

A. CHANDRASEKAR

Numerical Methods for Atmospheric and Oceanic Sciences

Numerical Methods for Atmospheric and Oceanic Sciences deals with various numerical methods that are applied to fluid systems such as the atmosphere and hydrosphere. With a detailed and comprehensive overview of the various numerical methods that are applied to fluid systems in general and the atmospheric and oceanic sciences in particular, this book will be useful for students of atmospheric and oceanic sciences in both senior undergraduate and graduate courses. It provides details of the application of finite difference methods to various problems that involve processes like advection, barotropic, shallow water, baroclinic oscillation, and decay. The concepts of consistency, stability, and convergence are also emphasized. The book provides clear exposition of concepts such as stability, staggered grid, and nonlinear computational instability. The book also provides broad details and applications of advanced numerical methods such as the spectral method, finite element method, and finite volume method.
A. Chandrasekar is Dean (Academics and Continuing Education) and Outstanding Professor at the Department of Earth and Space Sciences, Indian Institute of Space Science and Technology, Thiruvananthapuram. He is a leading expert in atmospheric science in India and has published widely on the above topics throughout his career. In 2010, he authored the book Basics of Atmospheric Science.

Numerical Methods for Atmospheric and Oceanic Sciences

A. Chandrasekar

CAMBRIDGE

UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314 to 321, 3rd Floor, Plot No.3, Splendor Forum, Jasola District Centre, New Delhi 110025, India
103 Penang Road, \#05-06/07, Visioncrest Commercial, Singapore 238467
Cambridge University Press is part of the University of Cambridge.
It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.
www.cambridge.org
Information on this title: www.cambridge.org/9781009100564
© A. Chandrasekar 2022
This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.
First published 2022
Printed in India

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data
Names: Chandrasekar, A., author.
Title: Numerical methods for atmospheric and oceanic sciences / A. Chandrasekar, Department of Earth and Space Sciences, Indian Institute of Space Science \& Technology, Tiruvananthapuram, India.
Description: Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2022. I Includes bibliographical references and index.
Identifiers: LCCN 2021050095 (print) | LCCN 2021050096 (ebook) | ISBN 9781009100564 (hardback) I ISBN 9781009119238 (ebook)
Subjects: LCSH: Atmospheric physics-Mathematical models. I Oceanography-Mathematical models. I BISAC: SCIENCE / Earth Sciences / Meteorology \& Climatology
Classification: LCC QC880 .C418 2022 (print) | LCC QC880 (ebook) I DDC 551.5101/1-dc23/eng/20211203

LC record available at https://lcen.loc.gov/2021050095
LC ebook record available at https://lcen.loc.gov/2021050096

ISBN 978-1-009-10056-4 Hardback
Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.
... to the memory of Professor T. N. Krishnamurti

Contents

List of Figures xix
Foreword xxvii
Preface xxix
1 Partial Differential Equations 1
1.1 Introduction 1
1.2 Diffusion Equation 4
1.3 First-order Equations 6
1.4 First-order Equations: Method of Characteristics 9
1.5 Second-order Quasilinear PDEs: Classification Using Method of Characteristics 10
1.6 Wave Equation 15
1.7 Linear Advection Equation 17
1.8 Laplace Equation 18
1.9 Method of Separation of Variables for the One-dimensional Heat Equation 19
1.10 Method of Separation of Variables for the One-dimensional Wave Equation 20
Exercises 21
2 Equations of Fluid Motion 25
2.1 Introduction 25
2.2 Lagrangian and Eulerian Description of Fluid Motion 26
2.2.1 Substantive or total derivative 26
2.2.2 Conservation of mass principle: Continuity equation 28
2.2.3 Conservation of momentum principle: Momentum equation 29
2.2.4 Euler's equation of motion for an ideal fluid 31
2.2.5 Conservation of energy principle: Thermodynamic energy equation 32
2.3 Equations Governing Atmospheric Motion 34
2.3.1 Rotating frame of reference 34
2.3.2 Conservation of energy: Thermodynamic energy equation for atmosphere 36
2.3.3 Geostrophic balance equations 38
2.3.4 Hydrostatic balance equation 38
2.3.5 Governing equations of motion of atmosphere with pressure as a vertical coordinate 39
2.3.6 Quasi-geostrophic equations of motion of atmosphere with pressure as a vertical coordinate 40
2.3.7 Shallow water equations 41
2.3.8 Vorticity equation for incompressible fluid: Curl of the Navier-Stokes equation 42
2.3.9 Vorticity equation for atmospheric and oceanic flows 43
2.3.10 Non-divergent vorticity equation for atmospheric and oceanic flows 43
2.3.11 Boussinesq approximation 43
2.3.12 Anelestic approximation 45
2.3.13 Conservation of water vapour mixing ratio equation 45
2.3.14 Mean equations of turbulent flow in the atmosphere 46
2.3.15 RANS, LES, and DNS approaches 48
2.3.16 Parameterization of physical processes in the atmospheric models 51
2.3.17 Parallel computing 51
Exercises 53
3 Finite Difference Method 57
3.1 Introduction 57
3.2 Method of Finite Difference 57
3.2.1 Forward difference scheme 59
3.2.2 Backward difference scheme 60
3.2.3 Central difference scheme 60
3.2.4 Centered fourth-order difference scheme 61
3.2.5 Finite difference scheme for second derivatives and Laplacian 61
3.3 Time Integration Schemes 64
3.3.1 Two-time level schemes 65
3.3.2 Three-time level schemes 67
Exercises 68
Python examples 70
4 Consistency and Stability Analysis 73
4.1 Consistency and Stability Analysis 73
4.2 Basic Aspects of Finite Differences 73
4.2.1 Consistency 74
4.2.2 Convergence 74
4.2.3 Lax Equivalence Theorem 75
4.3 Errors and Stability Analysis 75
4.3.1 Introduction 75
4.3.2 Discretization error 75
4.3.3 Representation of real numbers in a computer: Round-off error 76
4.3.4 Stability analysis of FTCS scheme as applied to one-dimensional heat conduction equation 78
4.3.5 Richardson central in time and central in space (CTCS) finite difference scheme and its stability 79
4.3.6 DuFort-Frankel finite difference scheme and its stability 80
4.3.7 Backward in time and central in space (BTCS) scheme and its stability 81
4.3.8 Crank-Nicolson Scheme and its stability 82
4.4 Two-dimensional Heat Conduction Equation 84
4.4.1 FTCS scheme and its stability 84
4.4.2 BTCS scheme and its stability 85
4.4.3 Alternating Direction Implicit (ADI) method 86
4.5 Stability Analysis of One-dimensional Linear Advection Equation 86
4.5.1 Forward in time and central in space (FTCS) scheme 87
4.5.2 Central in time and central in space (CTCS) scheme and its stability 87
4.5.3 Upwind methods 90
4.5.4 Lax finite difference scheme and its stability 91
4.5.5 Lax-Wendroff scheme and its stability 92
4.5.6 Backward in time and central in space (BTCS) scheme and its stability 93
4.5.7 Crank-Nicolson scheme and its stability 94
4.6 Matrix Method of Stability Analysis 94
4.6.1 Matrix method for the one-dimensional heat equation 95
4.7 Energy Method of Stability Analysis 97
4.8 Aliasing and Nonlinear Computational Instability 99
4.9 Aliasing Error and Instability 100
4.10 Ways to Prevent Nonlinear Computational Instability 102
4.11 Arakawa's Scheme to Prevent Nonlinear Computational Instability 103
Exercises 110
Python examples 116
5 Oscillation and Decay Equations 131
5.1 Introduction 131
5.2 Properties of Time-differencing Schemes as Applied to the Oscillation Equation 131
5.3 Properties of Various Two-time Level Differencing Schemes 133
5.3.1 Forward Euler scheme 133
5.3.2 Backward Euler scheme 134
5.3.3 Trapezoidal scheme 134
5.3.4 Iterative two-time level scheme 134
5.3.5 Matsuno scheme 135
5.3.6 Heun scheme 135
5.3.7 Phase change of the various two-level schemes 136
5.4 Properties of Various Three-time Level Differencing Schemes 137
5.4.1 Leapfrog scheme 137
5.4.2 Adams-Bashforth scheme 139
5.5 Properties of Various Schemes as Applied to the Friction Equation 139
5.5.1 Application of various two-time level schemes to the friction equation 140
Exercises 142
6 Linear Advection Equation 146
6.1 Introduction 146
6.2 Centered Time and Space Differencing Schemes for Linear Advection Equation 146
6.3 Conservative Finite Difference Methods 150
6.3.1 Leapfrog scheme 154
6.3.2 Matsuno scheme 158
6.3.3 Lax-Wendroff scheme 158
6.4 Computational Dispersion: Phase Speed Dependence on Wavelength 161
6.4.1 Group velocity 163
6.5 Upstream Schemes 166
6.5.1 Transportive property 167
6.6 Fourth-order Space Differencing Schemes for Advection Equation 170
6.7 Higher Order Sign Preserving Advection Schemes 172
6.8 Two-dimensional Linear Advection Equation 175
6.8.1 Computational dispersion: Phase speed dependence on frequency 176
Exercises 177
Python examples 181
7 Numerical Solution of Elliptic Partial Differential Equations 184
7.1 Introduction 184
7.1.1 Commonly occurring elliptic problems 185
7.2 Direct Methods of Solution 186
7.3 Iterative Methods of Solution 186
7.3.1 Gauss-Seidel method 187
7.3.2 Successive over relaxation (SOR) method 187
7.3.3 Relaxation, sequential relaxation, and successive relaxation methods 188
7.4 Multigrid Methods 197
7.4.1 Understanding the two-grid method 198
7.4.2 Full multigrid (FMG) method 201
7.5 Fast Fourier Transform Methods 202
7.6 Cyclic Reduction and Factorization Methods 205
Exercises 210
Python examples 213
8 Shallow Water Equations 217
8.1 Introduction 217
8.2 One-dimensional Linear Gravity Wave without Rotation 220
8.3 Staggered Grid Arrangement for Linear One-dimensional Gravity Wave 226
8.4 Linear Inertia-gravity Waves in One-dimension 227
8.4.1 Non-staggered grid arrangement - Grid ' A ' 229
8.4.2 Staggered grid arrangements - Grid 'B' 230
8.4.3 Staggered grid arrangements - Grid 'C' 231
8.4.4 Staggered grid arrangements - Grid 'D' 232
8.5 Two-dimensional Linear Gravity Wave without Rotation 234
8.5.1 Non-staggered grid arrangement (Grid 'A') 236
8.5.2 Staggered grid arrangement (Grid 'B') 238
8.5.3 Staggered grid arrangement (Grid 'C’) 239
8.5.4 Staggered grid arrangement (Grid 'D') 241
8.5.5 Staggered grid arrangement (Grid 'E') 242
8.6 Two-dimensional Linear Gravity Wave with Rotation 245
8.6.1 Non-staggered grid arrangement (Grid 'A') 246
8.6.2 Staggered grid arrangement (Grid 'B') 248
8.6.3 Staggered grid arrangement (Grid 'C') 250
8.6.4 Staggered grid arrangement (Grid 'D') 253
8.6.5 Staggered grid arrangement (Grid 'E') 254
Exercises 259
9 Numerical Methods for Solving Shallow Water Equations 264
9.1 Introduction 264
9.2 Linear One-dimensional Shallow Water Equations without Rotation 264
9.3 Solution of Linear One-dimensional Shallow Water Equations without Rotation 265
9.3.1 Explicit schemes: Leapfrog scheme (non-staggered) 265
9.3.2 Explicit schemes: FTCS scheme (non-staggered) 267
9.3.3 Fully implicit schemes (non-staggered) 267
9.3.4 Forward-backward scheme (non-staggered) 268
9.3.5 Pressure averaging scheme (non-staggered) 269
9.3.6 Implicit scheme (non-staggered) 270
9.3.7 Staggered explicit scheme 270
9.3.8 Splitting method 272
9.3.9 Semi-implicit method 274
9.3.10 Stability of the semi-implicit method 275
9.4 Two-dimensional Linear Shallow Water Equations without Rotation 277
9.4.1 Leapfrog scheme 277
9.4.2 Elliassen grid 278
9.4.3 Forward backward scheme 278
9.4.4 Implicit scheme (trapezoidal method) 280
9.5 Semi-implicit Scheme of Kwizak and Robert 281
Exercises 283
Python examples 287
10 Numerical Methods for Solving Barotropic Equations 313
10.1 Introduction 313
10.2 Numerical Solution of a Non-divergent Barotropic Vorticity Equation on a β Plane - Linear Case 314
10.3 Numerical Solution of a Non-divergent Barotropic Vorticity Equation on a f Plane - Nonlinear Case 316
10.4 Numerical Solution of a Non-divergent Barotropic Vorticity Equation on a β Plane - Nonlinear Case 320
10.5 Solving One-dimensional Linear Shallow Water Equations without Rotation 322
10.6 Solving One-dimensional Linear Shallow Water Equations with Rotation 322
10.7 Solving One-dimensional Nonlinear Shallow Water Equations without Rotation 323
10.8 Solving Two-dimensional Linear Shallow Water Equations without Rotation 325
10.9 Solving Two-dimensional Linear Shallow Water Equations with Rotation on a β Plane 326
10.10 Solving Two-dimensional Nonlinear Shallow Water Equations without Rotation 327
10.11 Solving Two-dimensional Nonlinear Shallow Water Equations with Rotation on a β Plane 328
10.12 Equivalent Barotropic Model 329
Exercises 332
Python examples 334
11 Numerical Methods for Solving Baroclinic Equations 361
11.1 Introduction 361
11.2 Atmospheric Vertical Coordinates 362
11.3 Pressure as a Vertical Coordinate 365
11.4 Sigma (σ) as a Vertical Coordinate 367
11.5 Eta (η) as a Vertical Coordinate 368
11.6 Isentropic Vertical Coordinate 370
11.7 Vertical Staggering 372
11.8 Two-layer Quasi-geostrophic Equation 373
11.9 Multi-level Models 378
11.10 Limited Area Primitive Equation Atmospheric Model 380
11.10.1 Finite difference equations for the limited area primitive equation atmospheric model 383
11.10.2 Solution procedure 384
Exercises 387
12 Boundary Conditions 390
12.1 Introduction 390
12.2 Upper Boundary Conditions 391
12.3 Lower Boundary Conditions 394
12.4 Lateral Boundary Conditions 394
12.5 One-way and Two-way Interactive Nesting 397
Exercises 399
13 Lagrangian and Semi-Lagrangian Schemes 403
13.1 Introduction 403
13.2 Fully Lagrangian Scheme 405
13.3 Semi-Lagrangian Scheme 405
13.3.1 Linear one-dimensional advection equation with constant velocity 406
13.3.2 Semi-Lagrangian scheme to solve the linear one-dimensional advection equation with constant velocity 407
13.3.3 Semi-Lagrangian scheme to solve the linear one-dimensional advection equation with non-constant velocity - three time level scheme 409
13.3.4 Semi-Lagrangian scheme to solve the linear one-dimensional advection equation with non-constant velocity - two time level scheme 412
13.3.5 Semi-Lagrangian scheme to solve the linear one-dimensional advection equation with non-constant velocity in the presence of a source term using two time level scheme 416
13.3.6 Stability of the semi-Lagrangian scheme to solve the linear one-dimensional advection equation 417
13.3.7 Semi-Lagrangian scheme to solve the forced advection equation with non-constant velocity - three time level scheme 419
13.4 Numerical Domain of Dependence 421
13.5 Semi-Lagrangian Scheme to Solve Shallow Water Equations 422
13.5.1 Advantages of semi-Lagrangian scheme as compared to Eulerian scheme 424
13.6 Interpolation 424
Exercises 426
14 Spectral Methods 428
14.1 Introduction 428
14.2 Series Expansion Method 428
14.3 Spectral Methods and Finite Difference Method 430
14.3.1 Spectral methods as applied to a linear one-dimension advection equation 431
14.3.2 Spectral methods as applied to a linear second-order ordinary differential equation 432
14.3.3 Spectral methods as applied to a partial differential equation involving time 433
14.3.4 Spectral methods and energy conservation 434
14.3.5 Spectral methods applied to nonlinear one-dimensional advection equation 435
14.3.6 Spectral methods applied to nonlinear one-dimensional advection equation - handling the nonlinear term 436
14.3.7 Spectral methods applied to barotropic vorticity equation on a β plane 438
14.3.8 Types of truncation 441
14.3.9 Advantages of spectral methods over the method of finite differences 443
14.3.10 Transform method 445
14.4 Spectral Methods for Shallow Water Equations 446
14.5 Pseudo-spectral Methods 450
Exercises 452
Python examples 455
15 Finite Volume and Finite Element Methods 457
15.1 Introduction 457
15.2 Integral Form of Conservation Law 457
15.2.1 Integral form of conservation law of mass 458
15.2.2 Convection equation 459
15.2.3 Integral form of linear momentum conservation equation 459
15.3 Finite Volume Method 460
15.3.1 Finite volume method applied to one-dimensional scalar conservation equation 460
15.3.2 Godunov scheme for a scalar equation 464
15.3.3 Rankine-Hugoniot jump condition 466
15.3.4 Finite volume method for one-dimensional linear heat equation 467
15.4 Finite Element Method 471
15.4.1 Finite element method as applied to an ordinary differential equation 473
15.4.2 Finite element method as applied to one-dimensional advection equation 477
15.4.3 Finite element method as applied to one-dimensional linear Helmholtz equation 479
Exercises 481
16 Ocean Models 484
16.1 Introduction 484
16.2 Sverdrup Model for Ocean Circulation 485
16.2.1 Sverdrup model for ocean circulation having a zonal wind stress with meridional variation 489
16.3 Stommel Model for Ocean Circulation 490
16.3.1 Stommel model for ocean circulation having a zonal wind stress with meridional variation 493
16.4 Munk Model for Ocean Circulation 494
16.4.1 Munk model for ocean circulation having a wind stress with both zonal and meridional variations 495
16.5 Nonlinear Model for Ocean Circulation 497
16.6 Vertical Coordinate for Ocean Models 499
16.6.1 Height (z) coordinate 499
16.6.2 Isopycnic coordinate 499
16.6.3 Sigma (σ) coordinate 500
16.6.4 Hybrid coordinate 501
16.7 Barotropic-Baroclinic Splitting 501
16.7.1 External and internal waves 501
16.7.2 Barotropic-baroclinic subsystems 502
16.8 Time Discretization 503
16.8.1 Leapfrog scheme 503
16.8.2 Two-time level finite difference scheme 503
16.9 Spatial Discretization and Horizontal Grids in Ocean Models 504
16.9.1 Spatial arrangement of the dependent variables in the horizontal 504
16.10 Various Approaches to Solving the Ocean Momentum Equations 505
Exercises 505
Appendix: Tridiagonal Matrix Algorithm 509
Bibliography 511
Index 515

Figures

1.1 Temperature distribution of a heated rod of length a. 5
1.2 Solution surface and solution domain, Ω, for Equation (1.9). 6
1.3 Solution surface for Equation (1.10). 8
1.4 Domain of dependence (horizontal hatching) and range of influence (vertical hatching) for (a) parabolic, (b) hyperbolic, and (c) elliptic PDEs. 14
1.5 String element at time t subject to tension forces. 16
3.1 As grid size Δx decreases, the secant line approaches the tangent line, the latter being the derivative of f at the point x as $\Delta x \rightarrow 0$. 58
3.2 Backward, forward, and central finite difference approximations of the derivative of a function $f(x)$ at the point $j \Delta x$. The function f is defined at the grid points $x_{j}=j \Delta x$ so that $f_{j}=f\left(x_{j}\right)=f(j \Delta x)$, where Δx is the grid size and $j=0,1,2, \ldots$, are integers. 59
3.3 Illustration of grid cells in the $x y$ plane using grid sizes Δx and Δy. 62
4.1 A wave (continuous line) of wavelength less than $2 \Delta x$, say, $(4 / 3) \Delta x$, is misrepresented as a resolvable wave (dashed line) of wavelength $4 \Delta x$ by the finite difference grid. 100
4.2 Aliasing or misrepresentation of the wavenumber $k>k_{\max }$. 102
4.3 Stencil of grid points for evaluating the Arakawa Jacobian. 109
4.4 Solution of the one-dimensional linear heat conduction equation using the FTCS stable scheme. 117
4.5 Solution of the one-dimensional linear heat conduction equation using the CTCS scheme. 118
4.6 Solution of the one-dimensional linear heat conduction equation using the BTCS scheme. 121
4.7 Solution of the one-dimensional linear heat conduction equation using the Crank-Nicolson scheme. 123
4.8 Solution of the one-dimensional linear advection equation using the FTCS scheme. 124
4.9 Solution of the one-dimensional linear advection equation using the CTCS stable scheme. 126
4.10 Solution of the one-dimensional linear advection equation using the Lax scheme. 127
4.11 Solution of the one-dimensional linear advection equation using the Lax- Wendroff scheme. 129
4.12 Solution of the one-dimensional linear advection equation using the upwind scheme. 130
5.1 Amplification factors as a function of $p=\omega \Delta t$ for the five two-time level schemes discussed in this text and for the true solution. 136
5.2 Phase change of the physical and the computational mode for the leapfrog scheme. 138
6.1 Depiction of the schematic of the solution of the one-dimensional linear advection equation moving along the characteristics. 148
6.2 Scheme for which the CFL condition holds and Courant number $\mu \leq 1$. 155
6.3 Scheme for which the CFL condition does not hold and Courant number $\mu>1$. 156
6.4 Scheme for which the CFL condition does not hold and Courant number $\mu<0$. 156
6.5 Space-time grid stencil arrangements for the two-step Lax-Wendroff scheme. 159
6.6 Amplification factor of the Lax-Wendroff scheme as a function of theCourant number μ, for waves of wavelength $2 \Delta x$ (continuous line) and$4 \Delta x$ (dashed line).161
6.7 Plot of the solution of the difference differential equation for a wave of wavelength $2 \Delta x$. 163velocity of the envelope where the short waves are modulated by thelonger waves.
6.8 Schematic diagram showing the concept of group velocity, which is the164
6.9 Phase speed $\left(c^{*}\right)$ and group velocity $\left(c_{g}^{*}\right)$ for the linear one-dimensional advection equation and the corresponding differential difference equation with second-order centered space finite difference scheme.165
6.10 Domains of influence of a grid point for the upstream difference scheme (Equation (6.65) with $c>0$ together with schemes having centered differencing and downstream differencing for the true solution.
6.11 Schematic of the construction of a scheme by calculation of a previous value on a characteristic passing through the point $[j \Delta x,(n+1) \Delta t]$. 169
6.12 Phase speed for the one-dimensional linear advection equation with c being the phase speed of the analytical solution, c^{*} being the phase speed of the second-order centered space difference solution, and $c^{* *}$ being the phase speed of the fourth-order centered space difference solution. 171
6.13 Conservation and non-conservation of energy with finite difference methods. 183
7.1 Finite difference scheme schematically shown for solving the two- dimensional Poisson equation. 185
7.2 Solution of two-dimensional Poisson equation using "successive over- relaxation method." 216
8.1 Schematic sketch of a vertical section ($x-z$ plane) for derivation of the shallow water equations. The fluid (water) layer has a thickness h, which is a function of position (x, y) and time. The terrain over which the fluid (water) flows has elevation d, which is a function of position (x, y). 219
8.2 Grid with two dependent variables (u and h) defined at every grid point. 222
8.3 Grid with two dependent variables (u and h) defined at alternate grid points. 222
8.4 Non-staggered arrangement of variables in one-dimensional gravity wave without rotation with both u and h prescribed at all grid points. 223
8.5 Staggered arrangement of variables in one-dimensional gravity wave without rotation with h prescribed at all grid points and u prescribed at locations midway between the grid points. 223
8.6 Schematic of the dispersion relation for the linear one-dimensional gravity wave without rotation with the straight solid line referring to the analytical wave which is non-dispersive. The symmetric long dashed line line refers to the numerical wave for the non-staggered grid arrangement, whereas the short dashed line refers to the numerical wave for the staggered grid arrangement. 225
8.7 Non-staggered arrangement (referred to as ' A ' grid) of variables in linear one-dimensional inertia-gravity wave with rotation with all u, v, and h prescribed at all grid points. 2298.8 Staggered arrangement (referred as to 'B' grid) of variables in linear one-dimensional inertia-gravity wave with rotation with both u, v prescribedat center of grid points while h is prescribed at all grid points.
8.9 Staggered arrangement (referred to as 'C' grid) of variables in linear one-dimensional inertia-gravity wave with rotation with u prescribed at center of grid points while h and v are prescribed at all grid points. 231
8.10 Staggered arrangement (referred to as ' D ' grid) of variables in linear one-dimensional inertia-gravity wave with rotation with v prescribed at center of grid points while h and u are prescribed at all grid points. 233
8.11 Schematic diagram of the one-dimensional inertia-gravity wave for the continuum (analytical case) and for the non-staggered (' A ' grid) and the various staggered grids (' B ', ' C^{\prime}, and ' D ' grids) with the resolution parameter r assuming a value of 2.0.
8.12 Schematic diagram of the one-dimensional inertia-gravity wave for the continuum (analytical case), for the non-staggered (' A ' grid), and the various staggered grids (' $\mathrm{B}^{\prime}, ~ ' \mathrm{C}$ ', and ' D^{\prime} grids) with the resolution parameter r assuming a value of 0.5. 235
8.13 Arrangement of variables in a non-staggered grid (Grid 'A'). 236
8.14 Arrangement of variables in a staggered grid (Grid 'B'). 238
8.15 Arrangement of variables in a staggered grid (Grid 'C'). 240
8.16 Arrangement of variables in a staggered grid (Grid 'D'). 241
8.17 Arrangement of variables in a staggered grid (Grid 'E'). 243
8.18 Dispersion relation for the 2-dimensional gravity wave without rotation for the continuum case. 244
8.19 Dispersion relation for the two-dimensional gravity wave without rotation for the ' A '-grid. 245
8.20 Dispersion relation for the two-dimensional gravity wave without rotation for the ' B '-grid. 246
8.21 Dispersion relation for the two-dimensional gravity wave without rotation for the ' C^{\prime}-grid. 247
8.22 Dispersion relation for the two-dimensional gravity wave without rotation for the ' D '-grid. 248
8.23 Dispersion relation for the two-dimensional gravity wave without rotation for the 'E'-grid. 249
8.24 Dispersion relation for the two-dimensional gravity wave with rotation for the continuum case for $r_{x}=r_{y}=2$. 250
8.25 Dispersion relation for the two-dimensional gravity wave with rotation for the ' A ' grid for $r_{x}=r_{y}=2$. 251
8.26 Dispersion relation for the two-dimensional gravity wave with rotation for the ' B ' grid for $r_{x}=r_{y}=2$. 252
8.27 Dispersion relation for the two-dimensional gravity wave with rotation for the 'C' grid for $r_{x}=r_{y}=2$. 253
8.28 Dispersion relation for the two-dimensional gravity wave with rotation for the 'D' grid for $r_{x}=r_{y}=2$. 255
8.29 Dispersion relation for the two-dimensional gravity wave with rotation for the ' E ' grid for $r_{x}=r_{y}=2$. 256
8.30 Dispersion relation for the two-dimensional gravity wave with rotation for the continuum case for $r_{x}=r_{y}=0.5$. 256
8.31 Dispersion relation for the two-dimensional gravity wave with rotation for the ' A ' grid for $r_{x}=r_{y}=0.5$. 257
8.32 Dispersion relation for the two-dimensional gravity wave with rotation for the ' B ' grid for $r_{x}=r_{y}=0.5$. 257
8.33 Dispersion relation for the two-dimensional gravity wave with rotation for the ' C ' grid for $r_{x}=r_{y}=0.5$. 258
8.34 Dispersion relation for the two-dimensional gravity wave with rotation for the ' D ' grid for $r_{x}=r_{y}=0.5$. 258
8.35 Dispersion relation for the two-dimensional gravity wave with rotation for the ' E ' grid for $r_{x}=r_{y}=0.5$. 259
9.1 Elliassen grid. 279
9.2 Geostrophic height in two-dimensional shallow water equations in f plane after 320 steps. 299
9.3 Geostrophic height in two-dimensional shallow water equations in f plane after 640 steps. 299
9.4 Geostrophic height in two-dimensional shallow water equations in β plane after 160 steps. 312
9.5 Geostrophic height in two-dimensional shallow water equations in β plane after 480 steps. 312
10.1 Stencil of grid points for evaluating the Arakawa Jacobian. 318
10.2 Vorticity and stream function at $\mathrm{t}=0$ for the linear non-divergent vorticity equation. 347
10.3 Vorticity and stream function at $\mathrm{t}=1.39 \mathrm{~s}$ for the linear non-divergent vorticity equation. 348
10.4 Vorticity and stream function at $t=0$ for the nonlinear non-divergent vorticity equation. 360
10.5 Vorticity and stream function at $\mathrm{t}=1.33 \mathrm{~s}$ for the nonlinear non-divergent vorticity equation. 360
11.1 Schematic diagram showing the vertical coordinate transformation. 363
11.2 Schematic diagram illustrating the height, pressure, and sigma vertical coordinates in the atmosphere. 367
11.3 Staggered grid in the vertical following (i) Lorentz grid (left), and (ii) Charney-Phillips grid (right). 373
11.4 Vertical structure of the two-level model. 375
11.5 Vertical indexing and specifications of various dependent variables for a multi-level baroclinic atmospheric model. 379
11.6 Vertical indexing and specifications of various dependent variables for a six layer baroclinic atmospheric model. 381
13.1 Differences between the Eulerian (left panel) and the Lagrangian (right panel) numerical models. 404
13.2 Schematic of the semi-Lagrangian scheme for constructing a numerical solution. 408
13.3 Schematic diagram of the three time level technique for the semi- Lagrangian scheme to solve linear one-dimensional advection equation with non-constant velocity and no source term. 410
13.4 Schematic diagram of the two time level technique for the semi- Lagrangian scheme for solving the linear one-dimensional advection equation with non-constant velocity and no source term. 414
13.5 Schematic diagram of the domain of dependence of the solution at grid point $(j \Delta x, n \Delta t)$ indicated by continuous slant lines. The line of stars that originate from left and move towards right represent a fluid (air) parcel trajectory. 422
14.1 Schematic representation by triangular truncation $\left(M_{T}, N_{T}\right)$ defined by areas $A+D+C$ and by rhomboidal truncation $\left(M_{R}, N_{R}\right)$ defined by the areas $D+B$. The x-axis is the zonal wavenumber m whereas the y-axis is the total wave number n. Only positive values of m are shown in the figure. 442
14.2 Initial stream function for the linear non-divergent vorticity equation. 456
15.1 Schematic diagram of examples of structured or conformal mesh. 461
15.2 Schematic diagram of examples of unstructured or non-conformal mesh. 461
15.3 Arrangement of control volume. 462
15.4 Discretization of space with grid size h. 468
15.5 Representation of flux to the left and to the right of the grid cell j. 469
15.6 Schematic of a tent-shaped linear piecewise function used in finite element method. 473
15.7 Schematic representation of (a) piecewise linear fit, (b) linear basis function, and (c) how a piecewise linear fit is a linear combination of basis functions. 476

Foreword

It is with great pleasure and admiration for the author, Professor A. Chandrasekar, that I undertake this task of writing the Foreword to his second book, entitled Numerical Methods for Atmospheric and Oceanic Sciences published by Cambridge University Press. After completing his PhD in Applied Mathematics from the Indian Institute of Science, Bangalore, India in 1988, his journey into the vast landscape of atmospheric and oceanic sciences began with a faculty assignment in the Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur, India, where he was a member of the faculty for a little over two decades. Soon, he was called on to direct the newly created Center for Oceans, Rivers, Atmosphere and Land Sciences at the Indian Institute of Technology, Kharagpur, India, a position he held for a year. Over the recent past twelve years he has been on the faculty at the Indian Institute of Space Science and Technology, Tiruvananthapuram, India, where he has held numerous teaching and administrative positions. Despite the demands of administration at various levels at different institutions of higher learning in India, he never lost sight of the fact he was a teacher first and has taught a two-level system of graduate courses - basics of atmospheric and ocean dynamics and numerical methods for solving the atmospheric model equations - on a continuous basis for over three decades. It is these years of experience in classroom teaching that resulted in his first book on basic dynamics and now this second book on the latter topic. For an aspiring graduate student this book represents a one stop shopping option. The style is very engaging, and it is as though he is talking directly to the students. The opening two chapters provide a broad overview of the standard models of interest in atmospheric and ocean sciences. A detailed account of various grid configurations, attendant discretization schemes and the associated error and stability analyses are covered in the next two chapters. Examples of discretization of equations for damped oscillators, linear advection, shallow water barotropic, and baroclinic models along with the use of staggered grids are systematically and thoroughly covered in the next set of seven chapters. Extensive discussion of the ways to handle the boundary conditions along with Lagrangian and semi-Lagrangian methods are contained in the following two chapters. Then there are two chapters dealing with topics of great importance - the spectral methods,
finite element, and finite volume methods. The last chapter contains a comprehensive discussion of the ocean models. A short appendix describes an algorithm for solving tridiagonal system that often arise in discretization using implicit methods and there is a good collection of references for further reading. Simultaneous coverage of finitedifference, finite-element, finite volume, and spectral methods and illustrating their use using different classes of models of interest in atmospheric and ocean sciences under one cover is a welcome and unique feature of this book. My own interests are in Dynamic Data Assimilation (DDA) where we assume that we have a model code that can run forward in time. The vast discipline of DDA rests solidly on the foundation laid by the work described in this book. I am confident that aspiring graduate students and those working in the field will greatly benefit from this comprehensive work for years to come. Congratulations on a project well accomplished.

Norman, Oklahoma
S. Lakshmivarahan

August 2021

Preface

The mathematical equations that govern the evolution of the atmosphere and the oceans are essentially a system of coupled nonlinear partial differential equations that do not provide for closed form analytical exact solutions. In situations where closed form analytical solutions are not available, one employs numerical methods for solving the governing mathematical equations that are responsible for the evolution of the atmospheric and oceanic systems. It is clear that advances in numerical methods have contributed greatly to our current understanding of the science of the Earth system in general and the sciences of the atmosphere and oceans, in particular. This book, Numerical Methods for Atmospheric and Oceanic Sciences, is written with an objective to provide a detailed and broad overview of the various numerical methods that are applied to fluid systems in general, and in particular to the fluid systems that manifest in the natural environment such as the atmosphere and hydrosphere. Most of the material included in this book has evolved from a single semester course that I taught on "Numerical Weather Prediction" as well as another course that I had taught earlier titled "Numerical Weather Prediction and Modeling." The approach followed in writing this book is to provide adequate theoretical and background discussions that go beyond mere outlining and mentioning the various numerical schemes.

I have dedicated this book to the memory of Professor T. N. Krishnamurti, former Lawton Distinguished Professor, Department of Earth, Ocean and Atmospheric Science, Florida State University, USA, for his pioneering research contributions in the areas of numerical weather prediction, short and long range monsoon prediction, inter-seasonal and inter-annual variability of the tropical atmosphere. Professor Krishnamurti visited my institute twice, once in 2014 and again in 2015. I was truly amazed with Professor Krishnamurti's depth of knowledge, his prolific research output as well as the huge impact of his research on the science of the atmosphere. I am extremely indebted to Professor S. Lakshmivarahan, George Lynn Cross Research Professor Emeritus of the University of Oklahoma, USA, for readily agreeing to my request to write a Foreword for this book. I am certain that a Foreword from someone of his stature and eminence would contribute immensely to the popularity of the book. I greatly value the comments and suggestions from five anonymous
peer experts on the book that led to the inclusion of two new chapters and also to minor reorganization of the book. The aforementioned comments also resulted in the inclusion of programming examples using python language in the book, a feature that students, researchers and teachers would find most useful. I am obliged to Professor Geoffrey Vallis of the University of Exeter, UK, for allowing me to modify and use a couple of python codes from his book.

I would be failing in my duty if I did not acknowledge the help and assistance that I received from my colleague Professor A. Salih, and from other scientists such as Dr. R. Krishnan of the Indian Institute of Tropical Meteorology, Pune, Professor A. D. Rao of Indian Institute of Technology, Delhi, Professor G. Bala of the Indian Institute of Science, Bangalore, and Professor B. Chakrapani of Cochin University of Science and Technology in the preparation of this book. While Professor Salih and Professor Chakrapani almost read through the entire book, others took time off from their busy schedule and read through a few chapters of this book. Their suggestions and comments have contributed to the overall improvement of the book. I also received very specific and pertinent comments from my nephew Dr. S. Prahlad working at the National Institute of Aerospace, Hampton, USA, that I found to be very helpful.

I am extremely thankful to my PhD student Mr. Vibin Jose who assisted me greatly during the preparation of this book, especially in the production of the python programs and the figures. I thank my former post-graduate students Mr. Vikram and Ms. Akshaya Nikumbh who also helped with a few python programs.

I have received excellent and unstinted support from Dr. Vaishali Thapliyal, Ms. Qudsiya Ahmed, and Mr. Vikash Tiwari of Cambridge University Press who have been extremely helpful during the period of this book project. I also thank Mr. R. Adarsh of the Thiruvanathapuram branch of Cambridge University Press who patiently heard and cleared several of my queries in the initial stage of the book proposal.

I have received a lot of support and encouragement from Dr. B. N. Suresh, the present chancellor of my institute who was the founding director of my institute when I wrote my first book. I wish to thank Dr. V. K. Dadhwal, former director of my institute who provided all help and assistance and encouraged me to complete the project. I also thank Shri S. Somanath, present director of my institute for his help and support. I have also benefited from the encouragement that I have received from several well-wishers, collaborators, friends, and faculty colleagues from my institute and other institutions on the book project, a list too long to mention and include here. I have been extremely fortunate to be blessed by my parents and Almighty at all stages of my career. Finally, I wish to acknowledge the quiet support and encouragement that I received from my family and thank them for their love, patience, and forbearance.

1

Partial Differential Equations

1.1 Introduction

Most physical as well as engineering systems one encounters in real life can be mathematically modeled using a system of partial differential equations subject to appropriate boundary conditions. These partial differential equations are coupled as well as nonlinear in nature. Owing to their nonlinearity, systems of partial differential equations that represent physical and engineering phenomena do not have closedform or analytical solutions. Thus, the only alternative available to a scientist or a engineer is to seek a numerical solution for the aforementioned systems of partial differential equations.

There are countless examples of the manifestation of partial differential equations with appropriate boundary conditions in various fields of physics, including magnetism, optics, statistical physics, general relativity, superconductivity, liquid crystals, turbulent flow in plasma and solitons. Furthermore, diverse fields such as fluid mechanics, atmospheric physics, and ocean physics have rich and exhaustive examples of partial differential equations. In this book an effort has been made to familiarize the readers to a general introduction of partial differential equations as well as equations of fluid motion before acquainting them with the various numerical methods. The well-known method of finite differences is introduced and important aspects such as consistency and stability are discussed while applying the above method to standard partial differential equations of the parabolic, hyperbolic, and elliptic types. The method of finite differences is then applied to equations of motion of the atmosphere and oceans. The book also introduces the readers to advanced numerical methods such as semi-Lagrangian methods, spectral method, finite volume, and finite element methods and provides for the application of the above methods to the equations of motion of the atmosphere and oceans.

Towards this end, it is important to introduce partial differential equations (PDE) and the various numerical methods that can be employed to solve PDEs numerically. A PDE is an equation that represents a relationship between an unknown function of two or more independent variables and the partial derivatives of this unknown function with respect to the independent variables. Although the independent variables are either space (x, y, z) or space and time (x, y, z, t) related, the nature of the unknown function depends on the physical/engineering problem being modeled.

The function $f(x)$ is defined as a linear function of x if $f(x)$ can be expressed as $f(x)=m x+b$, where m and b are constants. The order of a PDE is determined by the highest-order derivative that appears in the PDE.

If $u(x, y)$ is a dependent variable, which is a function of two independent variables x and y, then the general second-order PDE can be written as

$$
\begin{equation*}
A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}+F\left(x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)+G(x, y)=0 \tag{1.1}
\end{equation*}
$$

where A, B, C are functions of $x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, F$ may be a nonlinear function, and G may be a function of x and y. In such cases, Equation (1.1) is known as a second-order quasilinear PDE. A quasilinear PDE is a PDE that is linear in the highest derivative. A partial differential equation is called a quasilinear PDE if all the terms with the highestorder derivatives of dependent variables are linear. The coefficients of the highestorder derivative terms in the PDE are functions of only the lower order derivatives of the dependent variables. However, for the quasilinear PDE, the terms in the PDE with lower order derivatives can occur in any manner.

A partial differential equation is called a semilinear PDE if all the terms with the highest-order derivatives of dependent variables are functions of independent variables only. In such cases, the coefficients of the highest-order derivative terms in the PDE are functions of only the independent variables. Equation (1.1) is known as a second-order semilinear PDE if A, B, and C are functions of x and y only.

If the dependent variable and all its partial derivatives appear linearly in any PDE, i.e., there are no terms in the PDE that involve the product of the dependent variables with itself or with its derivatives, then such an equation is called a linear PDE. If F is a linear function, and A, B, and C are functions of only x and y, then Equation (1.1) is called a linear PDE.

If all the terms of a PDE contain the dependent variable or its partial derivatives, then such a PDE is called a homogeneous partial differential equation.

If function F involves the dependent variable u and its derivatives $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ and also $G=0$, the Equation (1.1) is called a homogeneous PDE; if $G \neq 0$, then Equation (1.1) is called a nonhomogeneous PDE.

Equation (1.1) can also be written in the following form known as the implicit form

$$
\begin{equation*}
f\left(x, y, u, u_{x}, u_{y}, u_{x x}, u_{x y}, u_{y y}\right)=0 \tag{1.2}
\end{equation*}
$$

If f is a linear function of u and its derivatives, then the PDE is said to be linear. It is necessary to classify PDE, as different types of PDE arise naturally in very different physical problems; dissimilar types of PDE have different nature of conditions (boundary/initial) to be satisfied and hence, dissimilar types of PDE need to employ different numerical methods for their solution.

It is known that the general solution of ordinary differential equations (ODEs) involve arbitrary constants of integration; in contrast, the general solution of PDEs involves arbitrary functions. Consider, for example, the equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x \partial y}=0 \tag{1.3}
\end{equation*}
$$

Integrating Equation (1.3) with respect to y, one gets $\partial u / \partial x=F(x)$, where $F(x)$ is an arbitrary function of x. Integrating the equation once again with respect to x, one gets

$$
\begin{equation*}
u(x, y)=f(x)+g(y) \tag{1.4}
\end{equation*}
$$

where $f(x)=\int F(x) d x$ and $g(y)$ are arbitrary functions of x and y respectively. To obtain $f(x)$ and $g(y)$, one needs to have additional information, for example, the initial conditions (if time is one of the independent variables) and / or boundary conditions.

To be specific, suppose that one were to find $u(x, y)$ satisfying Equation (1.4) in the region $x \geq 0, y \geq 0$ and that one is given the following boundary conditions $u=x$, when $y=0$ and $u=y$, when $x=0$. Then, the surface $u(x, y)$ must intersect the plane $x=0$ in the line $u=y$ and the plane $y=0$ in the line $u=x$. The functions $f(x)$ and $g(y)$ in Equation (1.4) are determined in the following manner. As $u(x, 0)=f(x)+g(0)=x$ and $u(0, y)=f(0)+g(y)=y$, it follows that $u(x, y)=f(x)+g(y)=x-g(0)+y-f(0)=$ $x+y-g(0)-f(0)$. The only way this can satisfy the PDE and the boundary conditions are if $f(0)$ and $g(0)$ are both zero, which implies $u(x, y)=x+y$.

It can be easily verified that the equation satisfies the PDE and the two boundary conditions. The aforementioned example clearly illustrates the importance of the boundary conditions in obtaining the solution of the PDE. For an ordinary differential equation of the second-order, it is known that two conditions are required to obtain an unique solution. It is clear that depending on the nature of the PDE, the sufficient set of boundary conditions that are required for a meaningful solution may vary.

The question that is posed is as follows: what is a sufficient set of boundary conditions for a given PDE? The answer to this question depends on the type of PDE, the latter in turn, depending on the nature of the associated physical problem. Two different types of boundary conditions applied to the same PDE, will invariably lead to two different types of solution. Hence, methods of solution of PDEs will depend on the nature and type of the boundary conditions.

One expects that a given PDE subject to suitable boundary conditions will possess an unique solution. Any physical or engineering problem defined by Equation (1.1) in a given two-dimensional domain is said to be "well-posed" if

1. there exists at least one solution (existence)
2. there exists atmost one solution (uniqueness)
3. the solution is stable.

Three types of PDEs arise when one classifies PDE and these are (i) parabolic type, (ii) elliptic type, and (iii) hyperbolic type. Examples of the parabolic type of PDEs are the diffusion equation whereas examples of elliptic and hyperbolic PDEs are the Laplace equation and wave equation, respectively.

1.2 Diffusion Equation

The most common form of diffusion equation is as follows:

$$
\begin{equation*}
\frac{\partial c}{\partial t}=D \nabla^{2} c \tag{1.5}
\end{equation*}
$$

where c is the concentration, which is in general a function of space and time, D is the diffusion coefficient, and ∇^{2} is the Laplacian operator, which in Cartesian coordinates is

$$
\nabla^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

By definition, a flux \bar{J} is a movement of particles (or other quantities) through a unit measure (point, length, area) per unit time. From Ficks' law of diffusion, it follows that flux \bar{J} is related to concentration c through the following equation

$$
\begin{equation*}
\bar{J}=-D \nabla c \tag{1.6}
\end{equation*}
$$

where ∇ is the gradient operator. The negative sign signifies that the flux is always in the direction opposite to the gradient operator. The direction of the gradient operator,
also known as the "ascendant," is in the maximum rate of change of ' c ' and is always directed from low values to high values of c. Hence Equation (1.6) clearly shows that the direction of flux is always directed from high values to low values of c.

For a normal diffusion process, particles cannot be created or destroyed. This implies that the flux of particles into one region must be the sum of the particle flux flowing out of the surrounding regions. The aforementioned statement can be easily expressed mathematically by the continuity equation given by

$$
\begin{equation*}
\frac{\partial c}{\partial t}+\nabla \cdot \bar{J}=0 \tag{1.7}
\end{equation*}
$$

Using Equation (1.7) in Equation (1.6), one gets

$$
\begin{equation*}
\frac{\partial c}{\partial t}-\nabla \cdot(D \nabla c)=0 \tag{1.8}
\end{equation*}
$$

If the diffusion coefficient D is a constant, then Equation (1.8) becomes the diffusion equation (1.5). The diffusion equation can be applied to solving problems in mass diffusion, momentum diffusion, and heat diffusion. It is clear that under different situations, the diffusion equation assumes different forms. For example, in the case of heat diffusion, c will be the temperature T whereas D will become the coefficient of thermal diffusivity α. Equation (1.5) for the case of heat diffusion is also known as the heat conduction equation, whose one-dimensional form is given by

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}} \tag{1.9}
\end{equation*}
$$

where T is the temperature of a heated rod, α is the coefficient of thermal conductivity, x is the distance along the rod, and t is the time. In Figure 1.1, the heated rod extends from $x=0$ to $x=a$ with $T(x, t)$ being the temperature of the rod at location x, the distance from the end $x=0$ and time t.

Figure 1.1 Temperature distribution of a heated rod of length a.

It is extremely helpful to picturize the solution of a PDE. In the case of Equation (1.9), the solution can be expressed as a surface, $z=T(x, t)$ in a three-dimensional space (x, t, z), as shown in Fig 1.2. The domain of the solution, Ω, is the region $0 \leq t<\infty$ and
$0 \leq x \leq a$. The temperature distribution at some time $t_{o}>0$ is the curve $z=T\left(x, t_{o}\right)$, where the plane $t=t_{o}$ intersects the solution curve. The curve $z=T(x, 0)$ is the initial temperature distribution that is assumed to be given. Equation (1.9) states that at any point (i.e., at any point x, t) in the solution surface, the slope of the surface in the t direction is related locally to the rate of change of the slope in the x-direction. It is abundantly clear that in order to obtain a unique solution, there is a need to prescribe the nature of the solution (the behaviour of the surface) at the edges of the solution domain: at $t=0$ and at $x=0$, and $x=a$. It makes sense to expect, on the basis of physical reasoning, that in order to predict the future evolution of the temperature, one needs to have knowledge of the initial state, i.e., the initial temperature distribution in the rod, $T(x, 0)$. In a similar manner, it makes sense to expect that the temperature values at the ends of the rod at any particular time would affect the temperature distribution in the rod.

Figure 1.2 Solution surface and solution domain, Ω, for Equation (1.9).

1.3 First-order Equations

One of the most important first-order PDE is the one-dimensional advection equation,

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}=0 \tag{1.10}
\end{equation*}
$$

where ρ is the air density, u is a constant velocity, t is the time, and x is space coordinate. Equation (1.10) expresses the statement that the rate of change of air density of an air parcel with respect to time is zero following the motion, i.e., the air density of an air parcel is constant following the motion. Alternatively, Equation (1.10) states that the total or substantive derivative of air density is zero, following the motion. A fluid flow is said to be incompressible if the fractional change in density of an air parcel, associated with a change in pressure, following the motion is very small. In effect, incompressible fluid flow is one for which the rate of change of air density of an air parcel with respect to time is zero, following the motion. Hence, Equation (1.10) is valid for an incompressible fluid flow.

Consider a one-dimensional flow of an incompressible fluid. The continuity equation that expresses the principle of conservation of mass for a one-dimensional flow of density $\rho(x, t)$ for an incompressible fluid is expressed as

$$
\begin{equation*}
\frac{d \rho}{d t}=0 \tag{1.11}
\end{equation*}
$$

where $d \rho / d t$ signifies the rate of change of density $\rho(x, t)$ following the motion as expressed in the Lagrangian description of fluid motion. Its equivalent expression in the Eulerian description of motion is given by (1.10), where u is the nonzero constant velocity component in the x direction. The aforementioned equation called the advection equation can also be easily derived from the following consideration

Consider a one-dimensional flow of an incompressible fluid. Assuming that the fluid density $\rho(x, t)$ changes only due to convective/advective processes, one can write the following

$$
\rho(x, t+\Delta t)=\rho(x-u \Delta t, t)
$$

If Δt is sufficiently small, one can expand both sides of the equation by Taylor series expansion and retain only up to the linear term

$$
\rho(x, t)+\Delta t \frac{\partial \rho(x, t)}{\partial t}=\rho(x, t)-u \Delta t \frac{\partial \rho(x, t)}{\partial x}
$$

or canceling of Δt on both sides, one gets the one-dimensional advection equation

$$
\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}=0
$$

From this discussion it is clear that the exact solution of Equation (1.10) is given as

$$
\begin{equation*}
\rho(x, t)=F(x-u t) \tag{1.12}
\end{equation*}
$$

where the initial condition $\rho(x, 0)=F(x)$. Equation (1.12) defines a right-traveling wave that propagates (i.e., convects or advects) the initial property (density) distribution to the right at the convection/advection velocity u. The aforementioned analytical solution indicates that the initial property (density) profile $\rho(x, 0)=F(x)$ simply propagates (i.e., convects/advects) to the right with the constant velocity u, its shape and magnitude is unchanged.

Figure 1.3 Solution surface for Equation (1.10).

If one moves with the solution point $x(t)=x_{o}+u t$, Equation (1.10) tells us that the rate of change of ρ is zero, i.e., in other words, ρ is a constant along a line $x=x_{o}+u t$. Figure 1.3 shows the solution surface in the (x, t, z)-space. It is clear from Figure 1.3 that the lines $x=x_{o}+u t$ are a family of parallel lines in the plane $z=0$ that intersect the plane $t=0$ at $x=0$. The equation says that the height of the solution surface is always the same along such a line, i.e., the intersection of this solution surface with the plane $t=$ constant is a curve that is identical with the curve $z=F(x)$ at $t=0$, but displaced in the x-direction by a distance $u t$. Thus, the solution represents a disturbance with arbitrary shape $F(x)$ translating uniformly with speed u in the positive x-direction if $u>0$, or in the negative x-direction if $u<0$.

It is clear that "information" about the initial distribution of ρ "propagates" or is "carried along" the lines $x=x_{o}+u t$ in the plane $z=0$. These lines are called the
characteristic curves, or simply the characteristics of the equation. The characteristic equation is then given as

$$
\begin{equation*}
\frac{d x}{d t}=u \tag{1.13}
\end{equation*}
$$

Integrating Equation (1.13) provides us the characteristic curves. The solution of the ODE Equation (1.13) involves one integration constant that determines where the characteristic curves intersect the x axis. Subsequently one needs to construct the solution surface that has the same value $F(x)$ along each characteristic in the $x-t$ plane as that in the initial plane, $t=0$.

Consider a general first-order partial differential equation as follows:

$$
\begin{equation*}
a \frac{\partial u}{\partial x}+b \frac{\partial u}{\partial y}=c \tag{1.14}
\end{equation*}
$$

If a, b, and c are functions of x, y, and u, then Equation (1.14) is called a quasilinear PDE. If a and b are functions of x and y while c is a function of x, y and u, then Equation (1.14) is called a semilinear PDE. If a, b, and c are functions of x and y only, then Equation (1.14) is called a linear PDE. Quasilinear PDE is one in which the highest-order terms are linear.

1.4 First-order Equations: Method of Characteristics

Consider the simplest case of the following first-order linear partial differential equation

$$
\begin{equation*}
a(x, y) \frac{\partial u}{\partial x}+b(x, y) \frac{\partial u}{\partial y}=c(x, y) \tag{1.15}
\end{equation*}
$$

Assume that one can find a solution $u(x, y)$. Consider the function $S=\{x, y, u(x, y)\}$. If $u(x, y)$ is a solution of Equation (1.15), at each point (x, y), it is possible to express Equation (1.15) as the dot product

$$
\begin{equation*}
[a(x, y), b(x, y), c(x, y)] \cdot\left[u_{x}(x, y), u_{y}(x, y),-1\right]=0 \tag{1.16}
\end{equation*}
$$

From calculus, the normal to the surface $S=\{x, y, u(x, y)\}$ at the point $[x, y, u(x, y)]$ is given by

$$
N(x, y)=\left[u_{x}(x, y), u_{y}(x, y),-1\right]
$$

It is thus clear that if the vector $[a, b, c]$ is perpendicular to $\left[u_{x}, u_{y},-1\right]$, then the vector $[a, b, c]$ lies in the tangent plane to S. Hence, to obtain a solution to Equation (1.15),
one needs to find a surface S such that at each point (x, y, u) on S, the vector $[a, b, c]$ lies in the tangent plane. To construct such a surface, one first obtains a curve that lies in S. It is clear that the vector $[a, b, c]$ need to lie in the tangent plane to the surface S at each point (x, y, u) on the surface. Let there be a curve C parameterized by s such that at each point on the curve C, the vector $[a, b, c]$ will be tangent to the curve. That is, for a curve C parameterized as $C=\{(x(s), y(s), u(s)\}$, the following three conditions need to be satisfied

$$
\begin{align*}
& \frac{d x}{d s}=a(x(s), y(s)) \tag{1.17}\\
& \frac{d y}{d s}=b(x(s), y(s)) \tag{1.18}\\
& \frac{d u}{d s}=c(x(s), y(s)) \tag{1.19}
\end{align*}
$$

Such a curve when it exists is called an integral curve for the vector field $[a, b, c]$. For solving a PDE of the form given in Equation (1.15), we need to find the integral curves for the vector field $V=[a(x, y), b(x, y), c(x, y)]$ associated with the PDE. These integral curves are known as characteristic curves. The aforementioned characteristic curves are obtained by solving the system of ordinary differential equations (1.17)-(1.19)(ODE).

Once the characteristic curves for Equation (1.15) are obtained, one needs to construct a solution of Equation (1.15) by forming a surface S as a union of these characteristic curves. Such a surface $S=x, y, u$ for which the vector field $V=$ $[a(x, y), b(x, y), c(x, y)]$ lies in the tangent plane to S at each point (x, y, u) on S is known as the integral surface. Through the introduction of characteristic equations, the original PDE (Equation (1.15)) can be reduced to a system of ODEs. The concept is to solve the characteristic equations, obtain an union of the so-called characteristic curves to form a surface that would provide for the solution of the PDE (Equation (1.15)).

1.5 Second-order Quasilinear PDEs: Classification Using Method of Characteristics

The general quasilinear second-order nonhomogeneous PDE in two independent variables x and y are given as

$$
\begin{equation*}
a \frac{\partial^{2} u}{\partial x^{2}}+b \frac{\partial^{2} u}{\partial x \partial y}+c \frac{\partial^{2} u}{\partial y^{2}}+d \frac{\partial u}{\partial x}+e \frac{\partial u}{\partial y}+f u=g \tag{1.20}
\end{equation*}
$$

The classification of PDEs to parabolic, elliptic, and hyperbolic PDEs are analogous to the classification of conic section. For example, conics are generally described by the second-order algebraic equation

$$
\begin{equation*}
A x^{2}+B x y+C y^{2}+D x+E y+F=0 \tag{1.21}
\end{equation*}
$$

The conics as described by Equation (1.21) are classified as parabolic, elliptic, and hyperbola based on the sign of the discriminant, $B^{2}-4 A C,\left(B^{2}-4 A C=0\right.$ is defined as a parabola, $B^{2}-4 A C<0$ is defined as an elliptic and $B^{2}-4 A C>0$ is defined as a hyperbola). In exactly the same way, the second-order quasilinear PDE (Equation (1.20)) is classified based on the sign of the discriminant $b^{2}-4 a c$, where a, b, and c refer to the coefficients of the highest (second-order) derivative; $b^{2}-4 a c=0$ is referred to as a parabolic partial differential equation, $b^{2}-4 a c<0$ is referred to as an elliptic partial differential equation, and $b^{2}-4 a c>0$ is referred to as hyperbolic partial differential equation. In this section, the classification of Equation (1.20) using the characteristics is examined. Earlier it was shown that the characteristic curves for the one-dimensional advection equation [Equation (1.10)] are the lines $x=x_{o}+u t$ in the plane $z=0$. The solution for Equation (1.10) represents a disturbance with arbitrary shape $F(x)$ translating uniformly with speed u in the positive x-direction if $u>0$, or in the negative x-direction if $u<0$, i.e., "information" about the initial distribution of ρ "propagates" or is "carried along" the characteristic curves.

As discontinuities in the derivatives of the solution, if they exist, must propagate along the characteristics, it is possible to utilize the characteristics themselves to classify the second-order quasilinear PDEs. The following question is posed. Are there any curves in the solution domain passing through a general point P along which the highest-order derivatives [in the case of Equation (1.20)], the second-order derivatives of $u(x, y)$, i.e., $u_{x x}, u_{x y}$, and $u_{y y}$, are multi-valued or discontinuous? Such curves, if they exist, are the paths of information propagation. One equation that relates the three second-order derivatives of $u(x, y)$ is the PDE [Equation (1.20)] itself. One can obtain two more such equations as follows:

$$
\begin{align*}
& d\left(\frac{\partial u}{\partial x}\right)=\frac{\partial^{2} u}{\partial x^{2}} d x+\frac{\partial^{2} u}{\partial y \partial x} d y \tag{1.22}\\
& d\left(\frac{\partial u}{\partial y}\right)=\frac{\partial^{2} u}{\partial x \partial y} d x+\frac{\partial^{2} u}{\partial y^{2}} d y \tag{1.23}
\end{align*}
$$

Equations (1.20), (1.22) and (1.23) can be written in matrix form with the second-order derivatives as unknown. If the determinant of the coefficient matrix vanishes, the second-order derivatives of $u(x, y)$ are indeterminate and thus, multi-valued or
discontinuous. Setting the determinant of the coefficient matrix to zero, yields $a(d y)^{2}-$ $b(d y)(d x)+c(d x)^{2}=0$, whose solution is obtained from the quadratic formula

$$
\begin{equation*}
\frac{d y}{d x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{1.24}
\end{equation*}
$$

Equation (1.24) is the ordinary differential equation for the two families of characteristic curves in the x, y plane, corresponding to the \pm signs. The two families of characteristic curves, if they exist, may either be real and repeated, complex, or real and distinct. This requirement is equivalent to the discriminant $b^{2}-4 a c=0, b^{2}-4 a c<$ 0 , and $b^{2}-4 a c>0$, i.e., the original PDE being either parabolic PDE, elliptic PDE, or hyperbolic PDE. Hence, while elliptic PDEs do not have any real characteristics, parabolic PDEs have one real and repeated characteristic, and hyperbolic PDEs have two real and distinct characteristic curves.

The existence of characteristic curves in the solution domain provides for the introduction of concepts such as domain of dependence and range of influence. The domain of dependence of a point $P(x, y)$ in the solution domain is defined as the region of the solution domain upon which the solution at point $P(x, y)$ depends. In other words, the solution at any point P depends on the solution over the domain of dependence. The range of influence of a point $P(x, y)$ in the solution domain is defined as the region of the solution domain in which the solution is influenced by the solution at point $P(x, y)$. That is, the solution at a point P influences the solution over the range of influence. As parabolic and hyperbolic PDEs have real characteristic curves, they will have a definite domain of dependence and range of influence in the real domain. However, elliptic PDEs do not have real characteristic curves. Hence, elliptic PDEs do not have a definite domain of dependence and range of influence in the real domain; thus, the entire solution domain of an elliptic PDE is both its domain of dependence and range of influence of every point in the solution domain. In order to further understand the concept of domain of dependence and range of influence, let us consider specific examples of (i) parabolic, (ii) hyperbolic, and (iii) elliptic PDEs.

The one-dimensional linear heat conduction equation is an example of a parabolic PDE,

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}} \tag{1.25}
\end{equation*}
$$

Two other equations that can relate the second-order derivatives are as follows:

$$
\begin{align*}
& d\left(\frac{\partial T}{\partial x}\right)=\frac{\partial^{2} T}{\partial x^{2}} d x+\frac{\partial^{2} T}{\partial x \partial t} d t \tag{1.26}\\
& d\left(\frac{\partial T}{\partial t}\right)=\frac{\partial^{2} T}{\partial t \partial x} d x+\frac{\partial^{2} T}{\partial t^{2}} d t \tag{1.27}
\end{align*}
$$

The characteristic differential equation is found by setting the determinant of the coefficient matrix to zero. This yields $\alpha[d t]^{2}=0$, which when integrated provides for time being equal to a constant for the characteristic paths. An example of a hyperbolic PDE is the second-order linear wave equation given by

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{1.28}
\end{equation*}
$$

Two other equations that can relate the second-order derivatives are as follows:

$$
\begin{align*}
& d\left(\frac{\partial u}{\partial x}\right)=\frac{\partial^{2} u}{\partial x^{2}} d x+\frac{\partial^{2} u}{\partial x \partial t} d t \tag{1.29}\\
& d\left(\frac{\partial u}{\partial t}\right)=\frac{\partial^{2} u}{\partial t \partial x} d x+\frac{\partial^{2} u}{\partial t^{2}} d t \tag{1.30}
\end{align*}
$$

The characteristic differential equation is found by setting the determinant of the coefficient matrix to zero. This yields $c^{2}[d t]^{2}=[d x]^{2}$, which consequently yields

$$
\frac{d t}{d x}= \pm \frac{1}{c}
$$

indicating that two distinct and real families of characteristic paths exist for a hyperbolic PDE.

An example of an elliptic PDE is the second-order linear Laplace equation given by

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 \tag{1.31}
\end{equation*}
$$

Two other equations that can relate the second-order derivatives are as follows:

$$
\begin{align*}
& d\left(\frac{\partial \phi}{\partial x}\right)=\frac{\partial^{2} \phi}{\partial x^{2}} d x+\frac{\partial^{2} \phi}{\partial x \partial y} d y \tag{1.32}\\
& d\left(\frac{\partial \phi}{\partial y}\right)=\frac{\partial^{2} \phi}{\partial y \partial x} d x+\frac{\partial^{2} \phi}{\partial y^{2}} d y \tag{1.33}
\end{align*}
$$

The characteristic differential equation is found by setting the determinant of the coefficient matrix to zero. This yields $[d y]^{2}=-[d x]^{2}$, which subsequently yields

$$
\frac{d y}{d x}= \pm i
$$

indicating that the characteristic curves for an elliptic PDE do not lie in the real domain. The aforementioned concepts of domain of dependence and range of influence are illustrated for each of the aforementioned second-order linear PDE in Figure 1.4 (a) for a parabolic PDE, Figure 1.4(b) for a hyperbolic PDE and Figure 1.4 (c) for an elliptic PDE.

Figure 1.4 Domain of dependence (horizontal hatching) and range of influence (vertical hatching) for (a) parabolic, (b) hyperbolic, and (c) elliptic PDEs.

One can employ a similar strategy to classify the first-order quasilinear PDE. Consider classification of the first-order quasilinear PDE

$$
\begin{equation*}
a \frac{\partial u}{\partial t}+b \frac{\partial u}{\partial x}=c \tag{1.34}
\end{equation*}
$$

One additional equation that relates the first-order derivative is as follows:

$$
\begin{equation*}
d(u)=\frac{\partial u}{\partial t} d t+\frac{\partial u}{\partial x} d x \tag{1.35}
\end{equation*}
$$

The characteristic differential equation is found by setting the determinant of the coefficient matrix to zero. This yields $a d x-b d t=0$. Solving for $d x / d t$ gives

$$
\begin{equation*}
\frac{d x}{d t}=\frac{b}{a} \tag{1.36}
\end{equation*}
$$

Equation (1.36) is the differential equation for a family of characteristic curves in the solution domain along which the first derivatives of u may be discontinuous or multivalued. As a and b are real functions, the characteristic curves always exist and they are real characteristic curves. Hence, a single quasilinear first-order PDE is always a hyperbolic PDE. The one-dimensional first-order advection equation is an example of a hyperbolic PDE.

1.6 Wave Equation

In this section, we derive the one-dimensional wave equation, which is the simplest form of the wave equation for an idealized string. The following assumptions on the physical string are presumed to hold. Assume that a flexible string of length L is tightly stretched along the x-axis with one of its end point at $x=0$ and the other end point at $x=L$. It is further assumed that the tension force on the string is the only dominant force, whereas all other forces acting on the string are negligible. Moreover, it is assumed that no external forces are applied to the string. Furthermore, it is assumed that the weight of the string is negligible and that the damping forces can also be neglected. Considering the string to be flexible, it follows that at each point, the tension force has constant magnitude; moreover, it has the direction of the tangent line to the string. It is also assumed that each point of the string moves only vertically. Let $u(x, t)$ denote the vertical displacement at time t of the point x on the string. At a fixed initial time, $t=t_{o}$, the shape of the string is given by the known function $u\left(x, t_{o}\right)$. The objective is to find the shape of the string at all points x and at time t, i.e., $u(x, t)$. To find the shape of the string at all points at a later time, one needs to solve the onedimensional wave equation with associated initial and boundary conditions.

Consider a small element of the string between the points x and $x+\Delta x(\Delta x>0$ is assumed small; moreover, it is assumed that this element moves vertically). The total force to which this element is subject to is the tension force exerted at the left end $T(x, t)$ and the tension force exerted at the right end $T(x+\Delta x, t)$ by the rest of the string. These forces have the same constant magnitude T. Let $\theta(x, t)$ be the angle between $T(x, t)$ and the x-axis and $\theta(x+\Delta x, t)$ be the angle between $T(x+\Delta x, t)$ and the x-axis. It is assumed that these angles are between 0 and π. As we are assuming that we are dealing with

Figure 1.5 String element at time t subject to tension forces.
small vibrations, then either θ is close to 0 (at location $(x+\Delta x, t)$) or close to π (at location (x, t)).

The total vertical force acting on the element is given by $F=$ vertical component of tension force at (x, t) plus vertical component of tension force at $(x+\Delta x, t)$, i.e.,

$$
\begin{equation*}
F=T(x+\Delta x, t) \sin [\theta(x+\Delta x, t)]+T(x, t) \sin [\theta(x, t)]=T\{\sin [\theta(x+\Delta x, t)]+\sin \theta(x, t)\} \tag{1.37}
\end{equation*}
$$

For θ close to zero, $\sin \theta \sim \tan \theta \sim \theta$, whereas for θ close to $\pi, \sin \theta \sim-\tan \theta \sim \pi-\theta$. Moreover, the shape of the string at a fixed time t is given as the graph of the function $u(x, t)$ (t fixed and x varies); slope of the tangent line at location x_{o} is given by $\tan \theta_{o}$, where θ_{o} is the inclination angle. It follows then that

$$
\begin{equation*}
\tan \theta(x, t)=\frac{\partial u(x, t)}{\partial x} \quad \text { and } \quad \tan \theta(x+\Delta x, t)=\frac{\partial u(x+\Delta x, t)}{\partial x} \tag{1.38}
\end{equation*}
$$

Substituting Equation (1.38) in Equation (1.37), one obtains the total vertical force acting on the element as

$$
\begin{equation*}
F=T(x, t)\left(\frac{\partial u(x+\Delta x, t)}{\partial x}-\frac{\partial u(x, t)}{\partial x}\right) . \tag{1.39}
\end{equation*}
$$

Using Newton's second law of motion, $F=\Delta m a$, where Δm is the mass of the element and a is the acceleration of the element at time t. The mass of the element $\Delta m=\rho \Delta x$,
where ρ is the density of the string material. The acceleration of the element at time t can be written as

$$
\begin{equation*}
a=\frac{\partial^{2} u}{\partial t^{2}} \tag{1.40}
\end{equation*}
$$

Using the expressions for Δm and a, Newton's second law of motion becomes

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}=\frac{T}{\Delta x}\left(\frac{\partial u(x+\Delta x, t)}{\partial x}-\frac{\partial u(x, t)}{\partial x}\right) \tag{1.41}
\end{equation*}
$$

In the limit when $\Delta x \rightarrow 0$, Equation (1.41) becomes

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{1.42}
\end{equation*}
$$

where $c^{2}=T / \rho$ is the square of the speed of the wave. Equation (1.42) is known as the one-dimensional wave equation.

1.7 Linear Advection Equation

The wave equation is closely related to the so-called advection equation, which in one dimension takes the form

$$
\begin{equation*}
\frac{\partial u}{\partial t}+v \frac{\partial u}{\partial x}=0 \tag{1.43}
\end{equation*}
$$

The aforementioned equation describes the passive advection of some scalar field u carried along by a flow of constant speed v. Let the initial condition be $u(x, 0)=u_{o}$. Based on the method of characteristics discussed in Section 1.4, it follows that the characteristic equations are

$$
\frac{d t}{d s}=1 ; \quad \text { with } t(0)=0
$$

this implies $t=s$;

$$
\frac{d x}{d s}=v ; \quad \text { with } x(0)=x_{o}
$$

this implies that $x=x_{o}+v s$ and $x=x_{o}+v t \rightarrow x_{o}=x-v t$. Furthermore,

$$
\frac{d u}{d s}=0 ; \quad \text { with } s(0)=u_{o}\left(x_{o}\right)
$$

The unique solution of the advection equation is

$$
\begin{equation*}
u(x, t)=u_{o}(x-v t) \tag{1.44}
\end{equation*}
$$

The solution (Equation (1.44)) is just an initial condition u_{o} shifted by $v t$ to the right (for $v>0$) or to the left $(v<0)$, which remains constant along the characteristic curves, $d u / d s=0$.

1.8 Laplace Equation

Consider a thin plate having some width w and some length l; it also has a very small thickness t. The faces of this plate are insulated to ensure that no heat flows in the direction of the thickness t. Assume that the top edge of the plate is maintained at a higher temperature while the other three edges are maintained at a same lower temperature. In this situation, heat flows into the plate through the top edge and out of the plate through the other three edges. Assume that there are no mechanism/processes for generation of internal energy within the plate. In the aforementioned circumstance, one is interested in obtaining the temperature (T) distribution within the plate. The temperature within the plate will vary within the horizontal plane in terms of x (width-wise coordinate) and y (length-wise coordinate) and the temperature distribution within the plate $T(x, y)$ will be governed by the following two-dimensional Laplace equation:

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=0 \tag{1.45}
\end{equation*}
$$

The non-homogeneous (right-hand side is a known function of space) form of the Laplace equation is called Poisson equation. Solving Equation (1.45) subject to the boundary conditions (specified temperature on all the four edges) will determine the temperature distribution $T(x, y)$ within the plate. The Laplace equation arises in several problems in ideal fluid flow, heat diffusion, mass diffusion, and in electrostatics. As time does not appear in the Laplace equation, and the prescribed temperature on all the four edges is also independent of time, the solution of the Laplace equation (temperature distribution within the plate) will also not depend on time. Such problems in which time does not appear in the governing equations are known as equilibrium problems.

Equation (1.45) can be solved by the method of separation of variables in which it is assumed that the equation has a solution of the form

$$
\begin{equation*}
T(x, y)=X(x) Y(y) \tag{1.46}
\end{equation*}
$$

Substituting Equation (1.46) in Equation (1.45), one obtains after dividing by $X Y$, the following

$$
\begin{equation*}
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=-k^{2} \tag{1.47}
\end{equation*}
$$

As the first term and second terms of Equation (1.47) depend only on x and y, respectively, each of them should depend on a constant, say $-k^{2}$. The solution is then a product of $X(x)=c_{1} \sin (k x)+c_{2} \cos (k x)$ and $Y(y)=c_{3} \sinh (k y)+c_{4} \cosh (k y)$. It is possible to reduce the number of constants from 5 to 4 . For example, if $c_{1} c_{3} \neq 0$, it is possible to redefine $c_{1} c_{3}=A ; c_{2} / c_{1}=B ; c_{4} / c_{3}=C$; and write the solution as

$$
\begin{equation*}
T(x, y)=A[\sin (k x)+B \cos (k x)][\sinh (k y)+C \cosh (k y)] . \tag{1.48}
\end{equation*}
$$

The constants A, B, C, and k are to be determined from the given initial and boundary conditions.

1.9 Method of Separation of Variables for the One-dimensional Heat Equation

In this section, the method of separation of variables is used to solve the onedimensional heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\alpha \frac{\partial^{2} u}{\partial x^{2}} \tag{1.49}
\end{equation*}
$$

In this method, the solution is assumed to be of the form

$$
\begin{equation*}
u(x, t)=X(x) T(t) \tag{1.50}
\end{equation*}
$$

Substituting Equation (1.50) in Equation (1.49) and dividing by $X T$, one gets

$$
\begin{equation*}
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\frac{1}{\alpha T} \frac{d T}{d t}=-k^{2} \tag{1.51}
\end{equation*}
$$

As the first term and second terms of Equation (1.51) depend only on x and t, respectively, each of them should depend on a constant, say $-k^{2}$. The solution is then a product of

$$
\begin{align*}
& X(x)=c_{1} \cos (k x)+c_{2} \sin (k x) \text { and } T(t)=c_{3} e^{-\alpha k^{2} t} \text { given by } \\
& u(x, t)=e^{-\alpha k^{2} t}\left[c_{1} \cos (k x)+c_{2} \sin (k x)\right] \tag{1.52}
\end{align*}
$$

where c_{3} is assumed to be unity without any loss of generality. With boundary conditions $u(x=0, t)=0$ and $u(x=L, t)=0$, one gets $c_{1}=0$ and $k=n(\pi / L)$; the solution is as follows:

$$
\begin{equation*}
u_{n}(x, t)=b_{n} e^{-\alpha\left(\frac{n \pi}{L}\right)^{2} t} \sin \frac{n \pi x}{L} \quad \text { for } \quad n=1,2, \cdots \tag{1.53}
\end{equation*}
$$

Satisfying the initial condition $u(x, t=0)=f(x)$, one gets the solution of the heat equation as

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-\alpha\left(\frac{n \pi}{L}\right)^{2} t} \sin \frac{n \pi x}{L} \tag{1.54}
\end{equation*}
$$

where

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

1.10 Method of Separation of Variables for the One-dimensional Wave Equation

In this section, the method of separation of variables is used to solve the onedimensional wave equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{1.55}
\end{equation*}
$$

As in the case of the heat equation, the solution is assumed to be of the form

$$
\begin{equation*}
u(x, t)=X(x) T(t) \tag{1.56}
\end{equation*}
$$

Substituting Equation (1.56) in Equation (1.55) and dividing by $X T$, one obtains

$$
\begin{equation*}
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\frac{1}{c^{2} T} \frac{d^{2} T}{d t^{2}}=-k^{2} \tag{1.57}
\end{equation*}
$$

As the first term and second terms of Equation (1.57) depend only on x and t, respectively, each of them should depend on a constant, say $-k^{2}$. The solution is then a product of

$$
\begin{align*}
& X(x)=c_{1} \cos (k x)+c_{2} \sin (k x) \text { and } \quad T(t)=c_{3} \cos (k c t)+c_{4} \sin (k c t) \quad \text { given by } \\
& u(x, t)=\left[c_{1} \cos (k x)+c_{2} \sin (k x)\right]\left[c_{3} \cos (k c t)+c_{4} \sin (k c t)\right] \tag{1.58}
\end{align*}
$$

With boundary conditions $u(x=0, t)=0$ and $u(x=L, t)=0$, one gets $c_{1}=0$ and $k=$ $n(\pi / L)$; solution is as follows:

$$
\begin{equation*}
u_{n}(x, t)=\left(\alpha_{n} \cos \frac{n \pi c t}{L}+\beta_{n} \sin \frac{n \pi c t}{L}\right) \sin \frac{n \pi x}{L} \quad \text { for } \quad n=1,2, \cdots \tag{1.59}
\end{equation*}
$$

Satisfying the initial conditions $u(x, 0)=f(x)$ and $u_{t}(x, 0)=g(x)$; one gets the solution of the wave equation

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left(\alpha_{n} \cos \omega_{n} t+\beta_{n} \sin \omega_{n} t\right) \sin k_{n} x \tag{1.60}
\end{equation*}
$$

where

$$
\begin{aligned}
& \omega_{n}=\frac{n \pi c}{L}, \quad k_{n}=\frac{n \pi}{L} \\
& \alpha_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin k_{n} x d x, \quad \text { and } \\
& \beta_{n}=\frac{2}{n \pi c} \int_{0}^{L} g(x) \sin k_{n} x d x
\end{aligned}
$$

Exercises 1a (Question and answer)

1. Find the type (linear, semilinear, quasilinear, or nonlinear) of the following partial differential equations:
(a) $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z$
(b) $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z^{3}$
(c) $(x+y) \frac{\partial z}{\partial x}+(x-y) \frac{\partial z}{\partial y}=x y$
(d) $z \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z$
(e) $x\left(\frac{\partial z}{\partial x}\right)^{2}+y\left(\frac{\partial z}{\partial y}\right)^{2}=z$
Answer: (a) Linear
(b) Semilinear
(c) Linear
(d) Quasilinear
(e) Nonlinear

Exercises 1b (Questions only)

1. Find the general integral of the first-order partial differential equation

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z
$$

Answer: $F(x / y, z / y)=0$
2. Given the first-order partial differential equation

$$
y \frac{\partial z}{\partial x}-x \frac{\partial z}{\partial y}=0
$$

find the nature of the characteristic curves.
Answer: The characteristic curves are a family of circles passing through the origin.
3. Given the first-order partial differential equation

$$
a \frac{\partial z}{\partial x}+b \frac{\partial z}{\partial y}=0
$$

where a and b are constants. Find the general solution.
Answer: $z=f(a y-b x)$
4. Given the first-order partial differential equation

$$
a \frac{\partial z}{\partial x}+b \frac{\partial z}{\partial y}=c
$$

where a, b, and c are constants, find the general solution.
Answer: $z=f(a y-b x)+(c / a) x$
5. Solve the first-order partial differential equation

$$
x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}=z
$$

with initial conditions $z=x^{2}$ on $y=x ; 1 \leq y \leq 2$.
Answer: $z(x, y)=x \sqrt{x y}$
6. Solve the first-order partial differential equation

$$
x(y-z) \frac{\partial z}{\partial x}+y(x+z) \frac{\partial z}{\partial y}=(x+y) z
$$

with initial conditions $z=x^{2}+1$ on $y=x$.

Answer: $\frac{x y}{u}=\frac{x+u-y-1}{x+u-y}$
7. Show that the following second-order partial differential equation of the form

$$
\begin{equation*}
A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial y}+F u+G=0, \tag{E1.1}
\end{equation*}
$$

subject to the following transformation of independent variables from x and y to ξ and η, where A, B, C, D, E, F, and G are functions of x and y only, which can be put in the canonical or normal form. Show that the transformed equations are of the following form

$$
\begin{equation*}
\bar{A}\left(\xi_{x}, \xi_{y}\right) \frac{\partial^{2} u}{\partial \xi^{2}}+\bar{B}\left(\xi_{x}, \xi_{y}, \eta_{x}, \eta_{y}\right) \frac{\partial^{2} u}{\partial \xi \partial \eta}+\bar{C}\left(\eta_{x}, \eta_{y}\right) \frac{\partial^{2} u}{\partial \eta^{2}}=F\left[\xi, \eta, u(\xi, \eta), u_{\xi}(\xi, \eta), u_{\eta}(\xi, \eta)\right] \tag{E1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\bar{A}\left(\xi_{x}, \xi_{y}\right) & =A \xi_{x}^{2}+B \xi_{x} \xi_{y}+C \xi_{y}^{2} \\
\bar{B}\left(\xi_{x}, \xi_{y}, \eta_{x}, \eta_{y}\right) & =2 A \xi_{x} \eta_{x}+B\left(\xi_{x} \eta_{y}+\xi_{y} \eta_{x}\right)+2 C \xi_{y} \eta_{y} \\
\bar{C}\left(\eta_{x}, \eta_{y}\right) & =A \eta_{x}^{2}+B \eta_{x} \eta_{y}+C \eta_{y}^{2}
\end{aligned}
$$

In the aforementioned set of equations, the subscripts indicate partial derivatives.
8. Moreover, show that for the aforementioned second-order partial differential equation (E1.1), the following relation can be obtained

$$
\bar{B}^{2}-4 \overline{A C}=\left(\xi_{x} \eta_{y}-\xi_{y} \eta_{x}\right)^{2}\left(B^{2}-4 A C\right)
$$

9. For the hyperbolic case, where $B^{2}-4 A C>0$, show that Equation (E1.2) will be transformed and result in the following simple, canonical form given by

$$
\frac{\partial^{2} u}{\partial \xi \partial \eta}=\phi\left(\xi, \eta, u, u_{\xi}, u_{\eta}\right)
$$

10. For the parabolic case, where $B^{2}-4 A C=0$, show that Equation (E1.2) will be transformed and result in the following simple, canonical form given by

$$
\frac{\partial^{2} u}{\partial \eta^{2}}=\phi\left(\xi, \eta, u, u_{\xi}, u_{\eta}\right)
$$

11. For the elliptical case, where $B^{2}-4 A C<0$, show that Equation (E1.2) will be transformed and result in the following simple, real canonical form given by

$$
\frac{\partial^{2} u}{\partial \alpha^{2}}+\frac{\partial^{2} u}{\partial \beta^{2}}=\psi\left[\alpha, \beta, u, u_{\alpha}(\alpha, \beta), u_{\beta}(\alpha, \beta)\right]
$$

where

$$
\alpha=\frac{1}{2}(\xi+\eta) \quad \text { and } \quad \beta=\frac{1}{2}(\xi-\eta)
$$

12. Reduce the following second-order partial differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=x^{2} \frac{\partial^{2} u}{\partial y^{2}}
$$

to its canonical form.
Answer: $u_{\xi \eta}=\frac{1}{4(\xi-\eta)}\left(u_{\xi}-u_{\eta}\right)$
13. Reduce the following second-order partial differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

to its canonical form.
Answer: $u_{\eta \eta}=0$
14. Reduce the following second-order partial differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+x^{2} \frac{\partial^{2} u}{\partial y^{2}}=0
$$

to its canonical form.
Answer: $u_{\alpha \alpha}+u_{\beta \beta}=-\frac{1}{2 \alpha} u_{\alpha}$

