London Mathematical Society

 Lecture Note Series 484
Discrete Quantum Walks on Graphs and Digraphs

Chris Godsil and Hanmeng Zhan

Discrete Quantum Walks on Graphs and Digraphs

Discrete quantum walks are quantum analogues of classical random walks. They are an important tool in quantum computing and a number of algorithms can be viewed as discrete quantum walks, in particular Grover's search algorithm. These walks are constructed on an underlying graph, and so there is a relation between properties of walks and properties of the graph. This book studies the mathematical problems that arise from this connection, and the different classes of walks that arise. Written at a level suitable for graduate students in mathematics, the only prerequisites are linear algebra and basic graph theory; no prior knowledge of physics is required. The text serves as an introduction to this important and rapidly developing area for mathematicians and as a detailed reference for computer scientists and physicists working on quantum information theory.

Chris godsil is Distinguished Professor Emeritus at the University of Waterloo. He has written three books: Algebraic Combinatorics (1993), Algebraic Graph Theory (2004, co-authored with Gordon Royle) and The Erdos-Ko-Rado Theorem: Algebraic Approaches (2015, co-authored with Karen Meagher).
hanmeng Zhan is a postdoctoral fellow at Simon Fraser University. For her thesis on discrete quantum walks via algebraic graph theory, she received two awards from the University of Waterloo: the University Finalist for the Governor General's Gold Medal and the Inaugural Mathematics Doctoral Prize.

LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor Endre Süli, Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom

The titles below are available from booksellers, or from Cambridge University Press at www.cambridge.org/mathematics
374 Geometric analysis of hyperbolic differential equations: An introduction,
S. ALINHAC

375 Triangulated categories, T. HOLM, P. JØRGENSEN \& R. ROUQUIER (eds)
376 Permutation patterns, S. LINTON, N. RUŠKUC \& V. VATTER (eds)
377 An introduction to Galois cohomology and its applications, G. BERHUY
378 Probability and mathematical genetics, N. H. BINGHAM \& C. M. GOLDIE (eds)
379 Finite and algorithmic model theory, J. ESPARZA, C. MICHAUX \& C. STEINHORN (eds)
380 Real and complex singularities, M. MANOEL, M.C. ROMERO FUSTER \& C.T.C WALL (eds)
Symmetries and integrability of difference equations, D. LEVI, P. OLVER,
Z. THOMOVA \& P. WINTERNITZ (eds)

382 Forcing with random variables and proof complexity, J. KRAJÍČEK
383 Motivic integration and its interactions with model theory and non-Archimedean geometry I, R. CLUCKERS, J. NICAISE \& J. SEBAG (eds)
Motivic integration and its interactions with model theory and non-Archimedean geometry II, R. CLUCKERS, J. NICAISE \& J. SEBAG (eds)
385 Entropy of hidden Markov processes and connections to dynamical systems, B. MARCUS, K. PETERSEN \& T. WEISSMAN (eds)

Independence-friendly logic, A.L. MANN, G. SANDU \& M. SEVENSTER
Groups St Andrews 2009 in Bath I, C.M. CAMPBELL et al (eds)
388 Groups St Andrews 2009 in Bath II, C.M. CAMPBELL et al (eds)
Random fields on the sphere, D. MARINUCCI \& G. PECCATI
390 Localization in periodic potentials, D.E. PELINOVSKY
391 Fusion systems in algebra and topology, M. ASCHBACHER, R. KESSAR \& B. OLIVER

Surveys in combinatorics 2011, R. CHAPMAN (ed)
393 Non-abelian fundamental groups and Iwasawa theory, J. COATES et al (eds)
394 Variational problems in differential geometry, R. BIELAWSKI, K. HOUSTON \& M. SPEIGHT (eds)
How groups grow, A. MANN
396 Arithmetic differential operators over the p-adic integers, C.C. RALPH \& S.R. SIMANCA

397 Hyperbolic geometry and applications in quantum chaos and cosmology, J. BOLTE \& F. STEINER (eds)
398 Mathematical models in contact mechanics, M. SOFONEA \& A. MATEI
399 Circuit double cover of graphs, C.-Q. ZHANG
400 Dense sphere packings: a blueprint for formal proofs, T. HALES
401 A double Hall algebra approach to affine quantum Schur-Weyl theory, B. DENG, J. DU \& Q. FU
402 Mathematical aspects of fluid mechanics, J.C. ROBINSON, J.L. RODRIGO \&
W. SADOWSKI (eds)

403 Foundations of computational mathematics, Budapest 2011, F. CUCKER, T. KRICK, A. PINKUS \& A. SZANTO (eds)

404 Operator methods for boundary value problems, S. HASSI, H.S.V. DE SNOO \& F.H. SZAFRANIEC (eds)
405 Torsors, étale homotopy and applications to rational points, A.N. SKOROBOGATOV (ed)
406 Appalachian set theory, J. CUMMINGS \& E. SCHIMMERLING (eds)
407 The maximal subgroups of the low-dimensional finite classical groups, J.N. BRAY, D.F. HOLT \& C.M RONEY-DOUGAL
408 Complexity science: the Warwick master's course, R. BALL, V. KOLOKOLTSOV \& R.S. MACKAY (eds)
Surveys in combinatorics 2013, S.R. BLACKBURN, S. GERKE \& M. WILDON (eds)
410 Representation theory and harmonic analysis of wreath products of finite groups, T. CECCHERINISILBERSTEIN, F. SCARABOTTI \& F. TOLLI

426 Lectures on the theory of water waves, T. BRIDGES, M. GROVES \& D. NICHOLLS (eds)

427 Recent advances in Hodge theory, M. KERR \& G. PEARLSTEIN (eds) 428 Geometry in a Fréchet context, C.T.J. DODSON, G. GALANIS \& E. VASSILIOU 429 Sheaves and functions modulo p, L. TAELMAN Recent progress in the theory of the Euler and Navier-Stokes equations, J.C. ROBINSON, J.L. RODRIGO, W. SADOWSKI \& A. VIDAL-LÓPEZ (eds)

Harmonic and subharmonic function theory on the real hyperbolic ball, M. STOLL
431 Harmonic and subharmonic function theory on the real hyperbolic ball, M. STO
432 Topics in graph automorphisms and reconstruction (2nd Edition), J. LAURI \& R. SCAPELLATO

444 Geometric and cohomological group theory, P.H. KROPHOLLER, I.J. LEARY, C. MARTÍNEZ-PÉREZ \& B.E.A. NUCINKIS (eds)

445 Introduction to hidden semi-Markov models, J. VAN DER HOEK \& R.J. ELLIOTT

446 Advances in two-dimensional homotopy and combinatorial group theory, W. METZLER \& S. ROSEBROCK (eds)
447 New directions in locally compact groups, P.-E. CAPRACE \& N. MONOD (eds)
448 Synthetic differential topology, M.C. BUNGE, F. GAGO \& A.M. SAN LUIS
449 Permutation groups and cartesian decompositions, C.E. PRAEGER \& C. SCHNEIDER

450 Partial differential equations arising from physics and geometry, M. BEN AYED et al (eds)
451 Topological methods in group theory, N. BROADDUS, M. DAVIS, J.-F. LAFONT \& I. ORTIZ (eds)
45
Moduli spaces, L. BRAMBILA-PAZ, O. GARCÍA-PRADA, P. NEWSTEAD \& R.P. THOMAS (eds) Automorphisms and equivalence relations in topological dynamics, D.B. ELLIS \& R. ELLIS
Optimal transportation, Y. OLLIVIER, H. PAJOT \& C. VILLANI (eds)
Automorphic forms and Galois representations I, F. DIAMOND, P.L. KASSAEI \& M. KIM (eds)
Automorphic forms and Galois representations II, F. DIAMOND, P.L. KASSAEI \& M. KIM (eds)
Reversibility in dynamics and group theory, A.G. O'FARRELL \& I. SHORT
Recent advances in algebraic geometry, C.D. HACON, M. MUSTAŢǍ \& M. POPA (eds)
The Bloch-Kato conjecture for the Riemann zeta function, J. COATES,
A. RAGHURAM, A. SAIKIA \& R. SUJATHA (eds)

19 The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations, J.C. MEYER \& D.J. NEEDHAM
Arithmetic and geometry, L. DIEULEFAIT et al (eds)
O-minimality and Diophantine geometry, G.O. JONES \& A.J. WILKIE (eds)
Groups St Andrews 2013, C.M. CAMPBELL et al (eds)
Inequalities for graph eigenvalues, Z. STANIĆ
Surveys in combinatorics 2015, A. CZUMAJ et al (eds)
Geometry, topology and dynamics in negative curvature, C.S. ARAVINDA, F.T. FARRELL \& J.-F. LAFONT (eds)

Regular and irregular holonomic D-modules, M. KASHIWARA \& P. SCHAPIRA
Analytic semigroups and semilinear initial boundary value problems (2nd Edition), K. TAIRA
Graded rings and graded Grothendieck groups, R. HAZRAT
Groups, graphs and random walks, T. CECCHERINI-SILBERSTEIN, M. SALVATORI \& E. SAVA-HUSS (eds)

Dynamics and analytic number theory, D. BADZIAHIN, A. GORODNIK \& N. PEYERIMHOFF (eds)

Random walks and heat kernels on graphs, M.T. BARLOW
Evolution equations, K. AMMARI \& S. GERBI (eds)
Surveys in combinatorics 2017, A. CLAESSON et al (eds)
Polynomials and the mod 2 Steenrod algebra I, G. WALKER \& R.M.W. WOOD
Polynomials and the mod 2 Steenrod algebra II, G. WALKER \& R.M.W. WOOD
Asymptotic analysis in general relativity, T. DAUDÉ, D. HÄFNER \& J.-P. NICOLAS (eds) Partial differential equations in fluid mechanics, C.L. FEFFERMAN, J.C. ROBINSON \& J.L. RODRIGO (eds)

464 Lectures on orthogonal polynomials and special functions, H.S. COHL \& M.E.H. ISMAIL (eds)

465 Constrained Willmore surfaces, Á.C. QUINTINO
466 Invariance of modules under automorphisms of their envelopes and covers, A.K. SRIVASTAVA, A. TUGANBAEV \& P.A.GUIL ASENSIO

467 The genesis of the Langlands program, J. MUELLER \& F. SHAHIDI
468 (Co)end calculus, F. LOREGIAN
469 Computational cryptography, J.W. BOS \& M. STAM (eds)
470 Surveys in combinatorics 2021, K.K. DABROWSKI et al (eds)
471 Matrix analysis and entrywise positivity preservers, A. KHARE
472 Facets of algebraic geometry I, P. ALUFFI et al (eds)
473 Facets of algebraic geometry II, P. ALUFFI et al (eds)
474 Equivariant topology and derived algebra, S. BALCHIN, D. BARNES, M. KȨDZIOREK \& M. SZYMIK (eds)

475 Effective results and methods for Diophantine equations over finitely generated domains, J.-H. EVERTSE \& K. GYÖRY
476 An indefinite excursion in operator theory, A. GHEONDEA
477 Elliptic regularity theory by approximation methods, E.A. PIMENTEL
478 Recent developments in algebraic geometry, H. ABBAN, G. BROWN, A. KASPRZYK \& S. MORI (eds)

479 Bounded cohomology and simplicial volume, C. CAMPAGNOLO, F. FOURNIER-FACIO, N. HEUER \& M. MORASCHINI (eds)
480 Stacks Project Expository Collection (SPEC), P. BELMANS, W. HO \& A.J. DE JONG (eds)

481 Surveys in combinatorics 2022, A. NIXON \& S. PRENDIVILLE (eds)
482 The logical approach to automatic sequences, J. SHALLIT
483 Rectifiability: a survey, P. MATTILA
484 Discrete Quantum Walks on Graphs and Digraphs, C. GODSIL \& H. ZHAN

London Mathematical Society Lecture Note Series: 484

Discrete Quantum Walks on Graphs and Digraphs

C. GODSIL
University of Waterloo
H. ZHAN
Simon Fraser University

CAMBRIDGE
 UNIVERSITY PRESS

> Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia India 314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, 103 Penang Road, \#05-06/07, Visioncrest Commercial, Singapore 238467 Cambriage University Press is part of Cambridge University Press \& Assessment, a department of the University of Cambridge. We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/9781009261685 DOI: 10.1017/9781009261692 C) Chris Godsil and Hanmeng Zhan 2023 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press \& Assessment. First published 2023

Contents

Preface page xi
1 Grover Search 1
1.1 States 1
1.2 Discrete Walks 2
1.3 Grover Search 2
1.4 Justifying Grover's Algorithm 3
1.5 Composite Quantum Systems 5
1.6 Grover via a Quantum Walk on Arcs 6
1.7 Arc-Reversal Grover Walk 7
1.8 Alternative Formulation of Arc-Reversal Walks 8
2 Two Reflections 11
2.1 A Subspace Decomposition 11
2.2 Real Eigenvalues 12
2.3 Complex Eigenvalues 13
2.4 Multiplicities 16
3 Applications 20
3.1 Graph Spectra versus Walk Spectra 20
3.2 Perfect State Transfer 25
3.3 Characterization of Perfect State Transfer 28
3.4 Strongly Cospectral Vertices 30
3.5 An Infinite Family 32
3.6 Other Coins 33
3.7 Szegedy's Model 35
3.8 Justifying Grover's Algorithm, Again 37
3.9 Element Distinctness 38
3.10 Arc-Reversal Walks with Weighted Grover Coins 39
4 Averaging 41
4.1 Positive Semidefinite Matrices 42
4.2 Density Matrices 43
4.3 Average States and Average Probabilities 45
4.4 Mixing Times 47
4.5 Average Mixing Matrix 49
4.6 Continuous Quantum Walks 55
5 Covers and Embeddings 59
5.1 Covers of Graphs 59
5.2 Constructing Covers 61
5.3 Equivalence of Arc Functions 62
5.4 Reduced Walks 63
5.5 Products and Universal Covers 65
5.6 Graph Embeddings 66
5.7 Self-Dual Embeddings 71
5.8 Cayley Maps 72
5.9 Regular Embeddings 73
5.10 Quantum Rotation Systems 74
6 Vertex-Face Walks 77
6.1 Introduction 77
6.2 Model 79
6.3 Spectral Decomposition 82
6.4 Hamiltonian 84
6.5 $\quad H$-Digraph 86
6.6 Covers 90
6.7 Sedentary Walks 93
6.8 Search 94
6.9 Notes 96
7 Shunts 98
7.1 Shunt-Decomposition Walks 99
7.2 Commuting Shunts and Grover Coins 102
7.3 Uniform Average Vertex Mixing 104
7.4 3-Regular Circulants 109
7.5 Unitary Covers 115
7.6 Shunt Functions 117
7.7 Spectral Decomposition 118
8 1-Dimensional Walks 121
8.1 Infinite Paths 121
8.2 Coupling Walks 122
8.3 Spectral Decomposition 124
8.4 Computing Powers 126
8.5 Extracting Coefficients 127
Glossary 131
References 132
Index 137

Preface

A discrete quantum walk is determined by a unitary matrix U, the transition matrix of the walk. If the initial state of the system is given by a vector z, then the state of the system at time k is $U^{k} z$. The problem is to choose U and z so that we can do something useful, and indeed we can - Grover showed how an implementation of this setup could be used to enable quantum computers to search a database faster than any known classical algorithm.

The framework we have just described is impossibly general; a quantum computer can conveniently implement only a small subset of the set of unitary matrices. There is also a mathematical difficulty, in that it may be impossible to derive useful predictions of the behaviour of the walk without imposing some structure on U.

As we have described it, the transition matrix U is an operator on the complex inner product space \mathbb{C}^{d}. However, for the reasons just given, much of the work on discrete quantum walks considers the case where U is an operator on the space of complex functions on the arcs (ordered pairs of adjacent vertices) of a graph X. Physically meaningful questions must be expressed in terms of the absolute values of the entries of the powers U^{k}. Thus, we might ask if, for a given initial state z, there is an integer k such that the absolute values of the entries of U^{k} are close to being equal.

The goal of our work on this topic has been to attempt to relate the properties of the walk to the properties of the underlying graph, and this book is both an introduction to the topic and a report on our progress.

We start our treatment with the most famous topic, Grover's search algorithm. We offer two approaches, but in both cases we find that the transition matrix arises as a product $U=R C$, where R and C are unitary matrices with simple structure and are defined in terms of an underlying graph. In fact, R and C are both involutions, and the algebra they generate is a matrix representation of the dihedral group. We make use of this fact to determine the spectral
decomposition of U in terms of the underlying graph. (If the graph is k-regular on n vertices, U is of order $n k \times n k$, so we have reduced the scale of the problem.) We then apply the resulting theory to the study of properties of our walks, and determine useful parameters. Of course, each time we identify a parameter of a walk, we have introduced a possibly new graph parameter, and many interesting questions raise their heads.

In the second part of the book we relax our assumptions that R and C are involutions. We find that, to properly specify the resulting walks, we must specify a linear ordering on the arcs leaving a vertex. As any graph theorist is aware, embeddings of graphs in an orientable surface are specified by cyclic orderings of the arcs leaving a vertex. Hence we offer a detailed treatment of graph embeddings and graph covers. Following this, we consider walks based on shunts and walks on the line. We close the book with a treatment of what we call vertex-face walks, which are explicitly derived from embeddings of graphs in orientable surfaces.

We note that this book is based on the Ph.D. thesis of the second author (https://uwspace.uwaterloo.ca/handle/10012/13952). The intended audience is mathematicians, particularly those who might be interested in new graph theory problems arising from the study of discrete quantum walks. The book by Portugal [58] provides a complementary view. We do not think any knowledge of physics is required to profit from this work; the required background is linear algebra (spectral decomposition) and some field theory. We have tried to keep things self-contained, but Godsil and Royle [35] may prove a useful backup.

Cambridge University Press has a website devoted to this book at https:// www.cambridge.org/gb/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/discrete-quantum-walks-graphs-and-digraphs?

1

Grover Search

1.1 States

Any quantum system has a state space, which is a complex inner product space. For us, this will usually be finite dimensional, just \mathbb{C}^{d} for some d. The actual states are the 1 -dimensional subspaces of this vector space. We could specify a subspace U of the complex inner product space V by giving an orthonormal basis u_{1}, \ldots, u_{k}, but it is often more convenient to define U in terms of the orthogonal projection P onto U - this is the idempotent Hermitian matrix with image equal to U. In fact, if v^{*} denotes the conjugate transpose of the vector (or matrix) v, then

$$
P=\sum_{i} u_{i} u_{i}^{*}
$$

but, despite appearances, P is independent of the choice of orthonormal basis for U.
Operations on the state space correspond to unitary matrices. If U is unitary and the state of our system is given by a unit vector z, then the vector $U z$ defines the new state. If we choose to work with projections, our initial state is given by $z z^{*}$, and the state after we apply U is $U z z^{*} U^{*}$.

The outcome of a measurement of a quantum system modelled by \mathbb{C}^{d} can be taken to be an element of $\{1, \ldots, d\}$. However, the result is actually a random variable: there are probabilities p_{1}, \ldots, p_{d} summing to 1 , such that we observe outcome i with probability p_{i}. Thus, we have a probability density defined on the set $\{1, \ldots, d\}$. This means we can view the outcome of a measurement as a probability density. This probability density will depend on the initial state of our system, the operations we apply to the system, and the choice of measurement.
Mathematically, a measurement is represented by a sequence M_{1}, \ldots, M_{e} of positive semidefinite matrices such that $\sum_{i} M_{i}=I$. The simplest case is
when $e=d$ and $M_{i}=e_{i} e_{i}^{T}$ (here e_{i} denotes the characteristic vector of i, and ${ }^{T}$ denotes the transpose). We describe this as 'measurement relative to the standard basis.' If the state of the system is $z z^{*}$, then the probability that we observe the i th outcome is

$$
\operatorname{tr}\left(M_{i} z z^{*}\right)=z^{*} M_{i} z,
$$

which is equal to the inner product $\left\langle M_{i}, z z^{*}\right\rangle$; if we are measuring relative to the standard basis, the probability is

$$
z^{*} e_{i} e_{i}^{T} z=\left|\left\langle z, e_{i}\right\rangle\right|^{2} .
$$

Thus, it is the square of the absolute value of the i th entry of z.

1.2 Discrete Walks

For our purposes, a discrete quantum walk is specified by a unitary matrix U. We call it the transition matrix of the walk. If U is $d \times d$, we view it as acting on a quantum system with state space \mathbb{C}^{d}. The system evolves under repeated applications of U; thus, if the initial state of the system is represented by the unit vector z, then after m steps, the state of the system would be $U^{m} z$. If we measure the system after k steps relative to the standard basis, the outcome will be e_{j} with probability

$$
\left|\left\langle e_{j}, U^{m} z\right\rangle\right|^{2}
$$

Our view of a discrete quantum walk is more general than taken by physicists. We find the generality useful, but there are two problems. The first is mathematical: at this level of generality, we may lack the mathematical tools needed to determine interesting properties of parameters of the walk. The second is physical: some unitary matrices decribe operations that are not easily implemented in practice; thus, we will see that U is usually defined as a product of simple unitary matrices, often sparse.

One common feature of nearly all discrete walks in this book will be that the state space is the set of complex functions on the arcs of a graph. Here an arc of a graph is an ordered pair of adjacent vertices. Thus, if X is an undirected graph with m edges, then it has $2 m$ arcs, and the associated state space will have dimension $2 m$.

1.3 Grover Search

We present one of the most important applications of quantum walks, Grover's search algorithm. Basically we have a system with state space \mathbb{C}^{d} and two unitary operators R and S. The operators have a special form; they are reflections. We explain what this means.

