s.−−→

{
1, i = j
0, i �= j.

Besides, by a concentration inequality argument, it can even be shown that

max
1≤i, j≤p

∣∣[Ĉ− Ip ]i j
∣∣ a.s.−−→ 0,
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which holds as long as p is no larger than a polynomial function of n, and thus:

‖Ĉ− Ip‖∞
a.s.−−→ 0.

Consider now the case p > n. Since Ĉ = 1
n ∑n

i=1 xixTi is the sum of n rank-one
matrices, the rank of Ĉ is at most equal to n and thus, being a p× p matrix with p > n,
the sample covariance matrix Ĉ must be a singular matrix having at least p − n > 0
null eigenvalues. As a consequence,

‖Ĉ− Ip‖ �→ 0

for ‖ · ‖ the matrix operator (or spectral) norm. This last result actually extends to the
general case where p/n → c ∈ (0,∞). As such, matrix norms cannot be considered
equivalent in the regime where p is not negligible compared to n. This follows from
the fact that the coefficients involved in the equivalence of norm relation between the
infinity and operator norm depend on p; here, for instance, we have that for symmetric
matrices A ∈ R

p×p , ‖A‖∞ ≤ ‖A‖ ≤ p‖A‖∞.
Unfortunately, in practice, the (nonconverging) operator norm is of more practical

interest than the (converging) infinity norm.

Remark 1.1 (On the importance of operator norm). For practical purposes, this
“loss” of norm equivalence for large p raises the question of the relevant matrix norm
to consider for a given application. For the purpose of the present book, and for most
applications in machine learning, the operator (or spectral) norm is the most relevant.
First, the operator norm is the matrix norm induced by the Euclidean norm of vectors.
Thus, the study of regression vectors or label/score vectors in classification is natu-
rally attached to the spectral study of matrices. Besides, we will often be interested
in the asymptotic equivalence of families of large-dimensional symmetric matrices. If
‖Ap −Bp‖ → 0 for matrix sequences {Ap} and {Bp}, indexed by their dimension p,
then according to Weyl’s inequality (see, e.g., Lemma 2.10 in Section 2.2.1),

max
i

∣∣λi(Ap)− λi(Bp)
∣∣→ 0

for λ1(A) ≥ λ2(A) ≥ ·· · , the eigenvalues of A in a decreasing order. Besides, for
ui(Ap), an eigenvector of Ap associated with an isolated eigenvalue λi(Ap) (i.e., such
that min{|λi+1(Ap)− λi(Ap)|,|λi(Ap)− λi−1(Ap)|} > ε for some ε > 0 uniformly
on p), ∥∥ui(Ap)−ui(Bp)

∥∥→ 0.

These results ensure that, as far as spectral properties are concerned, Ap can be stud-
ied equivalently through Bp . We will often use this argument to investigate intractable
random matrices Ap by means of a more tractable “proxy” Bp .

The pitfall that consists in assuming that Ĉ is a valid estimator of C since
‖Ĉ − C‖∞

a.s.−−→ 0 may thus have deleterious practical consequences when n is not
significantly larger than p.

Resuming our discussion of norm convergence, it is now natural to ask whether Ĉ,
which badly estimates C, has a controlled asymptotic behavior. There precisely lay the
first theoretical interests of random matrix theory. While Ĉ itself does not converge in
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Figure 1.1 Histogram of the eigenvalues of Ĉ versus the Marc̆enko–Pastur law, for X having
standard Gaussian entries, p = 500 and n = 50000. Code on web: MATLAB and Python.

any useful way, its eigenvalue distribution does exhibit a traceable limiting behavior
[Marčenko and Pastur, 1967, Silverstein and Bai, 1995, Bai and Silverstein, 2010]. The
seminal result in this direction, due to Marc̆enko and Pastur, states that, for C = Ip , as
n,p → ∞, with p/n → c ∈ (0,∞), it holds with probability 1 that the random discrete
eigenvalue/empirical spectral distribution

μp ≡ 1
p

p

∑
i=1

δλi (Ĉ)

converges in law to a nonrandom smooth limit, today referred to as the “Marc̆enko–
Pastur law” [Marčenko and Pastur, 1967],

μ(dx) = (1− c−1)+δ0(x)+
1

2πcx

√
(x − E−)+(E+− x)+ dx, (1.2)

where E± = (1±√
c)2 and (x)+ ≡ max(x,0).

Figure 1.1 compares the empirical spectral distribution of Ĉ to the limiting
Marc̆enko–Pastur law given in (1.2), for p = 500 and n = 50000.

The elementary Marc̆enko–Pastur result is already quite instructive and insightful.

Remark 1.2 (When is one under the random matrix regime?). Equation (1.2) reveals
that the eigenvalues of Ĉ, instead of concentrating at x = 1 as a large-n alone analysis
would suggest, are spread from (1−√

c)2 to (1+
√

c)2. As such, the eigenvalues span
on a range

(1+
√

c)2 − (1−
√

c)2 = 4
√

c.

This is a slow decaying behavior with respect to c = lim p/n. In particular, for
n = 100p, in which case, one would expect a sufficiently large number of samples
for Ĉ to properly estimate C = Ip , one has 4

√
c = 0.4, which is a large spread around
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the mean (and true) eigenvalue 1. This is visually confirmed by Figure 1.1 for p = 500
and n = 50000, where the histogram of the eigenvalues is nowhere near concentrated
at x = 1. Therefore, random matrix results will be much more accurate than classical
asymptotic statistics even when n ∼ 100p. As a telling example, estimating the covari-
ance matrix of each digit from the popular Modified National Institute of Standards
and Technology (MNIST) dataset [LeCun et al., 1998], made of no more than 60000
training samples (and thus about n = 6000 samples per digit) of size p = 784, is likely
a hazardous undertaking.

Remark 1.3 (On universality). Although introduced here in the context of a Gaussian
distribution for xi , the Marc̆enko–Pastur law applies to much more general cases.
Indeed, the result remains valid as long as the xis have independent normalized entries
of zero mean and unit variance (and even beyond this setting, see El Karoui [2009]
and Louart and Couillet [2018]). Similar to the law of large numbers in standard
asymptotic statistics, this universality phenomenon commonly arises in random matrix
theory and large-dimensional statistics. We will exploit this phenomenon in the book
to justify the wide applicability of the presented results, even to real datasets. See
Chapter 8 for more detail.

1.1.3 Kernel Matrices of Large-Dimensional Data

Another less-known but equally important example of the curse of dimensionality in
machine learning involves the loss of relevance of (the notion of) Euclidean distance
between large-dimensional data vectors. To be more precise, we will see in the sequel
that, in an asymptotically nontrivial classification setting (i.e., ensuring that asymp-
totic classification is neither trivially easy nor impossible), large and numerous data
vectors x1,. . . ,xn ∈R

p extracted from a few-class (say two-class) mixture model tend
to be asymptotically at equal (Euclidean) distance from one another, irrespective of
their corresponding class. Roughly speaking, in this nontrivial setting and under some
reasonable statistical assumptions on the xis, we have

max
1≤i �= j≤n

{
1
p
‖xi −x j‖2 − τ

}
→ 0 (1.3)

for some constant τ > 0 as n,p → ∞, independently of the classes (same or different)
of xi and x j (here the normalization by p is used for compliance with the notations in
the remainder of this book and has no particular importance).

This asymptotic behavior is extremely counterintuitive and conveys the idea that
classification by standard methods ought not to be doable in this large-dimensional
regime. Indeed, in the conventional small-dimensional intuition that forged many of
the leading machine learning algorithms of everyday use (such as spectral clustering
[Ng et al., 2002, Luxburg, 2007]), two data points are assigned to the same class if
they are “close” in Euclidean distance. Here we claim that, when p is large, data pairs
are neither close nor far from each other, regardless of their belonging to the same
class or not. Despite this troubling loss of individual discriminative power between
data pairs, we subsequently show that, thanks to a collective behavior of all data



6 1 Introduction

belonging to the same (few and thus large) classes, data classification or clustering
is still achievable. Better, we shall see that, while many conventional methods devised
from small-dimensional intuitions do fail in this large-dimensional regime, some pop-
ular approaches, such as the Ng–Jordan–Weiss spectral clustering method [Ng et al.,
2002] or the PageRank semisupervised learning approach [Avrachenkov et al., 2012],
still function. But the core reasons for their functioning are strikingly different from
the reasons of their initial designs, and they often operate far from optimally.

The Nontrivial Classification Regime
To get a clear picture of the source of Equation (1.3), we first need to clarify what
we refer to as the “asymptotically nontrivial” classification setting. Consider the
simplest scenario of a binary Gaussian mixture classification: Given a training set
x1,. . . ,xn ∈ R

p of n samples independently drawn from the two-class (C1 and C2)
Gaussian mixture,

C1 : x ∼ N (μ,Ip), C2 : x ∼ N (−μ,Ip +E), (1.4)

each drawn with probability 1/2, for some deterministic μ ∈ R
p and symmetric

E ∈R
p×p , both possibly depending on p. In the ideal case where μ and E are perfectly

known, one can devise a (decision optimal) Neyman–Pearson test. For an unknown x,
genuinely belonging to C1, the Neyman–Pearson test to decide on the class of x reads

(x+ μ)T(Ip +E)−1(x+ μ)− (x− μ)T(x− μ)
C1
≷
C2

− logdet(Ip +E). (1.5)

Writing x = μ+ z for z ∼ N (0,Ip), the above test is equivalent to

T(x) ≡ 4μT(Ip +E)−1μ+4μT(Ip +E)−1z+ zT
(
(Ip +E)−1 − Ip

)
z

+ logdet(Ip +E)
C1
≷
C2

0. (1.6)

Since Uz for U ∈R
p×p , an eigenvector basis of (Ip+E)−1 (and thus of (Ip+E)−1 −

Ip), follows the same distribution as z, the random variable T(x) can be written
as the sum of p independent random variables. Further assuming that ‖μ‖ = O(1)
with respect to p, by Lyapunov’s central limit theorem (e.g., [Billingsley, 2012, The-
orem 27.3]) and the fact that Var[zTAz] = 2tr(A2) for symmetric A ∈ R

p×p and
Gaussian z, we have, as p → ∞,

V−1/2
T (T(x)− T̄)

d−→ N (0,1),

where

T̄ ≡ 4μT(Ip +E)−1μ+ tr(Ip +E)−1 − p+ logdet(Ip +E),

VT ≡ 16μT(Ip +E)−2μ+2tr
(
(Ip +E)−1 − Ip

)2
.
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As a consequence, the classification of x ∈ C1 is asymptotically nontrivial (i.e., the
classification error neither goes to 0 nor 1 as p → ∞) if and only if T̄ is of the same
order as

√
VT . Considering the (worst-case) scenario where E = 0, we must have

‖μ‖ ≥ O(1) with respect to p (indeed, if instead ‖μ‖ = o(1), the classification of
x is asymptotically impossible).

Under the constraint ‖μ‖ = O(1), we move on to consider the case E �= 0 with the
spectral norm constraint ‖E‖ = o(1). By a Taylor expansion of both (Ip +E)−1 and
logdet(Ip +E) around Ip , we obtain

T̄ = 4‖μ‖2 − 1
2

tr(E2)+ o(1);

VT = 16‖μ‖2 +2tr(E2)+ o(1),

which demands tr(E2) to be of order O(1) (same as ‖μ‖) so as to have discriminative
power. Since tr(E2)≤ p‖E‖2, with equality if and only if E is proportional to the iden-
tity, that is, E = εIp , one must have ‖E‖ ≥ O(p−1/2). Also, since O(1) = tr(E2) ≤
(trE)2, we must have | trE| ≥ O(1). This allows us to conclude on the following
nontrivial classification conditions:

‖μ‖ ≥ O(1), ‖E‖ ≥ O(p−1/2), | tr(E)| ≥ O(1), tr(E2) ≥ O(1). (1.7)

These are the minimal conditions for classification in the case of perfectly known
means and covariances in the following sense: (i) if none of the inequalities hold (i.e.,
if the means and covariances from both classes are too close), asymptotic classification
must fail and (ii) if at least one of the inequalities is not tight (say if ‖μ‖ ≥ O(

√
p)),

asymptotic classification becomes trivial.1

We shall subsequently see that (1.7) precisely induces the asymptotic loss of dis-
tance discrimination raised in (1.3) but that standard spectral clustering methods based
on n ∼ p data remain valid.

Asymptotic Loss of Pairwise Distance Discrimination
Under the equality case for the conditions in (1.7), consider the (normalized)
Euclidean distance between two distinct data vectors xi ∈ Ca and x j ∈ Cb ,i �= j,
given by

1
p
‖xi −x j‖2 =

{
1
p ‖zi − z j‖2 + Ap−1, for a = b = 2
1
p ‖zi − z j‖2 + Bp−1, for a = 1,b = 2,

(1.8)

1 It should be noted here that, unlike in computer science, we will stick in this book with the notation O(·)
indifferently from the complexity notations Ω(·), O(·), and Θ(·). The exact meaning of O(·) will be
clear in context. For instance, under computer science notations, Equation (1.7) would be ‖μ‖ ≥ Θ(1),
‖E‖ ≥ Θ(p−1/2), | tr(E)| ≥ Θ(1), and tr(E2)≥ Θ(1).
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v2 =
[ ]

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a) p = 5

v2 =

[ ]

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(b) p = 250

Figure 1.2 Gaussian kernel matrices K and the second top eigenvectors v2 for (a) small- and
(b) large-dimensional data X = [x1,. . . ,xn ] ∈ R

p×n , with x1,. . . ,xn/2 ∈ C1 and
xn/2+1,. . . ,xn ∈ C2 for n = 5000. Code on web: MATLAB and Python.

where

A = zTi Ezi + zTj Ez j −2zTi Ez j and

B = zTj (E+E2/4)z j − zTi Ez j +4‖μ‖2 +4μT(zi − z j)+ o(1)

are both of order O(1)
(
and thus both Ap−1 and Bp−1 are of order O(p−1)

)
, while the

leading term 1
p ‖zi − z j‖2 of (1.8) is of order O(1). As such,

max
1≤i �= j≤n

{
1
p
‖zi − z j‖2 −2

}
→ 0

almost surely as n,p → ∞ (this follows by exploiting the fact that ‖zi − z j‖2 is a chi-
square random variable with p degrees of freedom). As a consequence, as previously
claimed in (1.3),

max
1≤i �= j≤n

{
1
p
‖xi −x j‖2 − τ

}
→ 0

for τ = 2 here. Besides, on a closer inspection of (1.8), we find that, beyond
this common value τ of order O(1), the discriminative class information in means
4‖μ‖2/p and that in covariances zTj (E+E2/4)z j/p � tr(E+E2/4)/p are both of order
O(p−1), while by the central limit theorem, ‖zi − z j‖2/p = 2+O(p−1/2). The class
information is thus largely overtaken by the random fluctuations. As a consequence,
asymptotically, the pairwise distance ‖xi − x j‖2/p contains no exploitable statistical
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information (about μ or E) to distinguish if the xi and x j vectors belong to the same or
different classes.

To visually confirm this joint convergence of the data distances, in Figure 1.2, we
display the content of the Gaussian (heat) kernel matrix K ∈ R

n×n , with [K]i j =

exp
(
−‖xi −x j‖2/(2p)

)
, and the associated second dominant eigenvector v2 for a two-

class Gaussian mixture x ∼ N (±μ,Ip), with μ = [2; 0p−1]. For a constant n = 500,
we take p = 5 in Figure 1.2(a) and p = 250 in Figure 1.2(b).

While the “block-structure” in the case of p = 5 of Figure 1.2(a) does agree with
the small-dimensional intuition – data vectors from the same class are “closer” to one
another in diagonal blocks with larger values (since exp(−x/2) decreases with x) than
in nondiagonal blocks – this intuition collapses when large-dimensional data vectors
are considered. Indeed, in the large data setting of Figure 1.2(b), all entries (except
obviously on the diagonal) of K have approximately the same value, which, we now
know from (1.3), is exp(−1).

This is no longer surprising to us. However, what remains surprising in Figure 1.2
at this stage of our analysis is that the eigenvector v2 of K seems not affected by this
(asymptotic) loss of class-wise discrimination of individual distances. And spectral
clustering seems to work equally well for p = 5 and for p = 250, despite the radical
and intuitively destructive change in the behavior of K for p = 250.

Explaining Kernel Methods with Random Matrix Theory
The fundamental reason behind this surprising behavior lies in the accumulated effect
of the n/2 small “hidden” informative terms ‖μ‖2, trE and tr(E2) in each class, which
collectively “steer” the several top eigenvectors of K. More explicitly, we shall see
in the course of this book that the Gaussian kernel matrix K can be asymptotically
expanded as

K = exp(−1)

(
1n1Tn +

1
p

ZTZ
)
+ f (μ,E) · 1

p
jjT+∗+ o‖·‖(1), (1.9)

where Z = [z1,. . . ,zn ] ∈ R
p×n is a Gaussian noise matrix, f (μ,E) = O(1), and

j = [1n/2; − 1n/2] is the class-information “label” vector (as in the setting of
Figure 1.2). Here “*” symbolizes extra terms of marginal importance to the present
discussion, and o‖·‖(1) represents terms of asymptotically vanishing operator norm as
n,p → ∞. The important remark to be made here is that

(i) Under this description, [K]i j = exp(−1)(1+ zTi z j/p)± f (μ,E)/p+∗, with
f (μ,E)/p � zTi z j/p = O(p−1/2); this is consistent with our previous discussion:
The statistical information is entry-wise dominated by noise.

(ii) From a spectral viewpoint, ‖ZTZ/p‖ = O(1), as per the Marc̆enko–Pastur
theorem [Marčenko and Pastur, 1967] discussed in Section 1.1.2 and visually
confirmed in Figure 1.1, while ‖ f (μ,E) · jjT/p‖ = O(1): Thus, spectrum-wise,
the information stands on even ground with noise.
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(a) MNIST data
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(b) Fashion-MNIST data

Figure 1.3 Gaussian kernel matrices K and the second top eigenvectors v2 for (a) MNIST
[LeCun et al., 1998] (class 8 versus 9) and (b) Fashion-MNIST [Xiao et al., 2017] data
(class 5 versus 7), with x1,. . . ,xn/2 ∈ C1 and xn/2+1,. . . ,xn ∈ C2 for n = 5000. Code on
web: MATLAB and Python.

The mathematical magic at play here lies in f (μ,E) · jjT/p having entries of order
O(p−1) while being a low-rank (here unit-rank) matrix: All its “energy” concentrates
in a single nonzero eigenvalue. As for ZTZ/p, with larger O(p−1/2) amplitude entries,
it is composed of “essentially independent” zero-mean random variables and tends
to be of full rank and spreads its energy over its n eigenvalues. Spectrum-wise, both
f (μ,E) · jjT/p and ZTZ/p meet on even ground under the nontrivial classification
setting of (1.7).

We shall see in Section 4 that things are actually not as clear-cut and, in particular,
that not all choices of kernel functions can achieve the same nontrivial classification
rates. In particular, the popular Gaussian (radial basis function [RBF]) kernel will be
shown to be largely suboptimal in this respect.

Do Real Data Follow Small- or Large-Dimensional Intuitions?
A first glimpse into this riddle, fundamental for the practical design of machine
learning algorithms, is provided in Figure 1.3. Similar to Figure 1.2 for synthetic
Gaussian data, Figure 1.3 depicts the content of kernel matrices built from the
MNIST [LeCun et al., 1998] and Fashion-MNIST data [Xiao et al., 2017], with
p = 28 × 28 = 784 and n = 5000 in both cases. In Figure 1.4, instead of raw data,
we display the features extracted from popular deep neural networks, such as VGG-16
[Simonyan and Zisserman, 2014] of the more complex CIFAR-10 images (with
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(a) VGG-16 features of CIFAR-10

v2 =

[ ]

K =
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(b) Word2vec features of GoogleNews

Figure 1.4 Gaussian kernel matrices K and the second dominant eigenvectors v2 for
(a) VGG-16 [Simonyan and Zisserman, 2014] features of CIFAR-10 data (“airplane” versus
“bird”) and (b) word2vec [Mikolov et al., 2013] features of GoogleNews-vectors data
(“sports” versus “sales”), with x1,. . . ,xn/2 ∈ C1 and xn/2+1,. . . ,xn ∈ C2. Code on web:
MATLAB and Python.

p = 1024), as well as the so-called “word-embedding” features from the popular
word2vec method [Mikolov et al., 2013] of the GoogleNews data (with p = 300).
In all aforementioned cases, we observe a typical large-dimensional behavior (that is
similar to Figure 1.2(b) for Gaussian data), not only on raw data but also on efficient
features from modern and elaborate machine learning algorithms; even more strik-
ingly, this behavior is consistently observed both for image and natural language data,
despite their being of a fundamentally different nature. Section 1.2.4, at the end of this
introductory chapter, provides first clues that justify why this seemingly unexpected
observation (recall again that in the classical motivation behind spectral clustering
methods [Ng et al., 2002], we would rather expect a behavior typical of Figure 1.2(a))
on real-world datasets should, in fact, not be a surprise.

1.1.4 Summarizing

In this section, we discussed two simple, yet counterintuitive examples of common
pitfalls in learning from large-dimensional data.

In the sample covariance matrix example of Section 1.1.2, we made the important
remark of the loss of equivalence between matrix norms in the random matrix regime
where the data (or features) dimension p and their number n are both large and com-
parable, which is at the source of many seemingly striking empirical observations in
modern machine learning. We, in particular, insist that for matrices An ,Bn ∈ R

n×n of
large sizes,
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∀i, j, [An −Bn ]i j → 0 �⇒ ‖An −Bn‖ → 0 (1.10)

in the operator norm.
We also realized, from a basic reading of the Marc̆enko–Pastur theorem, that the

random matrix regime arises more often than one may think: While n/p ∼ 100 may
seem a large enough ratio for classical asymptotic statistics to be accurate, random
matrix theory is, in general, a far more appropriate tool (with as much as 20% gain in
precision for the estimation of the eigenvalues of sample covariances).

In Section 1.1.3, we provided a concrete machine learning application example
of the message in (1.10). We saw that, in the practically most relevant scenario of
nontrivial (not too easy, not too hard) large data classification, the Euclidean distance
between any two data vectors “concentrates” around a constant as in (1.3), regardless
of their respective classes. Yet, since again entry-wise convergence [An ]i j → τ does
not imply operator norm convergence ‖An − τ1n1Tn‖ → 0, we understood that, thanks
to a collective effect of the small but similarly “oriented” fluctuations in all the entries,
spectral clustering remains valid for large-dimensional problems.

Possibly most importantly, we discovered that the “curse of dimensionality”
induced by the counterintuitive behavior of large-dimensional vectors turns into
an asset for mathematical analysis. In the sample covariance matrix example, we
observed that a random-matrix version of the laws of large numbers arises in the
convergence of the eigenvalue distributions of large sample covariance matrices to
a deterministic limiting measure. As a matter of fact, as we shall see throughout the
book, the very fact that both p and n are large ensures a generally fast convergence
of most (random) quantities of practical interest for machine learning: By exploiting
np = O(n2), rather than n degrees of freedom, central limit theorems may converge at
O(1/n) rate (instead of the classical O(1/

√
n) rate).

This fast convergence rate further induces another important phenomenon, referred
to as the universality, which ensures the robustness of the random matrix asymptotics
to a vast range of distributions. Essentially, as we shall see in more detail later in this
book, first- and second-order statistics are often sufficient to describe most asymp-
totic behaviors, even of complicated data models and methods. This is a first (yet
not the most convincing) justification of the repeatedly observed – but quite unex-
pected – good match between random matrix predictions and experiments on real
datasets.

In a nutshell, the fundamentally counterintuitive, yet mathematically addressable
changes in the behavior of large-dimensional data when compared with small-
dimensional data have two major consequences to statistics and machine learning: (i)
most algorithms, originally developed under a small-dimensional intuition, are likely
to fail (as we shall discover in this book, many of them do) or at least to perform inef-
ficiently and (ii) by benefiting from the extra degrees of freedom offered by large data
(in the dimension p), random matrix theory is apt to analyze and improve these meth-
ods, but most importantly, it generates a whole new paradigm for large-dimensional
learning.
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1.2 Random Matrix Theory as an Answer

1.2.1 Which Theory and Why?

A Point of History
Random matrix theory originates from the work of John Wishart [Wishart, 1928] on
the study of the eigenvalues of the matrix XXT (now referred to as a Wishart matrix)
for X ∈ R

p×n with standard Gaussian entries [X]i j ∼ N (0,1). Wishart managed to
determine a closed-form expression for the joint eigenvalue distribution of XXT for
every pair of p,n. Few progress however followed, as matrices with non-Gaussian
entries are hardly amenable to similar analysis and, even if they were, the actual
study of more elaborate functionals of XXT is at best cumbersome and often simply
intractable.

The works of the physicist Eugene Wigner [Wigner, 1955] gave a new impulse to
the theory. Interested in the eigenvalues of symmetric matrices X ∈ R

n×n with inde-
pendent Bernoulli entries (particle spins in his application context), Wigner opted for
an asymptotic analysis of the eigenvalue distribution, thereby initiating the impor-
tant and much richer branch of large-dimensional random matrix theory. Despite
this important inspiration, Wigner exploited standard asymptotic statistics tools (the
method of moments) to prove that the discrete distribution of the eigenvalues of X
has a continuous semicircle looking density in the n → ∞ limit (the now popular
semicircular law). This approach was particularly convenient as the limiting law is
simple and could be visually anticipated (which is not the case of the next-to-come
Marc̆enko–Pastur limiting distribution of Wishart matrices).

Only until 1967 with the tour-de-force of Marčenko and Pastur [1967] did random
matrix theory take a new dimension. Marc̆enko and Pastur determined the limiting
spectral distribution of the sample covariance matrix model XXT of Wishart but under
relaxed conditions: [X]i j are independent entries with zero mean and unit variance,
and additional moment assumptions (all discarded in subsequent works). The indepen-
dence (or weak dependence) property is key to their proof, which exploits the powerful
Stieltjes transform 1

p tr( 1
n XXT− zIp)−1 =

∫
(λ− z)−1μp(dt) of the empirical spectral

distribution μp ≡ 1
p ∑p

i=1 δλi ( 1
n XXT) of 1

n XXT, a tool borrowed from operator theory in

Hilbert spaces [Akhiezer and Glazman, 2013], rather than the moments 1
p tr( 1

n XXT)k

(which may not converge since E[X�
i j ] needs not be finite for � > 2).

The technical approach devised by Marc̆enko and Pastur was then largely embraced
at the turn of the twenty-first century by Bai and Silverstein who, in a series of sig-
nificant breakthroughs (the most noticeable of which are [Silverstein and Bai, 1995,
Bai and Silverstein, 1998]), extended the results in [Marčenko and Pastur, 1967] to an
exhaustive study of sample covariance matrices.

In parallel, another approach to limiting spectral analysis of large random matri-
ces emerged as an application example of the free probability theory developed by
Voiculescu et al. [1992]. Free probability was born as a theory to study random vari-
ables in noncommutative algebras, such as the algebra of matrices. Rather than relying
on independence assumptions as for the aforementioned Stieltjes transform method,
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free probability theory relies on a notion of asymptotic freeness. In essence, ran-
dom matrices are asymptotically free if their eigenvector distributions are sufficiently
“isotropic” with respect to each other; for instance, independent Gaussian matrices
(matrices with independent Gaussian entries) are free, and independent unitary matri-
ces with isotropic eigenvector distributions are free, and a deterministic matrix is free
with respect to a Gaussian matrix [Mingo and Speicher, 2017].

Both free probability and the Stieltjes transform approaches have long lived
hand-in-hand, and are essentially capable of proving similar results under vari-
ous assumptions. A classical example, of great importance to this book, is that of
spiked models (i.e., finite-rank deformations of random matrices, such as the nonzero
mean sample covariance (X + μ1Tn)(X + μ1Tn)

T or the rank-one perturbed identity

covariance (Ip + �uuT)
1
2 XXT(Ip + �uuT)

1
2 for X with i.i.d. zero-mean entries) made

popular by two key articles [Baik and Silverstein, 2006] and [Benaych-Georges and
Nadakuditi, 2012], respectively based on a Stieltjes transform and a free probability
approach.

These tools are largely sufficient to cover most of the basic statistical problems in
random matrix theory. In particular, the often-called global regime of random matri-
ces: Their limiting eigenvalue distribution, the behavior of linear statistics of their
eigenvalues or eigenvectors, the position of the outlying eigenvalues in spiked mod-
els, etc., are all accessible by either method. However, this is often not the case of the
local regime: The limiting distribution of a specific eigenvalue (notably the largest and
smallest, of practical interest) for which more efforts are, in general, needed. There,
researchers have rather resorted to a finite-dimensional analysis of the joint eigenvalue
distribution for the Gaussian case (in the spirit of Wishart), and carefully taken the lim-
its of the distribution, exploiting powerful tools such as orthogonal polynomial theory
[Johnstone, 2001]. We will not further discuss these approaches in the book, which are
rather specific and not of direct use to our applications.

Resolvents, Gaussian Tools, and Concentration of Measure Theory
As we shall see throughout this book, realistic data and feature models necessarily
contain rich statistical structures and information patterns (to be extracted by machine
learning algorithms). Typical examples include local structures (captured by convo-
lutional filters) in image data, as well as short- and long-term dependences in time
series or natural language data. In random matrix terms, this involves dealing with very
structured and heterogeneous random matrix models. Although it ebbed and flowed in
the past decade, the free probability approach, in general, requires increased effort
and advanced techniques to prove the key asymptotic freeness, if possible at all. For
this reason (and also because most research and results are available in the Stieltjes
transform-related literature), our focus in this book will be on the range of methods
surrounding the Stieltjes transform approach.

More exactly, the central object of study in this book is the so-called resolvent
of the (almost always symmetric, or Hermitian in the complex case) random matrix
X ∈ R

n×n under investigation, that we shall often denote QX(z) or simply Q(z), and



1.2 Random Matrix Theory as an Answer 15

that is defined, for all z ∈C not in the eigenspectrum of X (i.e., not coinciding with an
eigenvalue of X), by

QX(z)≡ (X− zIn)
−1 . (1.11)

The resolvent is a rich mathematical object that gives access to:

• the eigenvalue distribution μX ≡ 1
n ∑n

i=1 δλi (X) of X through the (inverse) Stieltjes
transform relation (for all a,b /∈ {λ1(X),. . . ,λn(X)})

∫ b

a
μX(dλ) = lim

ε↓0

∫ b

a

1
π

ℑ[mX(x+ ıε)]dx,

with ı the imaginary unit and

mX(z)≡
∫
μX(dλ)
λ− z

=
1
n

n

∑
i=1

1
λi(X)− z

=
1
n

trQX(z);

• functionals of these eigenvalues 1
n ∑n

i=1 f (λi(X)) through Cauchy’s integral
identity (Theorem 2.2)

1
n

n

∑
i=1

f (λi(X)) = − 1
2πın

∮
Γ

f (z) trQX(z)dz,

for Γ ⊂ C, a positively oriented contour in the complex plane surrounding all the
λi(X)s and f (z) complex analytic in a neighborhood of the “inside” of Γ;

• the eigenvectors and subspaces of X, again, through Cauchy’s integral relation

ui(X)ui(X)T = − 1
2πı

∮
Γλi (X)

QX(z)dz,

for (λi(X),ui(X)), an eigenpair of X and Γλi (X), a positively oriented contour
surrounding only λi(X).

As such, the resolvent plays a key role in the analysis of spectral methods, such as
(kernel) spectral clustering or graph-based community detection, in which case, the
top eigenvectors of some underlying random matrix are exploited.

In addition, the resolvent is a fundamental object that frequently appears in the solu-
tions to linear regression problems (for machine learning applications, in least squares
support vector machines, random features and kernel ridge regressions, neural net-
works, etc.), or to random walk and graph-based semi-supervised learning methods.
They will also be shown to appear naturally in not immediately related machine learn-
ing problems, such as in large-dimensional nonlinear regression (such as logistic or
robust M-regression).

The core of the random matrix approach devised in this book consists in determin-
ing, for various statistical models of random matrices X, a deterministic equivalent
Q̄(z) for Q(z) = QX(z), that it is a deterministic matrix Q̄(z) such that

u(Q(z)− Q̄(z))
a.s.−−→ 0, or u(E[Q(z)]− Q̄(z))→ 0
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for all 1-Lipschitz linear mapping u : R
n×n → R. Of particular interest are the

functions u(X) = 1
n tr(AX) for ‖A‖ ≤ 1, and u(X) = aTXb for ‖a‖,‖b‖ ≤ 1.2

As an example, in the setting of the Marc̆enko–Pastur law, where the random matrix
of interest is 1

n XXT with X ∈ R
p×n having i.i.d. zero mean and unit variance entries,

the resolvent

Q(z) =

(
1
n

XXT − zIp

)−1

admits

Q̄(z) = mμ(z)Ip , mμ(z) =
∫
μ(dλ)
λ− z

, for μ defined in (1.2),

as a deterministic equivalent. Thus, in particular, 1
p trQ(z) − mμ(z)

a.s.−−→ 0 and

aTQ(z)b−mμ(z)aTb a.s.−−→ 0 for deterministic a,b ∈ R
p of bounded Euclidean norm.

Consequently, the resolvent (and Stieltjes transform) approach simultaneously
involves notions from three distinct mathematical areas:

• linear algebra, and particularly the exploitation of inverse matrix lemmas, the
Schur complement, interlacing, and low-rank perturbation identities [Horn and
Johnson, 2012];

• complex analysis (the resolvent Q(z) is a complex analytic matrix-valued
function), and particularly the theory of analytic functions, contour integrals, and
residue calculus [Stein and Shakarchi, 2003];

• probability theory, and, most specifically, notions of convergence, central limit
theory, and the method of moments [Billingsley, 2012]. Depending on the
underlying random matrix assumptions (independence of entries, Gaussianity,
concentration properties), different random matrix-adapted techniques (among
others and variations) will be discussed in this book: the Gaussian tools developed
by Pastur, relying on Stein’s lemma and the Nash–Poincaré inequality [Pastur and
Shcherbina, 2011], the Bai–Silverstein inductive method [Bai and Silverstein,
2010], the concentration of measure framework developed by Ledoux [2005] and
applied to random matrix endeavors successively by El Karoui [2009], Vershynin
[2012], and Louart and Couillet [2018], or the double leave-one-out approach
devised by El Karoui et al. [2013].

The aforementioned tools are, in general, used together with a perturbation approach
in the sense that they exploit the fact that, by eliminating a row or a column (say,
here both row and column i) of a large random matrix X ∈ R

n×n to obtain X−i ∈
R
(n−1)×(n−1), the resulting resolvent Q−i(z) = (X−i − zIn−1)

−1 can be related to
the original resolvent Q(z) through both linear algebraic relations and asymptotically

2 Here, A and a, b must be understood as “sequences” of deterministic matrices (or vectors) of growing
size but with controlled norm; in particular, A and a, b, being deterministic, cannot depend on X (in
which case, the convergence results may fail: take for instance a = b some eigenvector of X to be
convinced).
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comparable statistical behaviors. For instance, in the case of symmetric X with i.i.d.
(and properly normalized) entries, it is not difficult to show that mX(z) = mX−i (z)+
O(n−1).

In this regard, Pastur’s Gaussian method manages, for models of X involving Gaus-
sianity (e.g., X has Gaussian entries or its entries are functions of Gaussian random
variables), to obtain asymptotic relations for EQ(z). Interpolation methods may then
be used to extrapolate the results beyond the Gaussian setting. The Bai–Silverstein
inductive method, on the contrary, is not restricted to matrices with Gaussian entries
but is restricted to the specific analysis of either trace forms trAQ(z) or bilinear forms
aTQ(z)b that need be treated individually (it also suffers to handle exotic forms of
dependence within X). The concentration of measure approach is quite versatile: by
merely restricting the matrix under study to be constituted of concentrated random
vectors (so, in particular, Lipschitz maps of standard Gaussian random vectors or of
vectors with i.i.d. entries), it allows one to study simultaneously the fluctuations of all
linear functionals of Q(z) under light conditions on X.

1.2.2 The Double Asymptotics: Turning the Curse of Dimensionality into a
Dimensionality Blessing

Why Random Matrix Theory to Study the Large n,p Regime?
Although we have previously made a point that modern data processing and learning
involve large dimensions (numerous data, large sample sizes, large number of system
parameters), and that large-dimensional statistics are a natural class of mathemati-
cal tools to turn to, why should one invest in random matrix theory rather than, say,
statistical physics,3 nonasymptotic random matrix theory,4 or compressive sensing?5

Large-dimensional random matrix theory, as we introduce it in this book, has two key

3 Statistical physics and statistical mechanics are powerful tools to map large-dimensional data problems
into physics-inspired problems of “interacting particles” [Mézard and Montanari, 2009]. In the early
2000s, statistical physics has brought inspiring ideas and powerful (but unfortunately often unreliable,
since nonrigorous) tools for the analysis of wireless communication and information-theoretic problems,
before being caught up by added solid and versatile mathematical techniques. Today, statistical physics
has an edge on the study of sparse (graph-based) machine learning problems for which random matrix
theory still struggles to offer a sound theory.

4 The recent field of nonasymptotic random matrix theory is based on concentration inequality approach
and aims, as such, to provide bounds rather than exact (deterministic) asymptotics on various random
matrix quantities [Vershynin, 2018]. This set of concentration inequalities should not to be confused with
the concentration of measure theory [Ledoux, 2005]: Concentration inequalities form a restricted subset
of the theory by proving statistical bounds on specific quantities.

5 Compressive sensing revolves around the assumption that large (p)-dimensional data often arise from
a manifold in R

p of much lower intrinsic dimension: Under this assumption, the curse of dimen-
sionality (when p ∼ n or even p � n) vanishes if one manages to retrieve the (often unknown)
low-dimensional manifold. As an aftermath of the seminal work by Candes and Tao [2005], compressive
sensing was possibly the first major breakthrough in the modern field of large-dimensional statistical
machine learning.
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distinctive features, making it simultaneously more powerful and versatile than these
alternative tools:

(i) Unlike nonasymptotic random matrix theory and compressive sensing
methods, which mostly aim at bounding key quantities (from a rather qualitative
standpoint), large-dimensional random matrix theory is able to provide precise
and quantitative (asymptotically exact) approximations for a host of quantities,
defined as functionals of random matrices. As a matter of fact, nonasymptotic
random matrix theory is more flexible in its not constraining the system
dimensions (p, n) and latent variables (data statistics, model hyperparameters)
to increase at a controlled rate. Large-dimensional random matrix theory, on the
contrary, imposes a controlled growth on the dimensions, and consequently, on
the model statistics to enforce nontrivial limiting behavior. The ensuing drawback
of this allowed flexibility is that only qualitative bounds can be obtained on the
system behavior, which at best provides “rules of thumbs” and order of magni-
tudes on the performance of given algorithms. Large-dimensional random matrix
theory, by providing exact asymptotics, allows one to finely track the system
behavior and opens the possibility to improve its (also fully traced) performance.

(ii) Modern advances in large-dimensional random matrix theory, as opposed to
statistical physics notably, further provide results for rather generic and complex
system models: matrix models involving nonlinearities (kernels, activation
functions), structural data dependence (nonidentity covariances, heterogeneous
mixture models, models of concentrated random vectors with strong nonlinear
dependence). These key features bring the random matrix tools much closer
to practical settings and algorithms. As such, not only does random matrix theory
provide a precise understanding of the behavior of key algorithms in machine
learning, but it also predicts their behavior when applied to realistic data models.

These two advantages are decisive to the analysis, improvement, and proposition of
new machine learning algorithms.

The Case of Machine Learning
The major technical difficulty that has long held many machine learning away from
precise quantitative analysis and theoretical comprehension relates to the nonlinear-
ity involved in feature extraction (nonlinear kernels, nonlinear activation functions
in neural networks), to the implicit nature of some methods (as simple as the logis-
tic regression), and eventually to the difficulty of a proper (statistical) modeling of
complex realistic data of various natures (starting with natural images).

An all-encompassing example of these difficulties could be summarized in the
following classical problem:

Problem. Determine the exact classification performance of logistic regression for n
independent observations of p-dimensional (random) feature vectors extracted from
a set of two-class images (say, images of dogs versus images of cats).

In the conventional wisdom of statistical machine learning, one cannot conceive to
solve this problem in an exact and qualitative manner: the input data (real images)
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are not easily modeled, the nonlinear features extracted from those data are com-
plex mathematical objects (even in the case where the original data could be modeled
as multivariate Gaussian random vectors), and the logistic regression is an implicit
optimization method not easily amenable to explicit mathematical analysis.

We shall demonstrate throughout this book that random matrix theory provides a
satisfying answer to all these difficulties at one fell swoop and can actually solve the
Problem. This is made possible by the powerful joint universality and determinism
effects brought by large-dimensional data models and treatments.

Specifically, in the random matrix regime where n,p grow large at a controlled rate,
the following key properties arise:

• fast asymptotic determinism: the law of large numbers and the central limit
theorem tell us that the average of n i.i.d. random variables converges to a
deterministic limit (e.g., the expectation) at an O(1/

√
n) speed. By gathering

independence (or degrees of freedom) both in the sample dimension p and size n,
functionals of large random matrices (even mathematically involved functionals,
such as the average of functions of their eigenvalues) also converge to
deterministic limits, but at an increased speed of up to O(1/

√
np) which, for n ∼ p,

is O(1/n). In machine learning problems, performance may be expressed in terms
of misclassification rates or regression errors (i.e., averaged statistics of sometimes
involved random matrix functionals) and can thereby be predicted with high
accuracy, even for not too large datasets;

• universality with respect to data models: similarly, again, consistently with the law
of large numbers and the central limit theorem in the large-n alone setting, the
above asymptotic deterministic behavior at large n,p is, in general, independent of
the underlying distribution of the random matrix entries. This phenomenon,
referred to in the random matrix literature as universality, predicts notably that the
asymptotic statistics of even complex machine learning procedures depend on the
input data only via the first- and second-order statistics; this is a major distinctive
feature when compared to the fixed-p and large-n regime, where the asymptotic
performance of algorithms, when accessible, would, in general, depend on the
exact p-dimensional distribution of the data;6

• universality with respect to algorithm nonlinearities: when nonlinear methods are
considered, the nonlinear function f (e.g., the kernel function or the activation
function) gets involved in the large-dimensional machine learning algorithm
performance only via a few parameters (e.g., its derivatives f (τ), f ′(τ),. . . at a
precise location τ, its “moments”

∫
f k μ with respect to the Gaussian measure μ, or

more elaborate scalars solution to a fixed-point equation involving f ). For
instance, in the case of kernel random matrices of the type f (‖xi −x j‖2/p), only

6 Compare, for instance, Luxburg et al. [2008] on the fixed-p and large-n asymptotics of spectral cluster-
ing (the main result of which contains nonlinear expressions of the input data distribution) to Couillet and
Benaych-Georges [2016] on the large p, n asymptotics of the same problem (the main result of which
only involves linear and quadratic forms of the statistical mean and covariances of the data, irrespective
of the input data distribution, as further confirmed by Seddik et al. [2019]).
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the first three successive derivatives of the kernel function f at the “concentration”
point τ = limp ‖xi −x j‖2/p matter; the performance of random neural networks
depends on the nonlinear activation function σ(·) solely through its first Hermite
coefficients (i.e., its Gaussian moments); in implicit optimization schemes (such as
logistic regression), the solution “concentrates” with predictable asymptotics,
which, despite the nonlinear and implicit nature of the problem, only depend on a
few scalar parameters of the logistic loss function. This, together with the
asymptotic deterministic behavior of the linear (eigenvalue or eigenvector)
statistics discussed above, gives access to the performance of a host of nonlinear
machine learning algorithms.

• tractable real data modeling: possibly, the most important aspect of
large-dimensional random matrix analysis in machine learning practice relates to
the counterintuitive fact that, as p,n grow large, machine learning algorithms tend
to treat real data as if they were mere Gaussian mixture models. This statement, to
be discussed thoroughly in the subsequent sections, is both supported by empirical
observations (with most theoretical findings derived for Gaussian mixtures observed
to fit the performances retrieved on real data) and by the theoretical fact that some
extremely realistic datasets (in particular, artificial images created by the popular
generative adversarial networks, or GANs) are by definition concentrated random
vectors, which are: (i) amenable to (and, in fact, extremely well-suited for) random
matrix analysis, and (ii) proven to behave as if they were mere Gaussian mixtures.

In a word, in large-dimensional problems, data no longer “gather” in groups and do
not really “spread” all over their large ambient space neither. But, by accumulation of
degrees of freedom, they rather concentrate within a thin lower-dimensional “layer.”
Each scalar observation of the data, even through complicated functions (regressors,
classifiers for machine learning applications), tends to become deterministic, pre-
dictable, and simple functions of first-order statistics of the data distribution. Random
matrix theory exploits these effects and is thus able to answer seemingly inaccessible
machine learning questions.

1.2.3 Analyze, Understand, and Improve Large-Dimensional
Machine Learning Methods

One of the first elementary objectives of this book is to demonstrate that, in a large-
dimensional and numerous data setting, many standard low-dimensional machine
learning intuitions tend to collapse. As a result, many of the algorithms originally
designed for small-dimensional data fail to perform as expected. Some of these algo-
rithms will be shown to remain valid, but for rather unexpected reasons. And some
of them will be proven suboptimal, quite largely so sometimes. Finally, some of them
will be shown to completely fail to meet their objectives and in need of an adaptation
or a complete change of paradigm.

In a second part, the book will further show that this “large-dimensional” regime,
which one may think synonymous to thousands or millions in dimension and sample
size, is in reality already visible in much smaller data sizes than the earliest researchers
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in applied random matrix theory could anticipate. And, more importantly, that a large
class of “real data” naturally falls under the random matrix theory umbrella.

Our argumentation line and every single treatment of machine learning algorithm
analysis and improvement proceed along the following steps: One needs to (i) con-
ceive the limitations of low-dimensional intuitions and understand the reach of the
very different large-dimensional intuitions, (ii) capture the behavior of the main math-
ematical objects at play in machine learning method on large-dimensional models so
as to (iii) include these objects in a mathematical framework for performance analysis,
and (iv) foresee means of improvement based on the newly acquired large-dimensional
intuitions and mathematical understanding.

In the remainder of this subsection, we will illustrate the above four-step method-
ology with the examples of kernel methods and the very related random feature maps
(which may alternatively be seen as a two-layer neural network model with random
first-layer weights).

From Low- to Large-Dimensional Intuitions
Most of the manuscript focuses on large-dimensional data vectors or graph models. By
large-dimensional, we refer to random vectors x ∈R

p “built from” numerous (of order
O(p)) degrees of freedom. That is, as opposed to the compressive sensing paradigm
[Donoho, 2006], we do not impose the existence of a low-dimensional representation
of the data.7

From this viewpoint, the simplest mixture data model is the symmetric binary Gaus-
sian mixture model x ∼ N (±μ,Ip). As we saw previously, for p small (say, p = 2
or p = 3), classifying n samples of the mixture is easily visualized as grouping two
stacks of data: one gathered around μ ∈ R

p , the other around −μ. Most of (low-
dimensional) machine learning algorithms are anchored in this mentally convenient
visualization. But the large-dimensional image is completely different. Standard Gaus-
sian vectors x ∈ R

p have an Euclidean norm of order ‖x‖ ∼ O(
√

p) but a spread of
order ‖x‖−E[‖x‖] ∼ O(1), and nontrivial classification can be performed as long
as ‖μ‖ is no smaller than order O(1). The mental image is thus one of two spheres
in R

p with an extremely large radius (of order O(
√

p)), around which the data of
both classes “accumulate.” Figure 1.5 provides a comparative picture for small- versus
large-dimensional classification.

With this image in mind, the Euclidean distance paradigm is shifted: For small p,
the information lies in the typical distance from one data point to a “centroid”; for
large p, the centroid is far from all data points (it lives in an “empty” region of the
space), and the class information is summarized in the accumulated small, determinis-
tic deviations of all data points from the same class; this deviation is (asymptotically)
invisible for any data vector but can be inferred collectively from the large data matrix.

7 The statistical information contained in the data such as the mean E[x] ∈ R
p can be sparse (i.e., has a

few nonzero entries), but the practical large-dimensional data vectors must randomly “fluctuate” with
sufficiently many degrees of freedom around their possibly low-dimensional manifold structure. The
large-dimensional random fluctuation of the data is essential to produce a statistically “robust” behavior
of the algorithms and is key to establishing mathematical convergence in the large n, p setting.
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√
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Figure 1.5 Visual representation of classification in (a) small and (b) large dimensions. The red
circles and blue crosses represent data points from different classes.

Consequently, machine learning algorithms based on the evaluations of Euclidean
distances ‖xi − x j‖, inner products xTi x j , nonlinear activations σ(wTxi), regressions
f (βTxi), etc., of data xi or data pairs xi ,x j structurally behave differently in large
dimensions (from their small-dimensional counterparts).

Core Random Matrices in Machine Learning Algorithms
Be it in a supervised, semi-supervised, or unsupervised context, machine learning
algorithms essentially consist of extracting structural information from some avail-
able set of data x1,. . . ,xn ∈ X : this is done, in general, via one-to-one comparisons of
the data. At the heart of most algorithms, we notably find affinity matrices of the type:

K ≡
{
κ(xi ,x j)

}n
i, j=1 ∈ R

n×n , (1.12)

where κ : X ×X →R evaluates the closeness or affinity between xi and x j . For graphs,
the data xi are merely the nodes (or vertices) of the graph, and κ(xi ,x j) = wi j is thus
the weight of the edge (i, j), which may be real of binary (i.e., wi j ∈ {0,1} depending
on whether node i attaches to node j).

For X = R
p and xi statistically distributed, this naturally gives rise to a family

of kernel random matrices, among which are inner-product kernel random matrices
with κ(xi ,x j) = f (xTi x j), distance-based kernel random matrices with κ(xi ,x j) =

f (‖xi − x j‖2), and correlation random matrices with κ(xi ,x j) = xTi x j/(‖xi‖ · ‖x j‖).
In the first case, f is often taken to be either linear f (t) = t (therefore giving rise
to sample covariance or Gram matrix models), a polynomial f (t) = ak tk + . . .+ a0,
or of a sigmoid type, such as the logistic function f (t) = (1 + e−x)−1 or the
hyperbolic tangent f (t) = tanh(t). In the second case, f can be either linear (and
we obtain a Euclidean distance matrix [Dokmanic et al., 2015]) or, more often,
f (t) = exp(−t/(2σ2)) for some σ > 0, which is referred to as the heat kernel, the
Gaussian kernel, or the RBF kernel.

When the xis themselves are not directly separable in their ambient space, they
are conventionally mapped into a feature space, in which they become separable. As
feature extraction is possibly the single most important but usually hardest task in
machine learning, it comes in a variety of forms. Kernel matrices of the type (1.12)
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typically play the role of a feature extraction method, which maps the data points into
a reproducing kernel Hilbert space (RKHS) [Schölkopf and Smola, 2018]. Another
closely related, yet equally popular, approach is random extraction by means of ran-
dom feature maps, which consist in operating σ(Wx) for some (usually randomly and
independently drawn) matrix W ∈R

N×p and some nonlinear function σ : RN →R
N

applying entrywise, i.e., σ(y) = [σ0(y1),. . . ,σ0(yN )]
T for some σ0 : R → R, which,

with a slight abuse of notation, we simply call σ. Among random feature maps,
the most popular is the random Fourier features method proposed by Rahimi and
Recht [2008], for which σ(t) = exp(−ıt) (so, formally, σ(R) ⊂ C rather than R in
this case).

Neural networks operate likewise. Every size-N layer (that contains N neurons) of
a neural network operates σ(Wx) for an input x, a linear mapping W ∈ R

N×p (the
neural weights to be learned), and a nonlinear activation function σ : R → R.8 In this
setting, σ is usually taken to be a sigmoid function (the logistic function, the tanh,
or the Gaussian error function), or, more recently, the rectified linear unit (ReLU)
function σ(t) = max(0,t).

Collecting the data in X = [x1,. . . ,xn ] ∈R
p×n , the sample covariance matrix of the

random features of the data then reduces to the Gram matrix:

Φ ≡ σ(WX)Tσ(WX), (1.13)

which is also a central object of interest in this book.
The aforementioned kernel and Gram matrices of feature maps are actually much

interrelated. For instance, the random Fourier features σ(Wx), with σ(t) = exp(−ıt)
and W ∈ R

N×p having i.i.d. standard Gaussian entries, that is, Wi j ∼ N (0,1), are
known to have the fundamental property:

1
N
EW[σ(Wx)Tσ(Wy)]≡ exp

(
−1

2
‖x−y‖2

)
,

so that random Fourier features are intricately connected to Gaussian kernel
matrices. This property ensures, in particular, that the Gaussian kernel κ(x,y) =
exp(−‖x − y‖2/2) is a nonnegative definite kernel in the sense that K =

{κ(xi ,x j)}ni, j=1 is a nonnegative definite matrix (for any n and any set of x1,. . . ,xn), a
particularly convenient property in both theoretical and practical kernel learning. An
important subclass of kernel functions, referred to as Mercer kernels [Schölkopf and
Smola, 2018], share this nonnegative definiteness property and have long been priv-
ileged in machine learning. We shall see in this book that, from a large-dimensional
perspective, Mercer kernels can be, in general, suboptimal, and that simple but less
intuitive choices of κ can largely outperform these conventional kernels.

A large body of machine learning algorithms (spectral clustering, linear, or logis-
tic regression, support vector machines, and neural networks) relates, in one way or
another, to the aforementioned global properties (eigenvalues, content of dominant

8 Sometimes, an additional bias term is considered and the network operatesσ(WX)+b for some b ∈R
N

also to be learned.
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eigenvectors, linear, or nonlinear functionals of the resolvent) of the above matrices
K or Φ. A systematic statistical analysis of these global properties for all finite p,n,N
is, however, often out of reach, even for the simplest standard Gaussian modeling of
the data.

In this book, we will show that random matrix theory manages to leverage the
large-dimensional nature of both the data and the learning systems (i.e., large n,p,N),
to tackle this statistical analysis. We will see, in particular, that several conventional
models for K can be “Taylor-expanded” under the form of matrices involving only
first- and second-order moments of the data distribution. The Gram matrix Φ cannot
be directly Taylor-expanded in this way (it will be “Hermite-polynomially expanded”
though) but will also be shown to behave as a kernel random matrix and be decom-
posed as the sum of more elementary random matrices, the statistical properties of
which also become tractable in the large-dimensional regime.

In short, the intractable matrices K and Φ will be approximated by tractable ersatz
K̃ and Φ̃, which behave asymptotically the same in the sense that

‖K− K̃‖ a.s.−−→ 0, ‖Φ− Φ̃‖ a.s.−−→ 0,

in operator norm as n,p,N → ∞ at a similar rate. These matrices K̃ and Φ̃ will allow
for further and deeper mathematical analysis.

Performance Analysis: Spectral Properties and Functionals
In a classification context, where, conventionally, xi ∈ R

p belongs to one of the k
classes C1,. . . ,Ck with k � n (the number of data samples), and thus k � p whenever
p ∼ n, the approximation matrices K̃ and Φ̃ will often be shown to take a spiked
random matrix form. That is, for instance,

K̃ = Z+P,

where Z ∈ R
n×n is a random symmetric matrix, in general, having entries of zero

mean and rather “uniform” variances, while P ∈R
n×n is a low-rank matrix (the rank of

which is often related to k), comprising the statistical information about the data-class
associations and the statistical properties of the classes.

These spiked random matrix models have been extensively studied, and it is possi-
ble to extract much information about them. In particular, the dominant eigenvectors
of K̃ are known to relate to the eigenvectors of P (which carry the sought-for data-class
information) whenever a phase transition threshold is exceeded.

In a regression setting where the xis are assumed independently and identically
distributed, the regression vector β of interest is a certain functional of K or Φ. For
instance, a random feature regression from the observations X ∈ R

p×n to the desired
outputs y ∈ R

n entails the regression vector:

β = σ(WX)(Φ+γIn)
−1 y,
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which is thus an (indirect) function of the resolvent QΦ(−γ) = (Φ+ γIn)−1 of Φ
for a certain γ > 0. Random matrix theory possesses tools to analyze the statistical
properties of such vectors β as well.

Least squares support vector machines and most conventional algorithms of graph-
based semi-supervised learning relate to functionals of the same type. This also holds
true (yet less directly) for nonlinear (e.g., logistic) regression, where β is implicitly
defined as a function of QΦ. Similarly, in their plain form, support vector machines
can be seen as nonlinear regressors which also fall within this scope.

Since eigenvalues, eigenvectors, and regressor statistics are at the core of machine
learning algorithm performance, once these central quantities are accessible, the actual
(asymptotic) classification error rates, mean squared error of regression, etc., become
also accessible. It is important to point out here that not only bounds on performance
but actual accurate estimators of the performance are provided. Under a random
matrix framework, a precise characterization of the anticipated performance (as well
as its error margins) for the above algorithms becomes available.

Since these performance indicators depend on the various hyperparameters of the
problem, themselves being quantifiable from data statistics, in many scenarios, it
becomes possible to fine-tune the algorithms without resorting to cross-validation pro-
cedures. We shall notably see how some simple instances of neural networks can be
fairly well understood: why the rectifier max(t,0) is a convenient choice, and how the
activation function and the data statistics mix up, etc. We will also understand that
kernel methods do not function as one may think they should, and that there exists an
elegant interplay between data statistics and the successive derivatives of the kernel
function at a precise position.

Directions of Improvement and New Ideas
Due to the complete change of paradigm when comparing data from a small-versus
a large-dimensional perspective, the overall behavior and the ensuing performance of
the studied algorithms are often tainted, when large-dimensional data are handled.

We shall notably see, in the course of the book, that the conventional heat (or Gaus-
sian) kernel used in various classification contexts is largely suboptimal. We shall
also see that most graph-inspired semi-supervised learning algorithms in the litera-
ture fail to properly accomplish their requested task for n,p large and comparable;
yet, we will show that the so-called PageRank approach [Avrachenkov et al., 2012]
happens not to fail, although the fundamental reasons behind its nondegrading perfor-
mance are at odds with the initial inspiration for the method; but most importantly,
this popular approach will also be shown to perform quite far from optimal and, in
particular, not to be capable of benefiting from a large addition of unlabeled data.
This observation entails the very unpleasant property that purely unsupervised meth-
ods tend to outperform semi-supervised ones when the number of unlabeled data is
large.

For all these applications, the book will list a set of recommendations and improved
methods, which are tailored to large (as well as practically not so large)-dimensional
data learning. Among others, optimal, but quite counterintuitive, kernel functions
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will be introduced, new regularization procedures for supervised and semi-supervised
learning will be discussed that particularly defeat the “curse of dimensionality”
in semi-supervised learning (by fully exploiting the additional information from
unlabeled data), and some further light on the design of neural networks will be cast.

1.2.4 Exploiting Universality: From Large-Dimensional Gaussian
Vectors to Real Data

Before delving into the core of the manuscript, we conclude this section by further
elaborating on the universality phenomenon briefly discussed above, which is of much
greater importance to machine learning than one may anticipate.

First, let us recall that most random matrix results derived in the literature, even the
most recent ones on machine learning applications (to be discussed in this book), are
based on the assumption of data either arising from (possibly a mixture of) Gaussian
distributions or represented by random vectors with independent entries. These models
are generally deemed unsuitable to mimic real data, and we will not claim otherwise.
It is a fact that real data, such as images, are largely more complex than mere Gaussian
vectors.

Yet, what we do claim here and throughout this book is that scalar observations
(regressor or classifier outputs, misclassification rates, etc.) obtained from large-
dimensional and numerous data tend to behave as if the data were Gaussian (mixtures)
in the first place. This is a fundamental disruption from small-dimensional statistics
that random matrix analysis structurally exploits: Rather than assuming data as fixed
entities living in a complex manifold, random matrix theory mostly exploits their
numerous degrees of freedom, which, by universality, induce deterministic behav-
ior in the large-dimensional limit, thus independently of the underlying vector data
distribution.

We justify this claim below with both empirical and theoretical arguments.

Theory versus Practice
Our first argument follows after numerous comparative experiments made between
theoretical findings on Gaussian versus real data. Indeed, although mostly derived
under simple and seemingly unrealistic Gaussian mixture models, many theoretical
results mentioned above show an unexpected close match when applied to popu-
lar real-world (sometimes not so) large-dimensional datasets, such as the MNIST
handwritten-digit dataset [LeCun et al., 1998], the related Fashion-MNIST [Xiao
et al., 2017], Kannada-MNIST [Prabhu, 2019] and Kuzushiji-MNIST [Clanuwat et al.,
2018] datasets, the German Traffic Sign dataset [Houben et al., 2013], deep neural
network features of the now popular ImageNet dataset [Deng et al., 2009], used for
state-of-the-art machine learning and computer vision applications, as well as numer-
ous financial and electroencephalography (EEG) time series datasets. In particular,
while most elementary machine learning methods discussed in this book cannot be
applied directly on raw ImageNet images to yield satisfactory performance, when per-
formed on “deep” features of the data (such as VGG, DenseNet, or ResNet features)
obtained from independent deep neural networks, these algorithms tend to behave the
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same as with simple Gaussian mixtures [Seddik et al., 2020]. These seemingly striking
empirical observations are indeed theoretically sustained by universality arguments
arising from the powerful concentration of measure theory.

To be more precise, the following systematic comparison approach will be pur-
sued in this book. An asymptotically nontrivial classification or regression problem is
studied: that is, we assume that the problem at hand is theoretically neither too easy
nor too hard to solve (as the one discussed in Section 1.1.3) and practically leads,
in general, to, say, (binary) classification error rates of the order of 5%−30% and of
relative regression errors also of the order 5%−30%. In particular, we insist that the
asymptotic random matrix framework under study is, in general, incapable to thinly
grasp error rates below the 1%–2% region, which may be the domain of “outliers” and
marginal data.

Having posed this nontriviality assumption, we shall generically model the data as
being drawn from a simple mixture model, for example, the Gaussian mixture model
that gives access to a large panoply of powerful technical tools. The theoretical results
obtained from the proposed analyses (asymptotic performance notably) are thus func-
tion of the statistical means and covariances of the mixture distribution. To compare
the theoretical results to real data, we then conduct the following procedure:

(i) exploiting the numerous and labeled samples of the real datasets (such as the
∼60000 images of the training MNIST database), we empirically estimate the
scalar functions of the statistical means and covariances (that determine the
asymptotic performance of the method under study), for each class in the
database;

(ii) we then evaluate the asymptotic performance that a genuine Gaussian mixture
model having these means and covariances would have;

(iii) we compare these “theoretical” values to actual simulations.

As the book will demonstrate in most scenarios, this procedure systematically leads
to the conclusion that the performance of machine learning methods obtained on
mere Gaussian mixtures approximate surprisingly well the performance observed on
real data and features. On a side note, we mentioned in Remark 1.2 that it is likely
inappropriate to use the sample covariance matrix to estimate the population covari-
ance of the small (i.e., n not much larger than p) databases, such as the MNIST
database (for which n/p � 100). However, it turns out that, as the quantities of inter-
est (e.g., classification or regression errors) are generally scalar functionals of the
data statistical means and covariances, it is still possible, in the large n,p regime, to
derive consistent estimators of these quantities without resorting to an exact eval-
uation of the (large-dimensional) moments; see more discussions on this topic in
Sections 3.2 and 4.4.

As already mentioned in Remark 1.3, this surprising accordance between theory
and practice is possibly due to the universality of random matrix results, that is,
only the first several order statistics of the data/features at hand matter in the large-
dimensional regime (recall for instance that the limiting eigenvalue distribution of
1
n XXT for X ∈ R

p×n having i.i.d. zero mean and unit variance entries is the same
Marc̆enko–Pastur law, irrespective of the higher order moments of X).
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Yet, another stronger argument can be made, especially when it comes to machine
learning for image processing.

Concentrated Random Vectors and Real Data Modeling
The modeling assumption that the data vectors xi are linear or affine maps xi =Azi+b
of random vectors zi constituted of i.i.d. entries is simultaneously an asset for random
matrix analysis (by exploiting the degrees of freedom in the entries of zi ) but a severe
practical limitation, as few real datasets are likely of this simplistic form.

El Karoui [2009] provided a first means for random matrix theory to go beyond
the “vector of independent entries” assumption.9 There, relying on elements of the
concentration of measure theory, extensively developed by Ledoux [2005], El Karoui
essentially shows (in a rather technical manner) that some of the early random matrix
results from Pastur, Bai, and Silverstein remain valid under the assumption that the xis
are concentrated random vectors. Roughly speaking, a random vector x ∈ R

p is con-
centrated if, for a certain family of functions f : Rp → R, there exists a deterministic
scalar Mf ∈ R such that

P
(
| f (x)− Mf | > t

)
≤ α(t) (1.14)

for some decreasing function α : R → R; in general, α(t) will be of the form
α(t) =Ce−ctq for some q > 0 and C,c > 0 constants (which may depend on p though).
Intuitively, a concentrated random vector is a (random) point in high-dimensional
space having “predictable scalar observation” f (x), in the sense that, with (exponen-
tially) high probability, f (x) takes values very close to the deterministic Mf . Thus, in
the (one-dimensional) “observable world,” the observation f (x), which may typically
be any performance metric of a machine learning algorithm on a test datum x, appears
to be “stable” for any concentrated vector x.10

Ledoux and El Karoui mostly focused on concentrated random vectors defined on
Lipschitz classes of functions f , that is, x is Lipschitz-concentrated if (1.14) holds for
all f such that | f (x)− f (y)| ≤ ‖x− y‖ for all x,y ∈ R

p . These stringent constraints,
however, make it hard to find random vector belonging to this class. As a matter of
fact, in this class, the only standard random vectors are the Gaussian random vector
x ∼N (0,Ip) and the uniform vector on the sphere u= x/‖x‖∼ S

p−1 for x ∼N (0,Ip).
However, quite importantly, every Rp →R

q Lipschitz-mapping g(x) and g(u) of these
two random vectors, by definition, also belong to the class.11

A visual representation of the notion of concentration is presented in Figure 1.6.
Yet, since the widest class of (Lipschitz) concentrated random vectors is restricted

to Lipschitz maps of standard Gaussian vectors, at first sight, concentrated random

9 See also Pajor and Pastur [2009] published in the same year under slightly more constrained assumptions.
10 Note that by modeling the input data x as a concentrated random vector and stating that the output

(statistics) of a machine learning algorithm is “stable” implicitly assumes some regularity in the algo-
rithm, which, as we shall see, can be shown to hold for many popular methods including deep neural
networks (and which often takes the form of a “Lipschitz control”).

11 Under the more restricted class of Lipschitz and convex functions, random vectors with i.i.d. and bounded
entries (up to normalization) also create a class of (convexly) concentrated random vectors.
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Figure 1.6 Multivariate Gaussian distribution x ∼N (0,Ip), a fundamental example of
concentrated random vectors. (Left) A visual “interpretation” of 500 independent drawings
of x ∼N (0,Ip). (Right) Concentration of observations for linear ( f1(x) = xT1p/

√
p) and

Lipschitz ( f2(x) = ‖x‖∞) maps.
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Figure 1.7 Illustration of a generative adversarial network (GAN).

vectors are seemingly no more elaborate models than linear and affine maps of Gaus-
sian vectors. As a consequence, there is a priori no reason to assume that the mixtures
of concentrated random vectors can model real data any better than Gaussian mixtures.

It turns out that this intuition is again tainted by erroneous small-dimensional
insights. Indeed, there practically exist extremely data-realistic concentrated random
vectors: the outputs of GANs [Goodfellow et al., 2014], as shown in Figure 1.7. GANs
generate artificial images g(x) from large-dimensional standard Gaussian vectors x,
where g is a conventional feedforward neural network trained to mimic real data. As
such, g is the combination of Lipschitz nonlinear (the neural activations) and linear
(the inter-layer connections) maps, and is thus a Lipschitz mapping.12 The output
image vectors g(x), see examples in Figure 1.8, are thus concentrated vectors. Modern
GANs are so sophisticated, that it has become virtually impossible for human beings
to tell whether their outputs are genuine or artificial. This, as a result, strongly suggests
that concentrated random vectors are accurate models of real-world data.

12 In practice, other operations are also performed in neural networks, such as pooling operations, random
or deterministic dropouts, and various connectivity matrix normalization procedures, so as to achieve
better performance. They are all shown to be Lipschitz [Seddik et al., 2020].
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Figure 1.8 Image samples generated by BigGAN in Brock et al. [2019].

A strong emphasis has thus lately been given to these models. The book will, in par-
ticular, elaborate on the work of Louart and Couillet [2018], which largely generalizes
the seminal findings of El Karoui by providing a systematic methodological toolbox of
concentration theory for random matrices. There, the notion of concentration is gen-
eralized by including linear concentration, which provides a consistent framework for
the important notion of deterministic equivalents in random matrix theory, and by pro-
viding a wide range of properties and lemmas of immediate use for random matrix
purposes.

An important finding of Louart and Couillet [2018] is that, first-order statistics
of functionals of random matrices building from concentrated random vectors are
universal; the asymptotic performance of many machine learning methods is, there-
fore, also universal. Specifically, for most conventional machine learning methods
(support vector machines, semi-supervised learning, spectral clustering, random fea-
ture maps, linear regression, etc.), the asymptotic performance achieved on Gaussian
mixtures N (μa ,Ca), a ∈ {1,. . . ,k} coincides with that obtained on concentrated ran-
dom vectors mixtures La(μa ,Ca), a ∈ {1,. . . ,k}, having the same means μa and
covariances Ca per class, and are independent of the high-order moments of the
underlying distribution.

This strongly suggests that Gaussian mixture models, if not appropriate data
“models” per se, are largely sufficient statistical assumptions for the theoretical
understanding of real data machine learning.

Remark 1.4 (Concentration of measure, concentration inequalities, and non-
asymptotic random matrices). It is important to raise here the fact that the con-
centration of measure theory is structurally broader than the scope of the popular
concentration inequalities regularly used in statistical learning theory [Boucheron
et al., 2013, Tropp, 2015, Vershynin, 2018]. Concentration inequalities are gener-
ally expressions of (1.14) for specific choices of f and their consequences, and they
are, in particular, not new to random matrix theory. In Vershynin [2012] and Tao
[2012], the authors exploit the mathematical strength of concentration inequalities
(which, thanks to the exponential decay, is stronger and less cumbersome to han-
dle than moment bounds) to prove fundamental results in random matrix theory. Yet,
these inequalities are mostly exploited in proofs involving Gaussian or sub-Gaussian
random vectors (as an instance of concentrated random vector). In particular, Ver-
shynin establishes a nonasymptotic random matrix theory by exploiting concentration
inequalities to bound various quantities of theoretical interest (notably bounds on the
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eigenvalue positions of random matrices). The book instead puts forth the interest
of concentration of measure theory for data modeling beyond a merely convenient
mathematical tool.

Concentration of measure theory is also all the more suited to machine learning
as it structurally relates to linear, Lipschitz, or convex-Lipschitz functionals of ran-
dom vectors and matrices. These are precisely the core elements of machine learning
algorithms (kernels, activation functions, convex optimization schemes). From this
viewpoint, concentration of measure theory is much more adapted to machine learn-
ing analysis than seemingly simpler data models. Note, for instance, that concentrated
random vectors are stable (i.e., they remain concentrated) when passed through the
layers of a neural network; this is particularly not true for Gaussian random vectors
or vectors with independent entries, which, in general, no longer have independent
entries when passed through nonlinear layers.

A last but not least convenient aspect of concentration of measure theory is that
it flexibly allows one to “decouple” the behavior of the data size p and number n
in the large-dimensional setting. It is technically much easier to keep track of inde-
pendent growth rates for p and n under a concentration of measure framework than
when exploiting more standard random matrix techniques (such as Gaussian tools to
be discussed in Section 2.2.2).

1.3 Outline and Online Toolbox

1.3.1 Organization of the Book

The remainder of the book is divided into two parts.
Chapter 2 introduces the basics of random matrix theory needed for machine learn-

ing applications in this book. In doing so, we shall first revisit the traditional approach
found in math-oriented sources, such as Bai and Silverstein [2010], based on a Stielt-
jes transform and truncation machinery, Pastur and Shcherbina [2011], based on a
Gaussian-method approach, Tao [2012] and Vershynin [2012], based on concentra-
tion inequalities and a nonasymptotic random matrix approach, and also say a few
words on Mingo and Speicher [2017], which follows a free probability framework
and on Anderson et al. [2010], which is more oriented toward a determinantal point
process and large deviations direction. Unlike most of these references though (with
the possible exception of Pastur and Shcherbina [2011]), our methodology is primar-
ily centered on the statistical analysis of the resolvent (and only secondarily on the
Stieltjes transform) of random matrices, which is the chief object of interest to us in
most machine learning applications. The particular mathematical toolbox exploited to
derive the results is of secondary importance.

In this chapter, we will successively introduce:

• the fundamental notion of the resolvent Q(z) = (X− zIn)−1 of a (random) matrix
X, and its relations to the eigenvalues of X, the limiting spectrum of X, the
eigenvectors and eigenspaces associated with some specific eigenvalues, as well as
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its relations to bilinear and quadratic forms often met in machine learning
applications (linear or kernel regression, linear and quadratic discriminant analysis,
support vector machines, as well as some simple neural networks);

• the almost equally important notion of deterministic equivalents, which extend the
notion of the “limiting behavior” of large-dimensional random matrices, when
such limits may not exist (which is the case of most structured random matrix
models of practical interest); deterministic equivalents for the resolvent of random
matrix models are at the core of almost all results derived in this book;

• the foundational Marc̆enko–Pastur and Wigner semicircle laws, which, as we shall
see, serve as a reference “null model” to all random matrix models met in machine
learning applications; even quite sophisticated random matrix transformations
(through nonlinear kernels, and activation functions, etc.) will be seen to boil
down, in one way or another, to either one (or a mixture of both) of these reference
laws;

• a successive presentation of the three main technical tools at our disposal (in this
book at least) to study random matrix models: the Bai–Silverstein Stieltjes
transform approach, the Pastur–Shcherbina Gaussian tools, and the
Louart–Couillet concentration of measure approach;

• the natural extensions of the Marc̆enko–Pastur- and Wigner-like random matrix
models to more structured models: with correlation in either features or samples,
with nonzero mean, divided into subclasses of correlated nonzero mean models,
with a variance profile (in the case of heterogeneous graph models), etc.;

• a refined analysis of the large-dimensional spectrum of random matrices using
tools from complex analysis, based on which statistical inference techniques on
covariance matrix models are introduced;

• a thorough treatment of the so-called spiked models of random matrices, which
carry a significant importance in the applications to machine learning: spiked
models consist in low-rank deviations from some elementary or structured random
matrix models; this “rank-sparsity” property simplifies the analyses and
appropriately models the presence of cluster, classes, communities, principal
components, etc., in machine learning problems;

• a short exposition of alternative tools and techniques, not of central focus in this
book, but may have various advantages in specific random matrix structures;

• a short presentation of the very recent concentration of measure theory for random
matrices that extends most of the results presented in this chapter to much more
realistic (generative) models of data for machine learning applications.

This lengthy chapter provides a vast majority of the necessary tools to conduct
the analyses performed in the subsequent chapters of machine learning methods. This
second “application” part is organized as follows:

• Chapter 3 introduces first applications of the proposed random matrix framework
devised in Chapter 2 to detection, estimation, and statistical inference; particular
emphasis is made on generalized likelihood ratio tests for the detection of
information from noise, on linear and quadratic discriminant analysis in a binary


