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Discrete quantum walks are quantum analogues of classical random 
walks. They are an important tool in quantum computing and a number of 
algorithms can be viewed as discrete quantum walks, in particular Grover’s 
search algorithm. These walks are constructed on an underlying graph, 
and so there is a relation between properties of walks and properties of the 
graph. This book studies the mathematical problems that arise from this 
connection, and the different classes of walks that arise. Written at a level 
suitable for graduate students in mathematics, the only prerequisites are 
linear algebra and basic graph theory; no prior knowledge of physics is 
required. The text serves as an introduction to this important and rapidly 
developing area for mathematicians and as a detailed reference for computer 
scientists and physicists working on quantum information theory.
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383 Motivic integration and its interactions with model theory and non-Archimedean geometry I, R.

CLUCKERS, J. NICAISE & J. SEBAG (eds)
384 Motivic integration and its interactions with model theory and non-Archimedean geometry II, R.

CLUCKERS, J. NICAISE & J. SEBAG (eds)
385 Entropy of hidden Markov processes and connections to dynamical systems,

B. MARCUS, K. PETERSEN & T. WEISSMAN (eds)
386 Independence-friendly logic, A.L. MANN, G. SANDU & M. SEVENSTER
387 Groups St Andrews 2009 in Bath I, C.M. CAMPBELL et al (eds)
388 Groups St Andrews 2009 in Bath II, C.M. CAMPBELL et al (eds)
389 Random fields on the sphere, D. MARINUCCI & G. PECCATI
390 Localization in periodic potentials, D.E. PELINOVSKY
391 Fusion systems in algebra and topology, M. ASCHBACHER, R. KESSAR &

B. OLIVER
392 Surveys in combinatorics 2011, R. CHAPMAN (ed)
393 Non-abelian fundamental groups and Iwasawa theory, J. COATES et al (eds)
394 Variational problems in differential geometry, R. BIELAWSKI, K. HOUSTON & M. SPEIGHT (eds)
395 How groups grow, A. MANN
396 Arithmetic differential operators over the p-adic integers, C.C. RALPH &

S.R. SIMANCA
397 Hyperbolic geometry and applications in quantum chaos and cosmology, J. BOLTE & F. STEINER

(eds)
398 Mathematical models in contact mechanics, M. SOFONEA & A. MATEI
399 Circuit double cover of graphs, C.-Q. ZHANG
400 Dense sphere packings: a blueprint for formal proofs, T. HALES
401 A double Hall algebra approach to affine quantum Schur–Weyl theory, B. DENG, J. DU & Q. FU
402 Mathematical aspects of fluid mechanics, J.C. ROBINSON, J.L. RODRIGO &

W. SADOWSKI (eds)
403 Foundations of computational mathematics, Budapest 2011, F. CUCKER,

T. KRICK, A. PINKUS & A. SZANTO (eds)
404 Operator methods for boundary value problems, S. HASSI, H.S.V. DE SNOO & F.H. SZAFRANIEC

(eds)
405 Torsors, étale homotopy and applications to rational points, A.N. SKOROBOGATOV (ed)
406 Appalachian set theory, J. CUMMINGS & E. SCHIMMERLING (eds)
407 The maximal subgroups of the low-dimensional finite classical groups, J.N. BRAY, D.F. HOLT & C.M.

RONEY-DOUGAL
408 Complexity science: the Warwick master’s course, R. BALL, V. KOLOKOLTSOV & R.S. MACKAY

(eds)
409 Surveys in combinatorics 2013, S.R. BLACKBURN, S. GERKE & M. WILDON (eds)
410 Representation theory and harmonic analysis of wreath products of finite groups, T. CECCHERINI-

SILBERSTEIN, F. SCARABOTTI & F. TOLLI

http://www.cambridge.org/mathematics


411 Moduli spaces, L. BRAMBILA-PAZ, O. GARCÍA-PRADA, P. NEWSTEAD & R.P. THOMAS (eds)
412 Automorphisms and equivalence relations in topological dynamics, D.B. ELLIS & R. ELLIS
413 Optimal transportation, Y. OLLIVIER, H. PAJOT & C. VILLANI (eds)
414 Automorphic forms and Galois representations I, F. DIAMOND, P.L. KASSAEI & M. KIM (eds)
415 Automorphic forms and Galois representations II, F. DIAMOND, P.L. KASSAEI & M. KIM (eds)
416 Reversibility in dynamics and group theory, A.G. O’FARRELL & I. SHORT
417 Recent advances in algebraic geometry, C.D. HACON, M. MUSTAŢǍ & M. POPA (eds)
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Preface

A discrete quantum walk is determined by a unitary matrix U , the transition
matrix of the walk. If the initial state of the system is given by a vector z, then
the state of the system at time k is Ukz. The problem is to choose U and z so
that we can do something useful, and indeed we can – Grover showed how an
implementation of this setup could be used to enable quantum computers to
search a database faster than any known classical algorithm.

The framework we have just described is impossibly general; a quantum
computer can conveniently implement only a small subset of the set of unitary
matrices. There is also a mathematical difficulty, in that it may be impossible to
derive useful predictions of the behaviour of the walk without imposing some
structure on U .

As we have described it, the transition matrix U is an operator on the com-
plex inner product space Cd . However, for the reasons just given, much of the
work on discrete quantum walks considers the case where U is an operator on
the space of complex functions on the arcs (ordered pairs of adjacent vertices)
of a graph X . Physically meaningful questions must be expressed in terms of
the absolute values of the entries of the powers Uk . Thus, we might ask if, for
a given initial state z, there is an integer k such that the absolute values of the
entries of Uk are close to being equal.

The goal of our work on this topic has been to attempt to relate the properties
of the walk to the properties of the underlying graph, and this book is both an
introduction to the topic and a report on our progress.

We start our treatment with the most famous topic, Grover’s search algo-
rithm. We offer two approaches, but in both cases we find that the transition
matrix arises as a product U = RC, where R and C are unitary matrices with
simple structure and are defined in terms of an underlying graph. In fact, R and
C are both involutions, and the algebra they generate is a matrix representa-
tion of the dihedral group. We make use of this fact to determine the spectral

xi



xii Preface

decomposition of U in terms of the underlying graph. (If the graph is k-regular
on n vertices, U is of order nk × nk, so we have reduced the scale of the prob-
lem.) We then apply the resulting theory to the study of properties of our walks,
and determine useful parameters. Of course, each time we identify a parame-
ter of a walk, we have introduced a possibly new graph parameter, and many
interesting questions raise their heads.

In the second part of the book we relax our assumptions that R and C are
involutions. We find that, to properly specify the resulting walks, we must spec-
ify a linear ordering on the arcs leaving a vertex. As any graph theorist is
aware, embeddings of graphs in an orientable surface are specified by cyclic
orderings of the arcs leaving a vertex. Hence we offer a detailed treatment of
graph embeddings and graph covers. Following this, we consider walks based
on shunts and walks on the line. We close the book with a treatment of what
we call vertex-face walks, which are explicitly derived from embeddings of
graphs in orientable surfaces.

We note that this book is based on the Ph.D. thesis of the second author
(https://uwspace.uwaterloo.ca/handle/10012/13952). The intended audience is
mathematicians, particularly those who might be interested in new graph the-
ory problems arising from the study of discrete quantum walks. The book by
Portugal [58] provides a complementary view. We do not think any knowledge
of physics is required to profit from this work; the required background is linear
algebra (spectral decomposition) and some field theory. We have tried to keep
things self-contained, but Godsil and Royle [35] may prove a useful backup.

Cambridge University Press has a website devoted to this book at https://
www.cambridge.org/gb/academic/subjects/mathematics/discrete-mathematics-
information-theory-and-coding/discrete-quantum-walks-graphs-and-digraphs?

https://uwspace.uwaterloo.ca/handle/10012/13952
https://www.cambridge.org/gb/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/discrete-quantum-walks-graphs-and-digraphs?
https://www.cambridge.org/gb/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/discrete-quantum-walks-graphs-and-digraphs?
https://www.cambridge.org/gb/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/discrete-quantum-walks-graphs-and-digraphs?
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Grover Search

1.1 States

Any quantum system has a state space, which is a complex inner product space.
For us, this will usually be finite dimensional, just Cd for some d. The actual
states are the 1-dimensional subspaces of this vector space. We could specify
a subspace U of the complex inner product space V by giving an orthonormal
basis u1, . . . , uk , but it is often more convenient to define U in terms of the
orthogonal projection P onto U – this is the idempotent Hermitian matrix with
image equal to U . In fact, if v∗ denotes the conjugate transpose of the vector
(or matrix) v, then

P =
∑

i

uiu
∗
i ,

but, despite appearances, P is independent of the choice of orthonormal basis
for U .

Operations on the state space correspond to unitary matrices. If U is unitary
and the state of our system is given by a unit vector z, then the vector Uz defines
the new state. If we choose to work with projections, our initial state is given
by zz∗, and the state after we apply U is Uzz∗U∗.

The outcome of a measurement of a quantum system modelled by Cd can
be taken to be an element of {1, . . . , d}. However, the result is actually a ran-
dom variable: there are probabilities p1, . . . , pd summing to 1, such that we
observe outcome i with probability pi. Thus, we have a probability density
defined on the set {1, . . . , d}. This means we can view the outcome of a mea-
surement as a probability density. This probability density will depend on the
initial state of our system, the operations we apply to the system, and the choice
of measurement.

Mathematically, a measurement is represented by a sequence M1, . . . , Me

of positive semidefinite matrices such that
∑

i Mi = I . The simplest case is

1



2 Grover Search

when e = d and Mi = eieT
i (here ei denotes the characteristic vector of i,

and T denotes the transpose). We describe this as ‘measurement relative to the
standard basis.’ If the state of the system is zz∗, then the probability that we
observe the ith outcome is

tr(Mizz∗) = z∗Miz,

which is equal to the inner product 〈Mi, zz∗〉; if we are measuring relative to
the standard basis, the probability is

z∗eie
T
i z = |〈z, ei〉|

2.

Thus, it is the square of the absolute value of the ith entry of z.

1.2 Discrete Walks

For our purposes, a discrete quantum walk is specified by a unitary matrix U .
We call it the transition matrix of the walk. If U is d × d, we view it as acting
on a quantum system with state space Cd . The system evolves under repeated
applications of U ; thus, if the initial state of the system is represented by the
unit vector z, then after m steps, the state of the system would be Umz. If we
measure the system after k steps relative to the standard basis, the outcome will
be ej with probability

|〈ej, Umz〉|2.

Our view of a discrete quantum walk is more general than taken by physicists.
We find the generality useful, but there are two problems. The first is mathe-
matical: at this level of generality, we may lack the mathematical tools needed
to determine interesting properties of parameters of the walk. The second is
physical: some unitary matrices decribe operations that are not easily imple-
mented in practice; thus, we will see that U is usually defined as a product of
simple unitary matrices, often sparse.

One common feature of nearly all discrete walks in this book will be that the
state space is the set of complex functions on the arcs of a graph. Here an arc
of a graph is an ordered pair of adjacent vertices. Thus, if X is an undirected
graph with m edges, then it has 2m arcs, and the associated state space will
have dimension 2m.

1.3 Grover Search

We present one of the most important applications of quantum walks, Grover’s
search algorithm. Basically we have a system with state space Cd and two
unitary operators R and S. The operators have a special form; they are
reflections . We explain what this means.


